
Simulating physically realistic complex fluid
behaviors in a distributed interactive simu-

lation (DIS) presents a challenging problem for comput-
er graphics researchers. Such behaviors include driving
boats through water, stirring liquids, blending different-
ly colored fluids, mixing insolubles such as oil and water,
rain falling and flowing on a terrain, and fluids interact-
ing. These capabilities are useful in computer art, adver-
tising, education, entertainment, and training.

DIS denotes a broad field of simu-
lation research and technology as
well as a specific architectural
approach, represented by the DIS
communications protocol.1 In this
article we use the acronym DIS to
designate any simulation conducted
by distributed computation whose
outputs must respond to changed
inputs with the same timeliness the
modeled system would exhibit.

Modeling and animating fluids
have captured the attention of many
graphics researchers. However, no
one has achieved general fluid mod-
els that are physically realistic and

computationally efficient for real-time animation.
Fournier and Reeves,2 Peachey,3 and T’so and Barsky4

proposed alternative models based on ocean wave equa-
tions. Their approaches avoid solving the differential
equations of fluids and suit only ocean waves. Miller and
Pearce5 presented a particle system for animating vis-
cous fluids that represents particles throughout the
fluid’s volume, incurring significant computational
costs. Terzopoulos, Platt, and Fleischer6 used molecu-
lar dynamics to model the process of solids transform-
ing into liquids; their approach is also computationally
expensive for obtaining the behaviors we desire.

Kass and Miller7 animated fluid using simplified shal-
low water equations. Though they solved the equations
in their differential form, Kass and Miller’s method is not
general enough to model complex phenomena entailing
variations in the Reynolds number—which controls

whether a fluid is laminar or turbulent—or that include
moving (self-propelled) objects. Goss8 used a particle
system to model ship wakes in real time, but his approach
was not based on physics and does not host any other
fluid properties or behaviors besides artificial ship wakes.

Wejchert and Haumann9 presented a model for invis-
cid irrotational flow, applicable only to limited situa-
tions of objects in a wind field. Stam and Fiume10

proposed a method that models turbulent wind fields
but lacks any physical basis.

To provide a physical foundation for general fluid ani-
mation, you must use the Navier-Stokes equations,
which embody Newton’s second law in fluids, and the
governing equations of general fluid flow. Several
researchers in computer graphics have acknowledged
this.7,9,10 However, none of the previous methods solved
these equations because of the effort involved in deriv-
ing a solution method and the time needed to obtain a
solution on commonly available workstations. While
researchers in computational fluid dynamics (CFD)
extensively study computational physical fluids models,
their goals are constrained to obtain highly accurate and
completely descriptive simulations of fluid behaviors.

Recently, we developed a CFD method using the
Navier-Stokes equations.11 It reduces the time and cost
of computing these behaviors from the resolution’s cube
to the resolution’s square and yields results in real time.
Of course, the simulation speed depends on the calcu-
lated area’s size and resolution. On a Silicon Graphics
Onyx, the model runs at 20 frames per second with a
fluid grid size of 140 by 64, which satisfies many real-
time simulation applications. We use “real time” to mean
that the frame rate of the physically based modeling and
simulation occurs at an interactive rate of human per-
ception. However, our physically based model ignores
the fluid’s depth and therefore cannot satisfy simula-
tions in a networked virtual environment.

Instead of calculating the fluid behavior through a vol-
ume, that is, calculating the 3D Navier-Stokes equations,
we computed the full incompressible 2D Navier-Stokes
equations.12 Then we raised the fluid’s surface accord-
ing to the corresponding pressures in the flow field, thus

Jim X. Chen
George Mason University

Niels da Vitoria Lobo, Charles E. Hughes, and
J. Michael Moshell
University of Central Florida

Real-Time Fluid
Simulation in a
Dynamic Virtual
Environment

0272-1716/97/$10.00 © 1997 IEEE

Shape and Motion Modeling

52 May–June 1997

Solving the 2D Navier-

Stokes equations via a

computational fluid

dynamics method lets us

map surfaces into 3D and

achieves realistic real-time

fluid surface behaviors.

