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Abstract

Deep learning has been demonstrated to achieve excel-
lent results for image classification and object detection.
However, the impact of deep learning on video analysis has
been limited due to complexity of video data and lack of an-
notations. Previous convolutional neural networks (CNN)
based video action detection approaches usually consist of
two major steps: frame-level action proposal generation
and association of proposals across frames. Also, most of
these methods employ two-stream CNN framework to han-
dle spatial and temporal feature separately. In this paper,
we propose an end-to-end deep network called Tube Con-
volutional Neural Network (T-CNN) for action detection in
videos. The proposed architecture is a unified deep net-
work that is able to recognize and localize action based
on 3D convolution features. A video is first divided into
equal length clips and next for each clip a set of tube pro-
posals are generated based on 3D Convolutional Network
(ConvNet) features. Finally, the tube proposals of differ-
ent clips are linked together employing network flow and
spatio-temporal action detection is performed using these
linked video proposals. Extensive experiments on several
video datasets demonstrate the superior performance of T-
CNN for classifying and localizing actions in both trimmed
and untrimmed videos compared to state-of-the-arts.

1. Introduction
The goal of action detection is to detect every occurrence

of a given action within a long video, and to localize each
detection both in space and time. Deep learning learning
based approaches have significantly improved video action
recognition performance. Compared to action recognition,
action detection is a more challenging task due to flexible
volume shape and large spatio-temporal search space.

Previous deep learning based action detection ap-
proaches first detect frame-level action proposals by pop-
ular proposal algorithms [5, 30] or by training proposal net-
works [19]. Then the frame-level action proposals are asso-
ciated across frames to form final action detection through

Figure 1: Overview of the proposed Tube Convolutional
Neural Network (T-CNN).

tracking based approaches [32]. Moreover, in order to cap-
ture both spatial and temporal information of an action, two-
stream networks (a spatial CNN and a motion CNN) are
used. In this manner, the spatial and motion information are
processed separately.

Region Convolution Neural Network (R-CNN) for ob-
ject detection in images was proposed by Girshick et al. [4].
It was followed by a fast R-CNN proposed in [3], which in-
cludes the classifier as well. Later, faster R-CNN [20] was
developed by introducing a region proposal network. It has
been extensively used to produce excellent results for ob-
ject detection in images. A natural generalization of the R-
CNN from 2D images to 3D spatio-temporal volumes is to
study their effectiveness for the problem of action detection
in videos. A straightforward spatio-temporal generalization
of the R-CNN approach would be to treat action detection
in videos as a set of 2D image detections using faster R-
CNN. However, unfortunately, this approach does not take
the temporal information into account and is not sufficiently
expressive to distinguish between actions.

Inspired by the pioneering work of faster R-CNN, we



propose Tube Convolutional Neural Network (T-CNN) for
action detection. To better capture the spatio-temporal in-
formation of video, we exploit 3D ConvNet for action de-
tection, since it is able to capture motion characteristics in
videos and shows promising result on video action recog-
nition. We propose a novel framework by leveraging the
descriptive power of 3D ConvNet. In our approach, an in-
put video is divided into equal length clips first. Then, the
clips are fed into Tube Proposal Network (TPN) and a set of
tube proposals are obtained. Next, tube proposals from each
video clip are linked according to their actionness scores
and overlap between adjacent proposals to form a complete
tube proposal for spatio-temporal action localization in the
video. Finally, the Tube-of-Interest (ToI) pooling is applied
to the linked action tube proposal to generate a fixed length
feature vector for action label prediction.

Our work makes the following contributions:
• We propose an end-to-end deep learning based ap-

proach for action detection in videos. It directly operates
on the original videos and captures spatio-temporal infor-
mation using a single 3D network to perform action local-
ization and recognition based on 3D convolution features.
To the best of our knowledge, it is the first work to exploit
3D ConvNet for action detection.
• We introduce a Tube Proposal Network, which lever-

ages skip pooling in temporal domain to preserve temporal
information for action localization in 3D volumes.
• We propose a new pooling layer – Tube-of-Interest

(ToI) pooling layer in T-CNN. The ToI pooling layer is a 3D
generalization of Region-of-Interest (RoI) pooling layer of
R-CNN. It effectively alleviates the problem with variable
spatial and temporal sizes of tube proposals. We show that
ToI pooling can greatly improve the recognition results.
• We extensively evaluate our T-CNN for action detec-

tion in both trimmed videos from UCF-Sports, J-HMDB
and UCF-101 datasets and untrimmed videos from THU-
MOS’14 dataset and achieve state-of-the-art performance.

