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Abstract Visual saliency is the ability of a vision system
to promptly select the most relevant data in the scene and
reduce the amount of visual data that needs to be processed.
Thus, its applications for complex tasks such as object detec-
tion, object recognition and video compression have attained
interest in computer vision studies. In this paper,we introduce
a novel unsupervised method for detecting visual saliency
in videos of natural scenes. For this, we divide a video
into non-overlapping cuboids and create a matrix whose
columns correspond to intensity values of these cuboids.
Simultaneously, we segment the video using a hierarchical
segmentation method and obtain super-voxels. A dictionary
learned from the feature data matrix of the video is subse-
quently used to represent the video as coefficients of atoms.
Then, these coefficients are decomposed into salient and non-
salient parts. We propose to use group lasso regularization
to find the sparse representation of a video, which bene-
fits from grouping information provided by super-voxels and
extracted features from the cuboids.We find saliency regions
by decomposing the feature matrix of a video into low-rank
and sparse matrices by using robust principal component
analysis matrix recovery method. The applicability of our
method is tested on four video data sets of natural scenes.
Our experiments provide promising results in terms of pre-
dicting eye movement using standard evaluation methods. In
addition, we show our video saliency can be used to improve
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the performance of human action recognition on a standard
dataset.
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Group lasso

1 Introduction

Images of natural scenes contain large amounts of data which
need to be processed. However, significant portions of scenes
are redundant and visual systems have limitations in fully
processing a complex scene. Therefore, a method to select
informative data is required.

The human vision system has a built in cognitive mecha-
nism that differentiates the relevant from the irrelevant parts
in visual stimulus received from complex scenes. The gaze
is naturally equipped to be directed to important aspects of a
scene. The part of an image or a video that captures human
attention is said to be salient; that is where people focus when
looking at any scene. For instance, in Fig. 1, we are likely
to be attracted to the pigeons, and not the ground, the person
riding the bike and not the road or the boats and the ship and
not the sea.

Despite the fact that extensive psychological and neuro-
physiological research has studied the human visual system
(e.g. Ungerleider and Leslie 2000; Rensink et al. 1997), it is
not completely understood how one’s gaze so easily zeros in
on only the relevant stimulus. Saliency detection is a chal-
lenging problem that has yet to be fully solved.

Visual saliency has been the focus of many studies in
computer vision in recent years, because of its broad poten-
tial applications. Saliency detection can be used for object
detection (Navalpakkam and Itti 2006), automatic image
cropping, predicting human gaze (Marat et al. 2009), image
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Fig. 1 High-saliency areas of a natural scene are the small portions
that hold the most important information and can be identified easily
by the human vision system. In this figure, the top row shows frames

from videos of natural scenes and the bottom row shows specifics of the
scenes which are the most relevant to understand the scenes in reference
to saliency

andvideo compression, video summarization (Maet al. 2005,
2002), and more. For example, in object detection, deter-
mining saliency can help to reduce the size of the area
to be processed. And during image resizing, saliency can
aid in preserving structure. By identifying the important
parts of a video, the human gaze can be predicted as well.
Another beneficial application of saliency detection is in
video summarization; for instance, using saliency maps dif-
ferent changes in frames of a video can be highlighted and
key frames can be selected. If maps look similar, and their
difference is under a threshold, the redundant frames could be
eliminated (Marat et al. 2007). Also, in aerial video summa-
rization, several key frames from each scene can be selected
based on the visual saliency index of each frame computed
from their visual saliency map (Wang et al. 2011b).

In determining saliency, the computational vision model
seeks to find the part of an image or video which stands out
from the rest of the scene. Changes in the scene, such as color
variation, spatial contrast, or suddenmovement are important
factors since they redirect the observer’s gaze. A variety of
methods exist to predict exactly what captures the eye (Marat
et al. 2009).

In general, saliency detection methods are divided into
two types: top-down (Borji et al. 2011; Triesch et al. 2003),
which is a task-driven method involving a high-level cog-
nitive process that models attention by task; and bottom-up
(Seo and Milanfar 2009a; Kienzle et al. 2007b), which is
a stimuli-driven and extracts eye-catching regions from an
image or video without any prior knowledge. Top-down
models indicate a biased selection process, considering the
expectation, “will” of a target. They are the subject of inter-
active studies such as driving and game playing (Borji and

Itti 2013). On the other hand, bottom-up approaches try to
find novel parts of a scene using low-level features without
prior knowledge about the scene. The latter havemostly been
investigated using eye movement prediction in free-viewing
of videos. Bottom-upmethods are usually faster because they
use low-level features which are characterized by stimulus
driven factors (Seo and Milanfar 2009a).

While there is much attention being given to saliency
detection in images (e.g. Bruce and Tsotsos 2009; Gao and
Vasconcelos 2009; Borji and Itti 2013), relatively few meth-
ods have been proposed for videos. We live in a dynamic
world where videos capture more realistic and detailed mod-
els of the environments to which one’s vision system is
exposed. In this paper, we use spatio-temporal visual fea-
tures to develop a method for detecting saliency in videos.

The goal of this paper is to find salient objects and actions
with no presumption about the target in free-viewing videos.
Therefore, we propose a bottom-up approach to find visual
saliency to predict gaze based on visual features. In addition,
this approach is independent of a training process in which
similar videos would be required first.

The proposed model focuses on the concept of a “saliency
map”, which indicates the saliency of a specific location
over the entire scene. The task of saliency detection consists
of three major steps: initially, an extraction of the features
that could be used to find salient areas effectively, followed
by determining salient regions based on those features, and
lastly assigning a saliency value or score to each part.

Since salient regions in videos are only a small part of a
video, we use a sparse-signal analysis technique to represent
the information as redundant plus salient parts. In this way,
non-salient areas, such as background, are expressed by a
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low-dimensional subspace and salient parts are specified by
sparse parts (Rudoy et al. 2013). In perception, saliency is
related to homogeneity, in a manner such that when homo-
geneity increases saliency decreases (Poirier et al. 2008).

An overview of our proposed model is shown in Fig. 2.
We use robust principal component analysis low-rank matrix
recovery (Wright et al. 2009) method in order to decom-
pose the obtained feature matrix. The essential task here
is to come up with a feature (descriptor) matrix that deter-
mines a space in which the non-salient regions reside in a
low-dimensional subspace. For this reason, the main part of
our work involves providing an appropriate feature matrix
as input for the decomposition step. Since sparse coding
representation, inspired by neuroscience studies, has been
successful in modeling natural scenes, and because psycho-
logical studies, e.g. (Poirier et al. 2008), show heterogeneous
surfaces are more salient than homogeneous ones, we pro-
pose to use sparse representation in our model.

