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Abstract

Motion perception and interpretation plays an important role in the human visual system.
It helps us recognize different objects and their motion in a scene, infer their relative depth,
their rigidity, etc. In psychology, this process has been studied extensively by Johansson using
moving light displays (MLDs). MLDs consist of bright spots attached to the joints of an actor
dressed in black, and moving in front of a dark background. The collection of spots carry only
2D information and no structural information, since they are not connected. A set of static spots
remained meaningless to observers, while their relative movement created a vivid impression of
a person walking, running, dancing, etc. The gender of a person, and even the gait of a friend
can be recognized based solely on the motion of those spots.

There are two theories about the interpretation of MLD type stimuli, from a psychology point
of view. In the first, people use motion information in the MLD to recover the 3D structure and
subsequently use the structure for recognition (structure from motion problem). The second
theory of motion analysis deals with the direct use of motion information for recognition. In
motion-based recognition approach, the emphasis is not on the static structure, and motion
information is not extracted one frame at a time. Instead, a sequence containing a large number
of frames is used to extract motion information in its continuum. The advantage here is that a
longer sequence leads to recognition of higher level movements, like walking or running.

This paper provides a review of recent developments in the computer vision aspect of motion-
based recognition. We will identify two main steps in motion-based recognition. The first
step is the extraction of motion information and its organization into motion models. The
second step consists of the matching of some unknown input with a model. Several methods
for the recognition of objects and motions will then be reported. They include methods such as
cyclic motion detection and recognition, lipreading, hand gestures interpretation, motion verb
recognition and temporal textures classification. Tracking and recognition of human motion,
like walking, skipping, and running, will also be discussed. Finally, we will conclude the paper
with some thoughts about future directions for motion-based recognition.

*The research reported in this paper was supported by NSF grants CDA-9122006 and TRI-9220768.
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1 Introduction

Motion perception and interpretation plays an important role in the human visual system. We
have the ability to recognize a distant walking person by his/her gait, particular hand gestures,
dance steps, flying birds, all of which are made up of a complex sequence of movements. Motion
perception helps us recognize different objects and their motion in a scene, infer their relative
depth, their rigidity, etc. Our visual system is very sensitive to motion, and we tend to focus
our attention on moving objects. Motionless objects, in a scene, are not as easily detectable, and
several camouflage strategies of the animal kingdom rely on that fact. Our ease of perception and
interpretation of motion suggests that our visual system is very well adapted to process temporal
information.

In psychology, motion perception has been studied extensively using Johansson’s moving light
displays (MLDs) [31, 32]. MLDs consist of bright spots attached to the joints of an actor dressed in
black, and moving in front of a dark background. The collection of spots carry only two dimensional
information and no structural information, since they are not connected. A set of static spots
remained meaningless to observers, while their relative movement created a vivid impression of
a person walking, running, dancing, etc. The gender of a person, and even the gait of a friend
can be recognized based solely on the motion of those spots [8]. It has been shown that inverted
(upside down) MLDs are usually not recognized, even for some simple movements [69]. This would
suggest that the familiarity of an observer with a particular motion plays an important role in the
ease with which one can recognize it: an inverted movement is not natural nor familiar, thus it is
more difficult to recognize. Nevertheless, our easy recognition of MLDs would indicate that we can
directly use motion as a means for recognition.

There are two theories about the interpretation of MLD type stimuli. In the first, people use
motion information in the MLD to recover the three dimensional structure, and subsequently use
the structure for recognition (structure from motion). In this case the moving object would be
identified first, then the motion it performs in the image sequence would be sought. According to
the second theory, motion information is directly used to recognize a motion, without any structure
recovery.

There has been significant interest over the last decade, in the computer vision community, in the
determination of structure from motion (SFM) (e.g. [27, 34, 66, 68]). In SF'M, the three dimensional
coordinates of points on the moving objects and their three dimensional motion is recovered from a
sequence of frames. This problem is formulated in terms of systems of nonlinear or linear equations
given two dimensional positions of moving points among a few frames. Interesting theoretical work
(e.g. [10, 66, 74, 76]) related to the number of points required for a solution, the uniqueness of
such a solution, and the effect of noise on the solution has been studied. In these approaches, it is
assumed that the recovered three dimensional structure will subsequently be used for recognition.
However, three dimensional structure is not sufficient alone for robust and accurate recognition, and
the reconstruction is sensitive to noise. Multiple cues like motion, specularities, textures, etc., are
needed. The structure from motion methods compute intrinsic surface properties, such as depth.
But depth maps and other maps of 2.5D sketch are still basically images, which still need to be
segmented and interpreted before they can be used for more sophisticated tasks.

Another approach for motion analysis deals with the direct use of motion information for recog-
nition, as our easy recognition of MLDs would suggest. In this approach, emphasis is not necessarily
on the static structure, and motion information is not extracted one frame at a time. Instead, a
sequence containing a large number of frames is used to extract motion information in its contin-
uum. The use of a longer sequence leads to recognition of higher level movements, like walking or



running. Those movements consist of a complex and coordinated series of events that cannot be
understood by looking at only a few frames. Therefore, more complex movements can be examined
at a more appropriate level.

Motion-based recognition consists of the recognition of objects or motions directly from motion
information extracted from the sequence of images. Knowledge about the object or motion is used
to construct models that will ultimately serve in the recognition process. There exists a distinction
between motion-based recognition and motion recognilion: motion-based recognition is a general
approach that favors the use of motion information for the purpose of recognition, while motion
recognition is one goal that can be attained with that approach.

There are two main steps in motion-based recognition. The first step consists of finding an
appropriate representation for the objects or motions we want to model, from the motion cues of
the image sequence. Those representations can be relatively low-level, for instance the trajectory
of a particular point on a moving object, a speed or direction throughout the sequence, and can, if
necessary, be organized into very high-level representations, for example the scenarios in Goddard’s
work [24, 23], or motion verbs as described by Koller et al. [37] and Tsotsos [72, 73]. The low-
level processing of the images consists of the extraction of features, which are “manipulated” and
organized into those representations. The models are then created and extended as necessary. The
second step consists of the matching of some unknown input with a model. The methods here are
more standard, and are often common pattern classification techniques. The term recognition is
sometimes used as an equivalent to classification, although a distinction must be made. Feature
vectors are classified, i.e. associated with a cluster representative, according to a distance measure
to that cluster. Clusters can also be grouped or split, depending on a predefined distance measure,
or according to some parameter introduced by the user. Recognition, on the other hand, is an
association to only one possible model. If the input’s representation does not “fit” a model’s
representation, then it is not recognized as such, however close it might be. In this paper, recognition
is used in the usual broader sense that includes classification or association with a particular class
of object or motion.

Another way to use motion for recognition is to explicitly use shape and motion models to
predict and recover the motion performed by an object. A motion here is defined by a sequence of
the specification of parameters defining the shape of an object in time. Instead of using the motion
information from an image sequence to create representations that will be used to recognize an
object or motion from models, shape and motion models of an object are used to recover the shape
parameters of the object, throughout the sequence. This approach is often designated as tracking.
Most of the work done in this area pertains to the walking motion of a person. A precise body
model and motion model of walking are first defined and are then used, along with information
from the image sequence, to determine the correct sequence of body configurations for the walking
motion.

Applications for motion-based recognition are wide. It has already been used in the medical field
for the study of left ventricular motion, to reveal damages, impairments or abnormalities [72, 73].
The framework developed can furthermore be adapted to other types of diagnostic methods. In
clinical gait analysis, the location of various joints of a patient’s body are tracked and analyzed
for abnormalities using a computer. The study of the relative joint angles throughout the cycle,
along with some other type of tools like electromyographical activity of involved muscles, provides
a basis for the comparison of normal and abnormal gaits and can pinpoint the location of problems.
For example, the assessment of the locomotion of patients suffering from cerebral palsy can help in
the determination of appropriate surgical or orthotic interventions; progression of neuromuscular
disorders can be examined; the evaluation of the effectiveness of a prosthetic joint replacement, the



improvements of orthotic design, the changes in prosthetic design, all help in the physical therapy of
joint diseases, biomechanical simulations, kinesiological analysis and ergonomic designs [51, 29, 11].

Similarly in sports and athletic training, some initial systems already exist, for example, to
digitize the path of a javelin and compute its velocity and angle of attack, and to compare values
against a mathematical model of the perfect javelin throw. Biomechanists use underwater cameras
and computer systems to produce three dimensional coordinates of the swimmer’s arm, and cal-
culate the curve from the velocity of the hand, the angle of pitch, and the speed of the swimmer
[51]. In the future, systems could be built for analyzing golf swings or tennis strokes. Motion-based
recognition systems could also be used in the analysis of dance movements and as an instructional
tool for dancers.

Systems for the automatic interpretation of spoken words (lipreading) and of sign language are
under way. One application is in the development of better human-machine interfaces. Another
use would allow hearing impaired people to communicate more easily by using visual phones. Tele-
phone networks cannot support real-time graylevel image transmission, however the requirements
in precision and resolution for American Sign Language are relatively low as compared to grayscale
images [67]. Methods that create some image compression could be used for real-time sign language
communication over the phone.

Surveillance systems, for which simple motion detection might not be sophisticated enough,
could be another application. Motion recognition techniques could help disambiguate between
possible or allowable types of motion from a non-desirable type of motion in a particular scene.
In automatic monitoring systems, those techniques could help locate problems leading to possible
failures in an automated line; given the constraints of the allowed machine motions, an unexpected
motion, or lack of motion, could be isolated faster, and therefore be attended to without waste
of time. Other uses for motion-based recognition systems include obstacle avoidance of moving
objects for robots, and satellite monitoring of weather disturbances.

This paper will survey different methods used for motion-based recognition. Section 2 will tackle
the problem of motion representation i.e., how to extract the spatial and temporal features from
a sequence, and how to organize them into a coordinated set. Once a representation is defined,
a set of models can be built up using the encoded features, then unknown sequences, following
the same process of encoding and organization, can be compared for matching and recognition.
The matching step is also described in section 2. Section 3 will be concerned with the description
of several methods for motion recognition. Section 4 will describe methods for the tracking and
recognition of human motion. We will finally conclude in section 5 with a brief summary, and
future directions for motion-based recognition in computer vision applications and research.

2 Extraction of Motion Information and Matching

The first important step in motion-based recognition is the extraction of motion information from
a sequence of images. There are generally two methods for extracting two dimensional motion:
motion correspondence and optical flow. Motion correspondence is concerned with the match-
ing of characteristic tokens through time, while optical flow consists of the computation of the
displacement of each pixel between frames.

Motion correspondence deals with extracting interesting points, characteristic features in an
image, that can be tracked in time. This correspondence for multiple frames results in what is
called a motion trajectory, i.e. a sequence of locations (z;,y;), for ¢ = 1...n, where n is the
number of frames in the sequence. A motion trajectory can thus be considered a vector valued



function, that is, at each time we have two values z and y. However, a single valued function
is better suited for computations, and therefore parametrization of trajectories is necessary. The
trajectories can be parametrized in several ways, for instance speed and direction, velocities v,
and v,, and spatiotemporal curvature. Parametrized representations can be analyzed to identify
important motion events. Motion events can be seen as particular occurrences happening in the
motion, for example a change in the direction, a stop, an acceleration. Gould, Rangarajan and Shah
[25] and Gould and Shah [26] identify motion events by detecting zero-crossings in v, and v,. Engel
and Rubin [19] use a polar velocity representation to determine five types of motion events: smooth
starts, smooth stops, pauses, impulse starts and impulse stops. Parametrized representations can
also be used in matching and recognition. Rangarajan, Allen and Shah [59, 58] used the scale-space
of speed and direction to match two trajectories, while Allmen and Dyer [3] use the scale-space of
the curvature of a spatiotemporal curve to detect cyclic motion.

Optical flow can be computed from a sequence by considering two consecutive frames at a time.
Several researchers used optical flow to extract two dimensional motion, and from which more
elaborate motion representations are later built [2, 43, 44, 47, 54, 56].

Extraction of motion information over a region or over a whole image can also be used, as
opposed to motion trajectories that carry information about a single point on an object. Features
derived from the use of an extended region or from a whole image are here called region-based
features. For instance, Polana and Nelson [55, 47] compute several features from the normal flow
(component parallel to the gradient) of the whole image. One of them is the average flow magnitude
divided by its standard deviation. Martin and Shah [43], using dense optical flow fields over a region,
perform correlation between different sequences for matching. Storing different views of a non-rigid
object, and expressing motion of that object as a sequence or combination of those views is another
approach that has been used with both binarized and graylevel images [52, 16, 17]. Yamato et al.
[75] computed a mesh feature from each binarized image of a sequence, which consists of an ordered
set of ratios of black to white pixels, each from an element of an image divided into a grid. Another
way to use grayscale images would be to compute a set of eigenvectors (eigen images) forming an
orthonormal basis, and expressing an image as a function of those, as used by Kirby et al. [35].

Figure 1 presents an overview of extraction of motion information from a sequence of frames.
The different features extracted and their organization will be further discussed in this section.

Once the motion information is extracted and organized, matching between a model and an
input needs to be performed for recognition or classification. Several methods use clustering tech-
niques since their models and inputs are encoded by feature vectors, but other approaches have
also been described, for example a probabilistic method, and a connectionist method.

In this section, we will examine the kind of information that can be extracted from a sequence of
images, and how recognition or classification takes place. Section 2.1 will briefly describe methods
for the computation of optical flow, while section 2.2 discusses methods for generating trajecto-
ries from an image sequence. In section 2.3, procedures for extracting information from those
trajectories will be reported. Relative motion will be discussed in section 2.4, motion events and
region-based motion features will be the topics of sections 2.5 and 2.6, respectively. Matching
techniques will be covered in section 2.7, and a summary of the section will follow.

