
Tracking in Uncalibrated Cameras with Overlapping Field of View

Sohaib Khan, Omar Javed, Mubarak Shah
Computer Vision Lab

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL 32816
{ khan, ojaved, shah}@cs.ucf.edu

ABSTRACT

To track people successfully in multiple cameras, one needs
to establish correspondence between objects captured in
each camera. We present a system for tracking people in
multiple uncalibrated cameras. The system is able to
discover spatial relationships between the camera fields of
view and use this information to correspond between
different perspective views of the same person. We employ
the novel approach of finding the limits of field of view
(FOV) of a camera as visible in the other cameras. Using
this information, when a person is seen in one camera, we
are able to predict all the other cameras in which this
person will be visible. Moreover, we apply the FOV
constraint to disambiguate between possible candidates for
correspondence. Tracking in each individual camera needs
to be resolved before such an analysis can be applied. We
perform tracking in a single camera using background
subtraction, followed by region correspondence. This takes
into account the velocities, sizes and distance of bounding
boxes obtained through connected component labeling. We
present results on sequences taken from the PETS 2001
dataset, which contain several persons and vehicles
simultaneously. The proposed approach is very fast
compared to camera calibration based approaches.

Keywords: Tracking, tracking in multiple cameras,
multi-perspective video, correspondence, surveillance,
camera handoff, sensor fusion

1. INTRODUCTION

Tracking humans and vehicles is of interest for a variety of
applications such as surveillance, activity monitoring and
gait analysis. With the limited field of view (FOV) of video
cameras, it is necessary to use multiple, distributed cameras
to completely monitor a site. Typically, surveillance
applications have multiple video feeds presented to a human
observer for analysis. However, the ability of humans to
concentrate on multiple videos simultaneously is limited.
Therefore, there has been an interest in developing
computer vision systems that can analyze information from
multiple cameras simultaneously and possibly present it in a
compact symbolic fashion to the user.

To cover an area of interest, it is reasonable to use
cameras with overlapping FOVs. Overlapping FOVs are
typically used in computer vision for the purpose of
extracting 3D information. The use of overlapping FOVs,
however, creates an ambiguity in monitoring people. A
single person present in the region of overlap will be seen in
multiple camera views. There is need to identify the
multiple projections of this person as the same 3D object,
and to label them consistently across cameras for security or
monitoring applications.

In related work, [1] presents an approach of dealing
with the handoff problem based on 3D-environment model
and calibrated cameras. The 3D coordinates of the person
are established using the calibration information to find the
location of the person in the environment model. At the time
of handoff, only the 3D voxel-occupancy information is
compared to achieve handoff, because multiple views of the
same person will map to the same voxel in 3D. In [2], only
relative calibration between cameras is used, and the
correspondence is established using a set of feature points in
a Bayesian probability framework. The intensity features
used are taken from the centerline of the upper body in each
projection to reduce the difference between perspectives.
Geometric features such as the height of the person are also
used. The system is able to predict when a person is about
the exit the current view and picks the best next view for
tracking. A different approach is described in [3] that does
not require calibrated cameras. The camera calibration
information is recovered by observing motion trajectories in
the scene. The motion trajectories in different views are
randomly matched against one another and plane
homographies computed for each match. The correct
homography is the one that is statistically most frequent,
because even though there are more incorrect homographies
than the correct one, they lie in scattered orientations. Once
the correct homography is established, finer alignment is
achieved through global frame alignment. Finally [4, 5]
describe approaches which try to establish time
correspondences between non-overlapping FOVs. The idea
there is not to completely cover the area of interest, but to
have motion constrained along a few paths, and to
correspond objects based on time from one camera to
another. Typical applications are cameras installed at
intervals along a corridor [4] or on a freeway [5]. Recently,

the work by [6] uses multiple modalities in a Bayesian
network to solve the multiple camera tracking problem. The
modalities used are grouped into geometry based modalities
and recognition based modalities; the former including
epipolar geometry, homography and landmark modalities,
and the latter comprising of apparent height and color
modalities.