Sparse coding suppresses slight changes in a scene so that
the strong variations stand out. In this new representation
redundant data lies in a low rank space. In our approach, a
video is represented as a collection of spatiotemporal cuboids
expressed in terms of an over-complete dictionary. In doing
so, a dictionary is created whose atoms are learned based
on the feature data matrix of a video. By using the L1-
minimization approach, a coefficients matrix is obtained, and
is then divided into salient and non-salient parts. However,
the coefficients could be noisy possibly due to salient regions
not being sparse, inasmuch as a large area divided into small
patches. In order to address this problem, we propose to use
super-voxels and sparsity among super-voxels rather than

cuboids. Consequently, in addition to decomposing a video
into cuboids, we group these cuboids into super-voxels.

Next, a group lasso regularization method—which uses
L1,2-norm minimization to encourage the columns within a
group to be zero– is used to transform the video featurematrix
into a sparse coding space thatwould be used byRobust PCA.
The final step of our method is to create a saliency map via
the sparse matrix that was found by the decomposition step.
Each vector in the acquired sparse matrix corresponds to a
cuboid in the original video. By computing L1-norm of these
vectors, the saliency values of super-voxels are achieved. An
overview of our proposed model is shown in Fig. 2.

The rest of the paper is organized as follows: The next sec-
tion deals with related work, Sect. 3 describes our approach
to find appropriate feature mapping, dictionary learning and
decomposing a video into salient and non-salient parts. Sec-
tion 4 consists of implementation details of the method
and results for different data sets, and comparison of our
method with baseline models. Finally, Sect. 5 summarizes
the approach and provides conclusions.

2 Related Work

Most saliency detectionmodels in the bottom-up category are
biologically inspired and follow the Feature Integration The-
ory of Treisman and Gelade (1980). This suggests that when
perceiving a stimulus, features are registered early, automat-
ically, and in parallel, while objects are identified separately
and at a later stage during processing. These bottom-upmeth-
ods decompose visual input into separate low-level feature
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Fig. 2 An overview of the proposed approach: We begin with extract-
ing the feature matrix, X, of a video, and segmenting the video into
super-voxels. A dictionary, D, is learned online. The video is then rep-
resented by F in terms of coefficients γ obtained from group lasso
regularization over the dictionary. Salient parts, represented by Sparse

matrix (S), and non-salient parts (L) are recovered via low-rank mini-
mization technique (Robust PCA). Finally, a saliency map is generated
based on the L1 norm of columns of the matrix S belonging to super-
voxels
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maps, e.g. orientation, contrast, and color. For every indi-
vidual feature, a different map is computed and normalized.
Then, a saliency map is formed by the weighted combination
of them. Peaks in the map reflect the attention (saliency) (Itti
et al. 1998). In addition, some new mathematical and statis-
tical tools (e.g Itti et al. 1998; Bruce and Tsotsos 2009) have
been used more recently in order to obtain precise results
which have been mostly evaluated on eye movement data
provided by gaze location of viewers.

On the other hand, top-down approaches aremostly inves-
tigated by cueing experiments, in which a “cue” brings one’s
notice to the target. The cue could be what the target is
or where it will be (Frintrop et al. 2010). Also worth not-
ing is that while bottom-up approaches are mainly driven
by the visual characteristics of a scene, top-down mod-
els mostly define attention models according to the task of
interest. Gao (2004, 2009), and Gao et al. (2009) proposed
top-down approaches which used decision-theoretic models.
They introduced the concept of discriminant saliency, which
is based on the definition of the target and null hypotheses.
They defined top-down saliency as a classification task with
which locations where a target could be distinguished from
a non-target, with minimum error , is categorized as salient.

Saliency detection approaches can also be categorized on
the basis of the techniques that they use to obtain saliency
maps. For instance, different computational principles such
as Information theoretic models and Bayesian models have
been employed in bottom-up saliency methods to define the
concept of saliency. Some approaches use information the-
ory to determine “distinctiveness”. Bruce and Tsotsos (2005)
proposed amodel, Saliency based on InformationMaximiza-
tion, which tries to find the most informative locations by
maximizing Shannon’s self-information from local visual
feature vectors. To find these features, independent compo-
nent analysis (ICA) is applied on small RGB patches from
the image. The probability of detecting RGB values for a
particular patch is determined using ICA bases likelihood.
The same authors in (Bruce and Tsotsos 2009) further eluci-
date saliency as self-information of the visual features, by
extending the method to find a joint-likelihood. In doing
so, each ICA coefficient turns into a probability based on
its likelihood from the probability distribution of surround-
ing patches coefficients. The joint likelihood for a particular
region is found by the product of all comprised likelihoods.
To find saliency map, the joint likelihood is converted to
Shannon’smeasure of Self-Information. The attentionmodel
and eye movement prediction on complex scenes have been
formulated using Bayesian methods as well. Using these
methods, prior knowledge about the scene, such as visual
attribute statistics or descriptions, can be combined with lay-
out. Itti and Baldi (2005), developed a metric for surprise
by calculating the mismatches between viewer expectations
and perceived reality. This method finds the saliency map by

applying center-surround linear filters on different feature
channels, such as color and intensity. This approach is only
advantageous to pin pointing the focus of the scene if one of
the features is distinct, and not so if all the features perform
evenly.

Likewise, the Bayesian framework has been employed
by model SUN (Zhang et al. 2008) and (Seo and Milan-
far 2009a) to study fixations. The SUN model attempts to
detect saliency by estimating the probability of presenting a
target given visual features at every location in the scene. In a
free viewing condition, where there is no notion of target, this
model also finds bottom-up saliency using a maximum infor-
mation approach. Unlike (Bruce and Tsotsos 2005) it obtains
self-information by finding differences between a particular
image’s statistics and natural images’ statistics. The chal-
lenge here is cluttered background. Consider, if the salient
parts have simpler context in comparison with non-salient
parts, the entropy of the former would be lower, due to the
fact that they have been obtained locally. Seo and Milanfar
(2009a, b) also proposed to compute some local descriptors,
called local regression kernels, from images or videos to
measure the likeness of a pixel or voxel to its surroundings.
Visual saliency is estimated using “self resemblance” mea-
sures. Therefore, a saliency map is attained, wherein salient
regions are determined by dissimilarity (using matrix cosine
similarity) compared to their surroundings. Thismethod only
compares local neighborhoods and so it suffers from the
aforementioned problem of local estimation.

