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ABSTRACT

Tracking humans is a difficult problem because of
the non-rigid nature of the human body, and the
frequent occlusion encountered among people. We
present a framework to track multiple people in a fixed
camera situation. Our framework deals implicitly with
occlusion, and is able to correctly label people during
occlusion. We first segment a person into classes of
similar color using the Expectation Maximization al-
gorithm. Then we use a maximum a posterior: prob-
ability approach to track these classes from frame to
frame. The system deals well with partial and com-
plete occlusion. Results are presented for an indoor
sequence in an office environment.

Keywords: human motion analysis, tracking in oc-
clusion, maximum likelihood, expectation maximiza-
tion, Bayesian probability, activity recognition.

1. INTRODUCTION

Tracking moving objects is a key problem in com-
puter vision. Recently there has been a lot of interest
in analysis of videos involving humans. Human mo-
tion analysis is essential in a wide variety of applica-
tions, such as activity recognition, surveillance, man-
machine interfaces, content-based retrieval, model-
based compression and athletic performance analysis.
Tracking humans is different from motion estimation
of a rigid body, because the human body is a non-rigid
form. Various approaches to human motion analysis
can be categorized depending on whether information
about human body structure is used, or the tracking
is done without using body parts[1]. [1, 10, 7] present
excellent reviews.

A popular approach to tracking using a stationary
camera is to look for regions of change in the scene.
This can be done using consecutive frame differenc-
ing [14, 8], or more popularly, by comparing the cur-
rent frame against a background model [11, 12, 13, 6].
The background difference methods differ from each
other in the way the background model is built. In
[4] the model is built assuming a normal distribution
for the color at each pixel. In [11] it is argued that
the intensity at each pixel can be a result of multiple

processes, therefore, multiple Gaussian distributions
should be fitted to the color values of each pixel to ob-
tain the background model. In [13] a model similar to
[4] is built, but gray values are used instead of color.
The model in [12] is a simplification of the Gaussian
models, where the absolute maximum, minimum and
largest consecutive difference values are used. This
speeds up computation but might be more sensitive
to outliers.

Once change detection is done, either by comparing
with a background model or by subtracting consecu-
tive frames, most approaches, e.g. [11, 12, 13] perform
a correspondence step to label each of the regions as an
object. Other approaches perform explicit tracking,
in which each frame is not compared with the back-
ground frame. Rather, this differencing may be used
only for initialization, and after that, the foreground
object is followed from frame to frame [9, 4]. Corre-
spondence based approaches work well for cases with
no occlusion, but are unable to decide about object
identities during occlusion. Indeed excessive occlusion
is observed when objects being tracked are close to the
camera, as for example in indoor sequences.

Occlusion is a significant problem in human motion
analysis. People tend to walk and interact in groups
with other people, thereby increasing the chances that
persons will occlude each other completely or partially
in images. The probability of observing occlusion can
be decreased in general by placing the cameras at a
higher angle of elevation from the plane of movement
of people. That is, by placing the cameras looking ver-
tically downwards, the chance of one person occluding
the other is minimized. Indeed most of the previous
work in human tracking either uses this constraint on
camera positioning, e.g. [11, 5], or does not deal with
occluding cases at all [4, 15].

Limited solutions to the occlusion problem are pre-
sented by [9] and [12]. In [9] occlusion from static
objects is dealt with, using an occlusion reasoning
framework, which maintains multiple hypothesis for
occluded regions and keeps eliminating wrong ones as
time progresses. However, this approach is demon-
strated to be useful in simplistic cases and needs to be
explored further in the case of more complicated sce-
narios. Moreover, it is limited to occlusion by static
objects, and may not generalize to the more compli-



cated case of occlusion from non-rigid objects, such
as other persons. In [12] statistical features of the two
persons before occlusion begins are used to resolve the
labels after occlusion has ended, but the system can-
not decide about which pixels belong to which person
during the occlusion event.

For most human activity recognition applications,
some sort of solution for occlusion is a must. If the
tracking system cannot provide correct labels to per-
sons during occlusion, then the performance of the
activity recognition system will be degraded if the av-
erage time spent during occlusion is significant com-
pared to the total time. This is indeed the case in a
number of practical situations, like for example in of-
fice environments [3], where occlusion is frequent and
it might not be feasible to put a large number of cam-
eras at vertical angles of elevation. If, however, the
tracker is providing correct labels even during occlu-
sion, then the task of the activity recognition module
is simplified, since it receives more complete informa-
tion, in this case.

