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Abstract

Semantic segmentation has been a long standing chal-
lenging task in computer vision. It aims at assigning a la-
bel to each image pixel and needs a significant number of
pixel-level annotated data, which is often unavailable. To
address this lack of annotations, in this paper, we lever-
age, on one hand, a massive amount of available unlabeled
or weakly labeled data, and on the other hand, non-real
images created through Generative Adversarial Networks.
In particular, we propose a semi-supervised framework –
based on Generative Adversarial Networks (GANs) – which
consists of a generator network to provide extra training
examples to a multi-class classifier, acting as discrimina-
tor in the GAN framework, that assigns sample a label y
from the K possible classes or marks it as a fake sample
(extra class). The underlying idea is that adding large fake
visual data forces real samples to be close in the feature
space, which, in turn, improves multiclass pixel classifica-
tion. To ensure a higher quality of generated images by
GANs with consequently improved pixel classification, we
extend the above framework by adding weakly annotated
data, i.e., we provide class level information to the genera-
tor. We test our approaches on several challenging bench-
marking visual datasets, i.e. PASCAL, SiftFLow, Stanford
and CamVid, achieving competitive performance compared
to state-of-the-art semantic segmentation methods.

1. Introduction
Semantic segmentation, i.e., assigning a label from a set

of classes to each pixel of the image, is one of the most chal-
lenging tasks in computer vision due to the high variation
in appearance, texture, illumination, etc. of visual scenes
as well as multiple viewpoints and poses of different ob-
jects. Nevertheless, despite the enormous work during past
years [4], [14], this problem is still not fully solved, even
though recent deep methods have demonstrated to be very
valuable. However, deep networks require substantial anno-
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Figure 1. Our idea is to employ a small set of labeled data to-
gether with large available unlabeled data (both realistic and fake)
to identify hidden patterns supporting semantic segmentation.

tated visual data. In case of semantic segmentation, anno-
tation should be at the pixel-level (i.e., each pixel of train-
ing images must be annotated), which is expensive to ob-
tain. An alternative to supervised learning is unsupervised
learning leveraging a large amount of available unlabeled
visual data. Unfortunately, unsupervised learning methods
have not been very successful for semantic segmentation,
because they lack the notion of classes and merely try to
identify consistent regions and/or region boundaries [28].
Semi-Supervised Learning (SSL) is halfway between su-
pervised and unsupervised learning, where in addition to
unlabeled data, some supervision is also given, e.g., some
of the samples are labeled. In semi-supervised learning,
the idea is to identify some specific hidden structure – p(x)
from unlabeled data x –under certain assumptions - that can
support classification p(y|x), with y class label. In this pa-
per, we aim to leverage unlabeled data to find a data struc-
ture that can support the semantic segmentation phase, as
shown in Fig. 1. In particular, we exploit the assumption
that if two data points x1, x2 are close in the input fea-
ture space, then the corresponding outputs (classifications)
y1, y2 should also be close (smoothness constraint) [3]. This
concept can be applied to semantic segmentation, i.e., pixels
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lying on the same manifold (close in feature space) should
be close in the label space, thus should be classified in the
same class. This means that unsupervised data acts as regu-
larizer in deep networks, accordingly improving their gen-
eralization capabilities.

Under the above assumption, in this paper, we em-
ploy generative adversarial networks (GANs) [8] to support
semi-supervised segmentation by generating additional im-
ages useful for the classification task. GANs have, recently,
gained a lot of popularity because of their ability in gener-
ating high-quality realistic images with several advantages
over other traditional generative models [12]. In our GAN-
based semi-supervised semantic segmentation method, the
generator creates large realistic visual data that, in turn,
forces the discriminator to learn better features for more ac-
curate pixel classification. Furthermore, to speed up and im-
prove the quality of generated samples for better classifica-
tion, we also condition the GANs with additional informa-
tion – weak labels – for image classes. In our formulation
of GAN, we employ a generator network similar to [21],
which, given a noise vector as an input, generates an im-
age to be semantically segmented by a multiclass classifier
(our discriminator) that, in addition to classifying the pix-
els into different semantic categories, determines whether a
given image belongs to training data distribution or is com-
ing from a generated data.

The performance analysis of several benchmarking
datasets for semantic segmentation, namely Pascal VOC
2012, SiftFlow, StanfordBG, and CamVid, shows the effec-
tiveness of our approach compared to state-of-the-art meth-
ods.