.

obtaining the surface points’ third dimension. We can
justify using the pressures to simulate the fluid surface
fluctuations because higher pressures at the fluid’s base
cause taller columns of the surface above due to the
fluid’s incompressibility. (We discuss the technical justi-
fication for this in the section “3D fluid surface anima-
tion.”) This method reduces the expense from the
resolution’s cube to the resolution’s square without los-
ing the 3D effects and the power of the Navier-Stokes
equations. We have demonstrated the simulation of dif-
ferent kinds of fluid flows and their vector fields in real
time on commonly available workstations, such as a
Silicon Graphics Indigo. We have also simulated floating
objects in fluids, moving (self-propelled) objects in flu-
ids, and blending of fluids of different colors in real time
by employing the fluid flow velocity and pressure field.

To simulate fluid flow in a dynamic virtual environ-
ment, we accounted for the changes of the fluid volume
and boundaries when the fluid flows and accumulates.
We also extended the general fluid model to let fluid
generate and flow freely anywhere on a dynamic terrain
surface. We demonstrated this by implementing a bull-
dozer, which can change the terrain’s shape and thus
the fluid’s constraining boundaries, with the fluid fol-
lowing the modified terrain. With these extensions, the
fluid model can integrate into a DIS and offer a reason-
ably realistic simulated environment.

We did not investigate fluids in a networked environ-
ment due to the lack of existing modeling and simula-
tion techniques. Synchronizing physical activities such
as fluid flows in a DIS proves important to guarantee fast
and accurate simulation. In this article, we introduce a
mechanism that uses a uniform time scale—propor-
tional to the clock time and variable time-slicing—to
synchronize physical models such as fluids in the net-
worked environment for DIS.

Navier-Stokes equations
Navier-Stokes equations derive from Newton’s sec-

ond law.13 The following equations are the Navier-Stokes
equations for an incompressible flow:

(1)

(2)

(3)

where

ρ is the density, p is the pressure, µ is the viscosity, and
gx, gy, and gz are the gravity vectors.

The differential continuity equation for incompress-
ible flow,

(4)

is used together with Navier-Stokes equations to deter-
mine the relationships between velocities and pressures.

We can put the Navier-Stokes equations (Equations
1, 2, and 3) and the differential continuity equation
(Equation 4) into the following compact vectorial form:

(5)

(6)

where the gradient vector operator

V = ui + vj + wk, and g = gxi + gyj + gzk. Equation 5 is
the governing equation of fluid dynamics. Its solution
is complicated by the nonlinear terms on the left-hand
side and the requirement of simultaneous solution of
velocities and pressures—it represents one of the major
computational challenges in fluid mechanics. Navier-
Stokes equations without external forces can be written
in the dimensionless form

(7)

where Re is the Reynolds number. The Reynolds number
is a parameter that indicates the fluid’s viscosity. If the
Reynolds number is relatively small, the fluid is viscous
and the flow laminar; if it is large, the fluid tends to be
inviscid and the flow turbulent. Therefore, the results
of the Navier-Stokes equations with different Reynolds
numbers correspond to the behaviors of different kinds
of fluids.

Surface implementation
In our approach, we use the corresponding pressures

in a 2D fluid flow field to simulate the fluid surface
behaviors. Therefore, we only need to compute the 2D
Navier-Stokes equations. We present the 2D discretiza-
tion and computation method below.

Numerical discretization
Several approaches exist in computational fluid

dynamics to solve the Navier-Stokes equations.12 Here
we employ a finite-difference solution technique that
uses a penalty method,

εp + ∇ • V = 0, ε > 0, ε → 0 (8)

instead of the divergence equation (Equation 6). Temam14

proved that the solution of Equations 7 and 8 tends
toward the solution of the Navier-Stokes equations
(Equations 5 and 6 without external forces), when ε→0.