In this paper, we present a statistical framework for
tracking multiple people. We impose no constraints on
camera positioning, and most of our sample sequences
are taken with cameras roughly at the head and body
level, looking parallel to the floor plane. This case
may result in maximum occlusion. Our approach is
based on the previous work by [4], but differs from
it in some important respects. The approach in [4]
deals with only single person scenes and does not have
the ability to work on sequences containing multiple
people. Therefore, the issue of person-to-person oc-
clusion does not arise at all. This limits the scope of
application of that method. In our framework, a per-
son is detected and segmented into coherent regions
upon entering the scene. Persons are tracked sepa-
rately and not confused which each other even in the
presence of complete occlusion. Thus the advantage
of this method is not only that it can handle multiple
people, but it also handles person-to-person occlusion
well within the same framework.

Our system works in two distinct stages. The first
stage is when the scene is empty and there is no per-
son visible. We assume that this is the case in the
beginning. The initial set of frames is used to build a
background model and each frame is analyzed to de-
tect the first person by looking for significant changes
from the background. Once there is at least one per-
son in the scene, we switch to the next stage, where
we track people and detect new persons entering the
scene. If all persons exit, we will switch back to Stage
1.

2. OVERALL APPROACH

Our approach is based on representing people as a
mixture of Gaussians in spatial and color space. Each
person is modeled as a set of classes, where each class
has a spatial component (z,y) and a color compo-

nent (Y,U,V). A class is thus represented by a 5-
dimentional Gaussian distribution. These classes are
tracked from one frame to another using a maximum
a posteriori probability approach.

We start by building a background model, using a
set of frames containing no people. The background
model is simply the mean and the covariance of the
color values observed at each pixel during training.
After the background model is completed, each frame
is compared to the model, by computing the Maha-
lanobis distance of the current color value at each pixel
from the background model for that pixel. If signifi-
cant change is detected, it is concluded that a person
has entered the scene. This person is then segmented
into a set of classes by fitting a multi-variate Gaussian
mixture model, using the EM algorithm. The back-
ground model is treated as a separate class.

Once the first person is segmented, we shift to our
tracking algorithm. We assign a class label to each
pixel in subsequent frames by computing the proba-
bility of that pixel belonging to each of the existing
classes (and the background class), and picking the
maximum probability. After assigning all the pixels
their new labels, the class statistics are updated by
computing the new means and covariances for each
class. This update is done in a ‘slow’ manner, by us-
ing a low-pass filter, so that noisy changes in class
statistics can be eliminated.

Detecting the entrance of additional persons is not
trivial, because the pixels of the new person are still
assigned a label from one of the existing classes. This
is so because at each new frame, we just pick the max-
imum likelihood value at each pixel. To counter this
problem, we perform a pseudo-connected component
algorithm by fitting 1-D Gaussians to the vertical pro-
jection of the image. If the number of Gaussians with
high weight is more than the existing number of per-
sons, then this indicates that at least one more person
has entered the scene. This new person is similarly
segmented into a set of classes. The total set of classes
is grown to include the classes of the new person.

This framework handles occlusion implicitly and no
additional computation is required. The classes of a
person are not deleted in case of occlusion and are
therefore still used in the maximum likelihood compu-
tation. Thus, when the person partially reappears, the
pixels of that person immediately return a higher like-
lihood value for their own class, compared to any other
class. The reason is simply that the class which mod-
eled that part of the person before occlusion still mod-
els these pixels better than any other class. The as-
sumption is that the color of the person’s body would
not have changed significantly during the occlusion
process. This assumption seems to work well in most
practical cases, but might break down in cases of rota-
tion, significant lighting changes or shadows while the
person is occluded, or actual physical color changes,
like a change of clothing while occluded! It is worth-
while to point out that these changes do not have that



significant an effect on non-occluding persons, because
their class information is being continuously updated.
In the case of occlusion, however, this is not the case,
and so we may observe a big jump between the exist-
ing class means and the reappeared person.

3. INITIALIZATION

Background Model

We use a simple background model consisting of the
mean color and covariance of the color values observed
during training for each pixel [4]. Thus, for every pixel
(z,y) in a set of k frames of the background training
sequence, we compute the mean p and the covariance
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tion (z,y).

Even though we are using a simple background
model, a multiple-distribution model like [11] can be
used without any additional complication within our
framework. The only difference is that we will have
more than one background class, rather than just a
single background class for each pixel, as is currently
the case.

