
ADHD Classification Using Bag of Words Approach

on Network Features

Berkan Solmaza, Soumyabrata Deya, A. Ravishankar Raob and Mubarak Shaha

aUniversity of Central Florida, Orlando, FL, USA;
bIBM T.J. Watson Research Center, Yorktown Heights, NY, USA

ABSTRACT

Attention Deficit Hyperactivity Disorder (ADHD) is receiving lots of attention nowadays mainly because it is
one of the common brain disorders among children and not much information is known about the cause of this
disorder. In this study, we propose to use a novel approach for automatic classification of ADHD conditioned
subjects and control subjects using functional Magnetic Resonance Imaging (fMRI) data of resting state brains.
For this purpose, we compute the correlation between every possible voxel pairs within a subject and over the
time frame of the experimental protocol. A network of voxels is constructed by representing a high correlation
value between any two voxels as an edge. A Bag-of-Words (BoW) approach is used to represent each subject
as a histogram of network features; such as the number of degrees per voxel. The classification is done using
a Support Vector Machine (SVM). We also investigate the use of raw intensity values in the time series for
each voxel. Here, every subject is represented as a combined histogram of network and raw intensity features.
Experimental results verified that the classification accuracy improves when the combined histogram is used.

We tested our approach on a highly challenging dataset released by NITRC for ADHD-200 competition
and obtained promising results. The dataset not only has a large size but also includes subjects from different
demography and edge groups. To the best of our knowledge, this is the first paper to propose BoW approach in
any functional brain disorder classification and we believe that this approach will be useful in analysis of many
brain related conditions.
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1. INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most commonly found behavioral disorders among
children. Almost 3-5% of school aged children are diagnosed with ADHD. At present, no well known biological
measure exists to diagnose ADHD. Instead people rely on the behavioral symptoms to identify it. To understand
the cause of the disorder more fundamentally, researchers are using new structural and functional imaging tools.
fMRI has been widely used to study the function of brain.1 fMRI can give high quality visualization of location
of activity within the brain. Thus, it allows a comparison of the functions of control and disordered brains.

fMRI has been used to study and diagnose different functional disorders of brain. In some analyses, task-
related fMRI data is used where the test subjects perform some conscious tasks depending on the input stimuli.
On the other hand, some studies use resting state brain fMRI data. Even when the brain is in the resting state,
a network region, known as default mode network (DMN) of brain, remains active. The DMN was first identified
by Raichle et al.2 It is believed that the DMN may be responsible for synchronizing all parts of the brain’s
activity; and disruptions to the network may cause a number of complex brain disorders.3 Researchers have
studied neural substrates relevant to ADHD related behaviors such as attention lapses, and associated DMN as a
key area for observation for a better understanding of the problem.4 In this study we use the resting state brain
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fMRI data and hypothesize that the difference of ADHD conditioned and control brains lies in the variation of
DMN structural connections.

fMRI data can be viewed as 4-D video such that the 3-D volume of brain is divided into small voxels and
imaged for a certain duration. This in turn provides us the time-series of intensity values for each voxel. The
correlation of these intensity time-series can be an indication of how synchronous the activities of two voxels are,
and higher correlation values suggest that two voxels are working in synchronization. By computing correlations
for all possible voxel pairs within a subject and establishing the connections between the voxel pairs based on high
correlation values, a functional network structure is generated for each brain. A BoW approach is used to capture
the network features such as degree of connectivity of each voxel, and to represent each network by a histogram.
These histograms can be fed to a SVM for automatic classification of ADHD. In addition, raw intensity time-
series of the voxels can be clustered and represented as a histogram using the same approach. Experimental
results verified that using combination of network features and raw intensity time-series histograms result in a
better classification accuracy. The details of our approach is explained in Section 3 and the experimental results
including the description of the used dataset are presented in Section 4.