Learning techniques which infer the model structure from
the data too have also been employed in visual saliency mod-
eling. Kienzle developed operators to detect saliency from
human eye movement data using machine learning tech-
niques using the pixel intensities of static scenes (Kienzle
et al. 2007b) and Hollywood movies (Kienzle et al. 2007a).
They showed that learned discriminative features have a
center-surround pattern. Judd et al. (2009) also proposed a
top-downmethod, inwhich amodel of saliency based on low,
middle and high-level image features (computed by some
saliency methods) is learned from eye tracking data on static
scenes. Liu et al. (2011) proposed a supervised method that
uses learning to detect salient objects. Databases of manually
labeled images and video segments were used for the learn-
ing task. Learning based methods are unfeasible as they not
only rely on eye tracking data and manual labeling, but are
also heavily dependent on training data.

Several recent works also deal with the extensions and
applications of image saliency detection methods for videos.
Guo et al. (2008) proposed spatiotemporal saliency detec-
tion in frequency domain by extending a two-dimensional
Fourier Transform to a quaternion Fourier Transform. Zhang
et al. in (2009) extended their model to videos by apply-
ing spatio-temporal filters on video frames and computing
the features. The bottom-up saliency map is then computed
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using these features. In (Mahadevan and Vasconcelos 2010)
spatio-temporal cuboids are modeled by using dynamic tex-
tures based on the center-surround contrast hypothesis. In
(Zhai and Shah 2006) a spatiotemporal video attention detec-
tion technique was proposed to detect attention regions and
interesting actions in video sequences. Interest-point corre-
spondences and geometric transformations between images
are used to compute the motion contrast in the scene. For the
spatial attention model, a pixel-level saliency map is com-
puted using color histograms.
Some more current methods attempt to learn a model from
gaze data,with the aimof detecting saliency in videos (Rudoy
et al. 2013) or using obtained saliency maps to accomplish
action recognition tasks (Mathe and Sminchisescu 2012b).
These methods are mostly dependent on gaze points, and
it is well known that cumbersome amount of effort goes
into capturing data from different subjects. Also, the authors
in Zhong et al. (2013) proposed a dynamic consistent opti-
cal flow model based on human visual dynamic continuity
assumption. They exploit a face detector and spatial saliency
models (e.g. Itti et al. 1998) to find a spatio-temporal atten-
tion model. Many methods (e.g. Zhang et al. 2008) place
emphasis on object boundaries and assign high saliency to
borders rather than salient regions. In contrast, saliencymaps
obtained by gaze locations show that the object regions are
most frequently the target of interest. To address this issue,
we incorporate super-voxels and early video segmentation
to saliency detection. Previous methods (e.g.Vig et al. 2012)
mostly depended on training videos and learning features for
saliency from these videos. However, the visual attributes for
a region need to be distinctive, irregular and infrequent for a
region to be salient. Toward this end, we detect saliency by
finding irregularities in videos via sparse representation. Fur-
thermore, our method, which does not require any training
videos, is able to deal with cluttered background and videos
with noise due to the fact that it does not merely consider
local contrast or saliency in small areas.

3 Our Approach

We decomposed a video into salient and redundant parts,
where the salient parts are sparse and the redundant parts
correspond to homogeneous and highly regular portions of
videos. Let F represent a features matrix, whose columns
correspond to features from frames of a video. Our aim is
to decompose F into low rank matrix L , and sparse matrix
S, as follows

F = L + S. (1)

Thus, the problem can be formulated as low-rank and
sparse recovery, for which Robust PCA (RPCA) (Wright

et al. 2009) can be used to solve. RPCA attempts to decom-
pose the given matrix F , into the low-rank matrix and the
sparse matrix by solving the following optimization problem

min
L ,S

rank(L) + λ‖S‖0 ,

s.t. L + S = F and ‖S‖0 � k. (2)

If this problem can be solved for appropriate λ, L and S may
be recovered exactly to generate the data F . However, (2)
is a highly nonconvex optimization problem, and there is no
known efficient solution for it. The low rank matrix compu-
tation problem and the L0-minimization problem are both
NP-hard and difficult to approximate. Since the formal hard-
ness result for (2) is not known, the reasonable guess is that
it is NP-hard (Wright et al. 2009). By using the relaxed con-
vex alternative, in which L0-norm is replaced with L1-norm
and the rank with the nuclear norm, a tractable optimization
problem is obtained,

min
L ,S

‖L‖∗ + λ‖S‖1 ,

s.t. L + S = F, (3)

where ‖L‖∗ is the nuclear norm of L and ‖S‖1 is L1-norm.
The rank of amatrix is the number of nonzero singular values,
so an alternative for the rank function in (2) could be a nuclear
norm, which denotes the trace norm of the matrix, then (3)
minimizes the sum of the singular values over the constraint
set.

The main objective here is to find a feature space in
which the assumption of non-salient parts being low-rank
and salient parts being sparse remains valid. The connec-
tion between sparsity and saliency is due to the fact that the
human vision system is attracted to informative rare scene
regions and processes merely a small amount of the entire
observed information (Koch et al. 2006; Borji and Itti 2013).
Hence, we use sparse representation as mid-level features. In
addition, correlation between redundant parts is retained via
group lasso regularization (Sect. 3.1.2). In the following sec-
tions, we describe different steps of the proposed approach to
obtain the appropriate features, and finally find the saliency
maps.

3.1 Feature Space Selection

In this section we explain our method to obtain the feature
matrix in order to decompose it into low-rank and salient
matrices.

3.1.1 Low-Level Features

We divide a given video into non-overlapping cuboids of size
p × q × t and construct matrix X = [x1, . . . , xn] ∈ Rm×n
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where xi is the visual feature vector (e.g. intensity) from
cuboid i .

Motivated by neuroscience studies which show that sparse
coding successfully simulates the V1 population responses
to natural stimuli (e.g. Olshausen and Field 1997, 2004), we
propose tomodel videos of natural scenes as sparse represen-
tation. The idea is to represent observed data, i.e., vectorized
cuboids, in terms of a linear combination of bases of a known
dictionary. Assume D = [d1, . . . , dk] ∈ Rm×k is a dictio-
nary matrix. We can represent xi as follows

xi =
k∑

j=1

d jβ j i + ε, (4)

where d j is an atomof the dictionary,β j i is the corresponding
coefficient, a scalar value, that needs to be found, and ε is a
Gaussian noise. We can rewrite (4) as

xi = Dβi + ε. (5)

Therefore, xi is represented by βi = [β1i , . . . , βki ] ∈ Rk×1

in the sparse coding space. In other words, each data point
is represented as a sparse linear combination of the atom
vectors in the dictionary.