2. Related Work
Convolutional Neural Networks (CNN) have been

demonstrated to achieve excellent results for action recog-
nition [17, 18]. Karpathy et al. [14] explore various frame-
level fusion methods over time. Ng et al. [31] use recurrent
neural network employing the CNN feature. Since these ap-
proaches only use frame based CNN features, the temporal
information is neglected. Simonyan et al. [22] propose the
two-stream CNN approach for action recognition. Besides
a classic CNN which takes images as an input, it has a sep-
arate network for optical flow. Moreover, Wang et al. fuse
the trajectories and CNN features. Although these meth-
ods, which take hand-crafted temporal feature as a separate
stream, show promising performance on action recognition,
however, they do not employ end to end deep network and

require separate computation of optical flow and optimiza-
tion of the parameters. 3D CNN is a logical solution to this
issue. Ji et al. [9] propose a 3D CNN based human detector
and head tracker to segment human subjects in videos. Tran
et al. [27] leverage 3D CNN for large scale action recog-
nition problem. Sun et al. [25] propose a factorization of
3D CNN and exploit multiple ways to decompose convolu-
tional kernels. However, to the best of our knowledge, we
are the first ones to exploit 3D CNN for action detection.

Compared to action recognition, action detection is a
more challenging problem [2, 7, 29], which has been an
active area of research. Ke et al. [15] present an approach
for event detection in crowded videos. Tian et al. [26] de-
velop Spatio-temporal Deformable Parts Model [1] to de-
tect actions in videos. Jain et al. [6] and Soomro et al. [23]
use supervoxel and selective search to localize the action
boundaries. Recently, researchers have leveraged the power
of deep learning for action detection. Authors in [5] extract
frame-level action proposals using selective search and link
them using Viterbi algorithm. While in [30] frame-level ac-
tion proposals are obtained by EdgeBox and linked by a
tracking algorithm. Two-stream R-CNNs for action detec-
tion is proposed in [19], where a spatial Region Proposal
Network (RPN) and a motion RPN are used to generate
frame-level action proposals. However, these deep learn-
ing based approaches detect actions by linking frame-level
action proposals and treat the spatial and temporal features
of a video separately by training two-stream CNN. There-
fore, the temporal consistency in videos is not well explored
in the network. In contrast, we determine action tube pro-
posals directly from input videos and extract compact and
more effective spatio-temporal features using 3D CNN.

For object detection in images, Girshick et al. propose
Region CNN (R-CNN) [4]. In their approach region pro-
posals are extracted using selective search. Then the candi-
date regions are warped to a fixed size and fed into ConvNet
to extract CNN features. Finally, SVM model is trained
for object classification. A fast version of R-CNN, Fast
R-CNN, is presented in [3]. Compared to the multi-stage
pipeline of R-CNN, fast R-CNN incorporates object classi-
fier in the network and trains object classifier and bound-
ing box regressor simultaneously. Region of interest (RoI)
pooling layer is introduced to extract fixed-length feature
vectors for bounding boxes with different sizes. Recently,
faster R-CNN is proposed in [20]. It introduces a RPN (Re-
gion Proposal Network) to replace selective search for pro-
posal generation. RPN shares full image convolutional fea-
tures with the detection network, thus the proposal gener-
ation is almost cost-free. Faster R-CNN achieves state-of-
the-art object detection performance while being efficient
during testing. Motivated by its high performance, in this
paper we explore generalizing faster R-CNN from 2D im-
age regions to 3D video volumes for action detection.



