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We present a new method for multi-agent activity analysis and recognition that uses low level motion fea-
tures and exploits the inherent structure and recurrence of motion present in multi-agent activity scenarios.
Our representation is inspired by the need to circumvent the difficult problem of tracking in multi-agent sce-
narios and the observation that for many visual multi-agent recognition tasks, the spatiotemporal description
of events irrespective of agent identity is sufficient for activity classification.
We begin by learning generative models describing motion induced by individual actors or groups, which are
considered to be agents. These models are Gaussian mixture distributions learned by linking clusters of op-
tical flow to obtain contiguous regions of locally coherent motion. These possibly overlapping regions or seg-
ments, known as motion patterns are then used to analyze a scene by estimating their spatial and temporal
relationships. The geometric transformations between two patterns are obtained by iteratively warping one
pattern onto another, whereas the temporal relationships are obtained from their relative times of occur-
rence within videos. These motion segments and their spatio-temporal relationships are represented as a
graph, where the nodes are the statistical distributions, and the edges have geometric transformations be-
tween motion patterns transformed to Lie space, as their attributes. Two activity instances are then compared
by estimating the cost of attributed inexact graph matching. We demonstrate the application of our frame-
work in the analysis of American football plays, a typical multi-agent activity. The performance analysis of
our method shows that it is feasible and easily generalizable.

Published by Elsevier B.V.
1. Introduction

Recognition and analysis of multi-agent activity has been an im-
portant area of research in artificial intelligence [32] as well as com-
puter vision [7]. A significant amount of effort in both these areas
has attempted to leverage a symbolic representation of atomic behav-
iors [4], and first-order predicate calculus [1] as tools for analysis and
understanding of complex activities. Although such principled ap-
proaches are desirable in general, they do not explicitly account for
the difficulties and uncertainties in obtaining symbolic representa-
tions by visual analysis. Moreover, in practical scenarios, it is a
prohibitively cumbersome task to manually encode semantically
meaningful symbols, rules and productions etc., that would account
for all possible permutations in large state spaces. We observe that
visual recognition of multi-agent activities can be an unsupervised
learning process where the goal is to estimate an appropriate
y Rama Chellappa.
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measure of similarity between videos while taking into account the
uncertainty in low level representation.

We propose a graph theoretic framework which encodes not only
the statistical representation of low level, agent-specific actions or be-
haviors, but also comprehensive, continuous spatial and temporal re-
lationships between such behaviors, as opposed to discrete ones like
Allen algebra [1]. In terms of low level behaviors inference, current
multi-agent activity analysis methods in computer vision rely on
models based on tracking of agents [7,19], or body parts thereof
[25], detections without tracking [28,2], or short high confidence
tracklets [29,30], etc. In practical scenarios however, tracking is
unreliable due to occlusion and unpredictable motion of actors,
which is a significant drawback in many of the methods that employ
tracking. These methods also do not explicitly model the inherent
spatiotemporal structure present in multi-agent activities. Other
methods can be found in a recent survey [24].

To recognize multi-agent activities, event-based methods are
often used. An activity is assumed to be composed of a set of events
and is characterized by the relationship of these events. Events were
detected based on the interactions of agents in [11,31] and based on
individual actions in [10,8,4]. Ivanov and Bobick [11] used probabilis-
tic detectors to propose event candidates. The event set was analyzed
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with a context-free stochastic parser to recognize interactions be-
tween persons and vehicles. Hongeng et al. [8] and Hakeem and
Shah [4] detected sub-events performed by individuals, and repre-
sented the logical and temporal dependencies between sub-events
using graphic models. This kind of methods requires information
about all possible events. It becomes quite difficult for a large number
of agents and complex interactions between them.

One of the specific examples of multi-agent activities is field
sports, e.g., football and soccer, analysis of which has been an
active research topic [16,9]. These efforts attempted to detect or
recognize dynamics and behaviors using camera motion, color,
low-level motion, field markers, lines and texture etc. Intille and
Bobick in [10] first detected individual goals. These goals and
temporal relations between players served as children for a higher
level in a Bayesian tree. Li et al. [20] proposed a discriminative
temporal interaction manifold based framework for the same prob-
lem. Manually annotated player trajectories were used as low level
features in both [10,20], while [19] obtained them using a multi-
target tracker.

Swears and Hoogs [29,30] have proposed to use short, high confi-
dence tracklets in a Non-Stationary Kernel Hidden Markov Model
(NSKHMM) for football play recognition, in an attempt to overcome
problems associated with tracking of agents throughout activity
videos. Recognition of American football plays is a complex problem
and much attention has been paid to it, not only because it is an im-
portant problem in itself but more so because it is an ideal example
for multi-agent activity and is therefore a popular choice for demon-
stration of recognition algorithms. We observe that the methods most
relevant to our approach are by Lin et al. [21,22], Li and Chellappa [18]
and Swears and Hoogs [29,30]. We discuss these in more detail in
subsequent sections.