The luxury of calibrated cameras or environment
models is not available in most situations. We therefore tend
to prefer approaches that can discover a sufficient amount of
information about the environment to solve the handoff
problem. We contend that camera calibration is unnecessary
and an overkill for this problem, since the only place where
handoff is required is when a person enters or leaves the
FOV of any camera. By building a model of the relationship
between FOV lines of various cameras can provide us
sufficient information to solve the handoff problem. We
extend our previous work [12] in two respects here. Firstly,
we allow for the possibility of persons entering or exiting in
the middle of the image, like a new person emerging from a
car, and establish correspondence of such cases too, along
with persons that enter from the limits of FOV of the camera.
Secondly, we improve our initialization process, so that the
lines can be determined using ordinary video, without the
constraint of a single person visible in the environment.

To solve the multiple-camera tracking problem, we first
need to perform tracking in each camera individually.
Background subtraction is a popular approach in such
applications, to separate the foreground from the
background, in video sequences acquired by a fixed camera.
Several successful background subtraction methods have
been proposed in recent years, for example [7]. If only a
single person is visible in the camera field of view (FOV),
then background subtraction suffices as a tracker. However,
if more than one object needs to be tracked, then the

additional problem of corresponding between objects in
successive frames needs to be addressed. There has been
considerable literature on point correspondence problem,
motivated by the moving light displays [8], for example
[9,10]. However, due to noisy background subtraction,
change in the size of regions, occlusion and entry/exit of
objects, traditional point correspondence methods cannot be
directly applied to the human tracking problem. We
formulate this as a region correspondence problem, given
background subtraction results from [7]. We describe the
problems encountered in establishing correct
correspondence, and present a solution based on linear
velocity prediction and size and distance constraints.

In the next section we formalize the handoff problem
and describe how the relationship between the FOV of
different cameras can be used to solve the handoff problem.
In Section 3, we describe how this relationship can be
automatically discovered by observing motion of people in
the environment. In Section 4, we discuss our approach of
tracking in a single camera, which forms the input to the
multiple camera system. Finally we present results of our
experiments on the PETS 2001 dataset in Section 5.

Figure 1: (Left) Three cameras setup in a room, with
their FOVs shown by different lines. A person is
entering the FOV of Camera 1. (Right) By looking at the
FOV lines of Cameras 2 and 3 in Camera 1, we can
determine that this person is visible in Camera 2 but not
in Camera 3.

Figure 2: Generation of FOV lines. Two correct
correspondences can be used to find a line. In the top pair
of images, a person is entering or leaving the right camera.
The position of this person in the left camera can be used to
find the Left FOV line of left camera as seen in the right
camera.

2. EDGE OF FIELD OF VIEW LINES

The handoff problem occurs when a person enters the FOV
of a camera. At that instant we want to determine if this
person is visible in the FOV of any other camera, and if so,
assign the same label to the new view. If the person is not
visible in any other camera, then we want to assign a new
label to this person..

Each camera’s field of view can be described by four
lines on the floor-plane, which are the left, right, top and
bottom limits of FOV. Let Li

l , L
i
r, L

i
t and Li

b be the four
limits of FOV of the ith camera (Ci) on the ground plane
(Figure 1). Let the projection of Li

x (x ∈ { l, r, t, b}) in
Camera j be denoted by Lij

x. Note that Lii
x denotes the sides

of the image in Ci. As far as the camera pair i, j is concerned,
the only locations of interest in the two images for handoff
are Lij

x and Lji
x. These are up to eight lines, possibly four in

each camera. Let us currently assume that a person already
visible in one of the cameras is entering the FOV of another
camera. In this case, all that needs to be done is to look at the

associated line in the other camera and see which person is
crossing that line. Consider the following scenario. A
person is entering the FOV of C2. There are two persons
visible in C1 at this instant. Both these persons are being
tracked and we have a bounding box around them. By
looking at the bottom part of the bounding boxes in C1, we
can determine quite easily which person has entered the
FOV of C2. The line that will help us determine this is L21

l i.e.
the left FOV of C2 as seen in C1. The new person in C2 is
therefore assigned the same label as that of the person who
is closest to this line in C1.