name kernel dims output dims
(d× h× w) (C ×D ×H ×W )

conv1 3× 3× 3 64× 8× 300× 400
max-pool1 1× 2× 2 64× 8× 150× 200
conv2 3× 3× 3 128× 8× 150× 200
max-pool2 2× 2× 2 128× 4× 75× 100
conv3a 3× 3× 3 256× 4× 75× 100
conv3b 3× 3× 3 256× 4× 75× 100
max-pool3 2× 2× 2 256× 2× 38× 50
conv4a 3× 3× 3 512× 2× 38× 50
conv4b 3× 3× 3 512× 2× 38× 50
max-pool4 2× 2× 2 512× 1× 19× 25
conv5a 3× 3× 3 512× 1× 19× 25
conv5b 3× 3× 3 512× 1× 19× 25
toi-pool2* – 128× 8× 8× 8
toi-pool5 – 512× 1× 4× 4
1x1 conv – 8192
fc6 – 4096
fc7 – 4096

Table 1: T-CNN architecture. We refer kernel with shape
d × h × w where d is the kernel depth, h and w are height
and width, and output matrix with shape C ×D ×H ×W
where C is number of channels, D is the number of frames,
H andW are the height and width. toi-pool2 exists in TPN.

3. Generalizing R-CNN from 2D to 3D

Generalizing R-CNN from 2D image regions to 3D
video tubes is challenging due to the asymmetry between
space and time. Different from images which can be
cropped and reshaped into a fixed size, videos vary widely
in temporal dimension. Therefore, we divide input videos
into fixed length (8 frames) clips, so that video clips can
be processed with a fixed-size ConvNet architecture. Also,
clip based processing mitigates the cost of GPU memory.

To better capture the spatio-temporal information in
video, we exploit 3D CNN for action proposal generation
and action recognition. One advantage of 3D CNN over
2D CNN is that it captures motion information by applying
convolution in both time and space. Since 3D convolution
and 3D max pooling are utilized in our approach, not only
in the spatial dimension but also in the temporal dimension,
the size of video clip is reduced while distinguishable in-
formation is concentrated. As demonstrated in [27], the
temporal pooling is important for recognition task since it
better models the spatio-temporal information of video and
reduces some background noise. However, the temporal or-
der information is lost. That means if we arbitrarily change
the order of the frames in a video clip, the resulting 3D max
pooled feature cube will be the same. This is problematic
in action detection, since it relies on the feature cube to get
bounding boxes for the original frames. To this end, we
incorporate temporal skip pooling to retain temporal order
information residing in the original frames. More details
are provided in the next section.

Since a video is processed clip by clip, action tube pro-
posals with various spatial and temporal sizes are generated
for different clips. These clip proposals need to be linked
into a tube proposal sequence, which is used for action la-
bel prediction and localization. To produce a fixed length
feature vector, we propose a new pooling layer – Tube-of-
Interest (ToI) pooling layer. The ToI pooling layer is a 3D
generalization of Region-of-Interest (RoI) pooling layer of
R-CNN. The classic max pooling layer defines the kernel
size, stride and padding which determines the shape of the
output. In contrast, for RoI pooling layer, the output shape
is fixed first, then the kernel size and stride are determined
accordingly. Compared to RoI pooling which takes 2D fea-
ture map and 2D regions as input, ToI pooling deals with
feature cube and 3D tubes. Denote the size of a feature
cube as d× h×w, where d, h and w respectively represent
the depth, height and width of the feature cube. A ToI in the
feature cube is defined by a d-by-4 matrix, which is com-
posed of d boxes distributed in all the frames. The boxes
are defined by a four-tuple (xi1, y

i
1, x

i
2, y

i
2) that specifies the

top-left and bottom-right corners in the i-th feature map.
Since the d bounding boxes may have different sizes, aspect
ratios and positions, in order to apply spatio-temporal pool-
ing, pooling in spatial and temporal domains are performed
separately. First, the h × w feature maps are divided into
H ×W bins, where each bin corresponds to a cell with size
of approximately h/H × w/W . In each cell, max pooling
is applied to select the maximum value. Second, the spa-
tially pooled d feature maps are temporally divided into D
bins. Similar to the first step, d/D adjacent feature maps
are grouped together to perform the standard temporal max
pooling. As a result the fixed output size of ToI pooling
layer isD×H×W . A graphical illustration of ToI pooling
is presented in Figure 2.

