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Abstract

We propose a method by which to analyze silhouettes and
recognize a classic holdup position of armed robbery. In
such a situation, one actor levels his or her arm while an-
other actor raises his or her arm(s) into the air. The core of
this algorithm is skeleton analysis. We attempt recognition
by first segmenting the skeleton of the silhouette into sepa-
rate pieces of the body, then identifying the positions of the
arms. We show that our algorithm correctly utilizes skele-
tons to identify parts of the human body and recognize these
holdup positions.

1. Introduction and Related Work

Video surveillance has long been used in an attempt to
prevent crimes by providing a ready means of identifying
the perpetrator and ensuring that he or she is held account-
able. Useful as this may be, it remains a passive method of
crime control. Computer recognition of activities in such
situations could thrust video surveillance into an active role
by allowing police to be alerted automatically, hopefully in
time to prevent loss of life or property.

Recognition of human activities is already the subject of
much research. In one such project involving surveillance
of parking lots[5], characterizations were based solely on
the motion of the objects in the image. The movements
were then compared to a set of possible events.

In another project[1], the trajectories of a set of objects
were compared against models for specific activities. The
actors themselves were not investigated; they were only
tracked and their vectors analyzed. For example, football
players were viewed from above and their motions were
compared against a database of plays.

Collins[3] proposed a means of identifying individuals
by the appearance of their silhouettes while walking, in
a full frontal or back camera view. Silhouettes from key

frames were compared to known walking patterns previ-
ously recorded. Wren and Pentland[7] proposed a robust,
3-D skeletal model for tracking people and recognizing pur-
poseful motion. Two cameras were used to get the 3-D in-
formation, and motion not explained by physics was said to
be purposeful. Guo[4] used a skeleton model based on the
2-D information provided by a single camera. Rather than
calculating and inspecting the silhouette’s skeleton, this al-
gorithm seeks to fit the skeleton model to the silhouette.
The entire person was assumed to be visible, and the sil-
houette to be very good.Walking, running, andotherwere
the activity classes identified.

None of these holistic approaches will identify actions
as specific as levelling an arm at another actor that raises
its arm(s) into the air in response. In our approach, we in-
vestigate the individual motions and silhouette appearance
more closely. We propose to analyze the skeleton, or medial
lines, of the silhouette in order to identify the position of the
arms and recognize the classic hold-up positions of armed
robbery.

2. Overview of Algorithm

The steps in our algorithm are:

1. Silhouette Extraction: The people in the scenario must
first be identified. This is accomplished through back-
ground subtraction [6] together with connected com-
ponents. To achieve a smooth silhouette for skeleton
calculation, this is followed by dilation and erosion.

2. Skeleton Segmentation: First, the skeleton is calcu-
lated. Points of interest (POIs) are then determined and
used to find the individual segments of the skeleton.

3. Segment Identification: Position, length, and slope are
then used to identify the torso, legs, arms, and head, if
they are present.



4. Arm Analysis: Finally, the slopes of the arms are used
to determine whether a possible armed robbery exists
in the frame or sequence.

Figure 1. Original image and labelled fore-
ground.

3. Silhouette Extraction

Simple identification in frames and tracking through
a sequence is accomplished using Stauffer’s background
subtraction[6] to label foreground pixels (Figure 1) and
connected components. In this implementation, the initial
background must be known and the camera must be fixed.
Canny[2] edges help to simplify size thresholding of blobs,
limit the interference of shadows, and ensure that previously
acquired silhouettes are not culled unnecessarily due to size
restrictions.

The first connected components phase associates all
canny edge pixels (Figure 2) of the foreground with nearby
edge pixels also in the foreground. Valid objects tend to
have more definite edges than do areas of noise; therefore
the size difference in number of edge pixels is often greater
than in total number of pixels.

Figure 2. Edges and foreground edges.