2.1 Optical Flow

Optical flow methods are very common for assessing motion from a set of images. Optical flow is an
approximation of the two-dimensional flow field from image intensities. Several methods have been
developed (see Barron et al. [9] for a recent review), however, accurate and dense measurements are
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Figure 1: Extraction of motion information from a sequence of frames.

difficult to achieve. The methods are divided into four classes: differential methods, region-based
matching, energy-based techniques and phase-based techniques. Differential methods compute the
velocity from spatiotemporal derivatives of image intensity. Methods for the computation of first
order and second order derivatives were devised, although estimates from second order approaches
are usually poor and sparse. In region-based matching, the velocity is defined as the shift yielding
the best fit between image regions, according to some similarity or distance measure. Energy-based
(or frequency-based) methods compute optical flow using the output from the energy of velocity-
tuned filters in the Fourier domain, while phase-based methods define velocity in terms of the phase
behavior of band-pass filter outputs, for example the zero-crossing techniques.

One problem with optical flow in general, is that it is susceptible to the aperture problem, which,
in some conditions, only allows the precise computation of the normal flow, i.e. the component
parallel to the gradient. It is also prone to boundary oversmoothing, i.e. background pixels around
object boundaries might have a non-zero flow value. Problems also arise with multiple moving
objects, where segmentation can be difficult to achieve, and by the multiple legitimate velocities in
a small neighborhood that might occur as a result of transparency. Despite all, it has successfully
been used as a source of information; methods based on optical flow are described in section 2.6.

2.2 Motion Correspondence

The trajectories derived from the location of particular points on an object, in time, are very popular
because they are relatively simple to extract, and their interpretation is obvious. The generation
of motion trajectories from a sequence of images typically involves the detection of tokens in each



frame, and the correspondence of such tokens from one frame to another. The tokens need to be
distinctive enough for easy detection, and be stable through time so that they can be tracked.
Tokens include edges, corners, interest points, regions and limbs. Corners are points where the
gradient direction changes rapidly, and correspond to physical corners of objects. They are useful
for scenes containing polyhedral objects, automobiles, etc., but might be rare in other types of
scenes. Moravec’s interest operator [45] is another feature detector that has proved useful in many
applications.

The correspondence problem can be defined as: given n frames taken at different time instants,
and given m points in each frame, map a point in one frame to another point in the next frame
such that no two points map onto the same point. This problem is combinatorially explosive,
and the occurrence of occlusion and disocclusion also adds to the difficulty of the problem. One
needs to introduce constraints to limit the search space. Constraints include proximal uniformity
[60], mazimum velocity, small velocity change or smoothness of motion [13, 65], common motion,
consistent match, rigidity, etc. [7]. An important issue in the correspondence problem is to con-
vert the above qualitative heuristics (constraints) into quantitative expressions, which become cost
functions. Jenkin [30] proposed an algorithm for tracking the three dimensional location of points
from a stereo view of the two dimensional location in the images, which is based on a general
smoothness assumption, stating that the location, scalar velocity (speed) and direction of motion
of a given point are relatively unchanged from one frame to the next. Sethi and Jain [65] used
the principle of path coherence and of smoothness of motion as the basis for their algorithm for
monocular image sequences, called the Greedy Frchange. They proposed an iterative optimization
algorithm to find optimal trajectories, in order to maximize the smoothness of each trajectory and
of the set of trajectories. Rangarajan and Shah [60] proposed a method based on a proximal uni-
formity constraint, which says that most objects in the real world follow smooth paths and cover a
small distance in a small amount of time. The resulting trajectories are smooth and uniform and
do not show abrupt changes in the velocity vector over time. Their algorithm minimizes a proximal
uniformity cost function and establishes correspondence over n frames. Cheng and Aggarwal [13]
devised a method for the correspondence problem using a two stage algorithm. The first stage
is the sequential forward searching algorithm, which extends trajectories up to the current frame,
and the second stage is a batch-type rule-based backward correcting algorithm, whose purpose is
to correct the wrong correspondences among the last few frames. The only assumptions made are
that of the smoothness of motion, for the first stage, and simple error (no chain error) for the
second stage. In all the methods above, the smoothness of motion constraint was defined in a very
similar manner, and so far this assumption has been very useful. However, it might not necessarily
be true in all conditions, and sometimes abrupt motion might need to be interpreted as such. In
those cases, the smoothness assumption will not be suflicient and the algorithms will probably fail.

In the papers surveyed, several methods were developed for token extraction and trajectory
determination. For instance, a trajectory can be extracted from a spatiotemporal cube (ST-cube),
which is the representation created by stacking a sequence of image frames. In Allmen [2], the
instantaneous motion of each point in an ST-cube is first computed to produce what is called
the spatiotemporal surface flow (ST-surface flow) F(x) = (Az,Ay, At), where x = (z,y,1). A
spatiotemporal curve (ST-curve), defined as a three dimensional curve a(t) = (z(1),y(t),1), is a
trajectory through the ST-cube such that time is strictly increasing, and such that the tangent
vector at a point on the curve is equal to the ST-surface flow. Another example for determining
trajectories is to track the centroid of some “blobs” approximately indicating the presence of motion
or of some object. Polana and Nelson [56] compute the normal flow direction and magnitude
between successive pairs of frames; pixels with significant motion are marked and their centroid



determined and tracked. An approximate trajectory is then computed by fitting a line through
the sequence of centroids. Davis and Shah [18], in their hand gesture recognition algorithm, use
the direction of motion and displacement of each finger. The fingertips were marked and tracked
through the sequence by locating the centroids of the markers after a binarization step, using the
algorithm proposed by Rangarajan and Shah [60] as described above. Koller et al. [37] used methods
originally developed by Kories and Zimmermann [38] and Sung [70] to generate the trajectories
subsequently used for the recognition of vehicle trajectories using motion verbs. The trajectories of
the vehicles are determined by first classifying each pixel into one of eight categories, according to
local gray-level information. The centroid of connected pixels belonging to the same class (blobs) is
computed, and then tracked along a number of frames. Their displacement is mapped to a vector
chain, and the starting position of that vector along with the total displacement define an image
displacement cluster.

As can be seen, the tracking of some points throughout the sequence can be performed in a
variety of ways. In the case of MLD type of input, the location of tokens is already given, such that
the correspondence process can be performed directly. In other cases, interest points, centroids and
other tokens have to be extracted first, in a robust and consistent way, before the correspondence
process can take place.

2.3 Trajectory Parametrization

Simple trajectories do not usually provide suflicient information for recognition and, as mentioned
earlier, they are vector valued functions, which are not as easy to work with as single valued func-
tions. Parametrization of the trajectories is thus very useful. One representation is the trajectory
velocity, v, and v, i.e. the velocity in # and in y relative to time. They are simply computed as
follows:
Ti — Ti—1 Yi — Yi—1

At At
where (z;_1,y;—1) and (;,y;) are the location of a point in frames ¢ — 1 and 7. The velocity is
translation invariant, but not rotation nor scale invariant. Speed and direction are another useful
parametrization. They are defined as:

Uy = and v, =

s = \/(-Ti—l—l — .TZ')Z + (yi-}—l - yi)27

d; = arctan (w) ,
Litl — Ty

where s; is the speed and d; is the direction of a point at frame 7, z and y are as above. Speed and
direction are both translation and rotation invariant. Furthermore, the direction is scale invariant,
but not the speed. The direction is however more sensitive to noise, due to the nonlinear operation
of arctan. Velocity parametrization and speed and direction parametrization are fairly easy to
compute from the trajectories, and generate curves which are easy to interpret. However it is not
obvious how to combine those trajectories for higher level interpretation, for example to detect
cyclic motion.

The spatiotemporal curvature s of a trajectory is another common representation. It is deter-
mined as follows:

(@ + WP+ PP
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y 1 [ Ty
A= g | B = oo | and C = 2"y
The notation |- | denotes the determinant. A discrete approximation is used to compute the

derivatives, for example, ! = #; — 2;_1 and 2! = 2! — 2!_,. It is assumed that At is constant, so
t' =1 and ¢ = 0. It has been shown in differential geometry that any space curve is completely
defined by its curvature and torsion, up to a rigid rotation and translation. The curvature has
the advantage over other trajectory parametrizations that a single function is able to capture
information, as opposed to two functions with v, and v, or speed and direction. Curvature of a
trajectory was used by Allmen and Dyer [3] and Tsai et al. [71] for cyclic motion detection.

Mase and Pentland [44] used multiple trajectories, although in a very different manner. The
average optical flow was computed in four windows around the mouth of a speaker, in successive
pairs of frames. A principal component analysis was performed with the flow components, and two
functions, O(t) expressing mouth opening in time, and £(t) reflecting the elongation of the mouth
as a function of time, were then created:

O(t) = vo + vy + vr,
E(t) = v, — w + u,,

where v, vp, v, v, are the y components of the flow vector of the upper, lower, left and right
windows, and u,, u; are the x component of the flow in the right and left windows, respectively.

Any type of trajectory can be further processed in order to be used for recognition. For example,
the scale-space can be computed, by increasingly smoothing a curve using Gaussian masks, and
by detecting zero-crossings or level-crossings at each level. Scale-space of trajectories were used in
several studies described in section 4.5.

2.4 Relative Motion

In the trajectory parametrizations of the previous section, absolute values of velocity, speed, direc-
tion and curvature were used. However, absolute values might sometimes be inadequate. In the
case of human motion, the absolute velocity of a body part has less significance than the relative
velocity between moving parts, and relative joint angles with respect to time carry important in-
formation. Cutting and Proffitt [15] showed that relative motion is an important aspect in human
visual perception. The perception of an object’s absolute motion can be divided into two component
motions, common motion and relative motion. Common motion is the perceived global movement
of an object relative to the observer, each element of the object sharing that motion, while relative
motion is the movement of an element with respect to other elements. The absolute motion of
a point, i.e. its trajectory, is defined as the sum of common and relative motions. Cutting and
Proffitt hypothesized that a minimization process is applied to both the common and the relative
motions, and that the one that is resolved first explains what is perceived by the observers. The
authors found that relative motion between the elements of an object was usually extracted first,
i.e. relative motion is more revealing for the understanding of the motion and recognition of an
object than common motion.

In his thesis, Allmen tries to define more formally this minimization process [2]. The absolute
motion A(¢) as a function of time is defined as A(t) = C(¢) + R(t), where C(¢) and R(t) represent
common and relative motions, respectively, as a function of time. A(?) is recovered from the image



sequence for ¢ € [{;,1;], and those equations are used as constraints to be satisfied. The following
function is then minimized:

tj

J(CR) =Y [K{(C(1) + w{(R(1))],

i=t;

where k; is the time derivative of the curvature along a path. Allmen proposes two approaches for
solving this system, and he believes that the relative and common motions can be computed such
that the results explain the observers’ perception.

Because relative motion was shown to be involved in the human visual system and the perception
of motion, this kind of information should therefore be very helpful in computer vision systems.
Multiple trajectories can be used to compute relative motion. For example, relative angles can
be computed between pairs of points relative to a given axis, or as the joint angle between three
points, in each frame. The difference of angle is then determined between successive frames, which
can be considered as angular velocities, if we assume the time between each frame is constant.
This method of computing angular velocity using relative angles between pairs of points can be
used, for instance for discriminating between two actors performing the same action. One problem
with multiple trajectories is that the computation of relative motion between every element is
combinatorially explosive. Also, relative motion between two unrelated elements might not be very
revealing. Heuristics can be developed for selecting appropriate relative motions among all possible.
Knowledge about the shape of the object will obviously help in that determination. Nevertheless,
relative motion plays a very important role in human perception, and this avenue should thus be
further investigated.

2.5 Motion Events

Motion events are defined as significant changes or discontinuities in motion. A sudden change of
direction, a stop, a pause, can provide important clues to the type of object and its motion. A
study of temporal subsampling of American Sign Language sequences showed that choosing images
where low activity occurs, i.e. between motion events, was better for understandability than to
pick images at constant time intervals [50]. Motion events are usually detected by the presence of
discontinuities, which can be found, for instance, by computing the scale-space of a speed curve.
Gould and Shah’s Trajectory Primal Sketch (TPS) [25, 26] is a representation for the significant
changes in motion. Changes are identified at various scales by computing the scale-space of the
velocity curves v, and v, extracted from a trajectory. This results in a set of TPS contours, each
contour corresponding to a change in motion. The strength of the contour, i.e. the number of zero-
crossings belonging to that contour, the shape or straightness of the contour i.e. the sum of the
distance between each successively linked zero-crossing from the contour divided by strength-1, and
the frame number at which the contour originated, reveals a lot about the event. This representation
has been shown to distinguish basic motions like translation, rotation, projectile and cycloid. Their
results show that the first derivative discontinuities in the rotation and cycloid trajectories have a
sine/cosine relationship with respect to each other, so that they can be separated from the projectile
and translation type trajectories. Rotation can be further distinguished from cycloid by the presence
of a sine/cosine relationship in the first derivative of the velocity, i.e. in the acceleration, which is
absent in the cycloid trajectory. As for translation, it can be classified into straight line translation
or curved translation, depending on the respective values of the acceleration. On a straight line
translation, both slopes of v, and v, must be the same, while in a curved translation, the slopes will
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be different. By studying the velocity, acceleration and TPS from different primitive trajectories,
it was thus possible to discriminate them. Composite TPS or CTPS [25] is an extension of the
TPS in which the trajectory of several points on an object can be reconstructed given some initial
information like their starting point, the TPS of one of the trajectories, the frequency, in the case
of rotation. The reconstruction has been shown for translation and rotation motions.