Clip with a tube

proposal

Spatial max pooling

to a fixed H and W,

e.g. (H, W) = (4, 4)

Temporal max pooling

to a fixed D (e.g. D = 1)
ToI pooling

8x56x77x7

5x5

Spatial cells of different sizes

Figure 2: Tube of interest pooling.

Back-propagation of ToI pooling layer routes the deriva-
tives from output back to the input. Assume xi is the i-th
activation to the ToI pooling layer, and yj is the j-th out-
put. Then the partial derivative of the loss function (L) with



respect to each input variable xi can be expressed as:

∂L

∂xi
=
∂yj
∂xi

∂L

∂yj
→ ∂L

∂xi
=

∑
j

[i = f(j)]
∂L

∂yj
. (1)

Each pooling output yj has a corresponding input position
i. We use a function f(·) to represent the argmax selection
from the ToI. Thus, the gradient from the next layer ∂L/∂yj
is passed back to only that neuron which achieved the max
∂L/∂xi. Since one input may correspond to multiple out-
puts, the partial derivatives are the accumulation of multiple
sources.

4. T-CNN Pipeline
As shown in Figure 1, our T-CNN is an end-to-end deep

learning framework that takes video clips as input. The core
component is the Tube Proposal Network (TPN) (see Figure
3) to produce tube proposals for each clip. Linked tube pro-
posal sequence represents spatio-temporal action detection
in the video and is also used for action recognition.

4.1. Tube Proposal Network

For a 8-frame video clip, 3D convolution and 3D pool-
ing are used to extract spatio-temporal feature cube. In 3D
ConvNet, convolution and pooling are performed spatio-
temporally. Therefore, the temporal information of the in-
put video is preserved. Our 3D ConvNet consists of seven
3D convolution layers and four 3D max-pooling layers.
We denote the kernel shape of 3D convolution/pooling by
d×h×w, where d, h, w are depth, height and width, respec-
tively. In all convolution layers, the kernel sizes are 3×3×3,
padding and stride remain as 1. The numbers of filters are
64, 128 and 256 respectively in the first 3 convolution lay-
ers and 512 in the remaining convolution layers. The kernel
size is set to 1 × 2 × 2 for the first 3D max-pooling layer,
and 2×2×2 for the remaining 3D max-pooling layers. The
details of network architecture are presented in Table 1. We
use the C3D model [27] as the pre-trained model and fine
tune it on each dataset in our experiments.

After conv5, the temporal size is reduced to 1 frame (i.e.
feature cube with depth D = 1). In the feature tube, each
frame/slice consists of a number of channels specified in Ta-
ble 1. Here, we drop the number of channels for ease of ex-
planation. Following faster R-CNN, we generate bounding
box proposals based on the conv5 feature cube.

Anchor bounding boxes selection. In faster R-CNN,
the bounding box dimensions are hand picked, i.e. 9 anchor
boxes with 3 scales and 3 aspect ratios. We can directly
adopt the same anchor boxes in our T-CNN framework.
However, it has been shown in [13] that if we choose better
priors as initializations for the network, it will help the net-
work learn better for predicting good detections. Therefore,
instead of choosing hand-picked anchor boxes, we apply

k-means clustering on the training set bounding boxes to
learn 12 anchor boxes (i.e. clustering centroids). This data
driven anchor box selection approach is adaptive to differ-
ent datasets.

Each bounding box is associated with an “actionness”
score, which measures the probability that the content in
the box corresponds to a valid action. We assign a binary
class label (of being an action or not) to each bounding
box. Bounding boxes with actionness scores smaller than
a threshold are discarded. In the training phase, the bound-
ing box which has an IoU overlap higher than 0.7 with any
ground-truth box or has the highest Intersection-over-Union
(IoU) overlap with a ground-truth box (the later condition is
considered in case the former condition may find no positive
sample) is considered as a positive bounding box proposal.