The remaining foreground pixels are then grouped by
connected components within a bounding box determined
by the extremes of the grouped edges. This is to accommo-
date for shadows. Except in extreme cases, shadows do not
tend to yield many edge pixels; all or part of a shadow will
then be outside of the boundaries and excluded from the sil-
houette. In subsequent frames, the previous location of the
blob is the basis of the bounding box rather than the edges,

after allowing for some movement. Blobs found in previous
frames, if still present, should be within the size threshold
for new silhouettes.

Traditional dilation and erosion are used to smooth the
silhouette for skeleton calculation. This is followed by an-
other erosion in which blob pixels with too few blob neigh-
bors are discarded. Only a basic silhouette like those in Fig-
ure 3 is needed for the next steps, as the skeleton analysis is
intended to compensate for normal errors in the extraction.

Figure 3. Silhouette.

4. Skeleton Segmentation

The silhouette’s skeleton is calculated by eroding the
edges of the region until only curves with width of one pixel
remain. Then, points of interest (POIs) are identified (Fig-
ure 4). The two classes of POI, endpoint and intersection,
are determined by the number of neighboring pixels in the
skeleton: one neighbor indicates an endpoint of the skele-
ton, while three or more indicate an intersection between
two or more curves in the skeleton. Each POI calculated
is actually a cluster of pixels, though they are stored and
treated as a single point. Non-POI pixels of the skeleton are
then grouped by connected components to make up the in-
dividual segments of the skeleton. Their endpoints, lengths,
and slopes are calculated for analysis, shown in Figure 5.

Figure 4. Skeleton; boxes indicate POIs.

5. Segment Identification

Different parts of the body are identified based on the
POIs, length, and orientation of each segment. Possible
problems with the silhouette are also addressed.



Figure 5. Skeleton curves represented by in-
dividual lines.

5.1. Segment Characteristics

It is currently assumed that the bodies are relatively up-
right. Thus, the torso is nearly vertical and one of the
longest. This segment is always present; if no other seg-
ments are present, it spans the entire height of the skele-
ton. The nature of its POIs give clues to the presence of
other segments. If the top POI of the torso is an intersection
rather than an endpoint, then at least one arm and the head
are present. The head is a relatively small extension from
the top of the torso. The bottom point of the head corre-
sponds to the top point of the torso as well as the shoulder
end of any arm; its top point is an endpoint. Arms also
have one intersection with the top of the torso and one end-
point. Legs exist when the bottom point of the torso is an
intersection rather than an endpoint, and are the bottommost
segments. They almost always occur in pairs, and their top
point corresponds to the bottom of the torso. See Figure 6.

Figure 6. Segment identification (a) 2 arms, 1
head, and 1 torso identified. (b) 1 torso and
2 legs identified.

5.2. Silhouette Compensation

Our algorithm is designed to compensate for a number of
shortcomings in the silhouette. Such faults lead to distinct
errors in the skeleton.

1. Loops: Occasionally, there appear two segments that
share the same endpoints. This occurs either when the

legs are joined by shadow at the bottom of the silhou-
ette, or when a hole is found in the silhouette. In the
former case, the legs are separated into two segments
as shown in Figure7. In the latter, the two segments
are joined to be only one.

Figure 7. Legs taken from a loop.

2. Spurs: Small, irrelevant segments often occur as a
result of irregularities in the silhouette. In instances
where one of its ends is an endpoint, the spur can sim-
ply be deleted because it is an offshoot of another seg-
ment and does not belong. The true segments wrongly
separated by this error often need to be joined. In in-
stances where the spur has another segment on both
ends, the spur must be added to one of them and it
must be determined whether these two segments are
also one and the same. This occurs most often when
the arms do not meet at the same part of the torso, so
the points of these segments must be adjusted as well.
One frequent example is ”feet” on the end of leg seg-
ments, as shown in Figure 8.

Figure 8. Irrelevant segments removed from
legs.

3. Links: An additional segment occasionally joins the
bottoms of the legs. The cause is shadow, as with loops
(Figure 9). In this case, the erroneous segment can
simply be deleted.