1.1. Graphical representation of global motion and activity comparison

Individual events are spatio-temporally localized within a multi-
agent activity. For example in a traffic scenario, a semantic scene de-
scription of an intersection may read as follows: motion from north
west to south is followed by north bound motion from south east.
Each of these traffic flows can be considered to be one event. For a
computer vision algorithm this description would translate to the
knowledge of the temporal and spatial beginning and end of each
event and other features of these events such as their density and var-
iance of direction and speed etc. Similarly we propose to use salient
motion information in a sports scenario to understand sporting activ-
ity without requiring tracks for individual players. For example a foot-
ball play is defined by the motion of certain players which is planned
before the play is executed. The motion of the defensive players fol-
lows that of the offensive players in most cases. We therefore do
not need to keep track of both sets of players, but only the significant
activity within the play. Fig. 1 shows an example for a clip of a football
play along with the expected and automatically generated sub-events
occurring within the clip. In order to get a reasonable understanding
of the global activity we propose to explicitly compute and leverage
the spatial and temporal relationships between motion patterns
within the video of an activity. As opposed to symbolic or quantified
representations of individual behaviors, in this work we attempt
to represent the entire activity as a complete graph, where a vertex
represents an agent's behavior, and the edges between two vertices
depict the spatiotemporal relationships between them. It is worth
mentioning here that, first, due to the probabilistic nature of
agent behavior representations, we do not assume the presence
or absence of a predefined atomic action, rather any arbitrary ac-
tion is possible with a certain probability, which in turn is used in
the matching and recognition of activity instances. Secondly, the
relationships between agent behaviors need not be quantized in
space (e.g., above, below or adjacent etc.), or in time (e.g., before,
after, during etc.). Once we obtain a graphical representation of
an activity, we may compare two activities using inexact graph
matching.

2. Single agent behavior: Motion representation

The purpose of our motion representation is to accurately cap-
ture the spatio-temporal location of motion in an event in addition
to motion features. To this end we propose to use the motion
patterns framework [27] described in detail in the following
sub-section.

2.1. Agent behavior discovery and representation

The motion patterns framework was originally proposed for
event modeling in static camera scenarios with persistent motion.
The entire framework can be broken down into these steps: Opti-
cal flow computation [23], clustering of flow and a hierarchical
linking of flow clusters based on spatial and temporal proximity.
Each connected group of flow clusters is one motion pattern. A
feature vector (an optical flow point) given as x = (x,y,u,v), be-
longing to the motion pattern of the ith agent, can then be written
as:

xeXNi

k¼1

ωi;kN ⋅ μ i;k;Σi;k

��� �
;

�
ð1Þ

where μi,k, Σi,k, and ωi,k are the parameters of the kth component
of the ith motion pattern, and there are a total of Ni, 4d Gaussian
components in the mixture.

In the American football domain, a play is defined by the
spatio-temporal relationships between subevents. These events may
be defined as an observed motion in a certain direction with an asso-
ciated time. Note that we do not distinguish between offense and de-
fense players but instead make use of the fact that the motion of
defense players largely depends on the motion of the offense players
and their chosen strategy. Therefore motion of offense and defense
players who are partaking in the same subevent is jointly modeled.
We demonstrate that the motion pattern representation is ideally
suited to modeling events in non-persistent settings such as those
in sports where related methods fail.

We begin by performing some pre-processing on the videos. This
involves ego-motion compensation so that the observed motion is
strictly related to the motion of actors rather than the camera. The
video of an activity instance, f, is divided into Zf video clips, each of
which is z frames long. We then compute optical flow for the videos
which results in a feature vector (x, y, u, v, t) for each pixel in a
frame, where t is quantized into clips. In order to keep the method
simple, and avoid costly optimization algorithms for Gaussian mix-
ture learning, we adapt a method similar to the one proposed in
[27], which performs a hierarchical clustering of optical flow to simul-
taneously segment motion in space and time, as well as learning of
the parameters of the Gaussian mixture representing each motion
pattern. We therefore obtain a set of Gaussian mixtures, V = {vi},
1 ≤ i ≤ Qf, so that the activity f is represented by Qf agents or motion
patterns, and vi = {(μi,k,Σi,k,ωi,k,τi,k)}, 1 ≤ k ≤ Ni, where τi,k is the
time at which the kth component of vi is observed. Each motion pat-
tern vi therefore, comprises of a set of Ni quadruplets representing a
4d Gaussian component's mean, covariance matrix, weight, and the
time of occurrence respectively. The obtained motion patterns are
then warped using manually computed homographies from the
stabilized clip to a field model. Fig. 2 shows the outputs from
some of these pre-processing steps and a brief illustration of the
subsequent graph construction whose details will be provided in
the following sections of the paper. For visualization, we illustrate



Fig. 1. Some frames from a football play from our dataset are shown. Each group of one or more players causing a sub-event within the play is tracked manually in the subsequent
frames shown row-wise. Notice that we are considering groups of players that move together as a single entity, and a different color is used for each group. The image on the bottom
left shows all tracks overlaid on one frame using the same color as for the boxes. The image on the bottom right shows our automatically obtained motion representation (which is
explained in Section 2) which closely follows the manually tracked groups of players. The motion detected for each group of players is shown in the same color as used for the
corresponding manual track for that group of players in the image in the bottom left of the figure. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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a motion pattern as the conditional expectation of optical flow
given pixel locations.