Temporal skip pooling. Bounding box proposals gen-
erated from conv5 feature tube can be used for frame-level
action detection by bounding box regression. However, due
to temporal concentration (8 frames to 1 frame) of temporal
max pooling, the temporal order of the original 8 frames
is lost. Therefore, we use temporal skip pooling to in-
ject the temporal order for frame-level detection. Specif-
ically, we map each positive bounding box generated from
conv5 feature tube to conv2 feature tube which has 8 feature
frames/slices. Since these 8 feature slices correspond to the
original 8 frames in the video clip, the temporal order in-
formation is preserved. As a result, if there are 5 bounding
boxes in conv5 feature tube for example, 5 scaled bounding
boxes are mapped in each conv2 feature slice at the corre-
sponding locations. This creates 5 tube proposals as illus-
trated in Figure 3, which are paired with the corresponding
5 bounding box proposals for frame-level action detection.
To form a fixed feature shape, ToI pooling is applied to the
variable size tube proposals as well as the bounding box
proposals. Since a tube proposal covers 8 frames, the ToI
pooled bounding box is duplicated 8 times to form a tube.
We then L2 normalize the paired two tubes and perform
vectorization. For each frame, features are concatenated.
Since we use the C3D model [27] as the pre-trained model,
we connect a 1x1 convolution to match the input dimension
of fc6. Three fully-connected layers process each descriptor
and produce the output: displacement of height, width and
center coordinate of each bounding box (“bbox”) in each
frame. Finally, a set of refined tube proposals are generated
as an output from the TPN representing spatio-temporal ac-
tion localization of the input video clip.

4.2. Linking Tube Proposals

We obtain a set of tube proposals for each video clip
after the TPN. We then link these tube proposals to form
a proposal sequence for spatio-temporal action localization
of the entire video. Each tube proposal from different clips
can be linked in a tube proposal sequence (i.e. video tube
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Figure 3: Tube proposal network.

proposal) for action detection. However, not all combina-
tions of tube proposals can correctly capture the complete
action. For example, a tube proposal in one clip may con-
tain the action and a tube proposal in the following clip
may only capture the background. Intuitively, the content
within the selected tube proposals should capture an action
and connected tube proposals in any two consecutive clips
should have a large temporal overlap. Therefore, two crite-
ria are considered when linking tube proposals: actionness
and overlap scores. Each video proposal is then assigned a
score defined as follows:

S =
1

m

m∑
i=1

Actionnessi+
1

m− 1

m−1∑
j=1

Overlapj,j+1 (2)

whereActionnessi denotes the actionness score of the tube
proposal from the i-th clip, Overlapj,j+1 measures the
overlap between the linked two proposals respectively from
the j-th and (j + 1)-th clips, and m is the total number of
video clips. As shown in Figure 3, each bounding box pro-
posal from conv5 feature tube is associated with an action-
ness score. The actionness scores are inherited by the cor-
responding tube proposals. The overlap between two tube
proposals is calculated based on the IoU (Intersection Over
Union) of the last frame of the j-th tube proposal and the
first frame of the (j+1)-th tube proposal. The first term of S
computes the average actionness score of all tube proposals
in a video proposal and the second term computes the av-
erage overlap between the tube proposals in every two con-
secutive video clips. Therefore, we ensure the linked tube
proposals can encapsulate the action and at the same time
have temporal consistency. An example of linking tube pro-
posals and computing scores is illustrated in Figure 4. We
choose a number of linked proposal sequences with highest
scores in a video (see more details in Sec. 5.1).

Figure 4: An example of linking tube proposals in each
video clips using network flow. In this example, there are
three video clips and each has two tube proposals, resulting
in 8 video proposals. Each video proposal has a score, e.g.
S1, S2, ..., S8, which is computed according to Eq. (2).

4.3. Action Detection

After linking tube proposals, we get a set of linked tube
proposal sequences, which represent potential action in-
stances. The next step is to classify these linked tube pro-
posal sequences. The tube proposals in the linked sequences
may have different sizes. In order to extract a fixed length
feature vector from each of the linked proposal sequence,
our proposed ToI pooling is utilized. Then the ToI pooling
layer is followed by two fully-connected layers and a drop-
out layer. The dimension of the last fully-connected layer is
N + 1 (N action classes and 1 background class).

