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ABSTRACT

In this paper we present a novel framework for generic ob-
ject class detection by integrating Kernel PCA with AdaBoost.
The classifier obtained in this way is invariant to changes in
appearance, illumination conditions and surrounding clut-
ter. A nonlinear shape subspace is learned for positive and
negative object classes using kernel PCA. Features are de-
rived by projecting example images onto the learned sub-
spaces. Base learners are modeled using Bayes classifier.
AdaBoost is then employed to discover the features that are
most relevant for the object detection task at hand. Pro-
posed method has been successfully tested on wide range
of object classes (cars, airplanes, pedestrians, motorcycles
etc) using standard data sets and has shown good perfor-
mance. Using a small training set, the classifier learned
in this way was able to generalize the intra-class variation
while still maintaining high detection rate. In most object
categories we achieved detection rates of above 95% with
minimal false alarm rates. We demonstrate the comparative
performance of our method against current state of the art
approaches.

1. INTRODUCTION

Digital libraries have become an integral part of modern day appli-
cations in fields such as military, entertainment, academia, medical
science, commerce etc. The world wide web is proving to be the
driving force behind this explosion of multimedia content. Un-
fortunately utilization of this content is limited as current content-
based image retrieval systems (CBIR) are not able to capture the
semantics of scenes and objects present in images. This is, in part,
because of the diverse visual appearances, poses, lighting condi-
tions, and backgrounds in which an object can occur (Fig. 1).
Therefore, industry mostly employs human indexers to assign key-
words to their images so that a user can access them through sim-
ple text search. Hence, there is a pressing need for a methodology
which can carry out automatic object detection and indexing across
wide range of imagery.

Traditionally visual classification of objects is done in two
steps. First, features are extracted from the image and object of
interest is encoded using those features. Second, a classifier is
learned using these features. Popular classifier employed for this
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Fig. 1. Example of variation among object categories (Car and Motor Cy-
cles) in terms of appearance, illumination condition, occlusion and back-
ground.

task includes Support Vector Machines [17], Perceptron, Winnow
etc. These are termed as linear classifiers or hyperplane classifiers,
which work under the assumption that the data we are classify-
ing is linearly separable. Unfortunately, in many cases, the repre-
sentation of class and non-class images in feature space does not
allow simple linear separation. For instance, when using image
gray levels, color or texture as features, the separating surface be-
tween class and non-class example is highly non-linear and hence
difficult to approximate[12, 8]. However still most of the current
content based image retrieval systems use color, texture, orienta-
tion or blob features [3] and try to learn a linear classifier using
them. Others try to compute similarity measure (L1 or Lo norm)
between these high dimensional features to return the relevant im-
ages. But in high dimensions, data becomes very sparse and dis-
tance measures become increasingly meaningless. Therefore we
see a degradation in the quality of results returned by CBIR.

Principal Component Analysis (PCA) is an orthogonal basis
transformation that can be effectively performed on a set of obser-
vations that vary linearly. However it fails to detect structure in a
given data if the variations among the observations are non-linear
which is the case when one is trying to extract features from ob-
ject categories that vary in their appearance, pose and illumination
conditions. Therefore any subsequent learning algorithm will have
poor classification performance.

To overcome above mentioned shortcomings we propose an
integrated framework of Kernel PCA [1] and AdaBoost. We demon-
strate the feasibility of our approach on task of object detection on
wide range of object categories. The essential idea is to employ
Kernel PCA as a non-linear feature extractor by mapping input
space to a higher dimensional feature space, through a non-linear
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map where the data is linearly separable. The justification of con-
verting data to higher dimensional space is often alluded to Cover’s
theorem [7]. This theorem formalizes the intuition that number of
separations increases with the dimensionality as we can have more
views of the class and non-class data. Note that in practice we do
not have to compute the expensive higher dimensional mapping as
we can achieve the same effect by using the Kernel Trick [2]. This
mapping will solve the problem of nonlinear distribution of low
level image features. Once in the feature space, which is of high
dimension, we uncover the patterns by selecting only the relevant
(discriminative) dimensions using AdaBoost. This selectivity not
only reduces the dimensionality but also speeds up online classifi-
cation and retrieval. Classifier can be trained using small training
set which is an added advantage. In short, our method overcomes
many limitations of current CBIR in semantic content modelling.

2. RELATED WORK

Extensive research is being done in the area of video and image
content modelling. Host of features such as color distributions,
texture and shape have been explored. Few of the examples are
IBM’s QBIC system [4], BlobWorld [5] and VideoQ [6]. The re-
trieval on color usually returns images with similar colors but not
necessarily similar semantic meaning. Retrieval on texture and
shape features also return many irrelevant results.

PCA is a powerful technique for extracting global structure
from high dimensional data set. It has been used to extract fea-
tures for face recognition [10]. Kernel PCA [1] is proposed as a
nonlinear extension of PCA, which computes the principal com-
ponents in a hig dimensional feature space which is non-linearly
related to the input space. Therefore it is able to extract non-linear
principal components. Kernel PCA is used in Computer Vision
community for modelling the variability in classes of 3D-shapes
[13, 11]. In [14] they used Kernel PCA to learn the view subspaces
for mutliview face detection. Recently [15] used it for recognition
of facial expression using Gabor filters.