2. RELATED WORK

Many studies have been proposed to identify ADHD related defects. Most of them are group label analysis to
deduce statistical differences between ADHD conditioned and control groups. Structural MRI analysis suggested
that there are abnormalities in ADHD brains specifically in the brain areas such as frontal lobes, basal ganglia,
parietal lobe, occipital lobe and cerebellum etc.5–8 In another set of studies, ADHD brains were analyzed using
task-related fMRI data. Bush et al9 found significant low activity in the anterior cingulated cortex when ADHD
subjects are asked to perform the Counting Stroop during fMRI. Durston et al10 showed ADHD conditioned
children have difficulties in performing go/nogo task and have decreased activity in frontostriatal regions. Teicher
et al11 showed boys with ADHD have higher T2 relaxation time in putamen which is directly connected to
child’s capacity of sitting still. A third set of works was done using the resting state brain fMRI to find out
the abnormalities in the DMN if any. Castellanos et al12 performed Generalized Linear Model based regression
analysis on the whole brain with respect to three frontal foci of DMN and found low negative correlated activity
in precuneus/anterior cingulated cortex in ADHD subjects. Among other studies, Tian et al13 found functional
abnormalities in dorsal anterior cingulated cortex, Cao et al14 showed decreased regional homogeneity in the
frontal-striatal-cerebellar circuits but increased regional homogeneity in the occipital cortex among the boys
with ADHD. Zang et al15 verified decreased Amplitude of Low-frequency fluctuation (ALFF) in the right inferior
frontal cortex, left sensorimotor cortex, bilateral cerebellum and the vermis as well as increased ALFF in the
right anterior cingulated cortex, left sensorimotor cortex and bilateral brainstem.

While group level analysis can suggest statistical differences among two groups, it may not be that useful
for clinical diagnosis of individual level. There is not much work done on the individual level classification of
ADHD subjects. Zhu et al16 used a PCA-FDA based classifier to separate ADHD subjects from control subjects.
Unlike our network connectivity feature, which can connect all the synchronous regions of the whole brain, they
used a regional homogeneity based feature for classification. Also the experiments were performed on only 20
subjects, which is not conclusive. In our work we have performed experiments on a large challenging dataset
which includes subjects from different demography age groups and datasets capture in different test centers.
We propose a new approach for the automatic classification and believe that our work will be helpful to the
community.

3. METHOD

The BoW approach, originated from natural language processing, allows a dictionary-based modeling of docu-
ments, and each document can be considered as a bag containing some words from the dictionary. This type of
approach has also been popular in the Computer Vision area and has been applied to many problems such as
image or video representation.17–19 In this paper, we introduce the BoW approach to the biomedical imaging
community, specifically for processing functional brain networks.
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Figure 1. Overview of our approach: First from 4-D fMRI data, we compute an N-by-N matrix of correlation values
between each pair of voxel time series (N is the number of voxels inside anatomical brain mask) Next, we compute the
adjacency matrix of the voxels by thresholding the high correlation values. The features such as node degree and cycle
for each node are used for BoW codebook generation. Finally, classification is done with a SVM.

Following the BoW representation, we treat each subject as a document. Features, which can be considered as
words, are extracted from each voxel of the resting state fMRI scans of these subjects. A codebook is generated
using the K-means clustering algorithm.20, 21 After the generation of the codebook, as the last step of the BoW
method, we represent each subject with a histogram based on network features.

The overview of our approach is depicted in Figure 1. As the first step of implementation, for each subject,
we extract the time series of each voxel within the anatomical skull mask. For any two voxels, if the time series
are u and v respectively, the correlation can be computed by,
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where T is the length of the time series.

For N number of voxels, a correlation matrix of size NxN is computed, where ith row of the matrix corresponds
to the pairwise correlation values of the ith voxel with all other voxels within the subject. Setting the high
correlation values to one and rest of the entries to zero, an adjacency matrix can be generated, where ith voxel is
connected to all the voxels for which non-zero values are present in the ith row of the matrix. As the next step,
a 3-D degree map is computed for these voxels,22 which captures how many voxels a given voxel is connected to.
Basically, the value of the degree map at voxel i will be the number of voxels that voxel i is connected to.

