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Abstract. Interstitial lung diseases (ILD) involve several abnormal imaging pat-
terns observed in computed tomography (CT) images. Accurate classification of
these patterns plays a significant role in precise clinical decision making of the
extent and nature of the diseases. Therefore it is important for developing au-
tomated pulmonary computer-aided detection (CAD) systems. Conventionally,
this task relies on experts’ manual identification of regions of interest (ROIs) as
a prerequisite to diagnose potential diseases. This protocol is time consuming
and inhibits fully automatic assessment. In this paper, we present a new method
to classify ILD imaging patterns on CT images. The main difference is that the
proposed algorithm uses the entire image as a holistic input. By circumventing
the prerequisite of manually input ROIs, our problem setup is significantly more
difficult than previous work but can better address the clinical workflow. Qualita-
tive and quantitative results using a publicly available ILD database demonstrates
state-of-the-art classification accuracy under the patch based classification and
shows the potential of predicting the ILD type using holistic image.

Keywords: Interstitial Lung Disease, Convolutional Neural Network, Holistic
Medical Image Classification

1 Introduction

The interstitial lung diseases cause progressive scarring of lung tissue, which would
eventually affect the patients’ ability to breathe and get enough oxygen into the blood-
stream. High-resolution computed tomography (HRCT) is the standard in-vivo radi-
ology imaging tool for visualizing normal/abnormal imaging patterns to identify the
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specific type of ILD [16], and to develop appropriate therapy plans. Examples of these
lung tissue patterns are shown in Fig. 1. Computer-aided detection/classification sys-
tems are needed for achieving higher recalls on ILD assessment [1]. In particular, the
amounts and anatomical positions of abnormal imaging patterns (along with patient
history) can help radiologists to optimize their diagnostic decisions, with better quanti-
tative measurements.

Fig. 1. Example images(segment of HRCT axial slices) for each of the six lung tissue types. (A)
Normal (NM). (B) Emphysema (EM). (C) Ground Glass (GG). (D) Fibrosis (FB). (E) Micronod-
ules (MN). (F) Consolidation (CD).

There are a vast amount of relevant literature on developing CAD systems of pul-
monary diseases, but most of them focus on identifying and quantifying a single pattern
such as consolidation or nodules [2]. For computer-aided ILD classification, all previ-
ous studies have employed a patch based image representation with the classification
results of moderate success [4, 8, 13, 14]. There are two major drawbacks for the image
patch based methods: 1), The image patch sizes or scales in studies [13, 14] are rela-
tively small (31 × 31 pixels) where some visual details and spatial context may not be
fully captured. The holistic CT slice holds a lot of details that may be overlooked in the
patch based representation. 2), More importantly, the state-of-the-art methods assume
the manual annotation as given. Image patches are consequently sampled within these
ROIs. Image patch based approaches, which depend on the manual ROI inputs, are eas-
ier to solve, but unfortunately less clinically desirable. This human demanding process
will become infeasible for the large scale medical image processing and analysis.

In this paper, we propose a new representation/approach to address this limitation.
Our method classifies and labels ILD tags for holistic CT slices and can possibly be
used to prescreen a large amount of radiology data. Additionally, the prescreened da-
ta can be used as feedbacks to enlarge the training dataset in a loop. This would be
the essential component for a successful and practical medical image analysis tool at
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a truly large scale. Different from [8, 13, 14], our CNN based method is formulated as
a holistic image recognition task [12] that is also considered as a weakly supervised
learning problem. Obtaining image tags alone is cost effective and can be obtained very
efficiently. On the other hand, our new setup of using holistic images makes it signifi-
cantly more challenging than the previous settings [8,13,14], since the manual ROIs are
no longer required. Image patches as classification instances, which are extracted from
the annotated ROIs, are well spatially-aligned or invariant to their absolute intra-slice
CT coordinates. On the contrary, In our setup, only slice-level image labels or tags are
needed and no precise contouring of ILD regions are necessary. This weakly supervised
learning scheme can scale well with large scale image database. The experimental eval-
uation on the publicly available dataset demonstrates the state-of-the-art results under
the same image patch based approaches and shows promising results under this new
challenging protocol.

2 Methods

CNN has been successfully exploited in various image classification problems and
achieved the state-of-the-art performances in image classification, detection and seg-
mentation challenges such as MNIST, ImageNet, etc. [7, 10]. The typical image classi-
fication approach consists of two steps of feature extraction and classification. However,
the most attractive characteristics of the CNN method is that it learns the end-to-end fea-
ture extraction and classification simultaneously. CNN also shows promise in medical
image analysis applications, such as mitosis detection [3], lymph node detection [11]
and knee cartilage segmentation [9]. In previous ILD classification work, hand-crafted
local image descriptors (such as LBP, HOG) are used in [4,13,14] to capture the image
patch appearance.