Based on psychophysical considerations, Engel and Rubin [19] described the significant changes
in motion as motion boundaries, of which they found five types: smooth starts, smooth stops,
pauses, impulse starts and impulse stops. They are considered as motion events that partition a
global motion into its psychological parts. Their method of detecting those boundaries use polar
velocity representation (s, ¢), and the features used for the detection of the perceptual boundaries
are first and second derivatives of the speed s’ and s”, and the second derivative of angle ¢”. Force
impulses imply a discontinuity, i.e. zero-crossing in consecutive pairs of s’ and ¢” estimates. If a
zero-crossing exists in either or both, and its slope exceeds some predefined threshold, then force
impulses are confirmed. Starts and stops are found when speed is low, but increasing or decreasing
sufficiently, again determined using thresholds. The simultaneous presence of a start or stop and
a force impulse indicates an impulse start or stop, while a pause occurs when a start (smooth or
impulse) follows a stop (smooth or impulse). The authors studied cycloidal motion at two different
speeds, fast and slow. At each cusp, a boundary was detected; the slow motion detected a ¢
zero-crossing, along with a pause, while the fast motion asserted force impulses for both s” and ¢",
but no start, stop or pause. Both boundaries were found to agree with human’s perception.

Goddard [24], in his work on human motion, used changes in rotational velocity of body segments
along with changes in direction, as motion events. For example, six ranges of angular velocity values
were used (< —200;[—200, —100];[—100,0];[0,100]; [100,200]; > 200 degrees/second), along with
four quantizations of the orientation, taken as the four 90° quadrants. Any change in the orientation
or angular velocity constitutes a motion event, which will trigger some action in his connectionist
system.

Motion events have been shown for simpler motions as for projectile and cycloid motions, as
well as for complex motions like human movements. Motion events are thus of wide applicability,
and can be used alone or in conjunction with other types of features.

2.6 Region-Based Features

For certain types of objects or motions, the extraction of precise motion information for each single
point is not desirable nor necessary. Instead, the ability to have a more general idea about the
content of a frame might be sufficient. Features generated from the use of information over a
relatively large region or over whole images are referred to here as region-based features. This
approach has been used in several studies. For instance, Polana and Nelson [55, 47] gathered a set
of four features based on the computation of the normal flow, i.e. the component of the flow field
parallel to the gradient, over regions of interest. The first feature is the mean flow magnitude divided
by ils standard deviation. The normal flow is computed at each pixel of a region, and its mean
magnitude calculated, then divided by the standard deviation, ensuring for scaling invariance. The
positive and negative curl and divergence estimates were also used. Divergence is the dot product of
the gradient operator and the flow vector, while the curl is their cross product. They are computed
for every pixel of a region, and the positive and negative values separated. The features used are
the average values of the positive and negative curl and divergence over the region of interest. The
non-uniformily of flow direction feature requires the computation of the histogram of the eight
discretized directions over the relevant region of the image. The sum of the absolute deviation
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from a uniform distribution will give an approximation of the non-uniformity of direction. This
approximation is then normalized by using the four-way histogram of gradient directions, in order
to reduce the dependency of the flow direction with respect to the intensity texture. Finally,
the directional difference statistics in four directions were computed. Using the eight discretized
directions of motion, along with the first feature above, the authors compute second order statistics
of the normal flow direction. Co-occurrence matrices are built for four directions, using pixel pairs
at a distance proportional to the average flow magnitude, again ensuring for scaling invariance.
In each direction, the ratio of number of pixel pairs differing in direction by at most one over the
number of pairs differing by more than one is computed. The logarithm of the ratio is then used
as feature. Four new features then emerge from the directional statistics, one from each direction.
Once all those values are computed, they are then put into vector form for classification.

In another paper, the same authors describe a representation for periodic motions like walking,
running, jumping, and exercising [54]. It is, as above, based on the computation of the normal
flow direction and magnitude, from which statistics are gathered over a selected portion of the
sequence of images, called the spatiotemporal (ST) cube. The ST-cube consists in z, y and time
dimensions, as was described in section 2.2. The authors devised two different motion models. The
first one is to compute a set of four statistics over the whole ST-cube, namely the vertical and
horizontal stick-like motion, and the vertical and horizontal worm-like motion. Those statistics use
the direction of motion at every pixel of the ST-cube. The stick-like motion is characterized by a
set of consecutive pixels, arranged vertically or horizontally, showing the same motion direction,
horizontal or vertical, respectively. The worm-like motion is characterized by a set of horizontally
or vertically arranged pixels showing motion in the horizontal or vertical direction, respectively.
The second representation is a three-dimensional feature vector, created by partitioning the z, y
and time dimensions of one cycle of the ST-cube (one sequence contains four cycles). In each of the
resulting three dimensional cells, a statistics is then computed. Experiments with three different
statistics were performed: the summed normal flow magnitude in each cell, the dominant motion
direction in each cell, and the summed motion magnitude in the dominant motion direction of
each cell. This dominant direction is approximated by computing the histogram of the discretized
normal flow direction of motion weighted by its corresponding magnitude, and taking the direction
with the highest value.

Figen images extracted from a set of graylevel images of an object provide enough information
to directly represent new images of that object. Kirby et al. [35] used that method with mouth
images. The eigen images are the eigenvectors of the ensemble averaged covariance matrix C:

1
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where u(/) is vector formed from the concatenation of the columns of the j’th image and w! is
the transpose of w. C is non-negative, and its eigenvectors form an orthonormal basis. They
are computed within the Karhunen-Loéve framework, since the system would be too large to be
otherwise solved efficiently. Once the eigen images are extracted, an image can then be expressed as
a linear combination of those eigenvectors, i.e. by a vector of coeflicients, each coefficient associated
to an eigenvector. An image sequence of a spoken word could then be represented by a vector for
each frame of the sequence, thus forming a matrix of coefficients.

A set of model views of an object is the approach taken by Darrell and Pentland with hand
gestures [16, 17]. Their method automatically stores the appropriate number of views necessary to
represent an object using correlation. If optical flow can be reliably extracted from a sequence of
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images, correlation using optical flow might be more appropriate as compared to correlation using
plain graylevels. With this idea in mind, Martin and Shah [43] use a sequence of dense optical flow
fields around the mouth of a speaker, which are then correlated, for matching with a sequence of
optical flow frames. Dense flow fields create redundancy in data that allows for better performance
and robustness.

Using binarized images, Petajan et al. [52] created a codebook of mouth images, i.e. a set of
images of the different shapes of the mouth while speaking. The motion of a spoken word can be
described as a sequence of elements of this codebook. This sequence can be defined using the images
directly, or by using an index identifying each image: this process is called vector quantization.

Yamato et al. [75] used a mesh feature extracted from each binarized frame of a sequence. An
image is divided into a grid, and the proportion of black to white pixels in each grid element is
computed; the ordered set of ratios for an image is called the mesh feature. Motion is detected by
variations in the ratios from one image to the other.

There are advantages and disadvantages in each representation. For instance, in Darrell and
Pentland’s work, the number of views necessary to represent an object might get too large for
storage and/or recognition purposes. In this perspective, Kirby’s approach seems more elegant
and eflicient, since once the eigenvectors are found, any image can be expressed as a small set of
coeflicients. The interpretation of Petajan et al.’s codebook images is straightforward, but their
storage (they used at most 255) is costly in space. The mesh feature used by Yamato et al. can
represent an image in a very simple form, but this abstract format prevents easy interpretation of
the feature.

2.7 Matching and Classification

Once the representation has been defined and the features from both models and unknown images
properly encoded, a comparison must be made so that classification or recognition can take place.
Of course, this comparative step depends on the type of features that are used to encode both
models and inputs. The methods described here usually involve some kind of distance calculation
between a model and an unknown input, the model with smallest distance is taken to be the class
of motion to which the input belongs.

Scale-space of trajectories have been used in different ways. Rangarajan, Allen and Shah [58]
computed the diffused scale-space of speed and direction of different points extracted from their
trajectory. They argue that for similar motions, the scale-space will be similar, such that the point
by point difference between the scale space of the speed and direction curves from different points
undergoing similar motion will be much smaller than with points undergoing very different motions.
Allmen and Dyer [2, 3] used the scale-space of curvature values computed from spatiotemporal
curves, to detect cycles in the motion of the moving object. If cycles occur, the scale-space will
also contain repeating patterns, which can be detected.

If the features can take the form of a vector, then clustering of features is a method which has
been often employed, in particular by Polana and Nelson [47, 54, 55]. The approach is based on
the assumption that similar motions will generate similar feature vectors, which can be classified
using a nearest centroid classifier, or else any kind of classifier based on vectors. A principal
component analysis can also be useful in determining which features are more important in the
classification. Petajan et al. [52], in their lipreading scheme, matched quantized vectors, which
are the representation of word samples. The matching process involved computing the distance
between an input and a model vector, and the model with the smallest distance was chosen as the
representation of the input. Finn and Montgomery [21] also used feature vectors, and recognition
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consisted of choosing the model that generated the smallest root mean square distance. Mase and
Pentland [44] used a sampling of their two functions (mouth opening and elongation functions, see
section 2.3) to create a vector used for input and model comparisons, and a match was established
with the model that gave the smallest weighted squared difference.

Another approach taken was the connectionist or neural network, found in Goddard’s work [24].
His representation consists of an ordered sequence of events which are coordinated by temporal and
motion events. A hierarchy is used: at low-level, the presence of a low-level feature triggers an event
which is sent to the layer above in the hierarchy. Combination of events at that level trigger other
events at yet higher levels, and so on, until the coordinated sequence of events of a body in motion
can trigger one motion model at the highest level. This is all done in a connectionist framework,
where the detection of a feature or an event activates one or more units, which might trigger units
at higher levels, up to the output level, representing the global motion of walking, running or
skipping.

Yamato et al. [75] took a probabilistic approach to the classification of different motions. They
used a sequence of symbols, one per frame, derived from a mesh feature at the image level, sequence
determining an intermediate-level representation. Sequences like these are used to train Hidden
Markov Models (HMMs), which in this case are symbol generating machines. Matching of an
unknown sequence with a model is done through the calculation of the probability that an HMM
could generate the particular unknown sequence. The HMM giving the highest probability is the
one that most likely generated that sequence.

Clustering techniques are very common and well documented, and since several methods use a
vector type of representation, the matching can be done in a fairly efficient manner. Other matching
methods will obviously depend on the type of representation used, and will thus vary accordingly.

2.8 Summary

A wide variety of representations are built from basic information extracted from an image sequence.
The most common kind of information is related to motion trajectories, as described in section 2.2,
which are usually simple to compute and interpret. Region-based features, like the mesh feature,
are more abstract and their interpretation is not as obvious. Optical flow was frequently computed,
often as part of a region-based feature. Features using graylevel image information are not as
common, might be more costly in space or computation, and must be able to cope with the inherent
noise involved. However the use of whole images and their intrinsic redundancy might capture some
subtle information that a small set of discrete features could not provide.

Some features are more appropriate for the motion of particular kinds of objects. For the motion
of rigid objects in a scene, trajectory representations are very useful: speed, direction, velocity, and
their time derivatives, curvatures. Region-based features were also reported, for instance codebooks
containing images of an object’s different shapes, and eigenvectors forming a basis for describing
an object’s shape. Features based on optical flow have also been used, like normal flow statistics.
With articulated objects like the human body, joint angles and angular velocity computations are
commonly used.

3 Motion Recognition

Relatively few papers encountered in the literature describe the whole process of recognition, from
the image sequence up to the recognized object or motion. Most of them only describe various
representations, without taking their system a step further by discussing ways to create a database
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of models and to index it for recognition or classification. Sometimes this step is relatively simple.
However, if the system is not designed to do so, it might be very difficult and/or costly to “add it”.
It is thus important to have this goal in mind when designing a recognition system.

The previous section was concerned about the two stages of recognition, namely motion infor-
mation extraction and representation, and the recognition/classification. This section will describe
indvidual recognition methods. Section 3.1 will examine methods whose purpose is to detect and
recognize the presence of cyclical motion. Sections 3.2 and 3.3 will discuss approaches that have
been designed for lipreading and hand gestures recognition, respectively. Motion verb recognition
and temporal textures classification will be discussed in sections 3.4 and 3.5. A summary will then
conclude this section.

3.1 Cyclic Motion Detection

The presence of cyclic motion in a sequence of images can reveal a lot about the object showing
that type of motion. A rigid object can perform a cyclic movement, for example a ball in a pendu-
lum motion, while an articulated object can perform much more complex motions. Furthermore,
different cyclic motions could occur concurrently with the same or with different frequencies and
phase relative to each other. The following three studies describe how cyclic motion is detected,
and in one case how this information can be used to recognize human motion.

Based on studies of the human visual system, Allmen, along with Dyer [3, 2] argue that cyclic
motion detection (1) does not depend on prior recognition of the moving object, i.e. cycles can
be detected even if the object is unknown; (2) does not depend on the absolute position of the
object; (3) needs long sequences (at least two complete cycles); (4) is sensitive to different scales,
i.e. cycles at different levels of a moving object can be detected. To study cyclic motion detection,
the authors use curvature as a low level description of motion. Given the three dimensional location
of a point over a long sequence, its path can be parametrized by a(t) = (z,y, 2), for all frames of
the sequence. k(t) is defined as the curvature at a(?). A cyclic motion of period At = 3 — ¢ is
detected if

|K(1) — k(L + AL)| < e, VL € [ty 13].