Detection of New Persons
In the example given above, it is assumed that when a

person enters the FOV of a camera, he must be visible in the
FOV of another camera. This is not always the case. A
person might be entering from the door (in which case he
might just “appear” in the middle of the image) or he might
be entering the FOV from a point that is not visible in any
other camera.

To establish correspondence between views, we look at
the FOV lines of the current camera as seen in other cameras.

Figure 3: FOV lines determined from tracking data: The top row shows the lines determined by the system, and the
bottom row shows the areas that are marked at not visible in the other camera.

To find whether a person is visible in other cameras or not,
we look at the FOV lines of other cameras as seen in the
current camera. Consider the scenario when a person is
entering the FOV of Ci. Whether this person is visible in any
other camera (Cj, j ≠ i) or not can be determined by looking
at all the FOV lines that are of the form Lji

x , i.e. edge of
FOV lines of other cameras as visible in this camera (Ci).
These lines partition the image Ci into (possibly over
lapping) regions, marking the areas of image Ci that
correspond to FOV of other cameras. Figure 2 ill ustrates
this situation symbolically. Thus all the cameras in which
current person is visible can be determined by acquiring the
region of the person’s feet.

Thus with each line Lji
x, an additional variable δji

x is
stored. The value of δji

x can either be +1 or –1, depending
upon which side of the line falls inside the FOV of Cj. Then,
given an arbitrary point (x′, y′) in Ci, the point’s visibilit y in
Cj can be determined by just determining if this point is on
the correct side of both Lji

l and Lji
r. If L

ji
l is represented by

A x′ + B y′ + C. The point (x′, y′) is visible in Cj if and only
if

sgn()','(yxL ji
x)= ji

xδ ∀ x ∈ { l, r, t, b} (1)

In the case when all four lines of Cj are not visible in Ci, the
condition in Eq. 1 is simpli fied to not include those lines.

Establishing Correspondence Between Views
When a person enters the FOV of a new camera, it can

be determined whether this person is visible in the FOV of
some other camera or not. Whenever a person is in the
image all the other cameras in which this person wil l also be
visible can be found out by using Eq 1. If there is no such
camera, then a new label is assigned to this person.
Otherwise the previous track of this person is found so that a
link can be established between the two views. This is done
by finding the person closest to the appropriate edge of FOV
line. Say that the person entered from the left side of C1.
Then, the persons visible in all cameras other than C1 will be
searched and the person that is closest to the left edge of
FOV line of C1 in that camera will be found. These two
views will t hen be linked together by entering them in an
equivalence table. In general, if a person enters Ci from side
x, then the label assigned to the new view will be:

 in visiblepersons ofset where

)),((minarglabel

j

ij
x

k

k

Ck

ijLPD

=

≠∀=
 (2)

where Pk is the label assigned to a person and D(P, L)
returns the absolute distance between the center of the
bottom line of the rectangular bounding box of person P and
the line L.

We have extended this formulation to also include the
scenario when a person appears in the scene from a location
that is not one of the edges of an image. In this case, this
person will not be visible on one of the FOV lines. An
example of such a scenario is when a person emerges from a
car parked in the middle of the scene. In such a case, we look
at all the tracks in the other camera, and see if any one of
them is currently unassigned to one of the tracks in the
current camera. If this track is also in the visible region, then
it is an indication that it should have been visible in the
current camera, and therefore a correspondence can be
established. In case of multiple such tracks existing
simultaneously, the decision is taken based on the
consistency of motion relative to the edge of FOV lines. If a
person is moving towards the left edge of one camera, and in
the other camera, he is moving away from the left edge of
FOV line, then this correspondence is obviously incorrect
and will be ignored.