Although the popular loss function used for regression
problems is the Least Squares Error (minimization of resid-
ual sum of squared errors) with a penalty on the L2-norm
regularization as follows,

min
β

‖X − Dβ‖22 + λ‖β‖2, (6)

it does not impose sparsity, and the resulting coefficients have
non-zero values.

To address this issue, we use lasso, proposed by Tibshi-
rani (1996), replacing L2-norm regularization with L1-norm
and formulate it as follows

min
β

‖X − Dβ‖22 + λ‖β‖1, (7)

where X is a matrix of observed data, D is a given dictio-
nary of bases, and β = [β1, . . . , βn] is a k × n coefficient
matrix, where each column is a sparse representation for a
data point. In (7) ‖.‖1 denotes the entry-wisematrix L1-norm
(‖β‖1 = ∑n

i=1 ‖βi‖1), and λ is a regularization parameter
that controls the sparsity level.
However, if the salient object or region is large, the number
of cuboids belonging to the region will be enormous; the
cuboids, whichwe expect to be outliers and indicate saliency,
cannot be considered as sparse. It has been shown that the
lasso tends to select only one data point (feature vector) from
a group of highly correlated data points, and is not concerned
with which one is selected (Zou and Hastie 2005). In order to

overcome this, we use instead group lasso regularization to
find the coefficients, in which group structure of coefficients
is determined by super-voxels in a video.

Note that the goal is to select an important subset of vari-
ables imposing sparsity among the groups. Intuitively, this
should drive all the weights in one group to zero together.
With this approach, not only would the noise be suppressed,
but also the variation in the features for finding saliency
would not be as large as the sparse representation based on
individual cuboids.

3.1.2 Group Lasso Regularization

We can formulate our problem as a general regression,

Y = Dγ + ε, (8)

in which, Y is a low-level feature matrix the columns of
which are vectorized cuboids from the video.Y is constructed
from the X matrix in a way that each division of Y consists
several columns of X.D is the dictionary andγ is a coefficient
matrix. Assume that Y , the feature matrix, is structured in J
disjointed groups {G1,G2, . . . ,GJ }, Gi ∩ Gj = ∅, and
is represented as Y = (YG1 ,YG2 , . . . ,YGJ ) where YG j =
(X1, X2, . . . , Xn j ), in which group indices are determined
by the super-voxels in the video.

The group lasso is an extension of the lassowhich assumes
covariates are clustered in groups. It aims to obtain a regular-
ization of the empirical error that finds a sparse solution to
preserve the groups of variables together. It solves the opti-
mization problem via L1,2-regularization, which imposes
sparsity on groups by using the sum of Euclidean norms of
coefficients in each group instead of L1-norm of each single
coefficient. This could drive all the coefficients in one group
to zero together, and can result in group selection (Yuan and
Lin 2006). The group lasso regularization problem would be
as follows

min
γ

‖Y − Dγ ‖22 + λ‖γ ‖1,2, (9)

where γ = [γG1, γG2 , . . . , γGJ ] is the matrix of coeffi-
cients that must be obtained, γG j is a division of γ that
corresponds to the jth group of coefficients and consists of
several columns of the coefficients matrix, and ‖γ ‖1,2 =∑J

j=1 ‖γG j ‖2. The parameterλ determines the level of group
sparsity to be imposed in the solution. This model assumes
group structure is given. In our case, the structure is provided
by super-voxels in away that cuboids indicate feature vectors
and each super-voxels consists of a group of cuboids.

3.2 Dictionary Learning

In sparse coding, we want to approximate a signal x over a
dictionary D (which has k columns referred to as atoms) in
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such a way that the obtained signal by linear combination of
a few atoms is as close as possible to x.

Various types of dictionaries have been used for this task,
for example, a predefined dictionary which is based on dif-
ferent wavelets for natural images (Rubinstein et al. 2010a;
Mallat 2009). An alternative approach determines the dic-
tionary from the training samples using techniques such
as Principal Component Analysis (PCA) and Generalized
PCA. These algorithms, nevertheless, generate unstructured
dictionaries which are computationally expensive to apply
and limit the size of the learning dictionary because of its
complexity (Rubinstein et al. 2010b). Therefore, sparse dic-
tionaries, which are structured based on a sparsity model,
have been proposed to be used in sparse signal approxi-
mation. These dictionaries perform with significantly more
efficiency and function better for larger dictionaries and
higher-dimensional data (Rubinstein et al. 2010b). It has also
been shown that learning a structured dictionary improves
signal reconstruction and results in a better representation
(Elad and Aharon 2006).

Most algorithms for dictionary learning are batch-based,
which access the whole data at each iteration and cannot
handle large data efficiently. We resolve this by using an
online approach that processes mini batches and uses sparse
coding in the optimization procedure to find atoms. This
method reduces memory consumption and lowers compu-
tational cost, hence it could be advantageous for image and
video processing.

For learning dictionary on a given set of signals, in our case
the cuboids of a given video, X = [x1, x2, . . . , xn] ∈ Rm×n ,
the classic approach is to optimize a cost function

fn(D)
Δ= 1

n

n∑

i=1

l(xi , D), (10)

where matrix D in Rm×k is the dictionary whose columns
are bases (atoms), and l(x,D) is the loss function that shows
how “good” D is in representing x via a sparse represen-
tation. In the online learning method (Mairal et al. 2010),
l(x,D) is defined as the result of L1-sparse representation
problem

l(x,D)
Δ= min

α

1

2
‖x − Dα‖22 + λ‖α‖1. (11)

There is a common constraint, call it C , on the dictionary’s
atoms d1,d2, . . . ,dk having an L2-norm less or equal to
one, which prevents atoms from having large values and
consequently, coefficients having arbitrarily small values. A
convex set of matrices validates this constraint:

C
Δ=

{
D ∈ Rm×k s.t. ∀ j = 1, . . . , k, dTj d j ≤ 1

}
. (12)

Since the cost function fn(D) is not convex with respect
to D, it is rewritten as a joint optimization problem with
respect to the dictionary D and the coefficientsα of the sparse
decomposition. While the function in Eq. (11) is not jointly
convex, when one of the two variables D or α are fixed it
becomes convex with respect to the other:

min
D∈C,α∈Rk×n

n∑

i=1

(
1

2
‖xi − Dαi‖22 + λ‖αi‖1

)
. (13)

To solve this problem, the common approach is alternatively
minimizing one variable while keeping the other one fixed.
We use SPAMS open source toolbox (Mairal 2012), which
implements the aforementioned online dictionary learning
method.