In order to reduce the volume of the computed data for each brain, we perform quantization using the BoW
approach. Our feature vector is a 4-tuple [x, y, z, d], which consists of the 3-D spatial coordinates of a voxel and
its degree that is defined by the degree map. Here, the x, y, z and d are normalized to have values between 0
and 1. For generating the codebook for BoW approach, we perform K-means clustering (K=100) of the 4-tuples
across all the subjects and obtain the cluster centers, which form our histogram bins. The number of the clusters
is the codebook size. After generation of the codebook, each 4-tuple feature of a subject is mapped to a certain
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Figure 2. Overview of our BoW approach.

cluster center, which should be the nearest neighbor of that feature. After all features of a subject are mapped
to the cluster centers, the subject can be represented by a histogram of the codewords.

The fMRI scan of a subject consists of a large number of intensity values. Therefore, we also apply the BoW
approach on time series data of raw intensity values. Following the same steps as in the network features, we
generate a codebook of 75 elements and we represent each subject by a histogram of 75 bins. The generation
of histograms using BoW approach are shown in Figure 2. By normalizing and simply concatenating the two
computed histograms for each subject as the final feature vector (175 dimensions), a Support Vector Machine
(SVM)23 is trained for classification of ADHD conditioned and control subjects.

4. EXPERIMENTAL RESULTS

We tested our approach on all 83 subjects from KKI center of ADHD-200 Global Competition Test Dataset.
The preprocessed fMRI data, which was written into MNI space at 4 mm x 4 mm x 4 mm voxel resolution,
nuisance variance removed, filtered using a bandpass filter (0.009 Hz < f < 0.08 Hz) and blurred with a 6-mm
FWHM Gaussian filter, was provided by NITRC ADHD 1000 connectome project organizer. In the sample set, 22
subjects were diagnosed with ADHD and 61 subjects were healthy. We performed leave-one-out cross-validation,
which involves using a single subject from the dataset for testing, and the remaining subjects for training our
SVM classifier. Repeating this process as many times as the number of subjects; we used each subject in the
dataset once as the validation data, and we obtained a classification accuracy of 65% (78% true positive and 39%
false positive rate). The Receiver Operating Characteristic (ROC), which is obtained by varying the confidence
of detection, is shown in Figure 3.

For the comparison of classification accuracies using network features, raw intensity time series and the
combined features, we performed a similar experiment on a larger subset of the ADHD-200 Global Competition
Test Dataset, including 506 subjects. The brief description of the included subjects in this experiment is shown in
Table 1. Using the combined features resulted in a performance improvement; we obtained 64% overall detection
at the cost of 50% true positives and 72% true negatives as depicted in Figure 4. The classification accuracies
for both experiments are illustrated in Table 2.
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Figure 3. Receiver Operating Characteristics (ROC) for our approach using degree map feature.

Table 1. Description of the test subjects of the larger dataset.

Test Number of Number of ADHD Number of Female Male

Center Subjects conditioned subjects control subjects

KKI 83 22 61 37 46

Neuro Image 48 25 23 17 31

NYU part 1 55 31 24 19 36

NYU part 2 67 32 35 22 45

OHSU 79 37 42 36 43

Peking 1 85 24 61 49 36

Pittsburgh 89 0 89 43 46

5. CONCLUSION

In conclusion, the Bag-of-Words, with a good performance of classification of ADHD diagnosed and control
subjects, is a promising approach and it can be combined with different types of features for analysis of different
brain disorders.
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Figure 4. Receiver Operating Characteristics curves for different combinations of features on 506 subjects.



Table 2. Results for ADHD classification.

Used Feature Number of Subjects Accuracy

Degree Map 83 65%

Degree Map 506 61%

Raw Intensity Time Series 506 56%

Degree Map+Raw Intensity Time Series 506 64%
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