 =

D

Dt
p

Re

V
V− ∇ + ∇1 2

∇ + +=
x

∂
∂

∂
∂

∂
∂

i j k
y z

,

∇ • = V 0

ρ µ ρ =

D

Dt
p

V
V g= − ∇ + ∇ +2

∂
∂

∂
∂

∂
∂

u

x

v

y

w

z
+ + = 0

u

dx

dt
v

dy

dt
w

dz

dt
= = =, , ,

D

Dt
u

x
v

y
w

z t
= + + +∂

∂
∂
∂

∂
∂

∂
∂

,

ρ ∂

∂
µ ∂

∂
∂
∂

∂
∂

ρDw

Dt

p

z

w

x

w

y

w

z
gz= − + + +

 +

2

2

2

2

2

2

ρ ∂

∂
µ ∂

∂
∂
∂

∂
∂

ρDv

Dt

p

y

v

x

v

y

v

z
gy= − + + +

 +

2

2

2

2

2

2

ρ ∂

∂
µ ∂

∂
∂
∂

∂
∂

ρDu

Dt

p

x

u

x

u

y

u

z
g x= − + + +

 +

2

2

2

2

2

2

IEEE Computer Graphics and Applications 53

.

The spatial discretization of Equations 7 and 8 in 2D
employs the staggered marker and cell mesh (see Figure
1). We consider an explicit discretization as follows:

(9)

(10)

(11)

where i, j are fluid-flow field coordinates, n represents
the current state, and n +1 represents the next state after
a time-step of ∆t.

The difference operators

are defined by

(12)

(13)

(14)

The terms

are the approximations of

We have

(15)

(16)

where

(17)

(18)

(19)

(20)

All these approximations have second-order accura-
cy. That is, the error involved lies in O (∆x2 + ∆y2). The
algorithm to compute the solution to the Navier-Stokes
equations then follows. For the known current state of
the velocity vectors and pressures of the fluid flow field

the next state

after ∆t time is calculated by Equations 9, 10, and 11.
These equations use functions from Equations 12 to 20.

Numerical stability considerations
The stability of the numerical computation depends

on many factors. Rather than present a lengthy mathe-
matical analysis of stability conditions, we later present
(in the section “Application examples”) a number of
choices of convergence parameters, each user adjustable
even during the course of a simulation. In a simulation,
you can adjust some parameters to the safe zone or
dynamically update these parameters to achieve stabil-
ity and other special effects.

For example, we can simulate different kinds of flu-
ids by changing the Reynolds number and the fluid
behaves differently. However, a higher Reynolds num-
ber in the calculation might result in numerical diver-
gence, while a lower Reynolds number will result in
numerical convergence. We can specify a very high
Reynolds number to achieve some specific turbulent
behavior but reduce the Reynolds number before the
numerical calculation diverges. This way, we can use a
simple numerical method to achieve behaviors not pos-
sible for a constant parameter. Although this is not an
accurate fluid computation, it suffices for fluid anima-
tion for certain phenomena.

Here we simply point out that the numerical calcu-
lations tend to stabilize if we choose smaller dt and Re

u , v p i / ;j

n
i;j /
n

i;j
n+

+
+

+
+{ }1 2

1
1 2
1 1, and

u , v pi / ;j

n
i;j /
n

i;j
n

+ +{ }1 2 1 2 , and

∆
∆y l;m l;m l;mf =

y
f f0

1 1
1

2
()+ −−

∆

∆x l;m l ;m l ;mf =
x

f f0
1 1

1

2
(+ −−)

V = v v v v i+ / ;j i ;j / i;j / i;j / i ;j /1 2 1 1 2 1 2 1 2 1 1 2
1

4
()+ + + − + −+ + +

U = u u u ui;j+ / i / ;j i / ;j i / ;j i / ;j1 2 1 2 1 2 1 1 2 1 1 2
1

4
()+ + + − + −+ + +

 b = U v + v vi;j
n

i;j
n

x i;j
n

i;j
n

y i;j
n

+ + + + +1 2 1 2
0

1 2 1 2
0

1 2/ / / / /∆ ∆

 a = u u + V ui / ;j
n

i / ;j
n

x i / ;j
n

i / ;j
n

y i / ;j
n

+ + + + +1 2 1 2
0

1 2 1 2
0

1 2∆ ∆

 u
v

x
v

v

y
w

v

z

∂
∂

∂
∂

∂
∂

+ +

 u
u

x
v

u

y
w

u

z

∂
∂

∂
∂

∂
∂

+ + and

a bi j
n

i j
n

+ +1 2 1 2/ ; ; /and

∇ =
−

+

−

−

−

h l m
l+ ;m l;m l ;m

l;m+ l;m l;m

f
f f + f

x
f f + f

y

2 1 1
2

1 1
2

2

2

:

∆

∆

∆
∆y l m l;m+ / l;m /f

y
(f f)1

1 2 1 2
1

: = − −

∆

∆x l m l+ / ;m l / ;mf
x

(f f) 1
1 2 1 2

1
: = − −

∆ ∆x y h
1 1 2, , and ∇

p
u v

i j
n x i j

n
y i j

n

;
+ ;

+
;
+

1
1 1 1 1

=
+∆ ∆
ε

v

v b p
Re

v t

i j
n

i j
n

i j
n

y i j
n

h i j
n

; +
+

; + ; + ; + ; +

1 2
1

1 2 1 2
1

1 2
2

1 2

1

=

+ − − + ∇

∆ ∆

u

u a p
Re

u t

i j
n

i j
n

i j
n

x i j
n

h i j
n

+

+

=

+ − − + ∇

1 2
1

1 2 1 2
1

1 2
2

1 2

1

;

; ; ;

+

+ + + ;
∆ ∆

Shape and Motion Modeling

54 May–June 1997

j −1

j

j+1

pij

u

v

pui+1/2;j

vi;j+1/21 The stag-
gered marker
and cell mesh.

.

and larger dx, dy, and ε values. The trade-off is that a
smaller dt will result in a slower simulation; a smaller
Re will result in quieter fluid behavior (tending to lam-
inar); and a larger dx, dy, and ε will result in greater
errors in the simulation.

3D fluid surface animation
After calculating the 2D fluid flow field’s velocity vec-

tors and pressures, we can draw a current frame of
velocity field. For a given grid (i, j) in the flow field,

(21)

(22)

we can draw a velocity vector from (i, j) to (i + ui;j,
j +vi;j). By raising the grid (i, j) in the third dimension to
the scale of pi;j, we can draw the fluid velocity field in a
3D surface. Using the Bernoulli equation—a basic fluid
mechanics equation satisfied along two points on the
same streamline—justifies the pressures to simulate the
fluid surface height:13

(23)

where V1 and V2 are the velocities at point 1 (P1) and
point 2 (P2) respectively, g is the gravity, h1 and h2 are
the heights, p1 and p2 are the pressures, and ρ is the den-
sity of the fluid (see Figure 2). To simplify the analysis,
we consider the velocities at the two points to be equal,
that is, V1 = V2. We assume P1 lies on the surface of the
fluid, and P2 lies on the 2D surface used to calculate the
2D Navier-Stokes equations as shown in Figure 2. We
can see that the fluid’s surface has a constant pressure

(that is, the pressure of the atmosphere, p1 = constant)
and the height of the 2D surface is constant (h2 = con-
stant). Therefore, for our purpose, we can simplify
Equation 23 as follows:

(24)

Since g, ρ,p1, and h2 are all constants, we can see that the
height of h1 is proportional to the pressure p2. In partic-
ular, when p2 = p1, h1 = h2.

Therefore, as the real-time calculations and drawing
progress, we can animate the velocity vectors of the
points on the fluid’s surface. For example, given a chan-
nel flow with a boundary condition (specified later in the
section “Applications examples”) for a dam on a river,
we can have frames of the animation of the velocity field
as in Figure 3a, where yellow indicates levels above zero,
white indicates those equal to zero, and blue indicates
those below zero. By shading and lighting the surface of
the flow field, we obtain frames of the same simulation
of the channel flow as shown in Figure 3b. So for a fluid
flow, we have obtained not only the simulation of the
fluid surface, but also the velocity field on the surface,
thus providing the velocities of all visible points on the
fluid. This information is important because it applies to
simulating floating objects with the speed of the fluid.