Our proposed framework of is illustrated in Fig. 2. Three attenuation scales with
respect to lung abnormality patterns are captured by rescaling the original CT image in
Hounsfield Units to 2-D inputs in training and testing. For this purpose, three different
ranges are utilized: one focusing on patterns with lower attenuation, one on patterns
with higher attenuation and one for normal lung attenuation. Using three attenuation
ranges offers better visibility or visual separation among all six ILD disease categories.
Another reason of using the three ranges is to accommodate the CNN architecture that
we adapt from ImageNet [7] that uses RGB values of natural images. Finally, for each
input 2-D slice, ten samples (“data augmentation”) are cropped randomly from the orig-
inal images and resized to 224× 224 pixels via linear interpolation. This step generates
more training data to reduce the overfitting. These inputs, together with their labels, are
fed to CNN for training and classification. Each technical component is discussed in
details as follows.

2.1 CNN Architecture

The architecture of our CNN is similar to the convolutional neural network proposed
by Krizhevsky, et al. [7]. CNNs with shallow layers do not have enough discrimina-
tive power while too deep CNNs are computationally expensive to train and easy to be
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Fig. 2. Flowchart of the training framework.

overfitted. Our network contains multiple layers: first five layers are convolutional lay-
ers followed by three fully-connected (FC) layers and the final softmax classification
layer, which is changed from 1000 classes to 6 classes in our application.

It is known from the computer vision community that supervised pre-training on a
large auxiliary dataset, followed by the domain-specific fine-tuning on a small dataset, is
an effective paradigm to boost the performance of CNN models (when the training data
are limited [6]). In our experiments, the training convergence speed is much faster when
using pre-trained model than using randomly initialized model. The use of three CT
attenuation ranges also accommodate the CNN architecture of three input channels. The
output of the last FC layer is formed into a six-way softmax to produces a distribution
over the six class labels (with six neurons). We start the training via stochastic gradient
descent (SGD) at a learning rate of 1/10th of the initial pre-training rate [7] expect
for the output softmax layer. The adjusted learning rate allows appropriate fine-turning
progresses without ruining the initialization. The output layer still needs a large learning
rate for convergence to the new ILD classification categories.
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2.2 CT Attenuation Rescale

To better capture the abnormal ILD patterns in CT images, we select three ranges of
attenuation and rescaled them to [0, 255] for CNN input. As shown in Fig. 3(A), this
process is designed to select the attenuation value between HU low and HU high so
that the value between can be highlighted to represent different visual patterns. A lin-
ear transformation is applied to rescale the intensities. Specifically, low attenuation
range (Fig. 3(B)) is used to capture patterns with lower intensities, such as emphy-
sema; normal range (Fig. 3(C)) to represent normal appearance of lung regions; and
high attenuation range (Fig. 3(D)) for modeling patterns with higher intensities, such
as consolidation and nodules. Specific HUs we chose in our experiments are: for low
attenuation, HU low= −1400 and HU high= −950; for normal, HU low= −1400 and
HU high= −200; for high attenuation, HU low= −160 and HU high= 240.

Fig. 3. (A) CT attenuation range rescale. (B) Low attenuation range. (C) Normal lung range. (D)
High attenuation range.

2.3 Data Augmentation

The most common and effective way to reduce overfitting on image recognition training
using CNN is to artificially enlarge or augment the original dataset by label-preserving
geometric transformations. We generate new images by randomly jittering and cropping
10 subimages per original CT slice. Although the generated images are interdependent,
the scheme would improve the training/testing performance by ∼ 5% in classification
accuracy. At test time, 10 jittered images are also generated and fed into the trained
CNN model for any CT slice. Final per slice prediction is obtained by aggregating (e.g.
majority voting, maximal pooling) over the CNN six-class softmax probabilities on 10
jittered images.

3 Experiments and Discussions

A publicly available ILD database has been released recently [5] to improve the detec-
tion and classification of a wide range of lung abnormal imaging patterns. This database
contains 120 HRCT scans with 512× 512 pixels per axial slice, where 17 types of lung
tissues are annotated on marked regions (i.e., ROIs). Most existing classification meth-
ods [8,13,14] evaluated on the ILD dataset first extract many image patches from ROIs
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and then only classify patches into five lung tissue classes: normal (NM), emphyse-
ma (EM), ground glass (GG), fibrosis (FB) and micronodules (MN). Here, consolida-
tion (CD), as a highly prevalent type of ILD, is also included within our classification
scheme. All of the six diseases are prevalent characteristics of ILD and identifying them
is critical to determine their ILD types or healthy.