Summarizing, the main contributions of this paper are:

• We present a GAN network framework which extends
the typical GAN to pixel-level prediction and its appli-
cation in semantic segmentation.

• Our network is trained in semi-supervised manner to
leverage from generated data and unlabeled data.

• Finally, we extend our approach to use weakly la-
beled data by employing conditional GAN and avail-
able image-level labeled data.

The organization of the rest of the paper is as follows.
In the next section, we review recent methods for semantic
segmentation. In Section 3, we present our approach, where
we first provide a brief background of generative adversar-
ial networks, then we describe the design and structure of
our proposed model for semi-supervised learning. This is
followed by System Overview related to training and infer-
ence, which is covered in Section 4. Section 5 deals with
experimental results, where we report our results on Pascal
VOC 2012, SiftFlow, StanfordBG and CamVid datasets. Fi-
nally, we conclude the paper in Section 6.

2. Related Work
Semantic segmentation has been widely investigated in

past years. Some of the existing methods aim at finding a
graph structure over the image, by using Markov Random
Field (MRF) or Conditional Random Field (CRF), to cap-
ture the context of an image and employ classifiers to label
different entities (pixels, super pixels or patches) [26] [10]
[24]. Additional information, such as long range connec-
tions, to refine further the segmentation results have been
also proposed [24]. Nonetheless, these methods employ
hand crafted features for classification, and their perfor-
mance on a variety of datasets is not that adequate .

Convolutional Neural Networks (CNNs) have been very
popular recently in many computer vision applications in-
cluding semantic segmentation. For instance, [17] and [7]
leverage deep networks to classify super-pixels and label
the segments. More recent methods such as [14] apply
per-pixel classification using a fully convolutional network.
This is achieved by transforming fully-connected layers of
CNN (VGG16) into convolutional layers and using the pre-
trained ImageNet model to initialize the weights of the net-
work. Multiple deconvolution layers [18] have been also
employed to enhance pixel classification accuracy. Post-
processing based on MRF or CRF on top of deep network
framework has been adopted, as in [4], to refine pixel label
predictions. For example, in [23] the error of MRF infer-
ence is passed backward into CNN in order to train jointly
CNN and MRF. However, this kind of post-processing is
rather expensive since, for each image during training, iter-
ative inference should be performed.

The aforementioned methods are based on supervised
learning and rely strongly on large annotated data, which
is often unavailable. To cope with this limitation, a few
weakly or semi-supervised semantic segmentation methods
have been proposed,[19], [20], [5]. These approaches as-
sume that weak annotations (bounding boxes or image level
labels) are available during training and that such annota-
tions, combined with limited pixel-level labels, can be used
to make deep networks to learn better visual features for
classification. In [11], the authors address the semantic seg-
mentation as two separate tasks of classification and seg-
mentation, and assume image level labels for all images in
data set and a limited number of fully pixel-level labeled
data are available.

To tackle the limitations of current methods, we propose
to use GANs in semi-supervised learning for semantic seg-
mentation to leverage freely available data and additional
synthetic data to improve the fully supervised methods.
While generative methods have been largely employed in
unsupervised and semi-supervised learning for visual clas-
sification tasks [25], [22], very little has been done for se-
mantic segmentation, e.g., [15]. In particular, [15] aims at
creating probability maps for each class for a given image,



then the discriminator is used to distinguish between gen-
erated maps and ground truth. Our method is significantly
different from this method as 1) we let the discriminator to
find the labels of pixels, 2) we leverage unlabeled data along
side generated data, in an adversarial manner, to compete in
getting realistic labels, and 3) we use conditional GAN to
enhance the quality of generated samples for better segmen-
tation performance as well as to make GAN training more
stable.

3. Proposed Approach
In this section, first we briefly cover the background

about GANs and then present our network architectures and
corresponding losses for semi supervised semantic segmen-
tation.

3.1. Background

3.1.1 Generative Adversarial Network

Generative Adversarial Network (GAN) is a framework in-
troduced by [8] to train deep generative models. It consists
of a generator network, G, whose goal is to learn a distri-
bution, pz matching the data, and a discriminator network
D, which tries to distinguish between real data (from true
distribution pdata(x)) and fake data (generated by the gen-
erator). G and D are competitors in a minmax game with
the following formulation:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z))],
(1)

where E is the empirical estimate of expected value of the
probability. G transforms a noise variable z into G(z),
which basically is a sample from distribution pz , and ide-
ally distribution pz should converge to distribution pdata.
Minimizing log(1 − D(G(z)) is equivalent to maximizing
log(D(G(z)), and it has been shown that it would lead to
better performance, so we follow the latter formulation.