3.3 Representing Feature Space by Sparse Coding

Once we determine the dictionary, we need to find coef-
ficients by solving the objective function (9). Group lasso
regularization has been the subject of many studies recently,
and several methods have been proposed for solving (9)
(see Bach 2008; Meier et al. 2008; Roth and Fischer 2008).
In this paper, we use a block-coordinate descent (BCD)
approach that is an extension of the classic method to the
group lasso (Yuan and Lin 2006), where minimization is
performed over each group of variables. The BCD method
utilizes an objective function that can be efficiently opti-
mized over one group of variables. Each group subproblem
can be solved in closed form. Another category of methods
is gradient-based methods, in which gradient information is
used to optimize the objective function (Liu et al. 2009). This
also generates subproblems that have closed form solutions.
However, Qin et al. (2010) has shown that the BCD approach
often outperforms the existing gradient-based approaches.
In our implementation, we use simultaneous signal decom-
position methods based on block coordinate descent, which
efficiently solves (9) by computing the covariance matrix
DDT first and then DTYGi . We then compute a matrix of
coefficients using a Cholesky-based decomposition method
(Mairal 2012).

3.4 Finding the Saliency Map

Once we transform the data matrix to feature space with
sparse coding, low-rank and salient parts are recovered by
using Robust PCA. The feature matrix is considered as
a combination of non-salient parts in a low dimensional
space, and salient objects or motion as sparse portions. Thus,
given the feature matrix the augmented Lagrange multiplier
method is used for recovering low-rank matrices via opti-
mization Eq. (3) where λ balances rank and sparsity. For
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Table 1 Our results in comparison to state of the art methods in
Bias-Free configuration: this table summarizes the performance of our
method on INB data set, in terms of AUC, comparing with the Bayesian
surprise (Itti andBaldi 2009), SUNDAy (Zhang et al. 2009) and Intrinsic
dimensionality methods (Vig et al. 2012)

Video Surp SUN Intr.K GL GL-S

Beach 0.61 0.65 0.71 0.63 0.78

Breite strasse 0.70 0.70 0.76 0.60 0.75

Bridge1 0.52 0.50 0.59 0.70 0.75

Bridge2 0.64 0.60 0.53 0.72 0.75

Bumblebee 0.54 0.56 0.63 0.54 0.57

Doves 0.71 0.72 0.83 0.77 0.80

Ducks boat 0.65 0.63 0.70 0.62 0.54

Ducks children 0.56 0.70 0.78 0.65 0.66

Golf 0.67 0.77 0.77 0.81 0.82

Holsten gate 0.51 0.61 0.66 0.79 0.75

Koenigstrasse 0.60 0.62 0.60 0.61 0.62

Puppies 0.71 0.65 0.75 0.68 0.70

Roundabout 0.62 0.63 0.70 0.62 0.72

Sea 0.83 0.84 0.86 0.74 0.74

St Petri Gate 0.56 0.51 0.60 0.58 0.66

St Petri Market 0.52 0.58 0.63 0.74 0.82

St Petri McDonald 0.51 0.57 0.50 0.60 0.57

Street 0.58 0.68 0.77 0.78 0.81

Average 0.61 0.64 0.69 0.67 0.71

Bold values indicate the best result in terms of AUC achieved for each
video among the methods
GL is our method and GL-S[mooth] shows the results after smoothing

an appropriate λ, the F matrix, which is the coefficient
matrix computed from group lasso regularization, is esti-
mated properly by obtained L and S matrices. There exist
various methods to extract low-rank and sparse matrices
by this optimization problem. We use a technique of aug-
mented Lagrange multiplier, named ALM. This method can
handle large matrices and has Q-linear convergence speed
which makes it suitable for image and video processing
applications. This simple implementation iteratively com-
putes a partial SVD of a matrix and converges to the
solution in a small number of iterations. The algorithm
also has a faster version, i.e the inexact ALM algorithm,
which requires a smaller number of partial SVDs (Lin et al.
2010).

Final step of our approach is in computing the saliency
map using the sparse matrix values found in the previous
step. The L1-norm of columns of S matrix, corresponding to
cuboids, indicates the saliency value. Then, saliency value
of the super-voxels covering these cuboids is obtained by
counting salient cuboids and normalizing them based on the
super-voxel size. The higher the norm, the more salient the
corresponding region (Fig. 2).

4 Experiments and Evaluation

For evaluating the proposed method, we first generate a
saliency map for all regions in each video using the proposed
approach. Each saliencymap acts like amaximum likelihood
binary classifier for each video, and determines the salient
and non-salient regions. After thresholding, regions in the
saliency maps that have value greater than the threshold are
considered as to belong to the salient class.

4.1 Data Sets

We have evaluated our method on four different data sets.
The first is INB by Dorr et al. (2010), which consists of
18 high-resolution movie clips of natural outdoor scenes.
Each video is 1280 by 720 pixels in size, has 30 frames
per second and is about 20 s in length. The gaze data of
54 human subjects freely viewing these videos is available.
About 40,000 saccades have been extracted from the gaze
data using a dual-threshold velocity based procedure. Salient
locations are labeled positive by using these saccade points.
Because of the latency of the oculomotor system, the gaze
response to a salient event is not necessarilymatchedwith the
time of the event. Hence, some methods consider a temporal
offset. However, Vig et al. (2011) have shown the average
lag in natural scenes to be near zero, and so there is no need
to consider any offset, therefore we do not consider temporal
offset.

The second data set is the UCF Sports Action data
set (Rodriguez et al. 2008), which consists of 150 videos
from nine different types of actions such as Diving, Horse-
back riding and Swinging. The gaze data for this data set,
including eye fixation information from 16 subjects view-
ing the videos, is available via Mathe and Sminchisescu
(2012a, b).