Our approach differs from above mentioned work as we pro-
pose an integrated framework of Kernel PCA with Boosting. This
will enable us to exploit their strengths, first by modelling the non-
linear structure of object categories using Kernel PCA, and second
by selecting highly discriminative features using Boosting. In ad-
dition, our method is able to handle multiple categories as oppose
to above mentioned approaches that are restricted to just one cat-
egory. We illustrate the robust performance of this approach on
standard data sets.

3. KERNEL PCA FOR FEATURE EXTRACTION

3.1. Kernel PCA

Given a set of examples x; € RN, i=1,..m, which are centered,
@i = 0, PCA finds the principal axis by diagonalizing the
covariance matrix, m

C = lejij. 1)

To do this we solve the eigenvalue equation, \v = Cr. We
sort the eigenvalues in descending order, and use the first M < N
principal components v, as the basis vector of lower dimensional
subspace, forming the transformation matrix T. The projection of

example x € R onto the M dimensional subspace can be calcu-
lated as 3 = (51, ....., Bar) =x | T. The s represent the derived
features for example x.

Now Kernel PCA is performed by first mapping the data from
input space to a higher dimensional feature space i.e. ¢ : R —
F, and then performing a linear PCA in F. The covariance matrix
in this new space F is,

C=—=> o(x;)d(x))". @)
j=1

L
m

The eigenvalue problem now becomes AV = CV. As men-
tioned previously we do not have to explicitly compute the non-
linear map ¢. We can achieve the same goal by using kernel func-
tion k(zi,x;) = (¢(x:).¢(z;)) which implicitly computes the dot
product of vectors x; and x; in higher dimensional space.[2]. They
can also be thought of as functions measuring similarity between
instances. The kernel value will be greater if two samples are sim-
ilar otherwise it falls off to zero if samples are distant. The most
often used kernel types are polynomial and Gaussian kernels (Ta-
ble 1). Now defining a Gram Matrix K € R where each entry

2
. TP
Gaussian Kernel M

k(z;, ;) = expl
k(zi,x5) = (@525 + a), d=1,2..

tanh(k(z;.z;) + a)

Polynomial Kernel

Sigmoid Kernel

Table 1. Kernels

K ; is calculated using the kernel function k(x;, x;), the eigen-
value equation can be written as (see [2]),

mAA = KA, 3)

with A= (a1, .....,nr) and A = diag(A1, ....., Am). Aisamxm
orthogonal eigenvector matrix and A is a diagonal eigenvalue ma-
trix with diagonal elements in decreasing order. Since the eigen-
value equation is solved for «; instead of eigenvector V; of kernel
PCA, we will have to normalize A to ensure that eigenvalues V
have unit norm in the feature space, therefore a; = o/ \/x . The
eigenvector matrix V of kernel PCA is computed as, V = DA where
D =[¢(z1) ¢(x2) ... ¢(xm)] is the data matrix in feature space.
Now let X be a test example whose map in the higher dimensional
feature space is ¢(X). The kernel PCA features of X are derived

as follows: F— VT¢(X) _ ATB7 )
where B = [¢(21)$(X) ¢(22)d(X) ... p(zm)p(X)].

3.2. Feature Extraction

Let P = (p1, p2,...pm) and N = (n1, na, ...np,) be the positive and
negative images of the training set provided for learning. Gra-
dient magnitudes are extracted from the images by convolving
them with sobel gradient operator. Gradient provides better shape
cues than gray level intensity or color texture patterns, which are
more biased towards the visual appearance of the object, back-
ground and surrounding clutter. Gradient images are resized to
128 by 128 pixels, converted into column vector form and made
zero mean and unit variance. We computed Gram matrix K, and
K, using kernel function (polynomial or Gaussian). Eigenvec-
tor matrix A, and A, is calculated using eq. 3. Features for
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our base learners were obtained by projecting each positive and
negative training example onto the positive and negative higher
dimensional subspaces by plugging A, and A, in eq. 4 respec-
tively. The feature vector for any particular example will be of the
form, f = [d1,d2,....,dw,,dd;+1, s dw; +wy] Where w1 and wo
are the number of principal components that we retained for each
class. Therefore the total number of base learners are going to be
w1 + wa.

=
=
=

Fig. 2. In top to bottom form, each image is followed by its gradi-
ent and reconstructed image structure from top 150 eigenvectors.
Categories are airplane, motorcycle, leave and background.