3. AUTOMATIC DETERMINATION OF
FOV LINES

When tracking is initiated, there is no information

provided about the FOV lines of the cameras. The system
can, however, find this information by observing motion in
the environment. Whenever there is a person entering or
exiting one camera, he actually lies on the projection of the
FOV line of this camera in all other ones in which he is
visible. Suppose that there is only one person in the room.
Then, when this person enters the FOV of a new camera, we
find one constraint on the associated line. Two such
constraints will define the line, and all constraints after that
can be used in a least squares formulation. This concept is
visually described in Figure 3.

In our previous paper [12], we demonstrated
initialization of FOV lines by one person walking in the
environment for about 40 seconds, and this was enough to
initialize the lines. These lines were then used to resolve the
correspondence problem between cameras. However it is
not always possible to have only one person walking in the
scene. Therefore, for cluttered situations where it is hard to
find the correspondences to be used for initial setup, we
propose another method. When multiple people are in the
scene and if someone crosses the edge of FOV, all persons
in other cameras are picked as being candidates for the
projection of FOV line. Since the false candidates are
randomly spread on both sides of the line whereas the
correct candidates are clustered on a single line, correct
correspondences will yield a line in a single orientation, but
the wrong correspondences will yield lines in scattered
orientations. We can then use Hough transform to find the
best line in this case.

This idea works when the FOV line is visible in the
other cameras. However, it is easy to visualize a situation
where one of the edges of the current camera is not visible in
some other camera. If this is the case, then all the
correspondences marked will be wrong ones, because the
correct ones will not even be visible. This will result is a
wrong estimate of the line via the Hough Transform.

We solve this problem by looking at long segments of
the video and searching for unambiguous cases. If only one
person is visible in a camera pair, then we can safely mark
the bounding box of this person as an area that is invisible in
the other camera. If we have information about
classification of objects available (for example, person, car),
then the idea can be further extended by looking for only
that particular type of object in the other camera, and
marking the area as invisible if no object of such a type
exists. After a while, we obtain a visibility map for each
camera pair. Any object entering or exiting from the
invisible areas should not be added to the possible
correspondences, thus reducing the number of false matches
significantly. Any other type of categorization information
may also be used, like for example, matching moving
objects to only objects that are moving in the other camera.
After doing this type of analysis, we consider only lines that
have a significant amount of support from the data, i.e. they
are determined by analyzing more than a certain number of
correspondences.

Thus, theoretically, there are two options for initial
setup of FOV lines. Quick self-calibration can be achieved
by having only one person walk around the environment a
few times. This should be suff icient for determining the
relationship between the cameras. All li nes of interest
should be crossed at least twice during such a walk, which is
often easily established during a 30-40 second random walk
in a small room. The prior knowledge of having only one

person in the room tells us that every correspondence
between the cameras is a correct correspondence. However,
if the environment is busy and cannot be cleared of people,
we can use the second method, which finds the statistical
best line, treating every valid correspondence as a
potentially correct one. This method needs more points for a
reliable estimate of the lines and will t herefore take longer
to be setup correctly. Additional constraints derived from
categorization of objects and their motion may be used to
reduce the number of false correspondences, thus reducing
the time it requires to establish the lines. However, this
method is completely automatic and does not need even the
simple setup step required in the first method. Since we did
not have control over the environment for the PETS 2001
dataset, we used this second method to find the FOV lines
using the ‘ training’ dataset, and then used these lines to
perform multiple camera tracking on the ‘ testing’ dataset.

4. TRACKING IN A SINGLE CAMERA

Tracking of objects in a single camera is not a trivial

task. The test sequences for the workshop have a number of
scenarios, which are very challenging for tracking
algorithms. They include motion of groups of people,
occlusion between people, occlusion between cars and
people, occlusion due to scene structure and exits and
entries during occlusion.

We present a tracking method which is able to
accurately deal with occlusions between different objects
and exit/entries during occlusion. The tracking method
consists of extracting foreground regions in each frame and
establishing correspondence of these regions between
frames.

Figure 4: Complicated Occlusion Example: Results of single camera tracking algorithm, during occlusion.