Fig. 4. Trained convolutional filters in the first layer.

The database contains 2084 ROIs labeled with specific type of ILD disease, out of
120 patients. All patients are randomly split into two subsets at the patient level for
training (100 patients) and testing (20 patients). Training/testing data are separated at
patient level, i.e., different slices from the same patient will not appear in both training
and testing. All images containing the six types of diseases are selected, resulting 1689
images in total for training and testing. Note that previous work [8,13,14] report perfor-
mance on patch classification only, rather than performance assessment for the whole
image slices or at patient level, which are actually more clinically relevant.

Table 1. F-score of ILD classifications.

EM FB GG NM MN CD
[14] 0.753 0.841 0.782 0.840 0.857 -
[13] 0.768 0.872 0.795 0.877 0.888 -
[8] 0.5449 0.7624 0.7150 0.8395 0.9096 -

Ours 1.0000 0.8000 0.7500 0.4000 0.5600 0.5000
Ours Patch Setting 0.8940 0.8509 0.8159 0.8844 0.8950 -

For fair comparisons with previous work, we conduct experiments under two dif-
ferent settings. One is patch based classification, that is exact the same as in previous
state-of-the-art work [13, 14]. An overall accuracy of 87.9% is achieved, comparing
with 86.1% [14] accuracy of previous patch methods. The best F-scores are achieved in
most classes as shown in Table 1. 31× 31 patches are extracted from the ROI regions,
and then resized to the size of 224 × 224 to accomodate the CNN architecture. An-
other experiment shows the holistic image classification results. The overall accuracy
is 68.6%. Note that our per slice testing accuracy results are not strictly comparable to
[8, 13, 14], reporting classification results only at the image patch level (a significantly
less challenging protocol).
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Table 2. Confusion matrix of ILD classification

Ground Prediction
Truth EM FB GG NM MN CD
EM 1 0 0 0 0 0
FB 0 0.7111 0.0889 0.0667 0 0.1333
GG 0 0 0.9375 0.0625 0 0
NM 0 0 0 0.5 0.5 0
MN 0 0 0 0.4615 0.5385 0
CD 0 0.2 0.3333 0 0 0.4667

Table 2 shows the confusion matrix of the classification results on holistic images.
Majority voting based aggregation from jittered subimages is used. Emphysema is per-
fectly classified from other diseases. One of the three CT attenuation ranges is specif-
ically designed to emphasize on the patterns with lower attenuation, which boosts the
classification performance on emphysema significantly. Healthy images and micronod-
ule patterns are difficult to be separated from, based on the confusion matrix result.
Micronodule patterns are indeed visually challenging to be recognized from one single
static CT slice [2]. 3D cross-slice image features may be needed. Majority voting per-
forms slightly better (∼ 2%) than choosing the highest value from 10 subimage CNN
scores per ILD class, and assigning the CT slice into the class corresponding to the
maximum of aggregated highest scores. Table 3 shows the confusion matrix of patch
based classification.

Table 3. Confusion matrix of ILD patch classification

Ground Prediction
Truth EM FB GG NM MN
EM 0.9142 0.0078 0.0237 0.0047 0.0495
FB 0.0546 0.8270 0.0075 0.0464 0.0646
GG 0.0558 0.0025 0.8151 0.0930 0.0337
NM 0.0141 0.0108 0.0494 0.8910 0.0348
MN 0.0600 0.0070 0.0262 0.0268 0.8799

Our model is implemented in Matlab using MatConvNet package [15] for the CN-
N implementation, running on a PC with 3.10 GHz dual processors CPU and 32 GB
memory. Training the CNN model consumes about 20 − 24 hours, while classifying a
new testing image takes only a few seconds.

4 Conclusion and Future Work

In this paper, we present a new representation and approach for interstitial lung disease
classification. Our method with holistic images (i.e., CT slice) as input, is significantly
different from previous image patch based algorithms. It addresses a more practical and
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realistic clinical problem. Our preliminary experimental results have demonstrated the
promising feasibility and advantages of the proposed approach.

There are several directions to be explored as future work. The image features
learned from the deep convolutional network can be integrated into more sophisticated
classification algorithms. There are some cases (∼ 5%) with multiple disease tags on
the same slice of CT image. Detection with multiple labels at a slice level would be
interesting. Understanding the clinical meaning and value of the features learned from
the network would also be a direction that we plan to pursue.
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