Only two cycle intervals are needed for detection. The two dimensional projection of three dimen-
sional paths are used, and it is assumed that if cycles occur in the projection, they will also occur
in three dimensional space. The definition of cyclic motion is further extended to rigid objects and
articulated objects (see [2]).

The authors used ST-curves recovered from the ST-cube representing the sequence of images
(section 2.2). Allmen [2] shows that if a solid object in a scene undergoes cyclic motion such that
the periodic motion is preserved under projection, the curvature of the ST-curves extracted and
corresponding to that object will be cyclic. The ST-curves are equivalent to a(t) defined above, and
the cyclic motion definition can be applied. To detect cycles, curvature scale-space was proposed
as a representation. For the detection of cycles, a modified version of a uniform cost algorithm was
used, in which a node is associated for every possible pair of features in the scale space, where the
features are defined to be local maxima, along with their left and right contours. A match cost is
determined with each node, measuring how different the two features are. The pattern with lowest
cost and which repeats over the sequence is the result of the match.

The advantage of curvature scale-space for cycle detection is that cycles are position invariant
and the curvature scale-space is position invariant as well. Another advantage is that it should be
possible to detect cycles at different scales: coarser cycles would appear at coarser scale, while finer
cycles could be detected at finer scale. However, due to the way the curvature is computed, points
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of sudden changes in the trajectory will create high and narrow impulses in the curvature function,
containing high frequency components that may interfere with lower frequency components. It is
not obvious how the two can be separated without getting rid of those impulses in some way [71].
It is not clear how Allmen and Dyer’s method is effective in doing so.

Polana and Nelson [56] also used a ST-cube to detect cycles. In their approach, the first part
consists of extracting a reference curve, as described in section 2.2. The reference curve is in fact the
approximate trajectory of an object, and simply provides the approximate location of the centroid
of an object in time. The frames are then aligned with respect to the centroid of the object,
such that it remains stationary in time. However, if the object presented some periodic motion,
for example a person walking, the motion of the legs and arms remains, which will create some
periodic graylevel signals over the image, especially around the centroid. The periodic motion will
be extracted from the graylevel signals using a Fourier transform. The periodicity measure ps of
the signal f is defined as the normalized difference of the sum of the power spectrum values at
the highest amplitude frequency and its multiples, and the sum of power spectrum values at the
frequencies halfway in between:
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where F is the energy spectrum of the signal f, and w the frequency corresponding to the highest
amplitude of the spectrum. Since the signal along any one curve may be ambiguous, the periodicity
measure must be computed for a number of reference curves of the same moving object, all parallel
to the original curve, and be combined together. To do so, a form of non-maximum suppression
was devised. Given n reference curves, the periodicity of the signal along each curve was calculated.
Each frequency w is then assigned a value P, equal to the sum of the periodicity measured from all
signals whose highest amplitude is w. The maximum value of this combined signal is taken as the
fundamental frequency, and its periodicity P is defined as the average of the periodicity measures of
the contributing signals. The periodicity detection is invariant to the magnitude of motion, speed
of activity, and is fairly robust in small changes in viewing angles. In this paper, linear motion
of the object (constant velocity, linear path) was assumed, but nonlinearly moving objects can be
handled by tracking objects given a coarse estimate of its initial location and velocity, to give a
reference curve that is not a straight line.

The authors go even further by describing a method for recognizing different periodic motions,
in an upcoming paper [54]. The overall periodicity measure described above is first used to refine
the segmentation of the moving object. A normalization procedure then produces a spatio-temporal
solid (ST-solid) that is invariant to spatial scale and translation, and invariant to temporal scale, i.e.
frequency. The motion models, represented by feature vectors, are then created using information
from this ST-solid. They are based on the computation of statistics based on the normal flow
direction and magnitude, and were described in section 2.6. The classification is performed using
a nearest centroid algorithm.

Tsai et al. [71] used the spatiotemporal curvature for cycle detection. As explained in sec-
tion 2.3, the trajectory of a point on an object that performs some cyclic motion is used to compute
curvature as a function of time. A median filtering is then applied to suppress high and narrow
impulses that can interfere with the detection of cycles; the DC component, i.e. the component that
doesn’t change with time, is also removed to avoid zero frequency impulses. An autocorrelation is
performed to emphasize self-similarity within the curvature function. A Fourier transform is finally
applied to that signal to detect the presence of cycles and their period: a high impulse indicates
the presence of cycles and their fundamental frequency.
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Both Allmen and Dyer [3] and Tsai et al. [71] used a curvature function as input, although
Tsai performed some preprocessing steps on the curvature function. Polana and Nelson [56] used
graylevel signals of the aligned frames as input. Allmen and Dyer use a uniform cost algorithm on
the scale-space of the curvature to detect cycles, while Tsai et al. and Polana and Nelson use Fourier
transforms to directly detect the frequency of cyclic motion. It seems reasonable and sensible to
use Fourier transforms to detect cyclic motion, and the Fast Fourier Transform algorithm makes
the process more efficient. Furthermore, it is more robust to uncorrelated noise. Motion-based
recognition from cyclic motion has been reported in Tsai et al. (see section 4.5.2) and Polana and
Nelson [54]. Their method provides good results on a variety of periodic motions. Furthermore, it
possesses several desirable invariances, for instance to spatial and temporal translation and scale,
and can handle small variations in viewing angle, varying image illumination and contrast, and
even some amount of background motion.

3.2 Lipreading

Humans have the very complex ability of interpreting facial expressions, gestures, even the so
called “body language”. Hearing impaired people further develop this ability since most of them
can perform some lipreading and/or understand sign language. Lipreading is a very difficult task,
especially since certain phonemes can appear visually identical (phonemes are minimal meaningful
units of sound from which two words can be distinguished). For instance, the phonemes “b”, “p”,
and “m” sound different but look the same when spoken [21]. Acoustically-based automatic speech
recognition (ASR) is still not completely speaker independent, limited in vocabulary and sensitive
to noise [21]. Combination of acoustic and visual speech recognition is one possibility to better
achieve lipreading capability. This section will describe several lipreading methods developed so
far; gesture interpretation will be discussed later.

In Petajan et al. [52], the lipreading task is performed by using the mouth opening area of a
speaker to create a codebook, as described in section 2.6. Tracking the nostrils in order to recover
the precise location of the mouth window, the mouth images were binarized, then thresholded, such
that only the mouth opening created a dark area. This large set of mouth images was reduced
by clustering to about 255 clusters. A representative of each cluster was stored in a codebook of
mouth images. The images in this codebook were ordered by increasing size of dark area, and
identified with an index value. Once the mouth images codebook has been created, an inter-cluster
distance table is computed, for faster computation during the matching process. The models of
spoken words (the spoken letters and digits from zero to nine) are stored and vector quantized.
Vector quantization replaces each mouth opening image of a sequence by the index of the closest
image in the codebook, thus creating a vector of indices representing the sequence. Recognition is
done by computing the distance between vector quantized word samples and every vector quantized
word model. The model with smallest distance represents the sample. Recognition without vector
quantization was also performed, by directly using the image distance measurements. Results were
actually better than with vector quantization. Combination of visual and acoustic recognition was
also tested, which increased the recognition rate as compared to the acoustic method. Results
were however divided as compared to visual recognition alone. The authors however believe the
combination of methods would probably produce optimal recognition performance.

Finn and Montgomery’s algorithm [21] uses distances between different points around the
mouth, in combination, to distinguish between different spoken sounds. Twelve dots were placed
around the mouth of a speaker and tracked during the experiments; a total of fourteen distances
were measured, and used as a feature vector. The data were normalized relative to time and overall
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amplitude of distance measurements. The recognition consisted of computing a total root mean
square value between two utterances: the model with smallest difference was considered the correct
model. Some optimization was also performed by using a weighted set of the distances contributing
the most to the recognition.

A different scheme was developed by Mase and Pentland [44]. They observed that the most
important features that affect mouth shape relate to the elongation of the mouth, and to the mouth
opening, affecting upper and lower lips. Using optical flow as described in section 2.3, the authors
came up with the specification of two principal types of motions of the mouth expressed as functions
with respect to time: mouth opening O(?¢) and elongation of the mouth E(¢). O(t) and E(t) are
computed in each frame, then smoothed and normalized to a fixed variance. Word boundaries were
taken to be times when O(¢) = 0, i.e. when the mouth is closed, and can easily be located on the
O(t) plots. Templates were used for recognition, and matching was performed, after a resampling
step that normalizes the time to speak one word (time warping). A sampling of the templates
was used for matching with a similar sampling of the data. A match was established between a
template and the data if the weighted squared difference between the sampled templates and data
was smallest among all templates. Because the data consisted of several contiguous words, the
templates were compared to data between each set of potential word boundaries.

In Martin and Shah [43], the authors use a sequence of dense optical flow fields around the mouth
of a speaker, which are then spatially warped, temporally warped, then correlated, for matching
with a sequence of optical flow frames. Spatial warping is used to locate the window containing
the lips of each model frame with each input frame. Each model optical flow frame is compared
to each input optical flow frame using a correlation procedure. The best match is found and the
location and match score are stored in a table. Temporal warping addresses the problem of one
speaker speaking faster or slower, from one time to the next or from another speaker, and it uses
the table created from the spatial warping step. The purpose is to find the best representatives of
a longer sequence so that model and input can be directly compared. This is done through Sakoe
and Chiba’s algorithm, which take the above table to be the adjacency matrix of a graph, and find
the best path through this graph [64]. This list of points of the best match are stored for the next
step. Correlation matching takes the average of the correlation values of the frames of the input
and in the best path, for each model, of the above procedure. The model with the highest average
is taken to be the one representing the input.

Kirby et al. [35] chose to express mouth images as a function of a fixed set of feature images.
This fixed set is the set of the eigenvectors of the ensemble averaged covariance matrix C (see
section 2.6). A spoken word made up of a sequence of P images can then be expressed as a
@ X P matrix of coeflicients computed with respect to the set of @ “eigenlips”. The recovery
of images in this way was performed, with very good results, except for some smoothing due
to the elimination of smaller scaled eigenfunctions. Although the main goal of this work is to
provide a low-dimensional vocabulary for the analysis and synthesis of lip motion and as a means
of compression for transmission, some experiments were done on word classification. Identification
of particular words in a sequence using spatial eigenfunctions was performed using a template
matching technique in order to find the minimal necessary number of coeflicients for correct match,
which was determined to be three. With temporal eigenfunctions, correlations were computed word-
wise, i.e. data used in constructing the eigenfunctions came from a single word. Each eigenfunction
was expressed as a one-dimensional function with respect to time. The values from the second
and third eigenfunctions were plotted against each other to create a “signature” graph, which the
authors estimate is distinctive enough for discrimination. However no precise method was described
for recognition using the signature graphs.
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Finn and Montgomery’s method [21] is the simplest, but the markers around the mouth are
not very practical: lip reading should be performed without any “clues” around the mouth, and
ultimately in real-time. Martin and Shah’s work [43] use dense optical flow as main feature,
and matching using correlation between every frame of the model and input sequences, which
is computationally expensive since the input needs to be compared to every model. Mase and
Pentland’s mouth opening and elongation functions are simple enough and address continuous
speech, but the difficult part, according to the authors, is to find the beginning of the first word.
Petajan et al.’s method [52] is interesting since when the codebook is complete, a distance table
is computed, which makes image comparison somewhat faster. However, the vector quantization
did not work as well as direct image comparison, so the number of codebook images might need
to be increased. Kirby et al.’s method [35] is also very nice, and has the advantage of reducing
tremendously the quantity of data for image transmission, by only transmitting a coeflicient matrix
for a sequence, as opposed to transmitting whole images. More extensive work on lipreading per
se is needed, but the authors provide a nice basis for such work. The biggest problem for any of
those methods is that of speaker dependence. Integration of both acoustic and visual inputs was
attempted by Petajan et al. [52] with better results. Finn and Montgomery [21] didn’t actually
experiment on combination of visual and acoustic input, but they discuss the possible contribution
of visual information to acoustic speech recognition.

3.3 Gesture Interpretation

Humans have the capability or can develop the ability to interpret gestures, and gestural languages
have been developed to allow hearing impaired people to communicate more easily. Systems built
for gesture interpretation might serve several goals. First, they could be used to develop a human-
machine interface for a more natural way to interact with humans; so far, the human had to learn
how to communicate with the computer. The inverse so far hasn’t been very successfull... Second,
efficient methods of data compression for image transmission need to be developed. Although the
era of visual phones is right around the corner (see [36]), actual bandwidths on the telephone
network cannot support real-time grayscale visual transmission: static images or very low image
transmission rates only have been achieved. For hearing impaired people, the possibility of using
visual phone to sign would be most useful, since it is the most usual and fastest way for them to
communicate. It was shown that the requirements in precision and resolution for American Sign
Language (ASL) are relatively low as compared to grayscale images. Sperling et al. [67] compared
several effective methods for creating compressed ASL images, for example using binarized images,
space and time subsampling of grayscale images, and outline images. A previous study shows that
moving light displays can successfully be used in ASL [53]. A temporal subsampling of ASL based
on event boundaries was reported in [50].

Methods devised for gesture recognition however are not as common as for compression and
transmission. One method uses color markers on a glove, which are tracked during the motion
of the hand, and from which three dimensional information is extracted, using a structure from
motion approach. This method is performed in real-time and is used to modify an image of a model
[14]. Another system, called Finger-Pointer, recognizes pointing actions and simple hand forms,
also in real-time, but needs stereoscopic image sequences to do so. It is used in the remote control
of computer-aided presentations [22]. The disadvantages are that color imaging is required in the
first case, and stereoscopic images necessary in the second. Two studies are described below, one
that automatically learns, tracks and recognizes human gestures and that performs in real-time,
and the other providing a simple data structure for representing and recognizing hand gestures,
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which also performs in real-time.