The framework for estimating motion patterns is complimented
by a three phase filtering step to remove noisy optical flow. Firstly,
Fig. 2. An illustration of the processing steps involved in obtaining motion patterns is shown
are extracted from the flow using a hierarchical clustering framework. We describe the entire
of the graph.
weak optical flow is thresholded, and the clusters obtained from
flow are filtered using their covariances. A final filtering step is
performed on the obtained patterns in which any patterns with a
very small number of constituent clusters are removed. This provides
. We obtain optical flow from a clip of a football play. Patterns of motion within the play
activity using a dense graph constructed using all observed motion patterns as vertices

image of Fig.�1
image of Fig.�2
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good robustness to clutter in the scene, for problems such as camera
shake, imperfect video registration, and in the specific case of football,
any motion in the crowd.

We now perform an in depth evaluation of the merits of our
framework with the related methods. The most recent work in this
direction is by [18]. The authors use a driving force model to charac-
terize a group of agents that share a goal. However in that work, the
number of driving forces has to be manually specified. Since different
plays may have varying levels of complexity, the actual number of
factors that influence motion may be different between classes.
Their motion model is defined by a single affine matrix, which is
counter-intuitive in a sports scenario even in small regions. The rep-
resentation does not appear to be discriminatory between play clas-
ses and the results in the paper only demonstrate segmentation of
sub-activities within a single play.

Similar work on motion modeling has been using HDP/LDA
models [14]. Those frameworks require repeated flow to construct a
model, therefore they do not apply to sports scenarios. However,
our motion pattern representation may be considered to be a simpli-
fied version of the HDP framework that is applicable to the current
setting. Similarly work done by Li et al. [21,22] also requires persis-
tent flow for modeling. In addition, HDP/LDA approaches generate
actor representations that are not very easy to manipulate, e.g., trans-
form spatially, which is required for our graph matching method.
3. Graph theoretic framework

The multi-agent activity instance f, is represented by a planar, di-
rected, complete graph, Gf = (Vf,Ef), where V, the set of vertices, is a
collection of the parameters of Gaussian mixtures described earlier,
and |V| = Qf. Each element of the Qf × Qf matrix, E of edges contains
a vector representative of the optimal spatial transformation between
Gaussian mixtures of two vertices connected by that edge. Fig. 3 pro-
vides an illustration of one node pair and the edge between them in a
graph.

Using this global representation of an activity in time and space
using our proposed event modeling we can compare two activities.
We do this by attributed inexact graph matching. For comparison be-
tween two activities we require a comparison of the location and flow
of individual events, their relative times of occurrence, the pairwise
spatial relationships between these events and the relative saliency
Fig. 3. An illustration of the proposed multi-agent activity graph, where nodes are Gaussian
mations that align the Gaussian mixtures. The figure shows one node pair and the edge betw
its color as per the color wheel. Edge color corresponds to the difference in mean orientatio
figure legend, the reader is referred to the web version of this article.)
of an event within the entire activity. We now describe how we en-
code this information into our framework.

3.1. Agent behavior similarity

We can compare the vertices of two graphs which probabilistically
represent an agent's behavior by simply computing the KL divergence
between the Gaussian mixtures. There are however a few problems
with this approach. First, KL divergence is not a distance metric, and
is not symmetric. It has a high dynamic range for dissimilar distribu-
tions, especially in different directions. Second, KL divergence be-
tween Gaussian mixture distributions does not have a closed form,
and Monte Carlo point sampling is often used to estimate it, which
is a computationally expensive operation. We therefore define a dis-
tance measure comparing two Gaussian mixtures which takes into
account their location and shape in (x,y), and their motion in (u,v).
Specifically, given graphs, Gf and Gg for activity instances f and g re-
spectively, we compute a vertex–vertex similarity matrix Dα of size
Qf × Qg, which is symmetric and positive. Given two agent behaviors,
vi and vj from graphs, Gf and Gg, the elements of matrix, Dα

f ;g are de-
fined as:

dαi;j ¼ exp −
Δθ2i;j
2σ2

θ
−

ξ2i;j
2σ2

ξ

−
1−δi;j

� �2

2σ2
δ

0B@
1CA; ð2Þ

where,

Δθi;j ¼ tan−1

XNi

k¼1

ωi;kμ
4ð Þ
i;k

XNi

k¼1

ωi;kμ
3ð Þ
i;k

0BBBBB@

1CCCCCA− tan−1

XNj

k¼1

ωj;kμ
4ð Þ
j;k

XNj

k¼1

ωj;kμ
3ð Þ
j;k

0BBBBB@

1CCCCCA; ð3Þ

is the difference of mean optical flow orientations of the Gaussian
mixtures (adjusted for phase change). The variable ξ computes the
minimum Euclidean distance between any two components in each
mixture,