4. LEARNING CLASSIFIER WITH BOOSTING

The notion of focusing on the most relevant information in poten-
tially high dimensional data is very important. Efficiency of the
final system depends on whether we are able to discover the ir-
relevant features that hide the useful information in sea of noise
or not. Specifically, in CBIR this step will determine the amount
of time the system is going to spend in searching through over-
whelming amount of image content for each user query. Features
generated by kernel PCA lie in a high dimensional nonlinear sub-
space and we want to find out if all of those dimensions are useful
for the classification task at hand or we can achieve the same goal
by using subset of those dimensions. Therefore we integrate Ad-
aBoost with Kernel PCA as a feature selection device. AdaBoost
is an ensemble classifier learning algorithm that works by creat-
ing a sequence of base learners in each iteration, where each base
learner is constructed based on the performance of the previous
base learner on the training set. In each iteration the weight distri-
bution over the training set is updated in a way that forces the base
learners to focus on the example that are hard to classify. This re-
sults in a classifier with low training error and good generalization
performance.

Note that one may be tempted to use nearest neighbor (NN)
classifier or any similar classifier to categorize the features derived
from kernel PCA without carrying out any feature selection. This
will have adverse effect on the classification performance as NN
uses all features for its distance computation which will include
some features generated from noisy data. In addition the number
of training examples required to reach given accuracy grows expo-
nentially with number of irrelevant features in case of NN. On the
other hand our framework guarantees to provide classifier based on
subset of most discriminative features using small set of training

examples.

Fig. 3. Histograms of three different feature dimensions used in training
of Pedestrian-Background Classification. Blue and Red represent pedes-
trian and background respectively.

Fig. 4. Histograms of three different feature dimensions used in training
of Airplane-Background Classification. Blue and Red represent airplane
and background respectively.

We use the Bayes classifier as the base learner for AdaBoost.
Let ¢, and ¢, be the positive and negative class respectively. The
classification decision of ith classifier is taken as ¢, if P(c,|d;) >
P(cn|d;). The posterior is given by Bayes rule, i.e., P(cp|d;) =
P(di‘cp)P(Cp)

p(d;) ) )
and p(d;|cy, ) are approximated through smoothed 1D histogram of

the of the ! dimension of the feature vector f. In order to have
good discrimination, ranges and bin widths of these histograms
need to be selected carefully. Examples of histogram of three dif-
ferent features for pedestrian/background and airplane/background
feature vectors are given in Fig.3 and Fig. 4 respectively.

We used the boosting algorithm proposed by [16] to perform
feature selection. Now, to test a new image, we preprocess it ac-
cording to the specifications described in 3.2. The feature vector is
obtained by projecting it onto the subspaces using A, and A,, (eq.
4). Note thatin eq. 4, (z1, Z1...2,) is same training examples that
were used to construct the nonlinear subspaces. We need to save
them as they will be used for testing any new example.

5. RESULTS AND CONCLUSIONS

. The class conditional probability densities p(d;|c;)

This section asses the performance of our object detection ap-
proach using standard data sets available in public domain. A de-
scription is given in Table 2. We performed the classification in the
setting of one category versus the background in order to compare
results with [9, 18].

5.1. Experiments

Experiments were carried out by splitting the data sets into two
parts. One part is used for constructing the kernel PCA subspaces,
base learners and strong classifier while the other part is used for
testing. Each experiment was conducted using polynomial kernel
(with d equal to 2 and 3) and Gaussian kernel (results in Fig. 6).
5.2. Conclusion

We have proposed a novel approach for object detection by in-
tegrating kernel PCA and boosting. Our approach has elegantly
answered the the questions of which features to use for describ-
ing a semantic concept and how to combine those features. It has
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Data Set Training Images | Testing Images
UIUC Cars 150 200
Caltech Car Rear 170 480
Caltech Airplane 200 874
Caltech Motorcycles 200 626
Caltech Faces 100 350
Caltech Leaves 50 137
MIT CBCL Pedestrians 200 724
ETH Zurich Cars 50 50

Table 2. Data sets used in experiments.

Fig. 5. Some example images from Pedestrian, Airplane, Motorcycle and

Face data sets.

Data Set Detection Rate | False Alarm Rate | Principal Components

UIUC Cars 99.5% 0.8% 140

Caltech Car Rear 99.4% 0.5% 150

Caltech Airplane 98.5% 0.1% 150

Caltech Motorcycles 99.84% 0.1% 150
Caltech Faces 100% 0.2% 90
Caliech Leaves 100% 0.1 45

MIT CBCL Pedestrians 100% 0% 150
ETH Zurich Cars 86% 9% 35

Table 3. Results in terms of detection rate and false alarm rate.

Data Set Our Method Fergus
Caltech Car Rear 99.4% 90.3% 97%
Caltech Airplane 98.5% 90.2% 92.7%

Boosting Conext

Caltech Motorcycles | 99.84% | 92.5% 73.9%
Caltech Faces 100% 96.4% -
Caltech Leaves 100% 97.8%

Table 4. Comparison of our results with [9, 18].

Fig.

1201

Airplane Motorcycles Faces Leaves Car Rear

Detection
Rate

6. Comparison of results obtained using polynomial kernel of de-

gree 2 (Blue), degree 3 (Green), and Gaussian kernel (Red) on Airplane,
Motorcycle, Face, Leaves and Car Rear data set.

several advantages. It is scalable and can be extended to any ob-
ject category. It requires small set of examples for training. We
showed its accuracy on challenging data sets and wide range of
object classes. It performed better than many current state of the
art methods.
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