5. Experiments
To verify the effectiveness of the proposed T-CNN for

action detection, we evaluate T-CNN on three trimmed
video datasets including UCF-Sports [21], J-HMDB [8],
UCF-101 [11] and one un-trimmed video dataset – THU-
MOS’14 [12].



5.1. Implementation Details

We implement our method based on the Caffe toolbox
[10]. The TPN and recognition network share weights in
their common layers. Due to memory limitation, in training
phase, each video is divided into overlapping 8-frame clips
with resolution 300 × 400 and temporal stride 1. When
training the TPN network, each anchor box is assigned a
binary label. Either the anchor box which has the highest
IoU overlap with a ground-truth box, or an anchor box that
has an IoU overlap higher than 0.7 with any ground-truth
box is assigned a positive label, the rest are assigned nega-
tive label. In each iteration, 4 clips are fed into the network.
Since the number of background boxes is much more than
that of action boxes, to well model the action, we randomly
select some of the negative boxes to balance the number of
positive and negative samples in a batch. For recognition
network training, we choose 40 linked proposal sequences
with highest scores in a video as Tubes of Interest.

Our model is trained in an alternative manner. First, Ini-
tialize TPN based on the pre-trained model in [27], then
using the generated proposals to initialize recognition net-
works. Next, the weights tuned by recognition network are
used to update TPN. Finally, the tuned weights and pro-
posals from TPN are used for finalizing recognition net-
work. For all the networks for UCF-Sports and J-HMDB,
the learning rate is initialized as 10−3 and decreased to 10−4

after 30k batches. Training terminates after 50k batches.
For UCF-101 and THUMOS’14, the learning rate is ini-
tialized as 10−3 and decreased to 10−4 after 60k batches.
Training terminates after 100k batches.

During testing, each video is divided into non-
overlapping 8-frame clips. If the number of frames in video
cannot be divided by 8, we pad zeros after the last frame
to make it dividable. 40 tube proposals with highest ac-
tionness confidence through TPN are chosen for the linking
process. Non-maximum suppression (NMS) is applied to
linked proposals to get the final action detection results.

5.2. Datasets and Experimental Results

UCF-Sports. This dataset contains 150 short videos of
10 different sport classes. Videos are trimmed and bounding
boxes annotations are provided for all frames. We follow
the training and test split defined in [16]. We use the IoU
criterion and generate ROC curve in Figure 5(a) when over-
lap criterion equals to α = 0.2. Figure 5(b) illustrates AUC
(Area-Under-Curve) measured with different overlap crite-
rion. In direct comparison, our T-CNN clearly outperforms
all the competing methods shown in the plot. We are unable
to directly compare the detection accuracy against Peng et
al. [19] in the plot, since they do not provide the ROC and
AUC curves. As shown in Table 2, the frame level mAP
of our approach outperforms theirs in 8 actions out of 10.
Moreover, by using the same metric, the video mAP of our

approach reaches 95.2 (α = 0.2 and 0.5), while they report
94.8 (α = 0.2) and 94.7 (α = 0.5).

J-HMDB. This dataset consists of 928 videos with 21
different actions. All the video clips are well trimmed.
There are three train-test splits and the evaluation is done
on the average results over the three splits. The experiment
results comparison is shown in Table 3. We report our re-
sults with 3 metrics: frame-mAP, the average precision of
detection at frame level as in [5]; video-mAP, the average
precision at video level as in [5] with IoU threshold α = 0.2
and α = 0.5. It is evident that our T-CNN consistently out-
performs the state-of-the-art approaches in terms of all three
evaluation metrics.

UCF101. This dataset has 101 actions. For action de-
tection task, a subset of 24 action classes and 3, 207 videos
have spatio-temporal annotations. Similar to other methods,
we perform the experiments on the first train/test split only.
We report our results in Table 4 with 3 metrics: frame-mAP,
video-mAP (α = 0.2) and video-mAP (α = 0.5). Our ap-
proach again yields the best performance. Moreover, we
also report the action recognition results of T-CNN on the
above three datasets in Table 5.