ξi;j ¼ min
1≤m≤Ni ;1≤n≤Nj

‖ μ 1;2ð Þ
i;m −μ 1;2ð Þ

j;n ‖2; ð4Þ
Vertex: Motion Pattern

Arrow head: Mean 
orientation of GMM

Edge: Transformation 
between two GMMs

Edge color: Orientation 
difference
Edge length: Distance

mixture distributions, and edges have Lie space representations of geometric transfor-
een them. The mean orientation of a motion pattern is depicted by the arrow head and
n of the patterns that it connects. (For interpretation of the references to color in this

image of Fig.�3
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and the shape similarity between two motion patterns is measured
by the amount of spatial overlap between Gaussian mixtures,

δi;j ¼
Ri∩Rj

Ri∪Rj
; ð5Þ

where the regions are sets of pixels with high probability of belonging
to the motion pattern,

Ri ¼ x 1;2ð Þ s:t: ∫∫piðx vij Þdudv > κ

( )
: ð6Þ

The parameter κ was fixed for all our experiments. We now ex-
plain howwe leveraged the temporal information in the agent behav-
iors for improved graph matching.

3.2. Temporal similarity of occurrence

Another useful cue towards robust matching of two activity in-
stances is the relative temporal position of each agent behavior within
the activity. For example, two instances of football plays should be
more likely to match if a specific type of pass is executed after approxi-
mately the same relative duration into the play. We observe that by na-
ture of the process of motion patterns estimation, the quantized time
(video clip) at which each component of the mixture was observed is
known, i.e., τi,k. We can then estimate the approximate time of occur-
rence of an agent behavior as the mean time of all components. The rel-
ative time of occurrence for the ith motion pattern is then written as,

Γi ¼
1

Ni⋅Zf

XNi

k¼1

τi;k; ð7Þ

so that 0 b Γi ≤ 1, since τi,k ∈ {1, …,Zf}, and represents an additional
property of the node vi, which will be helpful in more accurate graph
matching, vertex correspondences, and therefore estimation of similar-
ity between activity instances. The approximate relative temporal loca-
tion of agent behaviors within the activity video will be compared
with that of behaviors (or nodes) in other activity graphs.

Using the relative time of occurrence, we can determine whether
two events in two different plays are similar with respect to their tem-
poral positions within the respective plays. We define their temporal
similarity of occurrence of two motion patterns vi and vj in distinct
graphs Gf and Gg as, di,jλ = 1 − |Γi − Γj|, where dλ ∈ [0,1]. Therefore
two agent behaviors occurring at the beginning and at the end of their
respective activities will have the minimum temporal similarity, and
vice versa. Computing the temporal similarity of occurrence for all
pairs of activities between two plays gives us a Qf × Qg matrix, Dλ

f ;g .
We now describe our method for estimating edge to edge similar-

ities between the graphs, Gf and Gg.

3.3. Spatial layout similarity

One of the main reasons multi-agent activities are modeled as col-
lections of atomic, agent specific behaviors, is that subtle differences
in spatiotemporal relationships between these behaviors can repre-
sent distinct high level activities. Conversely, two instances of the
same activity are likely to have non-rigid transformations between
agent behaviors across instances.

In order to estimate the spatial relationship between two patterns,
we employ an iterative warping procedure which attempts to align
multivariate Gaussian mixtures such as the ones representing agent
behaviors. If a large set of 4d points are sampled from each Gaussian
mixture, this problem is analogous to registration of point clouds. A
recent method ideally suited to this problem is proposed in [12].
We leverage a similar method proposed in [13]. The estimated
relationship consists of the transformation parameters that would op-
timally warp one pattern onto the second pattern so that their KL di-
vergence is minimized after warping. A 3 × 3 similarity matrix
depicting this transformation is then written as:

T ¼ sR t⊤

0 1

� �
; ð8Þ

where R is a 2 × 2 rotation matrix, s is the scale, and t = {tx,ty}, is the
translation vector. Since G is complete, a transformation Tij is computed
between all pairs of vertices i and j. It can be noticed however that we
only need to compute either the upper or lower triangle of matrix E,
since eij = eji−1, where eij = [sR(1,1), sR(2,1), …, tx, ty]. The 6-long vector
e therefore represents how two Gaussianmixtures are translated, rotat-
ed, and scaledwith respect to each other, and the edge attributesmatrix
E captures the geometric relationships between all pairs of mixtures.