Background Subtraction: Moving objects are extracted
from the sequence using the adaptive background
subtraction method proposed by Stauffer and Grimson [7].
In the method, each pixel intensity is adaptively modeled by
a mixture of K Gaussian distributions. The distributions are
evaluated to determine which are more likely to result from
a background process. The method reliably deals with long
term changes in lighting conditions and scene changes.
However, fast lighting changes and intensity variation due
to compression do produce noise in the background
subtracted image. Morphological filtering was performed to
get rid of small noise.

The background subtraction method gives foreground
pixels in each new frame. The foreground pixels are then
segmented into regions using the connected components
algorithm. We have used the term region to denote a
foreground connected component in the rest of the paper.

Motion Correspondence:

The goal of tracking is to establish motion
correspondence between regions that are moving in a 2D
space that is essentially the projection of a 3D world. The
regions can enter and exit the space. The regions can also
get occluded by other regions.

For motion correspondence we have used a method
which is an extension of the point correspondence paradigm
[8, 9, 10], which tries to achieve correspondences that
minimize the deviation in speed and direction of motion.
Regions, as compared to points, have extra information like
shape and size. This information can be used to further
constrain the correspondences.

Each region is defined by the 2D coordinates of the
centroid X, the bounding box B and the size S. The regions,
for which correspondence has been established, have an
associated velocity V and predicted change in size S∇ . In
frame ‘ t’ of a sequence, there are N regions with centroids

t
iX (where Ni ≤≤1) whose correspondences to previous

frame are unknown. There are M regions with centroids
1−t

LX (where L is the label) in frame t-1 whose

correspondences have been established with the previous
frames. The number of regions at ‘ t’ might be lesser than the
number of regions in frame t-1 due to exits or occlusion.
Also it can be larger due to entries. The task is to establish
correspondence between regions in frame t and frame t-1
and to determine exits and entries in these frames.

 The minimum cost criteria is used to establish

correspondence. The cost function between two regions is
defined as

|)(|)1()(1111 t
i

t
L

t
L

t
i

t
L

t
LLi SSSXVXC −+∇−+−+= −−−− ρρ

where ∈L { Labels of regions in frame t-1}

i is index of non-corresponded region in frame
t and Ni ≤≤1 .
 ρ is the weight parameter determining the

percentage of cost due to change in size, and change in
velocity.

The cost is calculated for all (L,i) pairs. Correspondence is
established between the pair),(iL ′′ that gives the lowest

cost. The velocity and predicted size of region L′ are
updated as

)()1(11 −
′′

−
′′ −+−= t

L
t
L

t
L

t
L XXVV αα

)()1(11 −
′′

−
′′ −+∇−=∇ t

L
t
L

t
L

t
L SSSS αα

where α is the learning rate.
Next all region pairs containing L′ or i ′ are removed from
consideration and the correspondence is established
between the pair that gives the lowest cost among the rest of
the pairs. The velocities and predicted sizes of corresponded
regions are updated according to the above equations.
 Once possible correspondences have been established
using the minimum cost criteria, the following two cases
might happen
2. Correspondences have been found between all regions

in frames ‘ t-1’ and ‘ t’ .
3. Correspondences have not been found between all

regions in frames ‘ t-1’ and ‘ t’ . There might be regions
in frame ‘ t-1’ which have not been corresponded to in
frame ‘ t’ due to occlusion or due to exits from FOV of
a camera. Region can be occluded due to another region
or due to scene structure. There might be regions in
frame ‘ t’ which have not been corresponded to in frame
‘ t-1’ because they just entered the frame and no
corresponding region in the previous frame exists. First

we deal with the of frame ‘ t-1’ . Suppose a region 1−t
LX

could not be corresponded to any region in frame ‘ t’ . A

check for exit of 1−t
LX from the FOV of camera is done.

If the position plus predicted velocity of a that regions
is outside the frame boundary then it is determined to
exit the frame. If this is not the case, then a check for

occlusion is made. If 1−t
LX translated with its predicted

velocity overlapped with another region in frame ‘ t-1’
then these two regions are declared as occluding each
other. Note that this would have resulted in a single
region in frame ‘ t’ . To compensate for the missing
region we will add another region in frame ‘ t’ with

centroid 11 −− += t
L

t
L

t
L VXX and 1−= t

L
t
L VV . If the

occlusion check is not satisfied then the object is
thought be occluded by a scene structure and to have
exit. The non- corresponded regions in frame t are set
to be entries. There initial velocity and change in size
are zero.