3.2. Semi Supervised Learning using Generative
Adversarial Networks

In semi-supervised learning, where class labels (in our
case pixel-wise annotations) are not available for all train-
ing images, it is convenient to leverage unlabeled data for
estimating a proper prior to be used by a classifier for en-
hancing performance. In this paper we adopt and extend
GANs, to learn the prior fitting the data, by replacing the
traditional discriminatorD with a fully convolutional multi-
class classifier, which, instead, of predicting whether a sam-
ple x belongs to the data distribution (it is real or not), it
assigns to each input image pixel a label y from the K se-
mantic classes or mark it as a fake sample (extra K + 1
class). More specifically, our discriminator D(x) is a func-
tion parametrized as a network predicting the confidences

for K classes of image pixels and softmax is employed to
obtain the probability of sample x belonging to each class.
In order to be consistent with GAN terminology and to sim-
plify notations we will not use Dk and use D to represent
pixel-wise multi-class classifier. Generator network, G, of
our approach maps a random noise z to a sample G(z) try-
ing to make it similar to training data, such that the output of
D on that sample corresponds to one of the real categories.
D, instead, is trained to label the generated samplesG(z) as
fake. Fig. 2 provides a schematic description of our semi-
supervised convolutional GAN architecture and shows that
we feed three inputs to the discriminator: labelled data, un-
labelled data and fake data. Accordingly, we minimize a
pixel-wise discriminator loss, LD, in order to account for
the three kind of input data, as follows:

LD = −Ex∼pdata(x)log(D(x))− Ez∼pz(z)log(1−D(G(z))
+γEx,y∼p(y,x)[CE(y, P (y|x,D))],

(2)
where

D(x) = [1− P (y = fake|x)]. (3)

with y = 1 · · ·K being the semantic class label, p(x, y) the
joint probability of labels (y) and data (x), CE the cross
entropy loss between labels and probabilities predicted by
D(x). The first term of LD is devised for unlabeled data
and aims at decreasing the probability of pixels belonging
to the fake class. The second term accounts for all pixels
in labeled data to be correctly classified in one of the K
available classes. While the third loss term aims at driving
the discriminator in distinguishing real samples from fake
ones generated by G. γ is a parameter used for balancing
generator and discriminator (segmentation) tasks; decreas-
ing gamma gives more emphasis to the generator rather than
discriminator (segmentation). We empirically set γ = 2.
Then, we minimize generator loss, LG which is defined as
follows:

LG = Ez∼pz(z)[log(1−D(G(z))]. (4)

Note that our GAN formulation is different from typical
GANs, where the discriminator is a binary classifier for dis-
criminating real/fake images, while our discriminator per-
forms multiclass pixel categorization.

3.3. Semi Supervised Learning with Additional
Weakly labeled data using Conditional GANs

An recent extension of GANs is conditional GANs [16],
where generator and discriminator are provided with extra
information, e.g., image class labeles. The traditional loss
function, in this case, becomes:

min
G

max
D

V (D,G) = Ex,l∼pdata(x,l)[log(D(x, l))]+

Ez∼pz(z,l),l∼pl(l)[log(1−D(G(z, l), l)],
(5)
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Figure 2. Our semi-supervised convolutional GAN architecture. Noise is used by the Generator to generate an image. The Discriminator
uses generated data, unlabeled data and labeled data to learn class confidences and produces confidence maps for each class as well as a
label for a fake data.

where pl(l) is the prior distribution over class labels,
D(x, l) is joint distribution of data, x, and labels l, and
G(z, l) is joint distributions of generator noise z and labels
l indicating that labels l control the conditional distribution
of pz(z|l) of the generator.

Semantic segmentation can naturally fit into this model,
as long as additional information on training data is avail-
able, e.g., image level labels (whose annotation is much
less expensive than pixel level annotation). We use this
side-information on image classes to train our GAN net-
work with weak supervision. The rationale of exploiting
weak supervision in our framework lies on the assumption
that when image classes are provided to the generator, it is
encouraged to learn co-occurrences between labels and im-
ages resulting in higher quality generated images, which,
in turn, help our multiclassifier to learn more meaningful
features for pixel-level classification and true relationships
between labels.

