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Abstract

The mapping that relates the image irradiance to the im-
age brightness (intensity) is known as the Radiometric Re-
sponse Function or Camera Response Function. This usu-
ally unknown mapping is nonlinear and varies from one
color channel to another. In this paper, we present a method
to estimate the radiometric response functions (of R, G and
B channels) of a color camera directly from the images of
an arbitrary scene taken under different illumination con-
ditions (The illumination conditions are not assumed to be
known). The response function of a channel is modeled as a
gamma curve and is recovered by using a constrained non-
linear minimization approach by exploiting the fact that the
material properties of the scene remain constant in all the
images. The performance of the proposed method is demon-
strated experimentally.

1 Introduction and Related Work

The output of an imaging system is a brightness (or inten-
sity) image. The brightness in this image is related to the
image irradiance by a mapping called the Radiometric Re-
sponse Function of the imaging system. The knowledge of
this response function is important for the applications that
require scene radiance or image irradiance measurements as
input, for example, shape from shading [14], photometric
stereo [13], color constancy [6] and image based rendering
[11]. Even common computer vision tasks such as appear-
ance matching, background modeling, tracking in multiple
cameras, edge detection and blurring can benefit by using
the image irradiance values instead of the brightness values.
Although assumed otherwise in most of the above methods,
the response function of an imaging system is usually non-
linear. This nonlinearity arises from several aspects of the
photometric processes, such as, the film response in the case
of film photography, digitization process, scanning, and the
built-in nonlinear responses in digital cameras to mimic the
film response or to compensate for the nonlinear responses
in the display device. In addition, in the case of color cam-
eras, each channel may have a different response function.

One approach of estimating the radiometric response
function involves imaging a calibration image with a full
range of known radiance values (e.g., Macbeth chart) un-
der uniform illumination conditions [1]. Due to the diffi-
culty in using this method in general situations, other meth-
ods have been presented which estimate the parametric or
nonparametric form of the response function directly from
the images. Farid [3] used higher order statistics of image
irradiance to recover the response function in the form of
a Gamma curve. Most of the other techniques make use
of differently exposed spatially registered images of the
same scene taken with varying, known exposure settings
[2, 4,9, 8,7, 12]. These techniques differ from each other
by their assumptions on the behavior of the response func-
tion (for example smoothness or monotonicity) and choice
of the model. Mann and Picard [8] used Gamma function as
a parametric model. In [9], Mitsunaga and Nayar approxi-
mated the function by a low degree polynomial. Nonpara-
metric estimation of the function is performed in [2, 12],
where the estimation process is constrained by assuming the
smoothness of the response function. Grossberg and Na-
yar [4] estimated the parameters by projecting the response
function to a low dimensional space of response functions
obtained from a database of real world response functions.

In this paper, we present a technique to recover the radio-
metric response functions of a color camera by using differ-
ently illuminated images of an arbitrary scene. Images un-
der different illumination conditions have widely been used
to determine the scene structure [13] and the orientations of
surface normals with respect to the illumination [14]. How-
ever, to the best of our knowledge, no research has been
reported in the literature that use multiple illumination im-
ages for the recovery of the radiometric response function.
One advantage of the proposed algorithm is that we do not
assume any knowledge about the illumination in the images
(except that they are different), neither do we impose any
restrictions on the exposure settings, such as constant or
known exposure. We exploit the fact that the material prop-
erties of the scene do not change, and recover a parametric
form of response functions by nonlinear minimization of an
error function based on this fact.



The organization of the paper is as follows. In the next
section, we review the model of image formation that is
used to derive the proposed estimation approach, which is
presented in Section 3. In Section 4, we demonstrate the
results of the proposed approach on a variety of response
functions. Section 5 concludes the paper.

2 Model of Image Formation

The appearance or brightness of a scene point in the im-
age depends on various parameters, such as, illumination at
the point, camera geometry, scene structure, material prop-
erties and camera parameters. Let L denote the radiance
from a scene point. We assume that L can be written as
the sum of products of (a) material related terms K; and (b)
lighting/viewing geometry and object shape related terms
G, [10] as:
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This assumption is true for various illumination mod-
els [10], for e.g., Lambertian, Oren-Nayar and Torrence-
Sparrow.

The image irradiance F is proportional to the scene ra-
diance L and is given as [5]:
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where, h and [ are the focal length and diameter (aperture)
of lens respectively and « is the angle that the principal ray
makes with the optical axis. If ¢ is the time of exposure,
and f is the radiometric response function of the camera,
then the image brightness B is related to image irradiance
as B = f(Ft) = f(X).

We model the response function f of each color channel
as a gamma function, i.e., f(X) = 8X7 + «. However, the
parameter « can be removed by estimating the mean of the
thermal noise of the camera (which can be done by taking
an image with the lens cap on) and subtracting it off from
the brightness values, i.e., by forcing the condition f(0) =
0. The model can be further simplified by assuming that
the brightness and the irradiance values are both normalized
from O to 1, i.e., f(1) = 1. Thus, the resulting response
function f is given by:

B = f(Et) = (Et)’ (3)

where, v is the sole model parameter. The inverse re-
sponse function g can now be written as:

E=g(B)=1f(B) =B @

The problem is to estimate the parameter y for each color
channel of a given camera. In the next section, we present
a method to estimate these parameters simultaneously from
the images.