In order to obtain a measure of similarity between the relationships
of vertices within two distinct graphs, we need to compare the attri-
butes of the edges connecting the vertices. We therefore create a
Qf
2 × Qg

2 matrix Φ, where elements of the matrix will be the similarity
values between all possible pairs of edges in the two graphs. The prob-
lem however is that the edge attribute e computed previously (Eq. (8))
is not a vector space, and therefore not closed under vector addition or
scalar multiplication. Indeed, a simple Euclidean distance between eij
and emm makes little sense without careful but aggressive scaling of
the individual elements of the 2d transform, which include translation
in pixels, trigonometric functions of rotation angle, and a scaling param-
eter. It is therefore desirable to map themultiplicative structure of Sim-
ilarity transforms to a vector space such that the intrinsic geometric
structure of the transformation is preserved. To this end, we propose
to leverage Lie algebra which can be used to find exactly such a map-
ping. Several recent works in the literature have used this approach to
allow analysis on Affine and Projective groups [21,22]. A more detailed
treatment of Lie algebra and Lie groups can be seen in [17,5]. Using the
Lie algebraic approach, we therefore define the edge to edge similarity
as, ϕij,mn = ‖Xij − Xmn‖2, where X is the Lie algebraic representation
of the Similarity transformation T computed as,

X ¼ log Tð Þ ¼
X∞
a¼1

−1ð Þaþ1

a
T−Ið Þa: ð9Þ

It has been shown in [3] that X can be represented as a linear combi-
nation of basis vectors called ‘generators’ of the Lie group, so that the co-
efficients of the combination serve as a representation of the original
transformation in Lie space.Moreover [3], shows that for transformations
near identity, the higher order terms of Eq. (9) can be ignored, thusmak-
ing themapping tractable. Given an edge to edge similaritymatrix,Φ, we
seek to convert it into a Qf × Qg, vertex to vertex similarity matrix, Dβ ,

Dβ
v;v′ ¼ Pr m vð Þ ¼ v′ Gf ;Gg

��� �
;

�
ð10Þ

where the ‘m’ function denotes amapping between the nodes of the two
graphs Gf and Gg. For this purpose, we employ the method of [33], which
performs a probabilistic soft hyper-graph matching. An optimization is
defined as the following minimization,

min
X

dist Φ;⊗2Dβ
� �

: ð11Þ

The symbol ‘⊗’ here represents the Kronecker delta product. Given
two matrices Ap × q and Br × s the Kronecker delta product is the
resulting pr × qs block matrix,

A⊗B ¼
a11B … a1qB
⋮ ⋱ ⋮

ap1B … apqB

24 35: ð12Þ
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This optimization allows us to estimate an edge based similarity of
vertices. Fig. 4 illustrates how we may use both edges and vertices to
compute vertex–vertex similarities between two graphs. Further de-
tails are provided in the following sub-sections.

3.4. Spatial saliency of agent behaviors

One final cue that we estimate for each agent behavior is the
spatial saliency. We notice that in videos of football plays, most
plays will essentially begin with very similar behaviors, but as the
play progresses they become more distinct and discriminative for
different classes of plays, which is a rather obvious and intuitive
observation. Since the end of the play is signaled by a tackle or
touchdown, it would be useful if the location of the corresponding
behavior was known. To this end, we leverage a very simple ap-
proach, whereby we transform the location of the center of the
last frame to the mosaic generated by ego-motion compensation.
The assumption implicit in this step is that most of the broadcast
videos are captured from dynamic cameras which focus on the
point of action within the play, which almost always is the point
of tackle or touchdown towards the end of the play. Given the tack-
le or touchdown location for play f in global coordinates as a 2d
vector, pf, we compute the spatial saliency of a motion pattern, vi
as,

Li ¼ exp − 1
2σ2

L
‖
XNi

k¼1

ωi;kμ
1;2f g
i;k −pf ‖

2

2

0@ 1A; ð13Þ

where σL is a constant value fixed at 30 pixels. Notice that although
the spatial saliency, Li, is a property of the node vi, it cannot be
compared with the saliency of another node. It can however, be
combined to indicate the joint saliency of a particular pair of
nodes, each from a distinct graph, as explained in detail in
Section 3.5. For the entire activity video, we create a Qf long vector,
Lf = {Li}, where i ∈ {1, …,Qf}. It should be mentioned that although
the proposed approach is formally evaluated for the application of
football plays analysis, in general, it is applicable to different kinds
of multi-agent activity, and the saliency mentioned above is the
only application specific step in the process. It is conceivable how-
ever, that sub-events in other activity domains can also benefit
from different measures of saliency. For example, in a traffic inter-
section scenario, proximity of an event to the center of the inter-
section may indicate its importance.

We argue that the proposed graph based representation of a
multi-agent activity video captures its dynamics and structure
in an efficient and comprehensive manner. Information about num-
ber of agents, their temporal occurrence, spatial occurrence and
inter-agent spatio-temporal relationships is inferred in a completely
unsupervised fashion, without the need for tracking individuals, or
in the case of football plays, distinction between opposing teams,
Fig. 4. Graphical representations of two different activities. Comparisons between the two m
mation. Notations dα, dλ and dβ in this illustration represent a similarity measure between n
ilarity of occurrence. We define these measures in Section 3. The notation ‘e’ represents ed
edges have been shown in this illustration.
specific player or ball detection. In addition agent behaviors have a
rich probabilistic representation that captures their density, magni-
tude and direction of per-pixel motion, and spatio-temporal localiza-
tion. Given such an efficient representation an activity model can be
compared to another for retrieval and recognition as we describe in
the following section.