Scene Change Detection

Once the background model is completed, we look for
large changes from the background model in subse-
quent frames. A large change from the background
will indicate that a person has entered the scene.
Change at pixel (z,y) is given by the Mahalanobis
distance, given by

d=(x—p) = (x—p) ®3)

If d > T, where T is some appropriate threshold, then
that pixel is declared foreground, otherwise it is la-
beled as background. Finally, if there are a signifi-
cant number of foreground pixels in an image, then
we know that some foreground object, in this case a
person, has entered the scene.

Initial Segmentation

Once the first person is detected, we segment the
person into regions of similar color. We use the EM al-
gorithm [2] to fit a mixture of 3-dimentional Gaussian
distributions to the color distribution of the person,
given by:

k x—p) T (x—p;
Z _( Pi) ):2 ( Hi) (4)
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where w; is the weight assigned to the i** Gaussian
and d is the dimension of our space (3 in this case).
Each Gaussian fitted by the EM algorithm now rep-
resents one of the classes of the full person. After the

Figure 1. Initial segmentation results: Original
frame (left), segmented frame (right)

best fit Gaussians are computed, any two Gaussians
with very similar means are merged together to form
a single Gaussian. This reduces the number of classes
representing the person. Finally, a maximum likeli-
hood computation is done to assign each pixel to its
correct class.

Given a color image and a mask representing the
foreground region (computed using the Mahalanobis
distance as above), the mixture of Gaussians is com-
puted by finding the correct parameters w;, pi, %; for
each of the k Gaussians in the mixture model. The
number £ is a parameter that is an input to the al-
gorithm. The initialization of parameters is done by
using equal weights, each as 1/k. The covariance ma-
trices are all initialized to identity. The means are
initialized as small random steps from one of the data
points.

For the expectation step, we compute the likelihood
of every pixel for each of the Gaussian distributions.
For each pixel x € X (where X is the total set of
changed pixels) this likelihood is given by

Li(x) = wig[pi, Zi](x) (5)
where
1 ENCETI b CEVT))
glpi, Bi](x) = ——F——e 2 (6)
(2m)2 |32
and i is the i** Gaussian distribution 1 <4 < k.

We define S, as the sum of all k likelihood values
at a pixel, and normalize L;(x) by S, to get the prob-
abilities P;(x). This is the probability of the current
pixel belonging to a particular Gaussian.

Li(x) Li(x)
Pi(x) = 3 == (7)
x Zj:l L; (x)
As a consequence, we have erx Ele Pi(x) = |X],
i.e. the total number of changed pixels.

For the maximization step, we update the mixture
model parameters according to the following set of
equations:

Pi X
W = Exel);q (x) (8)
! Zx X Pi(x)x
D Pi(x) [(x — p)(x —
ExexP g 1; ) [(x =) =]

(10)
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Figure 2. Tracking two persons during occlu-
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sion

The process is repeated till the change in means p
and covariances X is very small [2]. The convergence
time of this algorithm depends on the threshold set
for minimum acceptable error. For our purposes, typ-
ically, the algorithm converges in two to three itera-
tions, though the convergence time is dependent on
initial values, and may take longer for bad initializa-
tion.

The next step is to merge regions with very sim-
ilar means. This step prevents the problem of over-
segmentation, while giving us the freedom to choose a
high value of k in the previous step to ensure that all
colors are represented completely. If two Gaussians
have means very close to each other, then they are
merged together into one distribution.

The classes created through the above process
might be spatially disconnected, because we just fitted
a mixture model to the color space. In cases like check-
ered shirts, we do expect to get spatially disconnected
components belonging to the same class. However, if
a person’s black shoes are put in the same class as
black hair, they should be split into separate classes.
If we fail to do so, then the spatial covariance of this
class would become very high, which in turn will ad-
versely affect the probability computation. To counter
this problem we perform connected component label-
ing on each class and recursively merge components
that are closer to each other than a certain threshold.
The remaining clusters left in the end are made into
separate classes.

Once the mixture model has been computed, the
likelihood that each pixel belongs to one of the Gaus-
sians is computed by simply computing the Maha-
lanobis distance and picking Gaussian which returns
the least distance value. This gives us the actual pix-
els for the region. Figure 1 shows some results of the
initial segmentation algorithm.

4. TRACKING

Stage two of our system becomes active when the
segmentation the first person is completed. In this
stage, we track the persons in the scene and keep look-
ing for new persons entering the scene.