THUMOS’14. To further validate the effectiveness of
our proposed T-CNN approach for action detection, we
evaluate it using the untrimmed videos from the THU-
MOS’14 dataset [12]. The THUMOS’14 spatio-temporal
localization task consists of 4 classes of sports actions:
BaseballPitch, golfSwing, TennisSwing and ThrowDiscus.
There are about 20 videos per class and each video contains
500 to 3, 000 frames. The videos are divided into validation
set and test set, but only video in the test set have spatial
annotations provided by [24]. Therefore, we use samples
corresponding to those 4 actions in UCF-101 with spatial
annotations to train our model.

In untrimmed videos, there often exist other unrelated
actions besides the action of interests. For example, “walk-
ing” and “picking up a golf ball” are considered as unrelated
actions when detecting “GolfSwing” in video. We denote
clips which have positive ground truth annotation as pos-
itive clips, and the other clips as negative clips (i.e. clips
contain only unrelated actions). If we randomly select neg-
ative samples for training, the number of boxes on unrelated
actions is much smaller than that of background boxes (i.e.
boxes capturing only image background). Thus the trained
model will have no capability to distinguish action of inter-
est and unrelated actions.

To this end, we introduce a so called negative sample
mining process. Specifically, when initializing the TPN,
we only use positive clips. Then we apply the model on
the whole training video (both positive clips and negative
clips). Most false positives in negative clips should include
unrelated actions to help our model learn the correlation be-
tween action of interest and unrelated actions. Therefore we
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Figure 5: The ROC and AUC curves for UCF-Sports Dataset [21] are shown in (a) and (b), respectively. The results are
shown for Jain et al. [6] (green), Tian et al. [26] (purple), Soomro et al. [23] (blue), Wang et al. [28] (yellow), Gkioxari et
al. [5] (cyan) and Proposed Method (red). (c) shows the mean ROC curves for four actions of THUMOS’14. The results are
shown for Sultani et al. [24] (green), proposed method (red) and proposed method without negative mining (blue).

Diving Golf Kicking Lifting Riding Run SkateB. Swing SwingB. Walk mAP
Gkioxari et al. [5] 75.8 69.3 54.6 99.1 89.6 54.9 29.8 88.7 74.5 44.7 68.1
Weinzaepfel et al. [30] 60.71 77.55 65.26 100.00 99.53 52.60 47.14 88.88 62.86 64.44 71.9
Peng et al. [19] 96.12 80.47 73.78 99.17 97.56 82.37 57.43 83.64 98.54 75.99 84.51
Ours 84.38 90.79 86.48 99.77 100.00 83.65 68.72 65.75 99.62 87.79 86.7

Table 2: mAP for each class of UCF-Sports. The IoU threshold α for frame m-AP is fixed to 0.5.

f.-mAP v.-mAP v.-mAP
(α = 0.5) (α = 0.2) (α = 0.5)

Gkioxari et al. [5] 36.2 – 53.3
Weinzaepfel et al. [30] 45.8 63.1 60.7
Peng et al. [19] 58.5 74.3 73.1
Ours w/o skip pooling 47.9 66.9 58.6
Ours 61.3 78.4 76.9

Table 3: Comparison to the state-of-the-art on J-HMDB.
The IoU threshold α for frame m-AP is fixed to 0.5.

f.-mAP video-mAP
IoU th. 0.05 0.1 0.2 0.3
Weinzaepfel et al. [30] 35.84 54.3 51.7 46.8 37.8
Peng et al. [19] 39.63 54.5 50.4 42.3 32.7
Ours 41.37 54.7 51.3 47.1 39.2

Table 4: Comparison to the state-of-the-art on UCF-101 (24
actions). The IoU threshold α for frame m-AP is fixed to
0.5.

select boxes in negative clips with highest scores as hard
negatives because low scores probably infer image back-
ground. In updating TPN procedure, we choose 32 boxes
which have IoU with any ground truth greater than 0.7 as
positive samples and randomly pick another 16 samples as
negative. We also select 16 samples from hard negative pool
as negative. Therefore, we efficiently train a model, which
is able to distinguish not only action of interest from back-

ground, but also action of interest from unrelated actions.
The mean ROC curves of different methods on THU-

MOS’14 action detection are plotted in Figure 5(c). Our
method without negative mining performs better than the
baseline method Sultani et al. [24]. Additionally, with neg-
ative mining, the performance is further boosted.