Third data set is our own, UCF Saliency data set, created
for this paper, which is a more challenging data set. In this
data set, the quality of videos is poor, the resolution is low,
and camera motion could be problematic, unlike INB and
UCF Sports which have high resolution videos. This data set
consists of 6 different videos from different events, such as
Person Running, Moving Car, Jumping and Sailing. In Fig.
9, a set of still frames and their corresponding results are
shown. In order to find ground-truth saliency maps, similar
to Borji et al. (2013), we asked four subjects to mark freely
some points (the average is 6), on regions in each frame of
the video which they believe are important in understanding
the scene or are interesting and capture the attention. This
was done by using an annotation tool which was developed
in our group, and subjects did not have any prior knowledge
about the video. Finding the saliency maps for this data set
can be considered as “human explicit saliency judgment”
prediction problem, which is different from saliency predic-
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(a)

(c)

(d) 

(e)

(b) 

(a)

(b) 

(c)

(d) 

(e)

Fig. 3 Examples of frames from a data set videos, b super-voxels,
c empirical saliency maps obtained by gaze data, d our saliency map
results and e binary maps showing the most salient regions. Comparing

empirical saliency maps and our results illustrated that the maxima in
saliency maps is matched

tion from eye movement data. However, the results of our
method for both type of data are promising, since the objects
and motions in videos comprise the most informative part of
data.

The last data set that we have tested our method on is
Hollywood2 Actions dataset (Marszałek et al. 2009). This is
a large scale dataset with camera motion and clutter, which
consists of 2517 videos of which 884 are selected as a test
subset. Human fixations from 16 subjects are also available
for this data set (Mathe and Sminchisescu 2012a, b).

4.2 Evaluation Methods

In order to compare ourmethodwithVig et al. (2012),we per-
form the same experiments, which they regard as Bias-Free.
In doing so, we consider the set of saccade landing points
in a video as a positive class, and randomly selected gaze
locations from different videos are considered as a negative
class. Since this labeling method leads to overlap between
positive and negative samples, another labeling model has
been proposed called Default-Labeling.
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In Default-Labeling, for each video an empirical saliency
map is generated using gaze locations. These maps spec-
ify the density of the gaze points via all subjects. At each
gaze point a spatiotemporal Gaussian is placed, and for all
subjects these Gaussian filters are superimposed. We use
the same Gaussian filter with a spatial support of 2.4◦ of
the visual angle, of 0.17 s temporal support, and standard
deviations of 0.6◦ (spatial) and 600 ms (temporal). In this
case, positive samples are selected from the highest den-
sity of the eye movement data in the empirical saliency map
and negative class samples are picked from the lowest den-
sity. After thresholding, these saliency maps are treated as
ground truth data, and for quantitative analysis we report
ROC Scores (AUC area under curve). Our results are com-
pared with ground truth data and AUC is reported for each
video.

Since studies show the probability of directing attention
in the center of a scene is higher, as a post-processing step we
apply a Gaussian filter to smooth the map and emphasize the
center in terms of saliency values.Generally, this step leads to
better results in terms of predicting eye movement locations
among all videos, even though for some videos AUC scores
get slightly reduced.

4.3 Implementation Details and Computational
Complexity

One of the primary steps in our method is grouping
similar voxels in videos into meaningful segments called

super-voxels. For finding super-voxels in a video, we use
the Efficient Hierarchical Graph-Based Video Segmenta-
tion method. Basically, it is a spatiotemporal segmenta-
tion approach that uses hierarchical graph-based algorithm
(Grundmann et al. 2010). This method is chosen based onXu
and Corso (2012), which using existing benchmarks, evalu-
ates several video segmentation methods and concludes that
the a hierarchical graph-based method is one of the best in
terms of accuracy and efficiency.

In parallel, by finding super-voxels, we extract inten-
sity feature vectors from the video cuboids. The size of the
cuboids in our experiment is 4×4×4.Afterward, a dictionary
is created on the video feature vectors via Online Dictio-
nary Learning for Sparse Coding method. We use SPAMS
(SPArse Modeling Software) optimization toolbox for this
purpose. The parameter that needs to be tuned in this phase
is the number of dictionary atoms. Since the dictionary is
over-complete, the number of bases must be greater than the
vector size, which is 64 in our case. Therefore, we tried dif-
ferent numbers such as 100, 300, 640 and 1000 and found
empirically that 640 is the most proper choice as a trade-off
between efficiency and effectiveness. Thementioned toolbox
also is used for obtaining sparse coding through group lasso
regularization.

4.3.1 Computational Complexity

As shown in Fig. 2, our method consists of several steps
identified by different blocks. Therefore we analyze the com-
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ROC Score in Default Configura�on

AUC

Fig. 4 The results of Default-Labeling for each video using ourmethod and smooth version. The performance improvement over Bias-Free labeling
is remarkable
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Fig. 5 Average AUC of the
empirical saliency for the
baseline methods: Bayesian
“surprise” (Itti and Baldi 2009),
SUNDAy (Zhang et al. 2009),
Intrinsic dimensionality
methods (Vig et al. 2012) and
our model
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EmpSal Surp SUNDay Intrinsic.K Ours

Default
Bias-Free

Diving Golf Swinging Kicking Li�ing Horseback
Riding Running Ska�ng Swinging Walking Average

SUNDay 0.61 0.6 0.63 0.6 0.65 0.6 0.61 0.59 0.86 0.64
Bayes Suprise 0.66 0.75 0.65 0.67 0.64 0.67 0.63 0.72 0.76 0.68
Ours-Mo�on 0.73 0.65 0.87 0.85 0.7 0.68 0.67 0.68 0.69 0.73
Ours-Intensity 0.89 0.8 0.78 0.67 0.69 0.76 0.72 0.83 0.7 0.76
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UCF Sports Bias-Free Configura�on

Fig. 6 AUC scores for videos in UCF Sports data set using Bias-Free labeling configuration

putational complexity of each step separately. The initial step
is segmentation, which is linear in terms of n number of pix-
els in the whole clip. For learning a dictionary, we used the
online learning method which solves the problem by opti-
mizing dictionary atoms and coefficients iteratively. When
the dictionary is fixed, k lasso problems are required to be
optimized, where k = n/64 is the number of cuboids in
our case, which is a fraction of number of pixels. And for a
fixed coefficient matrix, optimizing the dictionary is a least
squares problem of pm variables andm constraints, where p
andm are respectively dimension of data matrix and number
of atoms in dictionary which are constants. For instance, in

our experiments with cuboids of size 4×4×4, p is 64 andm,
the size of the dictionary is 640, therefore this part has linear
time complexity as well. In the last part of method, which is
matrix decomposition, IALM method is used. This is a fast
implementation of Robust PCA which has the complexity of
O[min(nm2,mn2)] where, in our method m 	 n , so the
algorithm has linear complexity.