3.5. Graph matching by multi-cue fusion

Finally, given vertex to vertex similarities using multiple criteria,
we compute a weighted average to obtain a single matrix that is
used to perform graph matching and estimate the cost of the match,
which serves as the final similarity metric between videos containing
multi-agent activities. Specifically, we write,

Df ;g ¼ L⊤f Lg⋅Dλ cαDα þ cβDβ
� �

; ð14Þ

where the matrices Lf⊤Lg and Dλ serve as element-wise weights for
correspondence, based on the joint spatial saliency and temporal sim-
ilarity of pairs of agent behaviors, while scalars c act as corresponding
weights for each cue.

Using the vertex to vertex matrix Df ;g , we now assume the nodes
of each graph, Vf and Vg to be independent sets of a complete bipartite
graph, and attempt to find a set of correspondences between them so
that the probability of the global assignment is maximized. We em-
ploy the well known Hungarian [15] (aka Munkres [26]) algorithm
for this purpose, and obtain a binary Qf × Qg matrix,M of correspon-
dences where an element is 1 if the relevant agent behaviors in each
activity video match. Final similarity between the two videos of
multi-agent activities is then given as,

Sf ;g ¼ ∑
all rows

∑
all columns

Df ;g⋅Mf ;g : ð15Þ

4. Experiments and results

We applied the proposed activity recognition framework to the
specific application of recognizing offensive strategies in American
football plays. This is an extremely challenging problem within
multi-agent activity analysis due to severe and persistent person to
person occlusion, while tracking in general is currently not a viable
approach. Many of the methods proposed in the literature including
the state of the art results for this problem for similar datasets, use
manual annotations for not only player tracking but also player role
identification. To the best of our knowledge ours is the first method
that employs only low level optical flow to learn the representation
of a football play. We show that our method is a practical solution
which performs well in a challenging real world scenario with imper-
fect input data.
ay be made using edge (as shown on the left) and node (as shown on the right) infor-
odes based on their shape similarity, temporal similarity of occurrence and spatial sim-
ges between nodes. The graphs we construct in our work are complete graphs. Not all
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Table 1
A comparison of the classes and balance in number of instances per class between the GaTech dataset and UCF Football Dataset.

Left run Middle run Right run Rollout pass Short pass Deep pass Option pass

GaTech Dataset
# of instances 23 19 11 5 7 8 5

UCF Football Dataset
# of instances 13 12 9 5 14 17 10
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4.1. Dataset details

The most commonly used dataset for evaluation of football play
recognition has been the GaTech dataset consisting of 7 classes [19],
which is not publicly available, and no other standard datasets of of-
fensive football plays exist. We therefore collected our own 7 class
dataset which consists of broadcast footage obtained from 3 NCAA
games, which will be shared with the community.

Each play is manually segmented starting from the hike to the
quarter back and ending when the ball carrier becomes stationary.
The total number of clips is 80. The number of instances of
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Fig. 5. One example of each type of play along
each class is shown in Table 1. Manual annotations for play direction
(i.e. direction of offensive play) and homographies that warp the first
frame of each clip to a field model are available. Sports video registra-
tion to a field model has been treated in detail in [6] and is beyond the
scope of this work.

We first show the data available to us after complete processing
of a football play. Fig. 5 shows an example representation for each
particular play type and the corresponding play diagram. It can be
observed that our representation bears similarity with play dia-
grams commonly used for coaching and/or planning of football
plays. Fig. 6 shows a few examples of each play type. As can be
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with an associated coach's play diagram.
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Fig. 6. Three examples each for the seven classes in the UCF dataset used in our experiments. Each example is shown as a collection of motion patterns, or individual agent behaviors
observed in the video.
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observed, play types have large intraclass variance and play exam-
ples have a lot of clutter that may be irrelevant to the prediction of
the play.
Observe that the classes in the UCF Football Dataset are similar
to the classes in the GaTech dataset with only one difference
owing to the data available to us. Our dataset is more balanced
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Table 2
Number of agent behaviors by Play type for Zf = 10.

Play type Left run Middle run Right run Roll out pass Short pass Deep pass Left pass All running plays All passing plays

Mean 30.76 29.08 37.33 37.8 35.57 32.58 38.2 31.91 34.97
Standard deviation 6.61 8.67 6.42 12.15 6.81 6.42 5.59 7.89 6.61
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as compared to the GaTech dataset, therefore results on our
dataset are a better estimate of the accuracy of a method under
test. The most relevant approach to ours is by [30]. In fact it
is the only approach that shows classification results on a compa-
rable football dataset consisting of an equal number of classes
without using manual tracks. That work however lacks implemen-
tation details as well as statistics related to tracking performance,
therefore we are unable to replicate their results. However given
the similarity of our dataset with the GaTech dataset as we have
argued above, comparison of our results with theirs is justified.