Darrell and Pentland present a new method for learning, tracking and recognizing human ges-
tures from a sequence of images [16, 17]. The method uses an automatic view-based approach
to build the set of view models from which gesture models will be created. The model views of
an object are built using normalized correlation. The first view is chosen by the user as one of
the images from a sequence. The object in the subsequent input images is tracked, and when the
correlation score r,, drops below a predetermined threshold, a new model view is created with
the current input image. This process is repeated until no more models are necessary. Once all
views of an object have been gathered, gesture models need to be created. A gesture is a set of
views over time. A gesture will be correlated with each stored view of the object (the hand), and
the score plotted, for each view, with respect to time. Several examples of the same gesture are
used, and the mean §,,(t) and variance 02(g,,(¢)) of the correlation scores with respect to model
view m will be used to represent that particular gesture g. The gesture models need first to be
adjusted to the same length, and this is done through dynamic time warping (DTW). To compare
a new input gesture, each frame of the new sequence is correlated with a model view and its score
determined. The score results for the whole sequence is plotted with respect to time. The same
process is repeated for all model views, and the score results for each model stored in a vector
r(¢). The input gesture will be compared to all gesture models. However since this new sequence
might contain several gestures, the cost of the optimal path of the DTW is defined differently, as
a function of §,,(i), 0?(gm(1)), i.e. the mean score and corresponding variance of view model m at
time 7, and r,,(7), the correlation score for model m at time j. The score of the model gesture is
the minimum of any of the partial sums that account for all time samples in the gesture:

i(g,r) = oglgnT' Cry
where 7" and 7" are the number of time steps in g and r respectively, and Cr; is the minimal cost to
align g[0,T] and r[0,¢] for 0 < ¢ < T'. The score is defined as 1/6(g,r). Such a score is computed
at each time frame for the new sequence, and for each model. The scores for each model can then
be plotted, and the peaks indicate a match for the model in the new sequence.

Davis and Shah [18] report a simple method for hand gesture recognition by tracking the
trajectory followed by each finger and using their motion as a basis for recognition. The direction
of motion and displacement of each finger was computed as described in section 2.3. The models
are constructed by averaging the direction and displacement information from several samples of
the same gesture; they are then stored along with the name of the gesture. A motion code is then
derived from this information: it consists of a five-bit number, each bit associated with a finger.
A bit will be set if motion of its associated finger is detected, and reset otherwise. This motion
code is used for matching in the following way: the model gestures are stored as an array of linked
lists of gestures. The motion code serves as an index for all gestures sharing a particular motion
code. The direction of motion and displacement, along with the motion code of an unknown gesture
is then computed, and the gesture will be compared only to those models with the same motion
code, with the use of thresholds. A finite state machine (FSA) is used to model a generic gesture.
A gesture is characterized by four phases: (1) static start position, for at least three frames; (2)
smooth motion of the hand and fingers until the end of the gesture; (3) static end position, for at
least three frames; (4) smooth motion of the hand back to the start position. The user must be
restrained however in following these four phases in order for a gesture to be properly modeled or
recognized.

Automatic interpretation of hand gestures is in a way more difficult than lipreading because
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the motion of the hand can become very complex. Darrell and Pentland’s system [16, 17] performs
in real-time on a special purpose image processing machine. Their method was tested with four
gestures, one of them almost always successfully recognized even when performed by different users.
On the other hand, Davis and Shah’s algorithm [18] represents very succinctly any gesture, and
yet produces very good results on a set of seven real image gesture sequences. Their method
also performs in real-time. Their use of a finite state diagram prevents the need for dynamic time
warping to align gesture sequences of different lengths, which was demonstrated in the experiments.
It is however very important to be able to find the correct bounds of each gestures, otherwise the
finite state machine might work asynchronously with the sequence and jeopardize the recognition
for the rest of the sequence. So far, the two methods devised were tested on very small set of simple
gestures and thus have very limited scope. The problem remains on how to design a system that
can work with a large “vocabulary”, not so simple gestures, and remain user independent.

3.4 Motion Verb Recognition

Motion verb recognition deals with the association of natural language verbs with the motion
performed by a moving object in a sequence of images. Artificial intelligence and machine vision
are thus combined to provide us with a natural language description of scene motion. Badler [5]
and Neumann and Novak [48] did some initial important work in motion verb recognition.

Koller, Heinze and Nagel [37] describe a method which automatically characterizes the trajec-
tories of moving vehicles using natural language motion verbs. Association of a motion verb to
trajectories of those candidates is done using an artificial intelligence type approach. A set of 119
verbs with 67 different definitions which apply to vehicle motion were extracted from a German
dictionary. Those verbs were divided into four categories: verbs describing the action of an agent
(vehicle) only; verbs which make additional reference to the road; verbs which make additional
reference to other objects; verbs which make additional reference to other locations. Another sub-
division discriminates between inchoative verbs, durative verbs and resultative verbs, i.e. verbs
describing the beginning, middle and end of a motion event. Attributes are computed from the
sequence, which help describe more precisely the trajectory segments, the position of a vehicle with
respect to the street or other objects, its orientation, velocity, etc. A total of 13 such attributes
were defined. In addition, for all verbs there exists a set of 3 predicates, whose truth value is
determined at each time instant: (1) a precondition, which is true if some predefined attribute
values are within the expected range at the beginning of an interval of validity for a verb; (2) a
monotonicity condition, which indicates if the direction and amount of change of associated at-
tributes remain acceptable; (3) a postcondition, indicating if attribute values are within the range
expected at the end of an interval of validity for a verb. An interval of validity is the time period
for which a particular interpretation is true, and depends on the truth values of the predicates. A
finite state automaton is used to determine intervals of validity. The transitions from one state to
another depend on the predicate values, i.e. monotonicity, pre and postconditions. The algorithm
can successfully determine the motion verb most appropriate for an object in a frame interval.

The goal of Tsotsos’” work [72, 73] was to build an artificial intelligence system, called ALVEN,
capable of using motion information to recognize normal and abnormal behavior of a heart’s left
ventricular motion. When the heart is impaired or damaged, abnormalities occur regionally, and
different segments of the left ventricle (LV) often behave differently. Furthermore, some evidence
indicates that if a segment is damaged, other segments may overperform, thus creating a new
behavior on other segments too. The authors used a semantic net representation with frames, type
hierarchies, inheritance and exception handling, as the basis of organization of their knowledge-
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base. Based on previously released studies, natural language semantic components were developed
to describe motion concepts using English motion verbs.

In patients that were receiving corrective heart surgery, nine markers were implanted on the LV
wall, roughly in the same plane, and two clips were attached to the aorta, which served as reference
points. Cineradiography was performed in a follow-up examination. The assessment of the left
ventricular motion is based on the velocity profile of its wall segments, using location changes of
points, length changes of axes and perimeter, area and shape variations. The extent, velocity and
acceleration of contractions must be measured, and processing is done frame by frame. The wall
is divided in three segments: the anterior, posterior and apical segments. The image sequence was
divided into two phases, the expansion phase or diastole, and the contraction phase or systole;
each phase was further subdivided into subphases. For the normal case, those different phases were
characterized by assigning them different time “constraints”: minimum start time, maximum end
time, minimum/maximum duration, minimum/maximum rates of contraction. Each constraint
has exceptions associated with it: too short/long (duration of event), too fast/slow (rate of area
change) and too late/early (time slot in which the motion was recognized with respect to the LV
cycle). Abnormalities such as asynchrony, hypokinesis and diskinesis were defined, among others.
ALVEN provides a summary describing the dynamics of the LV as a whole, and if necessary, at the
segment or even at the marker level, with their associated quantities, for verification or for precisely
locating reasons for an abnormal summary description.

Both methods describe systems that are very interesting because of the interaction of computer
vision an artificial intelligence, for the description of the motion of vehicles at an intersection or
the behavior of the left ventricle of the heart.

3.5 Temporal Textures Classification

In their paper, Nelson and Polana describe how the movement of the ripples on water, the wind in
the leaves of trees, a cloth waving in the wind, can be classified [47, 55]. Those motions, referred
to as temporal textures, show complex and non-rigid motions. The term temporal texture is used
to emphasize that the motion patterns are of indeterminate spatial and temporal extent. Different
features based on optical flow fields, when combined together, provide enough information for
classification. The four features chosen were the mean flow magnitude divided by its standard
deviation, the positive and negative curl and divergence estimates, the non-uniformity of flow
direction, and the directional difference statistics in four directions. They are based on optical
flow fields, and were described in section 2.6. The feature values are arranged into a vector, and
the authors used, for classification, a nearest centroid classifier. Three sequences were used to
compute the cluster centers, i.e. train the classifier, while using a fourth one as the unknown.
Nomne of the single features is sufficient, alone, for correct classification. However using curl and
divergence estimates along with the directional difference statistics in four directions provide enough
information to correctly classify all motions used in the experiments. A principal component
analysis of the features was also performed, which also confirmed the relative importance of those
two features.

Because Polana and Nelson’s algorithm seems to use all the data from all the frames of a
sequence, this method looks computationally expensive, but it might be necessary to provide the
stability and invariance needed for a good classification.
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3.6 Summary

Recognition schemes for objects and motions were described in this section. Cyclic motion de-
tection and recognition were discussed, along with lipreading, gesture interpretation, motion verb
recognition and classification of temporal textures. Among those studies, several are very versatile.
Tsotso’s framework could be modified for use with different types of images for different diagnostic
tools, for instance arrythmia interpretation from electrocardiograms, or foetal aortic valve function
evaluation using ultra-sounds [72, 73]. Petajan et al.’s codebook of mouth openings [52] and Kirby
et al.’s eigenlips [35] could be easily generalized for other types of objects, perhaps even articulated.
Although a framework general enough for all sorts of applications has yet to be found, some of the
methods described here have a great potential for a large range of use.

4 Human Motion Tracking and Recognition

This section will be concentrating on methods designed to recognize human motion. There are
several ways to view this task. The first one is to recognize the action performed by a person in a
scene, among a database of human action models, in a way similar to what was described in the
previous section. The second way is to be able to recognize the different body parts like arms,
legs, etc. throughout a sequence, using motion. This approach is referred to here as labeling. The
third way is to define motion as a sequence of object configurations or shapes through time. The
knowledge of the shape and motion of an object, in this case the human body, is used to guide the
interpretation of an image sequence in order to analyze the motion between frames, to determine
the most plausible configuration of the body or to recognize and label different parts of the body.
This approach has been used mostly with humans, and is called here tracking of human motion.

The modeling of the human body and of human motion is an important step in body labeling
and tracking. A good model should allow the system to easily recognize a human body and any
of its postures, i.e. all allowable positions of its parts with respect to each other, yet be simple
enough to minimize the number of parameters necessary to represent the body adequately. This
kind of balance is seen between the volumetric models and the stick figure models, and they will be
described in section 4.1. Section 4.2 will describe how the walking motion has been modeled, i.e.
what kind of qualitative and quantitative information is necessary for good tracking. Section 4.3
will describe two pieces of work for body labeling in a sequence, while three dimensional tracking
methods will be examined in section 4.4. Section 4.5 will be concerned with the recognition of the
different motions that can be performed by a person, and how it is possible to discriminate between
different persons performing the same action.

4.1 Modeling of the Human Body

To properly study human motion, good body models must be defined. The models differ somewhat
if they are used for body parts labeling or for tracking. Stick figure models and volumetric models
are used for three dimensional tracking. In the case of labeling, only the projection of three
dimensional models have been used in the methods that will be described below.

The stick figure model consists of segments usually connected at their endpoints and representing
the body. This model can thus be seen as a skeleton (taken in a computer vision sense) of a human
body and can be as detailed as necessary. Akita’s model [1] consists of six segments: two arms,
two legs, torso and head. However no joints are explicitly defined. Lee and Chen’s model [39, 12]
contains fourteen joints and seventeen segments. The joints are left and right shoulders, elbows,
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wrists, hips, knees and ankles, plus a pelvis and neck joint. The segments are the left and right
lower legs, thighs, forearms, upperarms, plus the segments joining the two shoulder and the two
hip joints, the neck with each shoulder joint and with the pelvis joint, and finally the pelvis joint
with each hip joint. The torso is formed by the neck, shoulders and pelvis joints, and the hip part
is formed by the pelvis and hip joints. Both torso and hip parts are assumed rigid. Six additional
points characterize the head, but they are only used in a camera calibration step. The length of
each segment is also given. Tracking with such a model consists of finding the location in space of
each joint and the three dimensional angle between each pair of contiguous segments. Parameters
used are the segments’ length and location in space of their extremities.

Stick figure models can be described using only a few parameters. In the case where the
trajectory of each joint is given, as in MLD studies, and the connectivity is known in advance,
then the segments are implicitly given. If the connectivity is not known, or if the only available
information is a set of point locations in each frame of a sequence, then some intermediate steps
are needed to determine the connectivity. Rashid tackled this problem with his system, called
Lights [61]. Lights was provided with the location of a set of points on one or more object in each
frame of a sequence. It could track and cluster points belonging to independently moving objects.
Within a cluster, the relative motion of object points was also analyzed, and groups representing
independently moving subparts were segmented.