Volume conservation and fluid flow
The pressure-height 3D surface behavior does not

include the fluid volume and fluid flow boundary

h

p

g
h

P

gp
1

2
2

1= + −
ρ

V
gh

p V
gh

p1
2

1
1 2

2

2
2

2 2
+ + = + +

ρ ρ

v =

v v
i;j

i;j / i;j /+ −+1 2 1 2

2

u =

u u
i;j

i / ;j i / ;j+ −+1 2 1 2

2

IEEE Computer Graphics and Applications 55

2D surface for CFD
Fluid surface

Streamlinesh2 = constant
P2 on the same streamline as P1

h1

P1

2 Relationships
between pres-
sure and height.

3 Fluid flows
with different
Re numbers
(Re = 1, Re = 8,
Re = 300 from
top to bottom,
respectively)
and boundary
conditions.
(a) Velocity
vector field
frames.
(b) Same fluid
flow frames
with surface
shaded.
(c) Same fluid
flow frames
with the right
boundary
blocked.

(a) (b) (c)

.

changes, making it difficult to simulate flows that depend
on the simulated environment. In many applications,
such as simulations involving a dynamic terrain, fluid
flow interacts with the environment. For example, a bull-
dozer could break a dam, causing water to flow from the
breach and over soil that changes continually. Therefore,
fluid conservation and the interaction of the flowing fluid
with its environment are important issues to address.

We now introduce a method that calculates the fluid
flow and volume conservation necessary for comple-
menting the physical fluid surface behavior simulation.
Hence, our general fluid model allows fluid to generate
anywhere on a terrain surface, and the flow follows the
environment’s 3D contours. It allows changing bound-
aries and accounts for the fluid’s depth. With these capa-
bilities, the fluid model integrates into the dynamic
terrain within a DIS. Our approach has many advan-
tages—it does not confine fluid boundaries, it conserves
fluid volume, and it synchronizes fluid behaviors in the
distributed interactive simulation.

Data structure
Three main structures exist in this generalized fluid

model: the source list, tip list, and end list. The source list

manages the fluid sources, the tip
list manages the fluid flow from
sources to the destinations where
these flows accumulate, and the end
list manages the fluid accumulation.
Fluid flow points on the terrain con-
nect these structures. Elevation
posts represent the terrain—each
post corresponds to the location of
a point. The connected fluid flow
points form a path of fluid flow.
Following a fluid source in the
source list, we can step through the
fluid flow points to the locations in
the tip list where the fluid expands
or to the locations in the end list
where the fluid accumulates.

The source list contains fluid
source pointers and state informa-
tion. A fluid source pointer provides
the location (x, y) and the rate of
flow (r) of a fluid source on a terrain
(see Figure 4). Fluids generate from
sources in the source list.

The tip list, a temporary list, con-
nects all points that are currently at
the tips of the fluid flow (Figure 4).
It lets us calculate the fluid’s lead-
ing edge until it arrives at the end-
points where it will accumulate.
Flow rates are calculated and car-
ried along the fluid flow with the
tips. Notice that those fluid points
between a fluid source and a fluid
tip are neither in the source list nor
in the tip list. They are points along
the path of fluid flow from the
source to the tip. When a fluid tip

expands to a point where the fluid ceases to flow
because it is lower than all its surrounding points, we
reclassify the tip as an endpoint where fluid accumu-
lates. The endpoint joins the end list, which contains
locations where fluid accumulates (see Figure 5).

The end list contains fluid states, fluid surface heights
(h), fluid surface areas (W), pointers to fluid boundaries,
and pointers to fluid endpoints (x, y) and flow rates (r).
Fluid state information tells whether the current fluid
volume is growing. Fluid surface height lets us draw the
surface at its corresponding height. Flow rate and sur-
face area together determine the fluid height changes
for any particular point in time. The fluid boundary, or
perimeter, links to a list of the fluid surface’s boundary
points (see Figure 6). The structure is convenient for DIS
because we only need to send the fluid heights and
boundaries across the network to describe the same
fluid areas and depths on different simulators. Note, the
source list, the tip list, and the end list coexist in a fluid
flow and terrain environment, although to simplify the
explanation we did not draw them together.