Frame-to-Frame Correspondence

Once we know that at least one person is visible in
the camera FOV, we stop looking at the Mahalanobis
distance to differentiate foreground from the back-
ground. Instead, we compute the likelihood of each
new pixel belonging to one of the existing classes, and
label it with the class that returns the maximum like-
lihood value. The motivation for this comes from
the Bayesian probability theory. Assume there are
n + 1 classes given by co...c,, where class co repre-
sents the background and classes ci...c, represent n
foreground regions. Each foreground region class is a
5-tuple, containing spatial information (z, y), which is
the centroid of the region, and mean color information
[Y,U,V]. and a 5-by-5 covariance matrix. The color
mean and covariance are obtained from the initial seg-
mentation step described in the previous section. The
spatial mean and covariance are obtained by just find-
ing the first and second moments according to equa-
tions (1) and (2). Notice that the covariance matrix
is a block diagonal, with the cross-covariance terms
between space and color set to zero. Thus both sets of
covariances can be computed separately and combined
to form a single 5-by-b covariance matrix.

For each pixel in the new frame, we compute the
log likelihood of it being a member of every class, and
assign it to the class that returns the maximum log
likelihood value. Thus for every pixel, if we define x
to be the vector [z,y,Y,U, V]¥, then the probability
that x belongs to class ¢ is given by Bayes theorem:
Plxlen) P(cx) )

P(x)
We label this pixel the class that returns the high-
the label is given by

P(elx) =

est probability value, i.e.
argmaxy(P(x|c)). Since we are only interested in
comparison, P(x) is just a scale factor and can be ig-
nored. Furthermore, the numerator of equation (11)
can be multiplied with any monotonically increasing
function without affecting our decision rule. There-
fore, the log of the numerator is used as the decision
rule because it simplifies computations by converting
multiplication to addition.

The term P(cg) is the a priori probability of observ-
ing a particular class. One possible way to compute
this probability is to observe a long enough data set
and count the fraction of time a particular class ap-
pears. If we choose to ignore this term, we will imply
that all classes are equally likely to occur and no par-
ticular class is favored over another. In our work, we
observed that giving background class a higher weight
than the foreground classes eliminated the problem of
shadows significantly. However, it sometimes causes
misclassification of foreground as background, if the
color of the foreground region is similar to the back-
ground model at that location. Thus there is a tradeoff
between the extra weight assigned to background and
the quality of foreground segmentation.

The problem of finding the correct class for each
pixel is now simplified to computing the log likelihood



of a pixel being in all classes, and finding the maximum
value:

l(z,y) = argmax (log P(x|c;)) 0<i<k (12)

where I(z,y) denotes the class to which pixel (z,y) is
assigned and k is the number of foreground regions in
the previous frame. Note that P(x|co) is computed in
a slightly different fashion than the other probabilities,
since the spatial component of the background model
is fixed and thus has zero variance.

The likelihood terms P(x|ck) are computed by as-
suming that the probability function is given by the
multivariate Gaussian distribution given by equation
(4). Taking log of (4) and eliminating constant factors
which will not affect our decision problem gives:

l(z,y) = arg max{—(x — pi) T (x — i)
—In|%;| —dIn(2m)} 0<i<k (13)

where d is 3 for the ¢g and 5 for all other classes.
Once each pixel has been assigned a label, the mean
and the covariance matrix for each of the foreground
classes are updated using the new regions computed
by Eq.(13). We update the means and the covariances
in a ‘slow’ fashion by using a causal low-pass filter.

per1 = X1 + (1 — a)pe (14)

where a is a small constant corresponding to the time
constant of the filter. Covariance can be recursively
updated for computational efficiency by rewriting it
as X = E(xxT) — E(uu™).

Reducing Misclassifications
Misclassifications occur when classes of one person get
assigned to pixels of another person. It is important
to correct misclassification as soon as possible because
their effect keeps accumulating over time. When a few
pixels are misclassified, they increase the spatial co-
variance of their class, thus generating more misclassi-
fications in the next frame. We counter this run-away
effect by employing area based filters. If a class ac-
quires some very small disconnected regions far away
from its mean, then they are assigned to another class
that they are adjacent to. If a class has thin edge-like
regions disconnected from its main cluster, then they
are removed, by applying an eccentricity test. Finally,
if a class has grown such that it forms two or more
distinct components that are well separated spatially,
then they are split to form more classes. Classes which
run out of support, i.e. no pixels are assigned to them,
are deleted. However, this deletion is done only in
cases where occlusion is not happening. If the system
identifies that a person is being occluded, it will retain
its classes even though they have no support, because
there is a chance they will reappear again later in the
sequence. The overall aim is to keep classes spatially
compact, with low spatial variance values. This re-
duces misclassifications, especially in cases where per-
sons are wearing similar colored clothes.