A problem with stick figures, in general, is that depth is difficult to judge from an image
sequence. Occlusion and disocclusion helps in depth evaluation; since line segments cannot occlude
one another, depth cannot be determined [6]. If the three dimensional location of the endpoints of
the segments are known, then it can be determined which segment is closer to the observer.

Volumetric models are intended to better represent the complexity of the human body. Gener-
alized cones are the most commonly used models. A generalized cone is the surface swept out by
moving a cross-section of constant shape but smoothly varying size along an axis [42]. However the
volumetric models described below all use generalized cones restricted to having a cross-section of
constant shape and size, and are called generalized cylinders. The cost for better representation is
an increase in the number of parameters in order to describe the cylinders and their degrees of free-
dom. Usual parameters are thus the length of the long axis along with the radius of both major and
minor axes, the location of the origin of the local coordinate system, and the transformation matrix
relating the local coordinate system to the coordinate system of contiguous (connected) segments
and/or to the origin of the model. The model proposed by Marr and Nishihara [42] consists of a
hierarchy of cylinders, starting with a unique cylinder describing coarsely the size and orientation of
the body. This overall model can be refined using a collection of component cylinders representing
the different body segments, giving more detailed information about the spatial organization of the
human shape. Each component cylinder is attached to another cylinder and its location in space
defined relative to the principal axes of the model, in this case of the torso, by predefined relations.
Marr and Nishihara specify those relations using cylindrical and spherical coordinates, which they
called adjunct relations. One axis is determined relative to another by specifying the location of
one of its endpoints in cylindrical coordinates with respect to the other axis, then specifying its
orientation in spherical coordinates. The model has the advantage of being as refined as needed.

In O’Rourke and Badler’s work [49], the model has a well-defined structure, consisting of seg-
ments and joints. Segments are defined as abstract rigid bodies with an associated embedded
coordinate system. Fach segment may have a number of joints at fixed locations in its coordinate
system. A joint is a unique point joining two segments. The model is made up of 24 segments and
25 joints. The “flesh” is modeled by a collection (about six hundreds) of spheres located at fixed
positions within a segment’s coordinate system. The model includes constraints on joint angles,
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and a collision detection method for non-adjacent segments.

Hogg’s body model [28] follows Marr and Nishihara’s. The prior information relates to the
three dimensional shape and structure of the body, which is modeled by a set of fourteen elliptical
cylinders representing the feet, legs, thighs, hands, arms, upperarms, head and torso. Each part is
defined by its length and the size of the major and minor axes of the cross-section. The origin of
the coordinate system of a part is the center of its corresponding cylinder, and its principal axis X,
Y and Z are running to the left, top, and forward. Relative position of body parts is determined
using geometric transformations that carries the coordinate axes of one part onto the other. The
connection between parts is done explicitly; the joints between parts are specified in terms of the
parts it connects, and a geometric transformation that defines the position of one part relative to
the other. The transformations are composed of a translation from the origin of the first part to
the joint, followed by a rotation to align the axes of both parts, then a second translation to overlay
the axes.

Rohr [62, 63] also follows Marr and Nishihara’s model, and his model also consists of a set of
fourteen elliptical cylinders. Fach cylinder is described by its length, and the size of the major
and minor axes of the cross section. The coordinate system is aligned with the natural axes; the
origin of the whole body is the center of the torso. Transformations between different coordinate
systems are done through transformation matrices using homogeneous coordinates. The absolute
size of the body parts is used and includes clothing. The author argues that the most usual way of
seeing people is when they are clothed, so the parameters of the body should be representative of
that fact.

One way to represent the projection of a human body in an image plane is to model it as a
collection of ribbons or of antiparallel lines, also called apars (a special case of a ribbon). The body
is actually modeled by the regions enclosed in the ribbons. In Leung and Yang’s work [40], the
body is represented as a collection of six apars (two legs, two arms torso and head). The relative
location of each segment is of little importance; more weight is given to the width and length ratios
between each segment, and the length/width ratio of the head. No precise description of each body
part is necessary.

There is a reasonable equilibrium to be attained between the ability of the model to truly
represent the body, and its simplicity, i.e. the number of parameters necessary to represent it.
Obviously, good models are nicer to the eye, while simpler models might seem crude, but the
overhead generated by the “nice” model might not be worth the trouble. Generalized cylinders
are a good middle ground and are often used. Stick figures are simpler and could lead to faster
implementations, but are not as interesting.

4.2 Modeling of Human Motion

Human motion can be modeled using joint angles. Joint angles have been extensively studied in
physical medicine; reference [46] provides an extensive study of gait parameters for a group of
normal and some abnormal subjects, as well as a bibliography on human gait. Joint angles are
more formally expressed as flexion/extension, abduction/adduction and rotation angles. Flexion
occurs when two body segments change their relative position such that the angle formed between
them decreases; for example, bringing the thigh up toward the abdomen is a hip flexion. Extension
is the return from flexion, i.e. when the angle between the two segments increases. Abduction
(adduction) is the movement of a body segment away (towards) the midline of the body or of the
body part to which it is attached. An example of abduction at the shoulder is the movement of
the arm up from its original position; bringing it back would be the adduction of the shoulder
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joint. Rotation occurs when a segment rotates about its longitudinal axis, for instance rotation of
the head left or right with respect to the spine. Joint angles are usually expressed relative to one
walking cycle, which is defined as the time interval between successive instants of contact of one
foot to the floor, for the same foot. The forward motion has been shown to be almost constant
within a cycle, while the vertical displacement of the head is relatively small considering the global
motion. From the study above, normal locomotion is characterized by a smooth forward translation
of the trunk and rythmicity in the length of successive steps, as well as in the duration of successive
temporal components of the walking cycle. In patients impaired in some way in their walking, the
smoothness and rythmicity are not necessarily present.

References [29, 33, 57] describe some systems aiming at the computation of the characteristic
parameters of normal and abnormal walking motion, and which can be used to generate motion
models for vision systems. The common systems use a set of cameras to track the displacement
of markers placed on the limbs of a person, including at the joints, and from which the three di-
mensional location of the markers can be recovered. Others use more direct measurement devices
like electrogoniometers, which directly assess joint angles, but require a more elaborate equipment
attached to the subject that might slightly modify the motion and thus produce artifacts. FElec-
tromyographic data, to assess muscle activity, is sometimes used in addition to the above data.

In the computer vision field, the joint angles plotted in time (joint curves) for one walking
cycle are used as a walking motion model for humans. They provide sufficient information for
the determination of the posture of a person, i.e. the relative position of each body segment,
throughout the cycle. Not all of the possible angle curves are used: the most common are the
hip flexion/extension and the knee flexion/extension curves, along with the shoulder and elbow
flexion /extension curves. Those angles curves can be used in two ways. First, given a particular
time with respect to the walking cycle, the angles of all the joints above can be determined;
conversely, given the angles at several joints, the time within the cycle can be estimated. Those
angle curves are a very useful tool for modeling human walking motion. Other type of information
can also be extracted to provide additional knowledge, for example constraints on possible angles
for each joint, along with constraints on angular velocities. This kind of information could reduce
the search space during tracking by constraining the possible angles and angular velocity between
frames.

Hogg uses flexion/extension curves for the left hip, knee, shoulder and elbow joints in his
walking model [28]. Those curves were generated by hand using data from one walking subject.
Each curve is defined as a periodic cubic B-spline specified by nine control parameters, and is seen
as an idealized joint curve. Each curve gives an angle, in degrees, as a function of the walking cycle,
represented by a parameter called PSTR varying from 0 to 1. The beginning of a cycle (PSTR
= 0) corresponds to the left leg stretched forward and right leg stretched backward, and a PSTR
value of 0.5 means the body is halfway through the cycle. The walking motion on the right side is
assumed symmetrical with respect to the left side, and the angle value for the right knee at PSTR
= 0 hence corresponds to the angle value of the left knee at PSTR = 0.5. Given a value for PSTR,
the eight joint angles can be extracted and a body posture can be determined. In Hogg’s method,
the world coordinate system has its origin on the ground plane. The X — Z plane is parallel to
the ground plane, and the Y axis is vertical. A geometric transformation connects the torso to the
world. A parameter, T RS_B, determines the direction of motion of the body relative to the ground
plane, and is actually a rotation about the vertical axis Y. A parameter called SPD represents
the speed of the body in that direction. Parameters TRS_X and TRS_Z determine the position
of the torso with respect to the ground, and their time derivative is a function of both TRS_B
and SPD. Constraints on the values of PSTR, TRS_B and SPD and their time derivatives can
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be used to restrain the search space in the next frame. For example, knowing the current PSTR
parameter and its time derivative range, the PSTR value for the next frame can be evaluated.
Constraints on S PD and the derivatives of PSTR or TRS_B are given in advance. Assignment of
values to the joint angles, the speed and direction of the body model, in a frame, defines its static
representation, or posture. A set of such assignments, one for each frame of a sequence, defines a
motion. A particular motion, like walking, is specified by placing constraints on the parameters of
the model and their time derivatives. This set of constraints associated with a particular model
and motion is called the model constraints.

Rohr [62, 63] also uses the flexion /extension curves of the hip, knee, shoulder and elbow. How-
ever, the curves originate from the data of a study on the gait of sixty men [46]. Each curve is the
result of taking the joint angle at ten time instances within a walking cycle, and smoothing them
by using periodic cubic splines. Rohr is the first to use kinesiological data as a basis for a walking
motion model. He also uses a parameter called pose, similar to Hogg’s PSTR, i.e. it represents a
time instance within the cycle such that given pose, all joint angles can be found, and vice-versa.

More specific knowledge about the walking motion has been used by Chen and Lee [12]. They
defined five rules pertaining to walking. The first two general rules are that (1) the two arms (legs)
cannot be both in front of behind the torso simultaneously, and (2) the arm/leg pair on the same
side of the body cannot swing forward or backward at the same time. Three other more stringent
rules are also defined: (3) when the shoulder and elbow joints on either arm swing, they must do
s0 in a cooperative manner (a similar rule applies for the hip/knee joints); (4) the trajectory plane
on which the arm or leg swings is generally parallel to the moving direction; (5) at any time, there
exists at most one knee having a flexion angle. Moreover, when there is such a flexion in one leg,
the other leg stands nearly vertically on the ground.

A different approach for the modeling of motion was taken by Akita [1], who used a sequence
of stick figures, called key frame sequence, to model rough movements of the body. Key frames
were used traditionally in animation, where they provided the essential frames of a sequence. They
were created by “master” animators, while the frames in between those key frames were filled-in
by other animators [6]. In the case of Akita’s work, the key frame sequence consists of an ordered
sequence of stick figures, each differing from its predecessor and successor such that a body segment
has crossed or uncrossed another body segment. The key frame sequence is determined in advance
and referred to in the prediction process. Both Rohr and Hogg used keyframes in early versions of
their work, but discarded this motion model in favor of the model based on joint angles from real
humans, as described above.

4.3 Recognizing Body Parts

The main goal of the methods described here is to track and label each region of a body performing
some action. The tracking consists of determining the location and shape of body parts, from frame
to frame, while labeling involves identifying them. The movements performed are arbitrary.
Akita [1] used a key frame sequence of stick figures to approximately predict the location of
a body part with respect to the other part, in the current image. The actual body is modeled
using generalized cones. However, as far as the paper is concerned, only their projection on the
image plane is used. The recognition of the parts is done is the following order: legs, head, arms
and trunk. The author feels that the legs are the most “stable”, i.e. more prominent and easier
to recognize, while the trunk is the least prominent, because of its frequent change of shape due
to occlusion. The legs are determined by finding the position of the inner and outer boundary
pixels of each leg, using the original gray-level image and a binary edge map image. The head is
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then detected using the predicted region estimated from the previous image along with the head
diameter. The arms are then detected and labeled: all pixels outside what is estimated as the
trunk’s side lines and that don’t belong to the legs or the head are arm pixel candidates. Their
boundaries are determined at a later stage. The outline pixels from the estimated trunk region
are labeled as trunk. When occlusion occurs, the authors devised a method in which difference
images are used in order to find the precise outline of the body parts. The determination of legs,
head, arms and trunk parameters is performed at every frame. Correspondence between frames is
established using one of two methods. When the position change of a segment is small enough, its
position can be predicted from the previous frame, using window code distances, which are defined
in the paper. If window codes cannot find a correspondence, then the key frame sequence is used
to find the current posture of the body. The position of the body parts is then recomputed.

In this method, the body structure must be known in advance, along with the key frame
sequence of stick figures. The problem with this model is that the key frame sequence only gives
us information about the relative position of the body segments, thus no temporal information is
available from that representation; it cannot be predicted when a segment will cross another in the
image sequence, nor the time (number of frames) between those events. Only the order in which
the events will occur is given. The authors never mention explicitly how constraints on the body
parts are computed and used. The authors do not show how the feature points or characteristic
points are chosen for correspondence with window codes. Also, the computation of velocity and
acceleration is not defined.

Leung and Yang [40] also tackle the problem of body labeling in a sequence of images. In a
concurrently released paper [41], the authors described a segmentation method, using difference
images and past history. The advantage of difference images is that motion can be localized to a
particular portion of the image, therefore focusing attention. History referencing handles the case
where no current motion is detected for a region, but where motion was detected, for that same
region, in the previous frame. These regions where motion previously occurred are added to the
current segmented picture.

The process is made up of two steps: region description and body part identification. The region
description process abstracts the segmented image from the segmentation algorithm, to extract the
antiparallel lines (apars) that will be used for labeling. An oriented line estimation of the region
boundaries is first performed. An apar detection is performed, followed by a growing procedure
which recursively finds new pairs of antiparallel lines and concatenates them to the current apar.
More processing is done on the detected apars in order to delete unwanted ones or concatenate more
apars, according to some heuristics defined by the authors. Finally, apars are selected according to
the following: (1) if they have been concatenated; (2) if the ratio length/width > 1; (3) if they are
moving apars closed at either or both ends.