Our proposed GAN network architecture for semi su-
pervised semantic segmentation using additional weakly la-
beled data is shown in Fig. 3. The discriminator is fed
with unlabeled images together with class level informa-
tion, generated images coming from G and pixel-level la-
beled images. Thus, the discriminator loss, LD, is com-
prised of three terms: the term for weakly labeled sample
data belonging to data distribution pdata(x, l), the term for
loss of generated samples not belonging to the true distri-
bution, and the term for the loss of pixels in labeled data
classified correctly. Hence, the discriminator loss LD is as
follows:

LD = −Ex,l∼pdata(x,l)
log[p(y ∈ Ki ⊂ 1...K|x)]

−Ex,l∼pz,l(x,l) log[p(y = fake|x)]
+γEx,y∼p(y,x)[CE(y, P (y|x,D))],

(6)

where Ki indicates the classes present in the image. Here,
we have modified the notations for probability distributions
and expectation to include label l. Conditioning space l (la-

beled) in loss LD aims at controlling the generated samples,
i.e., given image classes along with the noise vector the gen-
erator attempts to maximize the probability of seeing labels
in the generated images, while the goal of discriminator is
to suppress the probability of real classes for generated data
and to encourage high confidence of image level labels for
unlabeled data. The generator loss is similar to the one used
for semi-supervised case (see Eq. 4), and aims at enforcing
the image-level labels to be present in the generated images.
For unlabeled data, we use negative log-likelihood of confi-
dences, favoring the labels occur in the image, meaning that
we add a fixed value to pixel confidences for image-level la-
bels.

4. System Overview
In this section, we present the details of our deep net-

works, including the discriminator (classifier) and the gen-
erator. In both settings, i.e., semi-supervised and weakly-
supervised approaches, the discriminator is a fully convolu-
tional network [14] using VGG16 convolutional layers plus
1 or 3 deconvolution layers, which generates K + 1 confi-
dence maps.

The generator network, shown in Fig. 4, starts with
noise, followed by a series of deconvolution filters and gen-
erates a synthetic image resembling samples from real data
distribution. The generator loss enforces the network to
minimize the distance between D(G(zi)) and yi ∈ li...lK ,
as shown in Equation 2.

The discriminator loss is the sum of cross entropy be-
tween labeled data and the output of classifiers. This en-
forces that the discriminator should classify pixels from the
generated image (data) into the fake class and unlabeled
data to the true classes.

In semi supervised training with weakly labeled data, we
impose the constraint on the generator that, instead, of gen-
erating generic images from data distribution, it produces
samples belonging to specific visual classes provided as in-
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Figure 3. Our semi-supervised with additional weakly-labeled data convolutional GAN architecture. In addition to noise, class label
information is used by the Generator to generate an image. The Discriminator uses generated data, unlabeled data plus image-level labels
and pixel-level labeled data to learn class confidences and produces confidence maps C1, C2, . . . , Ck for each semantic class as well as a
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Figure 4. The generator network of our GAN architecture. The
noise is a vector of size 100 sampled from a uniform distribution.
The number of feature maps in the five different convolutional lay-
ers, respectively, are 769, 384, 256, 192 and 3.

put to it. To do that, a one-hot image classes vector is con-
catenated to the noise sampled from the noise distribution.
Afterward, the deconvolution layers are applied similar to
the typical generator network and a syntactic image condi-
tioned on image classes is generated.

All the networks are implemented in chainer framework
[27]. The standard Adam optimizer with momentum is used
for discriminator optimization, and the classifier network’s
convolutional layers weights are initialized using VGG 16-
layer net pre-trained on ILSVRC dataset. For training the
generator, we use Adam optimizer with isotropic Gaussian
weights. For the generator, learning rate and β1 (momen-
tum) is respectively set to 2e-5 and 0.5; while for the Dis-
criminator the learning rate is 1e-8, momentum 0.9 and
weight decay is 0.0005. Due to memory limitations, we
use a batch of size 2; however, since the loss is computed
for every pixel of training images and the final loss is aver-
aged over those values, the batch-size is not that small. We
do not use any data augmentation or post-processing (e.g.
CRF) in these experiments.