5. EXPERIMENTS AND RESULTS
We used Dataset 1 from the PETS 2001 datasets for
evaluating this system. Previously, we have demonstrated
the working of these ideas for an indoor environment, with 3
cameras and up to 3 persons at a time in the room [11]. Here
we present the results for an outdoor environment, with two
cameras, and multiple persons and cars going through the
environment (Dataset 1 Test Sequence, PETS 2001).
5.1 Single Camera Tracking

 The tracking algorithm was run on dataset 1, Test
sequences. The images were JPEG compressed and
contained significant noise. We reduced the size of image
by half and convolved it with a low pass filter to reduce
noise. The algorithm was run on both sequences with same
parameters.
The trajectories obtained by establishing correspondences
were pruned to remove trajectories, which didn’ t move
significantly throughout their existence. These trajectories
were obtained due to uncovered background or due to
motion of tree etc.
The algorithm performed well on the Camera 2 sequence.
The occlusion between car and people were handled
correctly. The exits under occlusion were also correctly
detected. Entry of group of people was detected as single
entry. However as soon as one person separated from the
group he was tracked separately and its entry was detected at
the point of separation.
Camera 1 sequence was more diff icult for tracking. This
was because the angle of elevation of the camera was lower
resulting in long occlusions of multiple objects. A tree in the
image was moving constantly. There was a pole in the
middle of the view, which sometimes occluded objects,
partially causing the foreground component to divide into
multiple pieces.

Decent results were obtained in Camera 2. One major
problem arise when two cars occluded each other and pole
divided the single component into two in frame number 847
and 849. Our tracker cannot deal with division of single
connected component in two large components during
occlusion. It assumes that occlusion is over and updates the
predicted position with wrong predicted velocities and sizes.
This region division rarely happens in cases when object are
directly viewable. However in Camera 1, the pole caused
the division in some frames (though in most frames the
morphological operations joined the regions since the pole
was thin). We manually connected the regions in 6 frames
847, 849, 2526, 2529. Our region correspondence was then
able to correctly correspond the regions.
5.2 Multiple Camera Tracking

Multiple camera tracking works in two stages, the first
one being establishing of FOV lines, and the second one
being establishing correspondence and globally correct
labels for all objects, using the FOV lines. To run multiple
camera tracking on the Test Sequence, we used the Training
Sequence to generate the FOV lines. We currently did not
implement a classification scheme, to categorize objects
into humans and vehicles, so we did this categorization
manually for the Training Sequence. Some standard method,
for example [12], may be utili zed here. There are 31
‘key-frames’ in the Training sequence that consist of an
entry or an exit event. We used the bounding boxes in these
frames for the generation of the lines.

The way cameras are setup, only one FOV line of
Camera 1(left) should be visible in Camera 2, and three
FOV lines of Camera 2 (left, right and bottom) should be

Frame Camera Object Camera Object Comment

98 1 1 2 1 Correct
470 2 2 1 2 Correct
668 1 3 2 3 Correct
774 2 4 1 4 Correct
963 2 5 1 5 Correct
1074 Incorrect
1185 1 6 2 7 Correct
1423 2 8 1 8 Correct
1578 2 9 1 7 Incorrect
2106 2 10 1 9 Correct
2177 2 12 1 10 Correct

Table 1: Results of multiple camera correspondence.
For example, the first row states that object 1 in camera 1
is the same as object 1 in camera 2

Figure 5: Example of Low level tracking failure. A
person emerges from the car, while the group of people
is being occluded by the car. The identity of the group is
taken by the person, as if they might have turned back.
This also generates an error in high level interpretation.

visible in Camera 1. However, out of the latter three lines,
no interaction actually happens on the right line of Camera 2
in the Training Sequence, and only one exit event of a group
of people in Testing Sequence. Since at least two correct
correspondences are required to establish a line, our system
does not find this line, but this does not result in any
degradation of results. The lines generated are shown in
Figure ().