The labeling is performed in three steps. The first will, according to some constraints, map
potential apars to the model. The constraints are that (1) the width ratio of arms, legs, head and
trunk is approximately 1:2:2:4; (2) the length/width ratio of the head smaller than 1.2; (3) if a pair
of apars are labeled as arms or legs, they must possess similar intensity distribution; and finally (4)
the width of the trunk is a bit larger than twice leg width. These heuristics have been determined
experimentally. After labeling the apars, the choice for the best representatives is done by assigning
weights that reflect the likelihood of an apar to be one of the six body apars. The choice of the 6
body apars is done by: (1) interval partitioning, which partitions the apars in 3 groups with width
ratios 1:2:4; (2) pairing (for legs and arms), to associate apar pairs in a same interval according
to the constraints mentioned above; (3) selection process, which determines the most appropriate
apars to represent the model. The arms are the two pairs with highest total weight of the first
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interval. The legs and head, both from the second partitioned interval, are chosen next, again with
highest total weight. The trunk is the apar with highest weight of its category, but its width must
be twice that of the legs.

Both Akita’s and Leung and Yang’s works are to label body parts in a sequence of frames. Both
use a similar body model consisting of six body parts; Leung and Yang however use a collection of
apars bounding a region, while Akita uses generalized cones (more precisely their two dimensional
projection) to describe the regions. In both cases, length and width of each region needs to be
computed, as well as the axis in Akita’s case. As mentioned previously, Leung and Yang’s approach
is more dependent on predefined thresholds. Akita’s method seems more sound: the key frame
sequence is a good idea for rough representation of motion, although no temporal information
can be extracted from it. Both works involve labeling of body parts, and Akita’s also include
correspondence in successive frames. Another advantage of tracking is that computation from frame
to frame can use current information, which is done in Akita’s work through window codes. In
Leung and Yang’s work, the labeling process seems to be repeated at every frame; use of the current
information to predict even a rough position of the body parts might be more cost effective than
total recomputation. Akita’s work explicitly addresses the problem of occlusion of body parts: its
key frame sequence is based on occlusion events, and a method is described for occluding/occluded
parts. Leung and Yang’s implicitly address the problem in their segmentation algorithm. Both use
difference images for that purpose. Akita’s work, to our opinion, is simpler yet more complete than
Leung and Yang’s, which depends too much on thresholds that might vary eventually with every
person. However Akita’s work need more a priori information; the motion must be known and be
explicitly described with the key frame sequence.

4.4 Three-Dimensional Tracking

Three-dimensional tracking consists of determining the sequence of three dimensional positions of a
body, along with its posture, i.e. the relative position of its parts, from the frame by frame analysis
of a sequence. The object, in this case a human body, is modeled using stick figures or generalized
cones. The analysis of a frame provides the information necessary to update the posture and
position of the body model in space. The validity of the updated model is verified by comparing
its projection on the image plane with the object in the sequence. An initial estimate of the body
model’s position in space needs to be given or determined in order for the frame by frame analysis
to be used subsequently. This step is performed in different ways for the systems that will be
described. Section 4.4.1 will describe a system using a stick figure model, while section 4.4.2 will
describe systems where volumetric models were used.

4.4.1 Tracking with Stick-Figure Models

The goal of the work done by Chen and Lee [12, 39] is to find the sequence of three dimensional
body configurations (postures) of stick figures which, when projected on an image plane, would
give rise to the image sequence, given the set of end point positions in each frame. The first part
consists of finding all possible three dimensional configurations for each frame. After this is done,
the task is then to find the best sequence of configurations.

The structure of the model consists, as mentioned in section 4.1, of fourteen joints and seventeen
segments, plus six more feature points on the head. The three dimensional length of all segments
is given, along with the relative three dimensional location of the 6 head feature points. Using
those six feature points, the transformation matrix from body coordinate system into a camera
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coordinate system is determined. After the location of the head features are determined in camera
coordinate system, the location of the joints of the body model can be recovered from joint to joint,
using the given segment lengths. It was shown in [39] that there are generally 2 possible solutions
for the three dimensional coordinates of a feature point serving as the end point of a segment, given
the three dimensional location of a start point and the length of the segment. The set of joints are
represented as a tree with the known neck joint serving as root. The nodes at each level represent
the possible three dimensional locations of a joint. Fach node has two successors corresponding to
the two possible solutions, except for degenerate cases where there is only one solution. A path
from the root to a leaf determines a body configuration or body posture. However, among those,
quite a few are not allowed because of body constraints. Knowledge of physical constraints and
motion constraints are used to prune this tree.

Physical constraints comprise angle constraints, distance constraints and collision-free con-
straints. Four categories of angles are associated with the body joints: flexion/extension, ab-
duction/adduction, rotation and bending (lateral flexion). The ranges allowed for each joint are
precisely defined in [39], for each of the categories above. Distance constraints are used in particular
to recover the coordinates of the joints. Collision-free constraints imply checking if arm segments
penetrate the torso, and whether arm and leg segments collide with each other. Angle constraints
are not sufficient to limit the body configuration that are valid for the walking motion. A set of
rules has been defined for this purpose, and they can be as general or as stringent as one needs.
These were defined in section 4.2. If a configuration does not satisfy those rules, it will be rejected.

The normal movement during walking is a smooth and continuous motion. In this study, this
movement is considered as a collection of smooth and continuous angular motions of all body
segments, which is expressed as a nearly constant angular velocity, or equivalently a close to null
angular acceleration. For a configuration {X;} in frame ¢, the position of each joint is used to
compute the relative translational velocity V of segments between two consecutive frames. The
relative angular velocity w4z and acceleration a—z of segment AB are also computed. An angular
acceleration function associated with body configurations x;, 2,41 and z;42 was defined as:

J(2i, i1, Ti42) = Z |aﬁ($i7$i+17$i+2)| )
AB

i.e. the sum, over all segments, of their angular acceleration. The overall angular acceleration
function over N frames is defined as:

f(z1,29,...,2n) = fi(zr, 29, 23) + fa(2o, 23, 24) + ... + fy_2(eN—2,Z2N_1, ZN).

So finding a smooth motion is done by minimizing the function f(z1,...,zy), which is solved as a
graph search problem.

In this method, the relative three dimensional location of the head points are necessary at every
frame in order to compute the transformation matrix for the camera coordinate system and then
determine the rest of the joint locations.

4.4.2 Tracking with Volumetric Models

Tracking with volumetric models is more complex because of the increase of the number of pa-
rameters required to represent the model itself. The body models consist of a cylinder for each
hand, arm, forearm, foot, leg, thigh, trunk and head. The three dimensional position of the body
model and the relative position of its segments (its posture) must be determined in each frame.
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The posture is parametrized by a parameter, PST R in Hogg’s work, pose in Rohr’s (PSTR and
pose are the same), ranging from 0 to 1. In both, this parameter is determined and plotted as a
function of the frame number, along with its position with respect to the world coordinate.

Hogg

In Hogg’s work, the three dimensional body model described in section 4.1 is used to estimate
the three dimensional motion of a person seen in an image sequence. A frame analysis will provide
an estimate of the person’s three dimensional position and posture. As mentioned in sections 4.1
and 4.2, the body model uses a set of cylinders to represent body parts. Each cylinder is determined
by the length of its axes and the center of its coordinate system. The relative position between the
parts are defined explicitly by geometric transformations. Important parameters are PST R, speed
SPD and direction of motion TRS_B. Assigning a value to each parameter of the body model
defines its posture, and a sequence of such assignments, one for each frame, specifies a motion of the
body. The purpose here is thus to find the set of assignments to the parameters that satisfies the
constraints that define the walking motion for that model. The system will track, i.e. will estimate,
at each frame, the best parameters and verify that the projection of the body model on the image
plane fits with the person seen in the image sequence.

The tracking at each frame is done through a function called TRACK. TRACK uses a function
called SEARCH, which searches the optimal parameter assignments for the current image. The
parameters chosen for the previous frame, along with the model constraints, define a range of
possible postures for the current frame, which is a subset of the model constraints. This subset will
be searched in order to find the best set of parameters. Box constraints are used to simplify the
process, i.e. constraints are partitioned into sets of closed intervals. An evaluation function will be
given representatives of those intervals, and the result used as part of a plausibility function. The
evaluation function takes a set of parameters and determines if the model it defines is plausible.
All the possible combinations of parameters will be evaluated. The plausibility of the model is
computed by projecting the model on the image plane and matching its projection with the actual
edge features of the image. If a good match occurs, then the instantaneous description will be
highly plausible. The plausibility EVAL of the model is defined as the sum of the plausibility of its
parts:

EVAL =) w;x PEVAL,

where >, w; = 1 and PEV AL; is the plausibility of the ¢’th part. The weights are given beforehand,
and relate to the confidence we have on each part’s assessment. For instance, more weight has been
placed on the legs than on the arms because the latter are more often obscured by the torso.

The global search is organized in the following way: all possible positions of the torso are
generated. For each torso position, an independent search for each limb is performed, in order to
find the optimal limb positions relative to the torso. Combining the evaluation for each limb with
of the torso and head provide the optimal plausibility of the entire model relative to the position
of the torso. This calculation is repeated for all possible torso positions, and the model with the
highest plausibility value is then chosen as the posture or configuration for the current frame. The
whole process is then repeated for the next frame, and so on.

When strong constraints already exist, SEARCH is the best method to provide the best config-
uration. But when the search domain is too large for SEARCH, as in the first frame of the sequence
when no previous information restricts the position of the body within the scene, and the PSTR
parameter is unknown, two alternate functions are described, HSEARCH and DIFF, which will
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provide estimates of the parameters that will be used subsequently by SEARCH.

Rohr

In Rohr’s approach, the body model consists of fourteen cylinders with elliptical cross-sections,
as described in section 4.1. The motion model uses joint angle curves based on walking motion
studies. The method comprises two phases. The first phase, called the initialization phase, provides
an estimate for the posture and three dimensional position of the body using a linear regression
method; the second phase, starting with the estimate from the first phase, uses a Kalman filter
approach to incrementally estimate the model parameters.

The initialization phase analyzes the first ten to fifteen images in order to obtain starting values
for the next phase. Image analysis consists of the segmentation into moving and non-moving
regions, using a change detection algorithm. The fits are compared from frame to frame, and the
image points where change occurred are marked. A rectangle surrounding the marked pixels is
determined, along with the outline of the moving object and the velocity field. An estimate of the
three dimensional position, using this enclosing rectangle and an assumption about the height of
the pedestrian is found by solving a system of linear equations. For a better estimate of the three
dimensional position and the determination of the pose parameter, model contours are matched
with image edges. Edge points in the image are linked using an eigenvector line fitting algorithm.
For each projected model contour, i.e. for the projection, on the image plane, of each contour of
each body part, an enclosing window is determined, and the line fitted edge points inside this
window will be used in a similarity calculation. The similarity involves computing the length [; of
the projection of the fitted edge on the model contour whose length is lps;, its angle Ag¢; relative
to the contour, and the distance d; between the midpoint of the edge (inside the window) and its
corresponding projection on the contour line:

1= 1) d? Ag?
si=1i ®q>(—5'(£2£;7_l‘+‘ >t 2 ))7

I 04, OAg

where oy,, 04, depend on lj; and o4 is constant. The overall similarity between the model edges
and the graylevel edges is the sum of s; for all visible model edges, normalized by the sum of
corresponding values [jy;:
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The model’s pose and three dimensional location, represented by parameter p, is chosen such that
s(p) is maximized. Fixing the three dimensional position and varying the pose parameter within
the walking cycle, a similarity curve is created; the state of motion with highest similarity is the one
chosen as pose. Once the image analysis is done and the parameters determined for those images,
a linear regression analysis is performed to provide initial values for the Kalman filter. From this
point on, the image analysis will be limited to the search for the three dimensional position and
parameter values by matching with graylevel edges, to provide a current measurements’ vector at
each frame for the filter. The knowledge of the pose parameter and its time derivative allows for
a greatly reduced search space, as opposed to the whole cycle of the initial phase. The size of this
search space will depend on the parameters’ uncertainties, represented by the covariance matrix
of the Kalman Filter. They can vary somewhat from frame to frame, a high uncertainty leading
to a larger search space. Typically, the search space will be around 0.2 of the estimated pose
parameter. The state vector for the Kalman filter is py = (X, X'¢, Yi, Yk, Zg, Z'),, posey, pose’;,)T

bl
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where (X, Yk, Zi) is the three dimensional position in frame k, z’ represents the first derivative
with respect to time. At each frame, the three dimensional position and pose parameter is thus
computed and fed to the Kalman filter, which will then provide an estimate for the new position
and pose in the next frame. These two steps are repeated, and the model parameters are thus
determined for the whole sequence.

