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ABSTRACT
Most work in human activity recognition is limited to rel-
atively simple behaviors like sitting down, standing up or
other dramatic posture changes. Very little has been achieved
in detecting more complicated behaviors especially those
characterized by the collective participation of several in-
dividuals. In this work we present a novel approach to rec-
ognizing the class of activities characterized by their rigidity
in formation for example people parades, airplane flight for-
mations or herds of animals. The central idea is to model the
entire group as a collective rather than focusing on each indi-
vidual separately. We model the formation as a 3D polygon
with each corner representing a participating entity. Tracks
from the entities are treated as tracks of feature points on the
3D polygon. Based on the rank of the track matrix we can
determine if the 3D polygon under consideration behaves
rigidly or undergoes non-rigid deformation. Our method is
invariant to camera motion and does not require an a priori
model or a training phase.

Categories and Subject Descriptors
[Image Processing and Computer Vision]: Activity
Recognition, Scene Analysis

Keywords
Rigid Formations, Structure from Motion, Rank Constraint

1. INTRODUCTION
Modeling and recognition of human activities using video

data poses many challenges. However, a successful solu-
tion has numerous applications in video surveillance, video
retrieval and summarization, video-to-text synthesis, video
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Figure 1: An example of a parade scene. The rigid-
ity of the formation (the red polygon) characterizes
the parade activity.

communications, biometrics, etc. The task is further com-
plicated when the activity is defined by the collective be-
havior of a group of entities. In such a scenario monitoring
the activity of each participant separately might be unnec-
essary or even misleading for correct activity detection. It is
the overall pattern that emerges from local interactions that
characterizes a group activity. We propose a novel approach
to recognizing group activities like people parades that are
characterized by the rigidity in formation. By a formation is
meant the 3D polygon emerging from the relative locations
of a group of people/objects. A formation can be either
rigid (i.e. maintaining structure) or deformable depending
on the particular activity. Figure 1 demonstrates our idea of
a formation of people. We model each walking person as a
corner of a 3D polygon. 2D tracks from the walking people
are treated as feature points on the formation. (For the pur-
pose of this paper we assume that hand picked or accurately
calculated tracking data is available). We demonstrate how
a rank analysis of the tracking data leads to the classification
of activities with rigidity in formation. One of the strengths
of our method is its inherent property of invariance to chang-
ing view and camera motion. Changes in viewpoint affect
the apparent motion and therefore complicate the analysis.
Typically this problem is addressed by incorporating a view-
invariant match function for comparing images [6]. This is
not the case with our method of activity classification which
is born into the framework of structure from motion [3 4].
Invariance to camera view is implicitly achieved by factoring
out the camera and object motion as the relative pose.



2. RELATED WORK
Though there is plenty of work on single object activities

[1, 2, 5, 6], the domain of group activities is relatively un-
explored. The typical approach is to work bottom up by
focusing on the activity of each object and how it inter-
acts with others in the scene [2]. In contrast to this our
methodology is top down. We consider the entire group as
a collective (single entity) that performs a particular activ-
ity. We are interested in extracting the global patterns of
behavior that a group demonstrates.

The closest work to ours was presented by Vaswani et
al. [7]. Similar to our method they model the scene by
the polygonal shape of the configuration of the participants.
They learn the mean shape and define a change detection
statistic for detecting abnormal behavior. Their method dif-
fers from our approach in two respects. Firstly in [7] the au-
thors model a group activity with its projected 2-D shape.
As mentioned earlier changing view will affect the apparent
motion and the performance of their method. Our method
on the other hand models the actual 3D formation of the
group activity and is invariant to changing views. Secondly
and more importantly their approach is to identify the de-
viations from a learned pattern that is very specific to the
particular conditions. Thus their method is more suited
to monitoring and surveillance scenarios where a deviation
from normal behavior is of interest rather than the actual
recognition and categorization of an activity. We on the
other hand propose a general framework for the recognition
and classification of group activities like parades as demon-
strated in this paper. Our approach targets the patterns
that are unique to a particular group activity without the
need for any prior training.

3. APPROACH
A parade is a common example of an activity that main-

tains rigidity in formation. Other examples could be syn-
chronized flights, bird flocks or military convoys. We demon-
strate our approach using the example of a group of people
parading together. (see figure 1 and 3).