Next we use the Test Sequence to establish
correspondence between tracks of the same objects in the
two cameras. The results for this are shown in Table 1. Our
single camera tracking suffered from some errors, a few of
which are reflected in the multiple camera results. We
verified that if those errors were corrected manually, then
the results of multiple camera correspondence are 100%.
However, in the realistic tracking scenario, when the
information from the lower level tracking is not correct, then
a couple of mistakes are seen in Table 1. Each row of Table
1 corresponds two objects in different cameras. Nine correct
correspondences were established. The first wrong
correspondence occurs at frame 1074. Here, the single
camera tracker failed during simultaneous occlusion of
three objects. The occlusion starts between a group of
persons and a car, but during occlusion, a new person also
emerges from the car. This person assumes the label of the
previous group, and we fail to register an entry event. The
second failure occurs in frame 1578, where errors occur
simultaneously in both the cameras. Both cameras are
tracking groups of persons, and the group breaks in each
camera. Thus a correspondence is established between these
two new components, which is not correct. However, given
the underlying tracking data, the error is to be expected.

CONCLUSION

We have described a framework to solve the camera handoff
problem. We contend that camera calibration and 3D
reconstruction is unnecessary for solving this problem.
Instead, we present a system based on edge of FOV lines of
cameras that can handle handoffs. We outline a process to
automatically find the lines representing these limits, and
then using them to resolve the ambiguity between multiple
tracks. This approach does not require feature matching,
which is diff icult in widely separated cameras. We have also
presented a correspondence based solution of tracking in a
single camera. We show results on a two camera sequence
from PETS dataset.

References

[1] P. H. Kelly, A. Katkere, D. Y. Kuramura, S. Moezzi,
S. Chatterjee, R. Jain, “An architecture for multiple

perspective interactive video” , Proc. ACM Conf.
Multimedia, pp. 201-212, 1995

[2] Q. Cai, J. K. Aggarwal, “Tracking Human Motion in
Structured Environments Using a
Distributed-Camera System”, IEEE PAMI, Vol. 2,
No. 11, pp. 1241-1247, Nov 1999

[3] L. Lee, R. Romano, G. Stein, “Monitoring Activities
from Multiple Video Streams: Establishing a
Common Coordinate Frame”, IEEE Trans on PAMI,
Aug 2000, pp. 758-768

[4] Vera Kettnaker, Ramin Zabih, “Bayesian
Multi -Camera Surveill ance”, Proceedings of
Computer Vision and Pattern Recognition, Fort
Colli ns, CO, June 23-25, 1999, pp. 253-259

[5] Hanna Pasula, Stuart Russell , Michael Ostland,
Ya’acov Ritov, “Tracking Many Objects with Many
Sensors” In Proc. IJCAI-99, Stockholm 1999

[6] Chang, T.-H.; Gong, S., “Tracking multiple people
with a multi -camera system”, Proceedings. 2001
IEEE Workshop on Multi -Object Tracking, with
ICCV’01, Vancouver, BC, Canada, pp. 19-26, July
2001

[7] C. Stauffer, WEL Grimson, “Learning patterns of
activity using real-time tracking” , PAMI-August
2000.

[8] C. J. Veenman, M.J.T. Reinders, E. Baker,
“Resolving motion correspondence for densely
moving points” , PAMI Jan 2001

[9] I. K Sethi, R. Jain, “Finding trajectories of feature
points in monocular image sequences” , PAMI, Jan
1987

[10] K. Rangarajan, M. Shah, “Establishing motion
correspondence”, CVGIP, July 1991

[11] S. Khan, O. Javed, M. Shah, “Human Tracking in
Multiple Cameras” , 8th International Conference on
Computer Vision, Vancouver, Canada, July 2001.

[12] H. Fuiyoshi, A. J. Lipton, “Real-time human motion
analysis by image skeletonization” , Image
Undertanding Workshop, 1998, Monterey, CA