Comparison Between Methods

Rohr’s and Hogg’s approach might seem very similar to one another from a global point of view.
Both use a similar three dimensional model, Hogg’s PST R and Rohr’s pose parameter carry the
same information, they both use joint angle curves for the same joints of the body. However they
differ in several ways. Rohr removes hidden contours of his body model, arguing the recognition
will be more robust. The joint angle curves in Rohr’s approach were taken from kinesiological data,
while Hogg’s data is the result of one person walking. The similarity measure in Hogg’s paper
uses edge points, while Rohr uses edge lines, which also appears more robust. In both cases, the
similarity measure is computed for each body part, although Rohr computes a global similarity
measure while Hogg finds the best for each body part. Rohr does not use box constraints for the
parameters, instead, the search space for the pose parameter and the three dimensional location is
controlled automatically according to the uncertainties of the parameters. The use of the Kalman
Filter provides also more robust and smoother results. Rohr provides no results when the pedestrian
does not walk on a plane parallel to the image plane; Hogg provided some results on such a sequence.
Rohr has a starting phase that provides starting values for the Kalman Filter computation, using
a change detection algorithm and linear regression. Hogg uses one of two procedures, DIFF or
HSEARCH, the first based on a difference approach and providing an approximate location of the
body, the second providing an approximate location and configuration of the body. However, in a
few experiments, some of the parameters have been entered by hand instead of using one of those
two procedures.

4.5 Human Motion Recognition

Human motion presents a special challenge because of the amount of possible configurations of
the body, seen as an articulated object. In this case the different motions of the body segments
need to be determined with respect to each other. Two aspects can be seen to that problem: the
recognition of the motion performed by a human, and the discrimination between different people
performing the same action. They will be discussed below.

4.5.1 Recognition of Human Movements

Recognition of human motion imply the ability to discriminate between different actions, those
actions being actor dependent or not. One of the works will describe how to distinguish between
walking, running and skipping actions; the other describes a method for the recognition of tennis
strokes.

Using MLDs, Johansson [31] showed that human motion like walking can be recognized within
200ms, less than half of a cycle. The scope of Goddard’s thesis [24] is the recognition of 400ms
MLDs generated from single actors moving parallel to image plane, using a connectionist approach.
The most interesting part of his work consists of the spatial and temporal integration of low-level
shape and motion features to form higher level features, and the indexing of high-level models of
movements into a database of known models.
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Given the set of trajectories of points in a sequence, line segments are extracted by processes
outside the network; they are the lowest level features actually used in the network. The goal is to
combine line segments together to form legs or arms, then to combine pairs of arms and pairs of
legs together to form upper and lower body limbs, and finally to combine upper and lower limbs for
the description of the complete motion. However, not only do the arms and legs pairs need to be
properly linked in space, their relative motion in time must also correspond to proper body motion.
To achieve this level of complexity, a hierarchical system is described, comprising two pathways, the
shape pathway and the motion pathway. They both work in similar fashion, in that they start at the
segment level; the next level combines segments and is called the component level; the third level
combines two components together and is called the assembly level. The shape pathway records
variation in length and direction of the segments, while the motion pathways records direction (in
a coarser manner) and changes in rotational velocity of the segments. At each level, if a feature
is present, its spatial location is determined, and a unit at this location is activated. Components
and assemblies are combined in a higher level hierarchy called the scenario hierarchy. Scenarios
represent temporal series of events, with information on sequence and duration (the scenario model
representation is based on Feldman’s paper[20]). The scenario hierarchy is made up of two levels.
The lower level integrates shape and motion information from the shape and motion pathways, and
the scenarios represent temporally extended movements of the objects. The higher level represents
temporally and spatially coordinated combinations of lower-level scenarios. This level is the object
level which determines the type of gait that is being represented. An example of lower level scenario
is the motion of a pair of legs through one walking gait cycle, while at the highest level, the pair
of legs has to be coordinated in time and space with the motion of a pair of arms to describe the
motion of the whole body during a walk. The knowledge-base consists in a set of valid scenarios
that the system has been “trained” to recognize. In this case, it consists in a scenario for each of
three different gaits for one actor (in the first set of experiments), or in an “aggregate” of scenarios
for the same three gaits, but taken from four actors; those scenarios are intended to be actor
independent.

The discrimination between different tennis strokes was investigated by Yamato et al. [75]
using Hidden Markov Models (HMMs). A HMM consists of a set of states @ = {¢1,¢2,...,q},
a set of output symbols V = {vy,vy,...,v,}, a matrix A whose elements consist of probabilities
of transition between every state, a matrix B of output symbol probabilities for each state, and a
vector m of initial state probabilities. The model works as follows. The initial state ¢; is chosen
with a probability m;. The HMM will change state from ¢; to ¢ according to probability A(j, k).
At each state g, only one output symbol v, is produced with probability B(k,m). For a sequence
of length ¢, ¢ output symbols will be produced.

An image sequence is processed in three steps. In the first step, an observed sequence O of
output symbols is derived, each symbol associated to a mesh feature, as computed in chapter 2.6.
For n the size of the feature vector (i.e. the number of mesh elements), the space R" is divided into
clusters via pattern classification techniques, and an output symbol v; is assigned to each of the
clusters. In other words, an output symbol v; is assigned to cluster center ¢;. A feature vector will
be transformed into the symbol assigned to the closest cluster center using an arbitrary distance
measure.

In the second step, sequences are used to train the HMMs. There will be as many HMMs as
there are different motions, in this case tennis strokes, to be recognized. During this phase, the
parameters A = {A, B, 7} of an HMM are optimized for one particular tennis stroke, i.e. the HMM
will generate the sequence of output symbols for that stroke. This is done using the Baum-Welch
algorithm (see [75] for reference): the probability values of A, B and 7 are iteratively refined until
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they maximize P(O | A). Once the set of parameters A; for every HMM ¢ are determined, the
learning phase is done.
Finally, the recognition is done in the following manner: given the sequence of observed symbols
O = 010;5...0¢, we want to find the HMM j which is most likely to generate the same sequence,
i.e. find 7 such that
j = arg{max (P(X{0))}

The likelihood of each HMM is calculated, and the most likely is the one chosen.

Both methods described above generated strong recognition results. Because of the probabilistic
nature of the HMMs, along with the characteristics of mesh features, the method used by Yamato et
al. [75] is not too sensitive to noise. It is very versatile and the recognition part could be parallelized.
Furthermore, is easy to add a new stroke to recognize, by simply training an HMM for a new motion
and then adding it to the already trained set of HMMs. However, several preprocessing steps are
necessary before feature vector extraction can be performed on each frame. Goddard’s approach is
very interesting [24]. Each motion is defined as a coordinated sequence of angular velocity changes,
which could be seen as another type of motion model. The temporal factor is very important, and,
the set of events, for a particular motion, but in the wrong order will not lead to recognition of that
motion. Actor-dependent and actor-independent recognition was achieved with his connectionist
approach.

4.5.2 Discrimination Between Humans From Their Motion

From our own experience, it is relatively easy to recognize a friend from the way he or she walks,
even though this person is at a distance such that the face features are not recognizable. The
studies described here can be used in a general way to distinguish between trajectories and can
be directly used for motion discrimination as in the previous subsection. However the authors go
further and devised a method for recognizing different persons from the subtle differences in the
way they walk.

The work of Rangarajan et al. [58] aims at gait and motion discrimination. The authors
describe a method that will be able to distinguish between objects having the same shape but
different motions and between objects having same motion but different shapes. They base their
algorithm on the trajectories of the joints of a human body performing walking motion, i.e. moving
light display type of input. Two algorithms are described. The first uses only motion information
for matching a pair of trajectories. The second is an extension of the first for matching multiple
trajectories, which will ultimately be integrated into an object motion-based recognition system.

MLD type stimuli are used as input; the trajectories are then parametrized using speed and
direction, as described in section 2.3. The matching algorithm is based on matching the diffused
scale-space of both the speed and direction curves (see section 2.7). The scale-space is computed by
repeatedly convolving the input speed or direction signal with a second derivative of Gaussian mask
with various o values. The output is then checked for zero-crossings, indicating discontinuities. The
location and potential (the absolute difference between the values where the zero-crossing occurs)
of each zero-crossing is stored in a set of arrays, one for each o value. The set of arrays is organized
into a two dimensional table, with the location (frame number) as the z axis and ¢ as the y axis.
The zero-crossings from that table are diffused by convolving with a two dimensional Gaussian
of standard deviation equal to 1. The diffusion is necessary because convolution with a Gaussian
leads to a delocalization of the zero-crossing relative to the discontinuity. The diffusion ensures
that similar trajectories will produce overlapping scale-spaces, and thus increases the robustness
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and decreases sensitivity to noise. Scaling is then performed. The matching itself is done by an
element by element subtraction of the diffused input and model scale-spaces. The absolute values
from the subtraction are stored, and match scores are computed. At the end, two tables containing
the results of the subtraction, one table for the speed, the other for the direction, are left. Match
score for speed and direction are given as:

22 les(n, o)
2% [ Y as(n, o)
22 |€d(n70)|
2% | X ag(n, o)’

where €; and ¢4 are the arrays containing the element by element subtraction of the input and

speed score = 1 —

direction score = 1 —

model, for speed and direction respectively, and a,, «g represent model speed and direction. The
global match score is the average of speed and direction match scores. The matching of multiple
trajectories is an aggregate of simple trajectory matches. This scheme uses also shape information.
Motion information is used in each individual component trajectory, as described above, while
spatial information is gathered between any pair of components. For spatial information, Euclidean
distance between points in each frame is used; a measure for spatial match between trajectory pairs
is given in the paper.

Tsai et al.’s method for cyclic motion detection has been extended to object recognition since,
in many cases, the trajectory of several points on an object with a predefined motion can identify
it. Given the curvature of a trajectory and its computed frequency, one cycle can be isolated and
used for recognition, as in Rangarajan et al. [58]. Ome limitation to that recognition method is
that both model and unknown must be aligned with respect to their cycles, but the authors are
working on resolving that problem.

4.6 Summary

Several methods were reported that analyzed the motion from a sequence of images in order to
recognize the different parts of the body, or to recognize motion in time. They are flexible enough to
allow for small differences in shape and/or motions, and can be applied to any type of motion. The
tracking methods can distinguish between allowed and non-allowed configurations or postures. The
distinction is possible through the description of a body and motion model, which put constraints
on configurations and on changes allowed between two consecutive configurations in time. The
methods are also relatively robust to noise, since most of the real image sequences were taken in
an outdoor environment.

5 Conclusion and Future Directions

Motion-based recognition consists of the recognition of objects or motions directly from motion
information extracted from the sequence of images. Knowledge about the object or motion is used
to construct models that will ultimately serve in the recognition process. This paper intented to
emphasize the process involved in motion-based recognition, and to describe the different methods
so far reported. The process consists of mainly two steps, the extraction of motion information
from the image sequence and their organization into models, and the matching of an input sequence
with a model in a database of models. Most of the information obtained from the images is derived
from optical flow or from token extraction and correspondence throughout the sequence, which
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determine a trajectory. Trajectories are often parametrized into velocity v, and v,, speed and di-
rection, or curvature, in order to get single valued functions as opposed to vector valued functions.
Relative motion is an important aspect of our perception of motion. It has been successfully used
in the case of articulated motion with the computation of angular velocities. Motion events, like
starts and stops, also showed to be useful since they are actually perceived by our visual system.
Region-based features extract some motion feature over a region of interest and summarize them
with only a few representative values. Matching is often performed through classification tech-
niques, although in several studies specific methods have been developed for that purpose. Several
methods were reported, in particular the detection and recognition of cyclic motion, lipreading,
gesture interpretation, motion verb recognition and temporal textures classification. Methods for
recognition of human motion, like walking and running, labeling and tracking from motion and
shape models were also discussed.

There are several problems to be addressed in the future. In the case of multiple objects moving
in a scene, proper segmentation of the different objects in the image remains a difficult task. It
is sometimes difficult to correctly locate an object in the scene, i.e. to detect features, lines and
joints, because of poor contrast, noise, or other similar reasons. In the case of humans, clothing can
cause segmentation errors or a tracking program to erroneously estimate the position of a limb, for
example. These are reasons why experiments are usually performed in constrained environments
or with special apparatus, e.g. glove with contrasting tips [18] or dots placed around the mouth
of a speaker in [21] for consistent tracking. If motion-based recognition methods are to be used
more widely, feature extraction will have to be performed in noisy environments and without any
particular enhancements. For instance, stereo images could be used, where surfaces could help
locate the object’s shape. Explicit three dimensional models of objects could be used to track
them. For example, a three dimensional model of a hand that is tracked in a manner similar to
that described for the human body could provide more precise information about a performed
gesture.

Perceptual organization of trajectories or spatiotemporal curves is an emerging theme. It has
been shown that spatial invariants exist, which permit us to infer three dimensional information
from a two dimensional image projection. For instance, it is highly likely that two parallel lines
in two dimensions correspond to parallel lines in three dimensions. Those types of invariants
applied to motion could be very insightful. For example, two dimensional elliptical trajectories
imply a rotation motion in three dimensions; a set of elliptical trajectories with parallel major and
minor axes corresponds to the motion of points on a single rotating object in three dimensions.
The determination of those types of motion invariants that are reliable and stable, provide a
new avenue for this type of research. Similarly, the clustering of spatiotemporal flow curves can
provide a representation for coherent motions like a translation or rotation [4]. A hierarchical
clustering of these curves can lead to the detection of different ob jects, their particular motion, their
occlusion /disocclusion by one another, and even relative and common motion could be inferred.
Thus, dynamic perceptual organization can be a very useful research direction that could lead to
very interesting approaches and results.

A significant part of future research will remain application oriented, i.e. the need will dictate
the kind of systems that will be developed. Applications will furthermore preferably run in real-
time, and hardware solutions will be necessary. Although some of the methods described here are
very versatile, recognition of a wide variety of objects and motions remains to be achieved. Such
systems would necessitate a large number of features to be extracted, a very general representation
and probably more robust and sophisticated matching procedures. Keeping the systems small
enough so that they run efficiently and remain manageable thus requires them to be task specific.
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We think this trend will remain for some time.
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