In our implementation, the dictionary and super-voxels
are created in parallel then the saliency map is obtained. We
have written our program in MATLAB code and have used
a system with Intel(R) Xeon(R) CPU which has 6 cores and
12 threads with Windows 7 operating system. The memory
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Diving Golf Swinging Kicking Li�ing Horseback
Riding Running Ska�ng Swinging Walking Average

SUN 0.79 0.6 0.63 0.85 0.75 0.74 0.75 0.67 0.71 0.72
Bayes Suprise 0.78 0.69 0.61 0.88 0.73 0.65 0.69 0.76 0.74 0.73
Ours-Mo�on 0.87 0.7 0.76 0.79 0.78 0.79 0.8 0.92 0.84 0.81
Ours Intensity 0.85 0.76 0.78 0.96 0.81 0.82 0.76 0.87 0.82 0.83
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UCF Sport Default Configura�on

Fig. 7 AUC scores for videos in UCF Sports data set based on Default-Labeling configuration

(a)

(c)

(b) 

(a)

(c)

(b) 

Fig. 8 Examples of frames from a UCF Sports data set videos, b super-voxels, c our results showing most salient regions plus gaze points shown
in red considering calibration errors

of our system is 24 GB, and regardless, the program uses at
most 12 GB for 12 threads. Using this configuration, finding
the dictionary and generating the saliency map takes 0.83 s

per frame, in other words the rate of generating the saliency
map is 1.2 frames of size 320 × 240 per s. Rewriting the
code in C++ or a faster platform than MATLAB could aid
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AnswerPhone DriveCar Eat FightPerson GetOutCar HandShake HugPerson Kiss Run SitDown SitUp StandUp Average
SUNDay 0.63 0.61 0.62 0.62 0.59 0.64 0.6 0.59 0.66 0.65 0.62 0.64 0.62
Bayes Suprise 0.71 0.69 0.75 0.72 0.7 0.67 0.67 0.66 0.7 0.68 0.7 0.69 0.695
GL 0.74 0.68 0.73 0.74 0.74 0.73 0.71 0.71 0.72 0.74 0.74 0.75 0.73
GL-Smooth 0.81 0.8 0.81 0.81 0.76 0.8 0.78 0.79 0.79 0.77 0.81 0.77 0.79
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Fig. 9 AUC scores for videos in Hollywood2 data set based on Default-Labeling configuration

(a)
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(c)
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(b) 

Fig. 10 Examples of frames from aUCF saliency data set videos, b super-voxels, c empirical saliency maps and d our results showing most salient
regions. These salient regions correspond to meaningful objects such as person filliping, a person walking with kids, boat and car
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Boat Person Climbing Person Flipping Person Running Vehicle Moving 1 Vecile Moving 2 Average
SUNDay 0.81 0.79 0.67 0.75 0.72 0.84 0.76
Bayes Suprise 0.74 0.77 0.73 0.67 0.66 0.88 0.74
Ours 0.84 0.87 0.91 0.85 0.79 0.72 0.83
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Fig. 11 AUC score for videos in UCF Saliency data set based on Default-Labeling configuration

in the performance of the program. Moreover, our method
is scalable using distributed systems, different parts of the
method can perform in parallel (using multi-core or multi-
nodes systems).

4.4 Results

In Table 1, the results of our method and comparison with
other methods using Bias-Free labeling, are reported sep-
arately for each video. As we can see, after smoothing, our
final results outperform the state of the art. Also, evenwith no
post processing (smoothing) our results are reasonable and
encouraging and better than other twounsupervisedmethods.
Also in some videos, on which other methods work poorly,
such as St petri market and golf videos, we obtained better
performance. It should be noted that average AUC value for
empirical saliency maps using Bias-Free labeling for deter-
mining saliency locations is 0.79. Also, qualitative results for
some sample frames from INB data set are shown in Fig. 3.

Furthermore, the AUC score obtained for each video via
the Default labeling model is reported in Fig. 4. Most of the
videos perform noticeably better in terms of ROC scores.
Also, Fig. 5 shows baseline methods, and results obtained by
our method using Default-Labeling. In this case, the empiri-
cal average of saliency is the upper-bound with the value of
AUC being 1.

We have used the same experiments setup as aforemen-
tioned in the configuration for INB data set. In doing so,
for Bias-Free labling experiments, we have used gaze points
from current videos as the positive samples, and randomly
selected fixations from different classes of videos as the neg-

Table 2 Accuracy results using HOG+MBH descriptor for action
recognition in UCF sports data set

Action Baseline
(reproduced) (%)

Saliency
sampling (%)

Diving 100 100

Golf 100 100

Kicking 100 100

Lifting 50 100

Horse riding 100 100

Running 25 75

Skating 50 50

Swing bench 83.33 50

Swing side 100 100

Walking 71.43 85.71

Average (per
video)

80.85 85.10

Bold value indicates the best accuracy result obtained for action recog-
nition in UCF Sports data set

ative ones. Since the measurements have some errors and
calibration errors are provided to ensure that the data is accu-
rate, and to get the likely positions of point-of-regard,wehave
used gaze samples where the calibration error is less than
0.5. For evaluation based on the Default-Labeling method, a
probabilistic distribution of the gaze point is required. There-
fore, we create a Gaussian model with sigma equal to the
calibration error for each point, then the top 10 mixture
of Gaussian are considered as salient parts. The quantita-
tive results for these experiments for our method as well as
Bayesian-surprise (Itti and Baldi 2009) and SUNDay (Zhang
et al. 2009) are presented in Figs. 6 and 7. In Fig. 8 some
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Table 3 Accuracy results using DTF descriptor for action recognition
in UCF sports data set

Action Baseline
(reproduced) (%)

Saliency
sampling (%)

Diving 100 100

Golf 100 66.67

Kicking 50 83.33

Lifting 100 50

Horse riding 75 100

Running 75 75

Skating 0 50

Swing bench 100 100

Swing side 75 75

Walking 71.43 71.43

Average (per video) 76.59 78.72

Bold value indicates the best accuracy result obtained for action recog-
nition in UCF Sports data set

frames from sample videos, including Swinging, Walking,
Diving and Horse-Riding, the corresponding super-voxels
and saliency maps, in which gaze locations are indicated.