Table 1. The results on val set of VOC 2012 using all fully labeled
and unlabeled data in train set.

method pixel acc mean acc mean IU
Full - our baseline 89.9 69.2 59.5
Semi Supervised 90.5 80.7 64.1
Weak Supervised 91.3 80.0 65.8
FCN [14] 90.3 75.9 62.7
EM-Fixed [19] - - 64.6

During testing, we only use discriminator network as our
semantic segmentation labeling network. Given a test im-
age, the softmax layer of the discriminator outputs a set of
probabilities of each pixel belonging to semantic classes,
and accordingly, the label with the highest probability is as-
signed to the pixel.

5. Experimental Results

We evaluate our method on PASCAL VOC 2012
[6], SiftFlow [13],[29], StanfordBG [9] and CamVid [2]
datasets. In the first experiment for Pascal dataset, we use
all training data (1400 images) for which the pixel-level la-
bels are provided as well as about 10k additional images
with image-level class labels, i.e., for each image its se-
mantic classes are known, but not the pixel-level annota-
tions. These images are used in the weakly supervised set-
ting. In the second experiment on Pascal dataset, for semi-
supervised training, we use about 30% (about 20 samples
per class) of pixel-wise annotated data and the rest of im-
ages are without pixel-wise annotations. As metrics, we
employ pixel accuracy, which is per-pixel classification ac-
curacy, mean accuracy, i.e, average of pixels classification
accuracies on number of classes and mean IU, average of
region intersection over union (IU).

Quantitative results of our method on VOC 2012 valida-
tions set are shown in Tables 1 and 2, and the qualitative
results on some sample images are depicted in Fig. 5. As
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Figure 5. Qualitative segmentation results for VOC 2012 validation set. The first to fifth columns, respectively, show: the original images,
the results of supervised learning using only 30% of labeled data, the results of semi-supervised learning using 30% labeled and unlabelled
images, the results obtained using 30% of labeled data and additional 10k images with image level class labels, and the Ground Truth.
Both semi-supervised and weakly-labeled data methods outperform the fully-supervised method. Using Weakly-labeled data helps more
in suppressing false positives (background pixels misclassified as one of the K available classes).

Table 2. The results on VOC 2012 validation set using 30% of
fully labeled data and all unlabeled data in training set.

method pixel acc mean acc mean IU
Fully supervised 83.15 53.1 38.9
Semi supervised 83.6 60.0 42.2
Weak Supervised 84.6 58.6 44.6

shown in Table 2, the semi-supervised method notably im-

proves mean accuracy about 5% to 7%. The pixel accuracy
is not significantly improved due to some false positives,
which correspond to background pixels promoted by unla-
beled data belonging to one of the classes in the training
set. False positives are reduced by employing weakly la-
beled data, due to the fact that the unsupervised loss encour-
ages only labels occurring in the image and assigns them
high confidences. This effect can be observed in qualitative
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Figure 6. Qualitative results for SiftFlow dataset, using unlabeled
data results in more accurate semantic segmentation, unlikely
classes in the image are removed using semi-supervised approach.

Table 3. The results on SiftFlow using fully labeled data and 2000
unlabeled images from SUN2012
method pixel acc mean acc mean IU
Fully supervised 83.4 46.7 34.4
Semi supervised 86.3 50.8 35.1
50% Fully Labeled 79.0 28.3 21.0
50% Full + Unlabeled 81.0 33.0 23.2

results in Fig. 5. Thus, even though the semi-supervised
method labels most of objects properly, it sometime as-
signs semantic classes to background pixels, while by using
weakly labeled data false positive detections are reduced.
Furthermore, as shown in the same Table 1, our weakly ap-
proach also outperforms state of the art semi-supervised se-
mantic segmentation methods, such as [19], adopting a sim-
ilar strategy to our weakly-supervised one.

Table 3 shows the results achieved by our approaches
on the SiftFlow dataset [13]. Since in this dataset, back-
ground pixels are also labeled, the pixel accuracy is im-
proved compared to the results obtained on PASCAL VOC
2012 dataset.

Since images with class level labels are not available in
the SiftFlow dataset, we only test semi-supervised learning.
Fig. 6 shows qualitative results on the SiftFlow dataset. In

Figure 7. Images generated by the generator of our conditional
GAN on the Pascal dataset. Interestingly, patterns related to dogs,
cars, plants and cats have been automatically discovered. This
highlights the effectiveness of our approach.