A set of P points on the marchers are tracked across
F frames with coordinates: {(u′fp, v′fp) | f = 1 . . . F, p =
1 . . . P}. The point coordinates are transformed to object-
centered coordinates by subtracting their center of mass:
(ufp, vfp) = (u′fp − ūf , v′fp − v̄f ) for all f and p, where ūf

and v̄f are the means of point positions in each frame. The

tracking matrix can be constructed as W 2F×P =

[
U
V

]
,

where matrices U and V are defined as follows:

U =




u11 . . . u1P

...
...

...
uF1 . . . uFP


 , V =




v11 . . . v1P

...
...

...
vF1 . . . vFP




If the tracks belong to a rigid formation (i.e. it can be
treated as a rigid object) then it has been shown by Tomasi
and Kanade [3] that if the camera is affine (orthographic or
weak-perspective) and when there is no noise, then the rank
of W is 3 or lower. This constraint arises because the W
matrix can be factored into 3D pose matrix R2F×3 and 3D
shape matrix S3×P [3] i.e. W = RS.

When there is noise in the measurement matrix W then
the maximum likelihood estimate is obtained by minimizing

the squared error:

ε(R, S) =‖ W −RS ‖2, (1)

where ‖ · ‖ denotes the Frobenius norm.
The global minimum to this non-linear problem is ob-

tained by performing singular value decomposition (SVD)
to matrix W . All singular values other than the 3 largest
are set to zero and the matrices produced in the SVD step
are recomposed to yield the matrices R and S.

When the tracking data W belongs to a formation with
non-rigid deformation it can again be factored into 2 ma-
trices [4], but of rank r that is higher than the bounds for
the rigid case. Assuming the 3D non-rigid deformation can
be approximated by a set of K modes of variation, the 3D
shape of a specific object configuration can be expressed as
a linear combination of K basis-shapes: (S1, S2, . . . , SK)[4].
The shape at any time instant is given by a linear combina-
tion of the basis-shapes:

S =

K∑
i=1

li · Si, S, Si ∈ R3×P , li ∈ R (2)

Assuming weak perspective projection at frame t the P
points of a shape S are projected onto image points:

[
ut1 . . . utP

vt1 . . . vtP

]
= Rt ·

K∑
i=1

li,t · Si, (3)

where Rt =

[
r1 r2 r3

r4 r5 r6

]
, the first two rows of the full

3D rotation matrix. This can be re-written as:

[
ut1 . . . utP

vt1 . . . vtP

]
=[ l1,tRt . . . lK,tRt ]·




S1

..

.
SK


 (4)

Therefore W can be factored as follows [4]:

W =




l1,1R1 . . . lK,1R1

l1,2R2 . . . lK,2R2

. . .
l1,F RF . . . lK,F R2




︸ ︷︷ ︸
Q

·




S1

S2

. . .
SK




︸ ︷︷ ︸
B

(5)

Since Q is a 2F × 3K matrix and B is a 3K × P matrix,
in the noise free case W has a rank r ≤ 3K. It can be ob-
served that this is a generalization of the rigid factorization
(K = 1 reduces it to rigid factorization). Given the tracks
of walking people our goal is to find the smallest value of K
that minimizes the re-construction error given in equation
1. In other words, we seek the true rank of the matrix W .

Given the rank we can ascertain the rigidity of the forma-
tion and hence classify it as a parade activity or not. Rank
measurements are highly sensitive to numerical errors and
our method provides a robust and reliable way of overcom-
ing this problem. The factorization of the tracking matrix
into two matrices; one defining the relative poses of the cam-
era and the object and the other describing the shape itself
also yields us the useful property of invariance to camera
motion.

All experiments reported here assume weak perspective
projection.Weak perspective projection is in practice a good
approximation if the perspective effects between the closest
and furthest point on the object surface are small. Also we



Figure 2: The diagram gives an outline of our pro-
posed method for classification of rigidity in forma-
tion.

are assuming that the camera’s intrinsic parameters like the
focal length remain unchanged. Therefore sequences with
zoom in or zoom out might affect results.