Similarly, we have tested our method on the Hollywood2
dataset, since our method is unsupervised, we have used
only test subset of the data. For the sake of comparison, we
have applied the SUNDay and Bayes Surprise method on
this data set. As Fig. 9 indicates, the proposed method has
higher performance in terms ofAUCscores, and theSUNDay
method has the lowest due to more emphasis on the edges
and borders of regions, which is misleading in a cluttered
background.

In Fig. 10, a set of still frames and their correspond-
ing results from the UCF Saliency data set is shown. The

results show the saliency maps are in accordance with the
saliency distribution obtained by the salient points. Addition-
ally, quantitative results in terms of AUC scores are reported
in Fig. 11

4.5 Visual Action Recognition

Next we present an application for saliency in an action
recognition problem in the UCF Sports data set. Local
spatio-temporal descriptors are being widely used for action
recognition in videos. In these experiments we use saliency
maps to prune these features, andwe show that even after dis-
carding roughly 30 percent of descriptors, the method still
outperforms the baseline. We use the bag of visual words
framework for action recognition, which consists of obtain-
ing features by descriptor extraction, K-means clustering and
codebook generation, feature quantization and classification
using SVM classifier. For the first experiment, we extract
dense space-time interest point descriptors (Laptev et al.
2008), with a 50 overlap, using a single spatial and tem-
poral scale. We use HOG and MBH descriptors for the first
experiment. Afterward, we remove the descriptors which do
not belong to the salient areas, then we generate a codebook
of size 1000, and for each video we compute a histogram
using the codebook. For classification, we use a non-linear
SVM with a chi-squared kernel. In order to divide the data
into a train set and a test set, we use a training-testing split
provided in (Lan et al. 2011). In this, 103 of 150 videos in the
UCF Sports data set are used for training and the 47 remain-
ing videos for testing. We reproduced the baseline using the
same framework, except the pruning part, where we use all
the descriptors. In Table 2 the results are shown, as one can
see using saliency, the results have been improved. This can

(a) (a)(b) (b)(c) (c) (d)(d)

Fig. 12 Examples of results for street, sea, doves and golf video scenes
from INB dataset. a video sample frames set, b saliency map using
low rank decomposition on intensity data c saliency maps via L1-
minimization with no grouping and d results of our method. The AUC

scores obtained by low rank decomposition are respectively 0.68, 0.56,
0.51 and 0.59. For L1-minimization they are 0.63, 0.52, 0.54 and 0.71,
which are noticeably lower in accuracy than our results
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Table 4 This table shows some examples of rank reduction and impos-
ing sparsity before and after using group lasso

Rank-sparsity
Video Non-Zero w/o GL (%) Non-Zero w/ GL (%)

Diving 001 81 12

Walking 022 85 9

Skating 004 28 6

Kicking side 001 82 4.5

Swing side 009 72 19

Rank w/o GL Rank w/ GL

Diving 001 35 9

Walking 022 37 4

Skating 004 16 2

Kicking side 001 39 12

Swing side 009 33 6

Non-zero represents the percentage of non-zero elements in the sparse
matrix after decomposition by RPCA, and rank shows the rank of the
low-rank matrix after decomposition

be justified that by using the saliency map redundant features
from the background, which are not discriminative and are
common between classes, for example features from the sky,
are removed. However, the approach is different from using
merely foreground, the context of action is also captured by
the saliency mask.

We also repeat the experiment using dense trajectory fea-
tures (Wang et al. 2011a), with the same configuration as
mentioned. Visibly more features are pruned in this experi-
ment by the saliencymask. The results in Table 3 indicate that
even though in some classes the accuracy drops, on average
the method outperforms the baseline.

4.6 Comparison

In order to show the effectiveness of the proposed method,
which uses super-voxels as the basic elements to find
saliency in videos, and group-lasso regularization to provide
appropriate feature space for decomposing via low-rankmin-
imization, we have also implemented a saliency detection
method using cuboids only and L1-minimization (lasso, not
group lasso).We applied and tested the lattermethod on some
samples, which we used in our experiments, and compared
the results with ours.

As Fig. 12 shows, decomposition based only on the results
of the referenced baseline (Yan et al. 2010) methods is noisy
and vague. The reason is, if the salient object or region is
large, the number of cuboids would be enormous; and they
could not be considered sparse. The assumption of the salient
parts being sparse would not be valid anymore. Furthermore,
this approach does not consider the correlation between vari-
ables, therefore it does not enforce that the non-salient part
should have a low rank.

On the other hand, by using grouping of cuboids and uti-
lizing group lasso regularization, as we have done, highly
correlated variables are selected together and sparsity is
applied among groups. Our approach does not need object
detection methods or training. It is able to fairly accurately
detect most dominant objects, which by using only lasso reg-
ularization and cuboids is not feasible.

One of the key aspects of our approach is that it does not
use any gaze locations or labeled data to train the system,
and we do not need to adjust our method to specific type of
videos or objects.

For more demonstration on effectiveness of group lasso
to impose sparsity and make non-salient parts low-rank, in

Fig. 13 AUC scores using
different features: intensity,
RGB, luminance channel (Y),
YUV and temporal gradients
features for Bias-Free labeling
configuration from INB data set
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Table 4 rank and sparsity percentage of data after decom-
position using RPCA are shown. The first column shows
using only intensity, and the second one indicates the data
after applying group lasso, which shows dramatic reduction
in rank as well as number of non-zero values.

We have also experimented with different initial features
including intensity, RGB, luminance channel (Y), YUV and
temporal gradients. As Fig. 13 shows, intensity and lumi-
nance channel have the best results, and the other features
lead to slightly lower performance. In this case, the temporal
gradient has the lowest AUC score. It can be explained as
some videos like the bumblebee has no dominant and mean-
ingful action in them. We also repeated this experiment for
theUCFSports data set since actions andmotion are themain
focus in this data set, the temporal gradient performs better
than the intensity in some videos. However, the difference
is not that remarkable and on average the intensity performs
slightly better, therefore for the sake of consistency we have
reported results for other data sets using intensity.

5 Conclusion

In summary, we present an entirely unsupervised bottom-up
method that detects the regions of videos to which people’s
eyes are drawn. Using spatio-temporal information to rep-
resent a video as a matrix, and by using super-voxels, we
group the columns into the matrix to cluster related data
together. We propose using group lasso regularization to
transform data into a sparse representation. In this, redun-
dant parts remain low rank while salient parts are sparse.
The correlation between the data is retained and non-salient
parts tend to be of low rank. We show that without using
data labeling, and learning techniques requiring eye move-
ment data, we are able to determine salient regions of videos
accurately.
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