Figure 8. Images generated by the generator during our GAN train-
ing on the SiftFlow dataset. Patterns related to forests, beaches and
slies can be observed.

this case, unlabeled data allows us to refine the classifica-
tion that initially are labeled with incorrect classes. For
instance, in the fifth row the pixels which are mistakenly
labeled as car or river are corrected in the semi-supervised
results. Moreover, some small objects, such as the person or
windows in the last row of Fig. 6, which are not detected be-
fore, can be labeled correctly by employing additional data.



Figure 9. Images generated by the Generator for the CamVid
dataset. Patterns related to mountains, cars and building can be
observed.

Table 4. The results using different percentages of fully labeled
data and all unlabeled data in train set.

method pixel acc mean acc mean IU
VOC 20% Full 73.15 23.2 16.0
VOC 20% Semi 79.6 27.1 19.8
VOC 50% Full 88.5 63.6 51.6
VOC 50% Semi 88.4 66.6 54.0

Table 5. The results on StanfordBG using fully labeled data and
10k unlabeled images from PASCAL dataset
method pixel acc mean acc mean IU
Sem Seg Standard [15] 73.3 66.5 51.3
Sem Seg Adv [15] 75.2 68.7 54.3
Fully supervised 77.5 65.1 53.1
Semi supervised 82.3 77.6 63.3

We repeated the semi-supervised experiments with dif-
ferent training set sizes e.g. 20% and 50% of labeled data,
and the results are presented in Table 4. This results suggest
that the extra data acts as a regularizer. Also, using more la-
beled data increases the overall performances, and the gap
between the two settings is reduced.

For the third experiment, we evaluate our method on
StanfordBG [9] data set. This is a small data set includ-
ing 720 labeled images, therefore we use Pasacal images as
unlabeled data, since these images are collected from Pas-
cal or similar datasets. Table 5 shows our performance over
the test images from StanfordBG data set compared to [15].
It can be noted that our approach, again, outperforms state
of the art methods, e.g., [15], besides improving our fully-
supervised method, which is used as baseline.

Finally, we apply our proposed method to CamVid [2]
dataset. This dataset consists of 10 minutes of videos (about
11k frames), for 700 images of which the per-pixel annota-
tions are provided. We use the training set of fully-labeled
(11 semantic classes) data and all frames as unlabeled data,

Table 6. The results on CamVid using fully labeled training data
and 11k unlabeled frames from its videos.
method pixel acc mean acc mean IU
Segnet-Basic [1] 82.2 62.3 46.3
SegNet (Pretrained) [1] 88.6 65.9 50.2
Ours Fully supervised 88.4 66.7 57.0
Ours Semi supervised 87.0 72.4 58.2

and we perform the evaluation on the test set. We compare
our results to SegNet [1] method in addition to our base-
line (i.e., the fully-supervised method). The results are re-
ported in Table 6 and show that our semi-supervised method
notably improves per-class accuracy, which indicates that
more classes present in the images are identified correctly.

Samples of images generated by our GAN during train-
ing over the employed datasets are shown in Figures 8, 9
and 7. These images clearly indicate that our network is
able to learn hidden structures (specific of each dataset) that
are then used to enhance the performance of our GAN dis-
criminator as they can be seen as additional pixel-level an-
notated data. Moreover, interestingly, our GAN framework
is also able to learn spatial object distributions, for example,
roads are at the bottom of images, sky and mountains are at
the top, etc.

Summarizing, the results achieved over different exper-
iments indicate that the extra data provided through ad-
versarial loss boosts the performance (outperforming both
fully-supervised and state-of-the-art semi-supervised meth-
ods) of semantic segmentation, especially in terms of mean
accuracy measure. The competitiveness of the discriminator
and the generator results not only in generating images, but,
most importantly, it amounts to learning more meaningful
features for pixel classification.

6. Conclusion

In this work, we have developed a novel semi-supervised
semantic segmentation approach employing Generative Ad-
versarial Networks. We have also investigated GANs con-
ditioned by class-level labels, which are easier to obtain,
to train our fully-convolutional network with additional
weakly labeled data. We have demonstrated that this ap-
proach outperforms fully-supervised methods trained with
a limited amount of labeled data as well as state of the art
semi-supervised methods over several benchmark datasets.
Beside, our model generates plausible synthetic images,
which show some meaningful image features such as edges
and correct class labels, that supports the discriminator in
the pixel-classification step. The discriminator can be re-
placed by any better classifier suitable for semantic segmen-
tation for further improvements.
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