3 Estimation Scheme

Let I, I, ..., I, be the n images of the same scene under
different illuminations and p(x, y) be a point on a 2D image
lattice. From equations 1 and 2, the image irradiance E;.
at the point p in the color channel ¢ € {r, g, b} of the image
I;, 1 < i < n,is given by:
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where the quantities F; = T (}ll—) cos* a; and GEJ) vary

nel in an image. On the other hand, the terms K ((f) vary with
color channels but are constant for the same color channel
over all images. That is, the material properties at each point
p remain constant.

For r = 1, for example, the Lambertian model of illu-
mination, these material properties can be separated out in
each image I; by taking the ratios of irradiance values of
different color channels, i.e., E;., E;; and Ey,. Whereas,
for » = 2, cross-ratios of irradiance values of different
color channels in two distinct images are independent to the
quantities F; and GELZ) [10]. That is, for all ¢ # j and ev-
ery point p(z,y), the following term is independent to the
above quantities:
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Since, none of the terms on the right hand side of the
above equation depends on the image pair ¢, j, the expres-
sion is invariant to illumination conditions, shapes and other
camera parameters. Similarly, two other invariants can be
obtained by changing the terms r, g and b in the sub-
scripts in cyclic order [10]. From equation 4, the above
invariant can be written in terms of the model parameters
z = [V, Vg, fyb}T and the brightness of images as follows:
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where, B;. is the brightness of pixel p in the channel ¢ of
the image I;. We want to find a set of parameters z, such



that, at each point (x, y) in the 2D image lattice, the invari-
ant V; ; (z) yields the same value for each pair of images
I; and I;. Because of the different sources of noise in im-
ages, instead of matching the invariant at each point on the
lattice, we find the parameters for which the distribution of
invariant is the same for each pair of images. We do this by
minimizing the sum of the distances between the normal-
ized histograms H; ; (z) of V; ; (z) for each image pair I;
and I;, i.e, the error function e (z) is given by:

e(z) =) d(H;(z), Hy(2)) (8)

where, the summation is over all the invariants computed
from the distinct pairs of images of the same scene. The
distance d between two m bin histograms, S and 7T is the
modified Bhattacharyya coefficient and is computed as:
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The error function is minimized by using a trust region
method for the nonlinear minimization. The approximate
Jacobian matrix is calculated by using the finite difference
derivatives of the error function. The response functions of
the different channels of the same camera are usually corre-
lated and are not very different from each other. To reduce
the search space and to avoid false local minima of the error
function, we constrain the search process so that the differ-
ence between the parameters of different channels between
them is not very large.

4 Results

In this section, we show the effectiveness of the proposed
method by experimental evaluation. We use two sets of
images, where each set contains four images of the same
scene under different illumination. The images are radio-
metrically calibrated and the images of each set are spatially
aligned. The images are shown in Figure 1. The error term
in equation 8 is minimized by using the images of both sets,
where the distance is measured only for the histograms of
images that belong to the same set. To avoid noisy measure-
ments, pixels with large gradients were not included in the
estimation process.

In the first experiment, we kept the gamma parameter
fixed for all color channels and subjected each image to the
nonlinear responses with a variety of gamma values in the
range [0.3 3.0]. The error function e (z) for some of the pa-
rameter values is shown in Figure 2. It can be seen that the
error function reaches a unique global minimum at the cor-
rect value of the parameter. Figure 3 shows the plot of the
estimated parameters against actual parameters. On aver-
age, the parameters were estimated within 2.97 percentage
of the true values.
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Figure 2: Error function computed after applying gamma correc-

tion with gamma=0.5, 1.1, 2.6 and 4.0 respectively. The minima

of the error also occur at the same values in the respective curves
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Figure 3: Plot of estimated gamma values vs actual values: Dot-

ted line shows the ideal response.

The actual and the estimated curves are shown in Fig-
ure 4.

Next, we applied different responses to the different
color channels. Figure 5 shows three different cross sec-
tions of three dimensional error function e (z) for one such
case, where the applied parameters were 7y, = 1.5, v, = 0.5
and vy, = 1.0. The red, blue and green curves show the error
e obtained by varying the parameters of the respective color
channel while keeping the other two parameters constant.
Once again, the minima correspond to the true values of the
parameters.

Figure 6 shows the actual and obtained response curves
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Figure 4: Performance of the algorithm was tested by applying
different gamma responses to the radiometrically calibrated im-
ages. Here we show some of the actual gamma responses (dotted
curves) along with the recovered responses (solid curves) .

v
Figure 5: Three cross sections of a three dimensional error func-
tion. The applied response function has the parameters, v, = 1.5,
vg = 0.5 and v, = 1.0. The red, green and blue curves show the
error e (z) obtained by varying the parameter of the response of
respective channels while keeping the other two parameters con-
stant

for three different experiments. The response curves of red,
blue and green channels are shown using their respective
colors. The actual functions are shown by dotted curves,
whereas the estimated functions are shown by solid curves.

5 Conclusion

We have presented a framework for estimating the radio-
metric response function of color cameras directly from the
images of the same scene taken under different illumina-
tions. The proposed framework uses illumination and ge-
ometric invariants to compute a nonlinear error function,
which is minimized to obtain the parameters of the response
functions. The proposed method is experimentally eval-
uated and is shown to produce reasonable results. Future
work includes the use of flexible models for response func-
tions and analyzing the affect of system parameters on the
quality of estimation.
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Figure 6: Estimated (solid curves) and actual (dotted curves) re-
sponse functions for different color channels.
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