4. ALGORITHM
Figure 2 gives an outline of our algorithm. In the first

step we obtain tracks and construct the W matrix. Next
we factorize W with an increasing number of basis shapes
till the reconstruction error falls below the noise threshold.
Non-rigid factorization of W as defined by (5) is not a trivial
task. We adopt the iterative least squared (ILSQ) method
proposed by Torresani et al. [4]. The method initializes Q
and B with a rough estimate (usually with rigid factorization
of W ) and then iterates between finding least squared fit for
the elements of matrices Q and B till convergence is reached.
Readers interested in the details of this method are directed
to [4]. An outline of our algorithm for evaluating the number
of basis shapes K that span the tracking matrix W is as
follows:

1-Initialize K = 1
2- Factorize W = QB using ILSQ
3- Evaluate re-construction error:

ε =‖ W −QB ‖2 /n

4- if ε > T then:
K = K + 1 and go to step 2

else Return K
Here n is a normalizing variable equal to the number of

elements of W , so in effect step 4 calculates the average
reconstruction error for a tracked point in each frame. The
threshold T is set to allow for some noise tolerance. The
value of K returned by the algorithm describes the true
rank r of the matrix W such that: 3(K − 1) ≤ r ≤ 3(K).

5. RESULTS
We tested our method on tracks obtained from various

videos of crowds of people walking. Figure 3 shows 4 (one
in each row) of these sequences. Each sequence contains 50
frames and the number of people tracked varied between 4
and 8. We used 50 frames as a reasonable duration over
which the rigidity in formation must be maintained. We
also tested with different numbers of feature points on each
person. Having many feature points did not significantly
affect the results so for the purpose of simplicity and consis-
tency we chose only 2 feature points on each participant. It
must be noted that feature points should be chosen so that
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Figure 4: A plot of reconstruction error vs. K the
number of basis shapes. Legend is as follows: Seq1-
green, Seq2-red, Seq3-blue, Seq4-magenta

they best represent the world locations of the participants.
Points on the head and the torso are therefore preferred.
The camera was non-stationary in all of the sequences es-
pecially in sequence 2 where there was significant camera
motion. Notice the variety of view angles and orientations.

Figure 4 shows the plot of reconstruction error against
increasing values of K. The plot depicts the value of K
that is needed to reduce the reconstruction error below the
noise threshold T (we use T=10 based on empirical obser-
vations). For sequences 1 and 2 (red and green lines), K=1
basis shapes i.e. rigid factorization minimizes the recon-
struction error to below the noise threshold. Thus the crowd
shows rigidity in formation and is correctly classified as a
parade. On the other hand sequences 3 and 4 require K=3
basis shapes to reduce the reconstruction error below noise
threshold. This implies that the rank of the track matrices
(for seq 3, 4) is higher than 3, which violates the rigidity
constraint. Another way to interpret this result is that the
formations in sequences 3 and 4 are undergoing non-rigid
deformation. This is in contrast to the pattern of rigidity
that is characteristic of parade behavior. Therefore such
sequences are classified as not containing parade activities.

For the purpose of visualization we also recovered the
shape from motion for the crowd formations using K=3
bases shapes to model any deformations [4]. Note that it
is not necessary to construct the 3D structures, as demon-
strated in this paper only a study of rigidity based on rank
is sufficient. The recovered 3D formations are shown as the
last plot in each row of figure 3. For sequences 1 and 2 (fig-
ure 3(a), 3(b)) the formations at each time frame (total of
50 frames) are overlaid to view any deformations. As ex-
pected there is very little variance in the shape indicating
the rigidity of the formation. The formation in sequences
3 and 4 (figures 3(c), 3(d)) undergoes non-rigid deforma-
tion and for the sake of clarity reconstructions at only two
frames (1 and 35) are shown. The reconstructed formations
are color coded to match the tracks of the corresponding
people.

6. CONCLUSION
We have proposed a novel approach of modeling and clas-

sifying group activities based on the structure emerging from
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Figure 3: Each row contains frames from a video sequence of multiple people walking. The frames are overlaid
with tracks of the participating people. The first two sequences are parades while the last two sequences are
random crowds.

local interactions between participants. We showed how a
parade activity can be classified as a rigid formation of walk-
ing people. To reach this end we used rank constraint and
an analysis of number of basis shapes needed to model the
deformation in the parade formation.

In the future we plan to extend our approach to a variety
of activities like monitoring flight formations of unmanned
air vehicles, and herd behavior in animals etc. Classifying
different activities based on the shape of their formations is
another interesting direction of research. Perhaps exploiting
the periodic nature of parade activities would also be useful.
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