For qualitative results, we shows examples of detected
action tubes in videos from UCF-Sports, JHMDB, UCF-
101 (24 actions) and THUMOS’14 datasets (see Figure 6).
Each block corresponds to a different video that is selected
from the test set. We show the highest scoring action tube
for each video.

6. Discussion
ToI Pooling. To evaluate the effectiveness of ToI pool-

ing, we compare action recognition performance on UCF-
101 dataset (101 actions) using C3D [27] and our approach.
For the C3D network, we use C3D pre-train model from
[27] and fine tune the weights on UCF-101 dataset. In the
C3D fine tuning process, a video is divided into 16 frames
clips first. Then the C3D network is fed by clips and outputs
a feature vector for each clip. Finally, a SVM classifier is
trained to predict the labels of all clips, and the video label
is determined by the predictions of all clips belonging to the
video. Compared to the original C3D network, we use the
ToI pooling layer to replace the 5-th 3d-max-pooling layer
in C3D pipeline. Similar to C3D network, our approach
takes clips from a video as input. The ToI pooling layer
takes the whole clip as tube of interest and the pooled depth
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Figure 6: Action detection results by T-CNN on UCF-Sports, JHMDB, UCF-101 and THUMOS’14. Red boxes indicate the
detections in the corresponding frames, and green boxes denote ground truth. The predicted label is overlaid.

Dataset Accuracy (%)
UCF-Sports 95.7
J-HMDB 67.2
UCF-101 (24 actions) 94.4

Table 5: Action recognition results of T-CNN on various
datasets.

is set to 1. As a result, each video will output one feature
vector. Therefore, it is an end-to-end deep learning based
video recognition approach. Video level accuracy is used
as the metric. The results are shown in Table 6. For a di-
rect comparison, we only use the result from deep network
without fusion with other features. Our approach shows a
5.2% accuracy improvement compared to the original C3D.
Our ToI pooling based pipeline optimizes the weights for
the whole video directly, while C3D performs clip-based
optimization. Therefore, our approach can better capture
the spatio-temporal information of the entire video. Fur-
thermore, our ToI pooling can be combined with other deep
learning based pipelines, such as two-stream CNN [22].

C3D [27] Ours
Accuracy (%) 82.3 87.5

Table 6: Video action recognition results on UCF-101.

Temporal skip connection. Since we use overlapping
clips with temporal stride of 1 in training, a particular frame
is included in multiple training clips at different temporal
positions. The actual temporal information of that particular
frame is lost if we only use the conv5 feature cube to infer
action bounding boxes. Especially when the action happens
periodically (i.e. SwingBench), it always fails to locate a
phase of spinning. On the contrary, by combining conv5

with conv2 through temporal skip pooling, temporal order
is preserved to localize actions more accurately. To verify
the effectiveness of temporal skip pooling in our proposed
TPN, we conduct an experiment using our method without
skip connection. In other words, we perform bounding box
regression to estimate bounding boxes in 8 frames simulta-
neously using only the conv5 feature cube. As shown in Ta-
ble 3, without skip connection, the performance decreases a
lot, demonstrating the advantage of skip connection for ex-
tracting temporal order information and detailed motion in
original frames.

Computational cost. We conduct experiments on a
workstation with one GPU (Nvidia GTX Titan X). For a
40-frames video, it takes 1.1 seconds to generate tube pro-
posals, 0.03 seconds to link tube proposals and 0.9 seconds
to predict the action label.

7. Conclusion

In this paper we propose an end-to-end Tube Convo-
lutional Neural Network (T-CNN) for action detection in
videos. It exploits 3D convolutional network to extract ef-
fective spatio-temporal features and perform action local-
ization and recognition in a unified framework. Coarse pro-
posal boxes are densely sampled based on the 3D convo-
lutional feature cube and linked for action recognition and
localization. Extensive experiments on several benchmark
datasets demonstrate the strength of T-CNN for spatio-
temporal localizing actions, even in untrimmed videos.
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