As a final step, we detect when occlusion is not
occurring at all by checking if the persons are well

Figure 3. Detecting New Person: One more
Gaussian than the number of known persons is
fitted to the projection. The 3rd person is cor-
rectly detected.

separated from each other. In this case, we reclassify
any misclassifications by recomputing their likelihood
using only the classes of that person. This technique
allows us to recover completely from any misclassifica-
tions that would have persisted through the occlusion
event.

Occlusion

This framework implicitly handles occlusion well.
When there is more than one person, we just have to
keep track of which subset of classes belongs to each
person. When complete or partial occlusion occurs,
we do not delete the classes that are no longer visi-
ble. The occluded classes retain their statistics, while
statistics of other classes are updated slowly. Upon re-
emergence of an occluded region, the classification is
automatically correct, provided the color and location
of the region has not changed significantly during the
time when it was occluded. This is so because the re-
emerging pixels will still have the highest likelihood
of being assigned to their correct class rather than
any of the other classes. Figure 2 shows some results
of this step. The two persons in this figure entered
the scene at different times and were segmented into
classes by the initial segmentation algorithm. Then
frame-to-frame correspondence was done. The results
are very good even in the case of complete occlusion
and re-emergence of the occluded person. It can be
seen that some pixels are misclassified in the case of
occlusion. However, most of the pixels are classified
correctly. Once the occlusion event is complete and
the persons separate out again, the system is able to
recover from these misclassifications successfully.

Finding New Persons

Detecting new persons entering the scene is difficult
because of the way we perform frame-to-frame corre-
spondence. For every pixel in a new frame, the most
likely label is assigned from the set of existing classes.
Since Eq.(13) is just a max operation, pixels belong-
ing to the new person will incorrectly get assigned to
one of the existing classes, even though their likeli-
hood value might be lower than usual. In the case of
a new person, however, we need to make new classes
to represent that person. This makes it necessary to
identify when a new person has entered and also to
determine the bounds of the new person. The initial
segmentation algorithm is applied within this region



only to segment the new person into regions. A sep-
arate data structure keeps a record of which classes
belong to which person.

To detect a new person, we use a pseudo-connected
component approach. We look at the vertical projec-
tion of the entire foreground image, and fit this with a
1D Gaussian mixture of N + 1 distributions, where NV
is the number of persons currently known. To fit this
mixture model, we again employ the EM algorithm,
described by equations Eq.(4) to Eq.(10), but use a
1D version of it. If the fit is correct, N Gaussians will
fit to the existing persons and the (N + 1)*" Gaus-
sian will fit to the rest of the data. Since we already
know the spatial means of all the existing persons, we
find the Gaussian which does not fit any of the exist-
ing people by finding the mean which is farthest away
from the existing person means pi...un. This gives us
the mean of the Gaussian fitting the residual data.

If this ‘residual’
formed’ i.e.

Gaussian distribution is ‘well-
it is representing significant portion of
the data, then that is an indication of a new person.
For this purpose, we do two tests. First we check if
the residual Gaussian is far from all Gaussians repre-
senting the existing persons. This is necessary because
in the absence of an actual new person, the residual
distribution could easily fit a small hump on the pro-
jection of an existing person. Secondly we check for
the ‘peakiness’ of the residual Gaussian. If this Gaus-
sian is very low and wide, then it does not represent
a new person. Thus the ratio w,/o, should be high
for a good fit to a new person. Figure 3 shows sample
working of this algorithm.

5. CONCLUSION

We have presented a new framework for dealing
with the occlusion problem in human tracking. We
observe that in indoor sequences and unconstrained
camera positioning, occlusion is very likely to occur.
This framework identifies persons during occlusion,
unlike some of the existing methods which can re-
solve the occlusion problem only after the occlusion
event is completed. We show results that deal well
with ‘hard’ problem of multiple people and complete
occlusion. We have observed that currently in this ap-
proach, dealing with shadows is a problem. Shadows
too differ from the background model and are seg-
mented out with the person. However they need to
be identified as not being a part of the person if the
tracker information is being sent to an activity recog-
nition module.
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