Since the videos include frequent panning and zooming, we first
stabilize the video to remove camera motion so that the optical flow
computed strictly corresponds to object motion. We then transform
the global reference to a football field reference for better visualiza-
tion and inter-video alignment. Optical flow as well as individual
agent behaviors V (motion patterns) are computed from stabilized
video and then warped to the field model. We divide each video
into a number of equal length video clips. The length of clips across
videos however, can be different.
a) Zf = 3
Accuracy: 48.65%

Accuracy: 71.75%
c) Zf = 10

Fig. 7. Confusion tables for classification over 7 football play classes. The results in (
4.2. Experiment statistics

To get an idea of the diversity in video lengths, we note that the
average length of a play video is 170.49 frames, with a standard devi-
ation of 49.61. Notice that we do not require all videos to be of the
same length. The number of agent behaviors obtained from various
play classes is given in Table 2. As we can see the number of agent be-
haviors obtained varies by play type. Running plays have a fewer
number of agent behaviors on average compared to passing plays as
running plays usually end sooner whereas the activity in passing
plays may be more spread out spatially and continue for a longer pe-
riod of time.

4.3. Experimental setup

To test our method, we divide each video clip of a play into smaller
temporal segments. We find the agent behaviors in each of these
smaller segments and construct the graphical representations of all
play instances in our dataset. We then divide the dataset into training
Accuracy: 56.75%
b) Zf = 5

a), (b) and (c) are generated with 3, 5 and 10 temporal segments respectively.
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Table 3
Classification accuracy with respect to the weighting parameters cβ and cα.

cβ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
cα 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Accuracy (%) 24.01 59.16 66.6 69.37 70.51 71.75 70.99 71.40 71.49 69.73 69.71
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and testing groups and perform classification in a simple nearest
neighbor framework. The similarity between two plays is computed
by graph matching using the cues and cost metrics defined in
Section 3.

4.4. Results

To perform the Nearest Neighbor classification, we divide our data
into training and testing groups in a 90–10 ratio and perform 200
runs for each experiment. We test our framework using three differ-
ent numbers of temporal segments. For values of Zf = 3, 5 and 10,
we get classification accuracies of 48.65%, 56.75% and 71.75% respec-
tively. The confusion matrices for these experiments are shown in
Fig. 7. As can be observed, the results improve gradually as we in-
crease the number of segments which shows that analysis of play
events over time provides vital discrimination between classes. Note
that the average number of frames per play in our dataset is 170
and as we keep increasing the number of temporal segments, the mo-
tion in each segment will approach frame by frame optical flow. In
our experiments we do not use more than 10 segments as higher
temporal resolution results in very small motion patterns and the
matching scores become unreliable. All subsequent experiments are
conducted with Zf set to 10 unless specified otherwise.

In addition to the cost metric defined in Section. 3.5 we also
explore other combinations of the individual cues and the effect of
different weights in the combinations. Table 3 shows the total classi-
fication accuracy as the weights cβ and cα in Eq. (14) are varied. As we
can see, the performance degrades as the effect of one cue significant-
ly outweighs the effect of the other cue. The best experimental perfor-
mance is observed when we give equal weight to both.

We also test a different cost metric, whereby we use the temporal
similarity cue in a similar manner as the edge and vertex similarity
cues. We define this cost metric as,

Df ;g ¼ L⊤f Lg cλDλ þ cαDα þ cβDβ
� �

; ð16Þ

The results for different combinations of the weighting parame-
ters cλ, cβ and cα are shown in Table 4. We can see that the results
Table 5
Quantitative results of proposed approach when using a subset of the cues mentioned in S

All but temporal
similarity

Agent behavior and spatial
layout similarity

Agent behavior an
spatial saliency

65.75% 32.0% 66.25%

Table 4
Classification accuracy with respect to the weighting parameters cλ, cβ and cα defined in Eq

cα 0 0.2 0.4
cλ cβ 1 0.8 0.6
0 0.2401 0.6184 0.6620
0.2 0.1418 0.1417 0.1451
0.4 0.1419 0.1401 0.1434
0.6 0.1411 0.1396 0.1407
0.8 0.1409 0.1411 0.1399
1 0.1414 0.1399 0.1413
are significantly worse, with this new cost metric especially when
temporal similarity is given a higher weight. The performance is
close to the results from the original cost metric when we do not
use temporal similarity cue at all. The reason for an improved perfor-
mance using the original cost metric is that it minimizes the similarity
scores of patterns that may be similar but at temporally opposite ex-
tremes with respect to the duration of the two plays being matched.
In using the alternate cost metric that we have tested, the temporal
similarity cue imposes a smaller penalty on matching two motion
patterns that may be temporally far apart and hence have a high sim-
ilarity score in the resultant matrix Df ;g which results in a poor solu-
tion for Sf ;g in Eq. (15).