6. Arm Analysis

Once the arms have been identified, their positions are
analyzed based on their slopes. (We assume the figure to be
in the first quadrant of the Cartesian coordinate plane.) A



Figure 9. Linking segment removed from
legs.

Figure 10. Alarms (a) raised alarm; left line
indicates left arm, right line indicates right
arm (b) level alarm; bottom line indicates
right arm, a top line would indicate left arm

level arm is defined as being within 20 degrees of horizontal
within the frame, while a raised arm must be at least 40 de-
grees above the horizontal. The tangents of these angles are
0.4 and 0.8 respectively, and may be tested against the slope
m of each line, given byy = mx + b. A level arm is there-
fore one with−0.4 < m < 0.4. When an arm first becomes
distinguishable from the torso, it nearly always falls within
this range; this is therefore the lowest alarm level. The sec-
ond level is when the victim’s arms are determined to be
raised. In this case, a left arm must have a slopem < −0.8
and a right arm must have a slopem > 0.8. The highest

level of alarm occurs when there are at least two silhouettes
present and the first two alarms are both recognized.

Figure 11. Results from level-arm sequences.

Figure 12. Results from raised-arm se-
quences.

7 Results

Figure 11 represents output from different sequences in
which the actor triggers the level-arm alarm. In these ex-
amples, the 5 body segments are correctly identified and the
proper alarm is successfully reached. Figure 12 results from
different sequences in which the actor triggers the raised-
arm alarm. Here, the 5 body segments are correctly iden-
tified and the raised-arms alarm is successfully reached. In
the second image, the legs are successfully separated and
a spur successfully removed. Table 1 shows the success
rates over 10 separate sequences. Our algorithm success-
fully identified the different segments of the body in ap-
proximately 80% of the frames overall . In all of the frames
where the arms were properly segmented the algorithm pro-
duced the expected alarm.

8. Discussion and Future Work

Our algorithm analyzes the skeleton of a silhouette to
determine the positions of the arms. This information indi-
cates whether any or all of the possible criteria for a clas-
sic holdup situation are met in the frame. The algorithm
identifies segments of the body with a high rate of success,
compensating well for poor silhouettes. However, results



Figure 13. Results from additional se-
quences.

sequence name frames successful id
WALTAIM1 60 78.3 %
WALTAIM2 42 85.7 %
WALTAIM3 63 69.8 %
WALTAIM4 71 81.7 %
WALTUP1 60 53.3 %
WALTUP2 71 63.5 %
WALTJME * 189 56.6 %
MIKEAIM1 262 93.0 %
MIKEAIM2 180 92.2 %
MIKEMULT 241 89.2 %

* There are two persons in this sequence; each is considered
individually for this calculation.

Table 1. Results from 10 sequences

are still sensitive to errors in the silhouettes; the sequences
with lower success rates did have silhouettes of lower qual-
ity than the sequences with better rates. For instance, the
MIKE sequences generally yielded better results than did
the WALT sequences. In the latter set, the background was
much less stable and provided less contrast than in the other,
and the actor moved very quickly.

The algorithm is view invariant within obvious limita-
tions. It is not important whether the front or back of the
actors are facing the camera; nor do they need to face the
camera directly. As shown in Figure 14, rotation is accept-
able to a large degree. However, the arms must be visi-
bly separate in the silhouette from the torso. Thresholding
and data from past frames could improve this performance
slightly, but at the expense of some false alarms in other
cases.

Figure 14. Lose arm in rotation.

Highly irregular blobs result in spurs, connections, and
other extraneous information that can confuse the analysis
if too extensive. It is suggested that silhouettes yielding in-
ordinate numbers of POIs and segments should undergo ad-
ditional smoothing, then be addressed again by the skeleton
analysis algorithm. Additional work can be done with the
compensation portion itself. Alternative methods of iden-
tifying the head are being pursued in order to increase the
accuracy of overall identification. Additional alarm criteria
to narrow the recognition of this situation as well as accept
other situations are also worthy of attention.
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