Next, we test our framework using subsets of the cues mentioned
in Section 3, so as to quantify their influence. The results for these
tests are shown in Table 5. The corresponding confusion matrices
are shown in Fig. 8. In Table 6 we show the classification performance
when we use data from certain temporal segments only. As expected,
performance increases as we increase the number of temporal seg-
ments used to build the graph of each play. Plots of classification ac-
curacy for individual play types are shown in Fig. 9. The confusion
matrices for these experiments are shown in Fig. 10. We observe
that while accuracy for play types ‘Deep Pass’ and ‘Left Pass' remains
very low in the first few time segments, it rises sharply towards the
end which suggests that the agent behaviors in these plays are dis-
criminative towards the end of the play activity. Since activity to-
wards the end of a play is usually near the tackle region, it can also
be argued that agent behaviors near the tackle region provide dis-
crimination between play types. A similar trend is observed in the
‘Right run’ play type. On the other hand the accuracies for the other
play types either fluctuate around a mean value or grow slowly
with time. It should be noted that although classification accuracies
for running plays and passing plays have been plotted in separate fig-
ures, the values were obtained using all play types in the dataset.

Finally, we present a comparison of our results with other
methods on football play recognition in Table 7. Li et al. [20] and
Intille & Bobick [10] report a higher classification accuracy than
ours. However it is very important to note that both these methods
use manually generated player identities and tracks which makes
both these approaches impractical in real scenarios. In addition Li et
ection 3. These results correspond to Zf = 10.

d Agent behavior and
temporal similarity

All but spatial
layout similarity

All

41.0% 70.25% 71.75

. (16).

0.6 0.8 1
0.4 0.2 0
0.6754 0.6708 0.6724
0.1582 0.1739 0.1724
0.1427 0.1413 0.1429
0.1419 0.1431 0.1417
0.1447 0.1391 0.1421
0.1392 0.1425 0.1417
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Fig. 9. Plots of classification accuracies of individual play types as well as for all play types with respect to the number of temporal segments used out of a total of ten.

Table 6
Classification accuracy with respect to the number of temporal segments (out of a total of ten) used.

Segments used 1 2 3 4 5 6 7 8 9 10
Accuracy (%) 27.08 29.4 31.5 38.0 49.5 54.25 57.25 57.5 61.75 71.75

α , Dβ , Accuracy: 32.0% b) Dα , Dλ ,Accuracy:41.0%

α , Lf Lg , Accuracy: 66.25% d) all but Dβ,Accuracy:70.25%

a) D

c) D

Fig. 8. Confusion tables for classification using subsets of the available cues.
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Accuracy: 31.5%

Accuracy: 54.25%

Accuracy: 61.75%

Accuracy: 29.4%

Accuracy: 49.5%

Accuracy: 57.5%

Accuracy: 27.08%

Accuracy: 38.0%

Accuracy: 57.25%

Fig. 10. Confusion matrices showing classification performance when using a fraction of the total temporally segmented play data. The nine confusion matrices starting from
top-left in row-wise fashion correspond to the results generated with the firstone to nine consecutive temporal segments.
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al. [20] uses a dataset with fewer classes than ours. Intille and Bobick
[10] use more classes but their dataset consists of only 25 instances of
football plays with 14 different classes. The results they have reported
therefore, serve only as a proof of concept of their proposed method
and should not be compared with other methods as they are statisti-
cally unreliable. Li & Chellappa [19] report good results however their
Table 7
A bird's eye view of the assumptions, experimental conditions, and results of related approa
impractical assumptions and constraints are relaxed.

Method Assumptions

Performs tracking Assumes tracks Pla

Li & Chellapa [19] Yes No No
Li et al. [20] Yes Yes Ye
Swears & Hoogs [30] Yes No No
Intillie & Bobick [10] Yes Yes Ye
Proposed framework No No No
dataset is again less challenging than ours as it consists of a fewer
number of classes. In addition, their method suffers from the draw-
back that it relies on tracking of players in the challenging sports en-
vironment whereas our method does not require tracks. Only Swears
and Hoogs [30] perform experiments without annotated tracks on an
equal number of classes and a comparable dataset, even though it
ches for football play recognition. Note that the average accuracy in general reduces as

Number of classes Accuracy

yer roles Team ids

No 3 70%
s Yes 5 87.9%

No 7 56%
s Yes 14 84% (21/25)

No 7 71.75%

image of Fig.�10
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requires high quality player trajectories using a reasonable tracker.
Our proposed approach shows a considerable improvement over
this method.

5. Conclusion

To summarize the contributions of our framework, we have pro-
posed a generalizable, probabilistic, graph-theoretic technique for
recognizing multi-agent activities in videos. In contrast to existing ap-
proaches, we have completely avoided any tracking of objects, which
is often infeasible in practical scenarios, and instead rely on low level,
noisy optical flow to discover agent behaviors in a completely auto-
matic, unsupervised fashion. We do not attempt to discover or lever-
age information such as number of agents, their roles or articulation
of body parts etc. Results on a comprehensive seven class dataset
are reported and the effect of proposed cues is quantified to demon-
strate the feasibility and superiority of our approach.
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