Fluid flow volume conservation calculation
Fluid flow calculation includes adding fluid at source

Shape and Motion Modeling

56 May–June 1997

Head State State State

x,y,r

x,y,r x,y,r

x,y,r x,y,r x,y,r x,y,r

x,y,r

x,y,r x,y,r

Source list

Head

Tip list

x,y,r

x,y,r

x,y,r x,y,r

x,y,r x,y,r

x,y,r x,y,r

x,y,r

4 Fluid source
list structure.

Head State State State

x,y,r

x,y,r x,y,r

x,y,r x,y,r x,y,r

x,y,r x,y,r

Source list

x,y,r

x,y,r

x,y,r x,y,r

x,y,r x,y,r

x,y,r x,y,r

x,y,r

x,y,r

x,y,r

Head State
h,W

End list

State
h,W

State
h,W

Fluid boundary Fluid boundary Fluid boundary

5 Fluid end list
structure.

.

points, expanding fluid at tip points, and accumulating
fluid at endpoints.

Update a source. When a user specifies a source
and a rate of flow, a new fluid source node is created in
the source list and in the tip list. Initially, the fluid source
state is set to active. When a fluid source is stopped or
removed, that is, when no more fluid flows from the cur-
rent fluid source, we set the state of the source to inactive
(state equals 0). Then, we iteratively trace the fluid flow
from the inactive source points to the endpoints, remov-
ing all the fluid flow points along the path. Note that if
two sources flow together at some intermediate point,
our data structure maintains two separate entries, one
associated with each source. In this process, we remove
only the entry associated with the inactive source. Thus
we can have many user input fluid sources generating
fluids and eliminate many dried fluid sources.

Flow at the tips. Fluid tips in the tip list are
processed by expanding to new locations, that is, new
tips. When this occurs, the current tips delink from the
tip list and become inner points of the fluid flow. Every
fluid tip is a temporary structure, used only once. We
use it to find the next positions to which the fluid flows
from its current position according to the environment
(that is, the shape of the terrain, which, in this case, con-
sists of elevation posts). A tip searches its surrounding
points (namely, elevation posts), and the next positions
are those points lower than the current point. Dividing
the fluid flow rate by the number of the next positions
yields the flow rate passed on to these next positions. If
this position is a local lowest point on the terrain, then
no next position exists. In this case, fluid will start to
accumulate, and this point joins the end list. Otherwise,
new fluid tips are generated as children of the current tip
and added to the current tip list. The current fluid tip is
removed from the tip list, and becomes an inner point of
the fluid flow.

Accumulate at the ends. The points in the end list
are points where fluid accumulates. Processing the end
list updates the fluid surface heights, surface areas, sur-
face boundaries, and mergers of fluid boundaries.

We have said that the fluid flow rate travels with fluid
flow points to the ends. Given the fluid flow rate r at an
endpoint, the fluid volume (V) to add to the current loca-
tion at an iteration is

V = r • ∆t (25)

If the elevation of the environment around the current
fluid surface approximates the height of the current fluid
surface, the fluid will expand to its surrounding area at
the rate corresponding to the volume V. Assuming that
without raising the fluid surface, each elevation post
(point) takes a unit of fluid volume and the surrounding
area has P points to receive a portion of V, then the fluid
will expand to P* (P* ≤ V) points. The fluid surface area
W will update as W = W + P*. The neighboring points of
the current fluid area are randomly chosen. If P < V, then
P* = P, else P* = V ≤ P. If the surrounding points of cur-

rent fluid surface lie above the fluid surface, the fluid sur-
face will rise according to the added volume and surface
area. The surface height rise ∆h is calculated by

(26)

When the fluid has a boundary point lower than the cur-
rent fluid surface height by a preset threshold, we reclas-
sify the current boundary point as a new fluid source by
adding it to the source list and the tip list with the cur-
rent flow rate. Then the current fluid stops expanding.

When two fluid surfaces start to intersect with each
other, we merge these two surfaces into one fluid surface.
You can see that when two surfaces start to intersect, their
surface heights are close to each other. Rather than cal-
culating boundary intersections, we use a marker method
to detect the intersection. Calculating intersections
between fluid surfaces proves expensive. When fluid
expands to a post, it marks the current post. When
fluid expands to an already marked post, it detects an
intersection, and the current post is used to find the inter-
sected surface.

The calculations above produce the fluid’s footprint
for dynamically changing terrain. Our 2D Navier-Stokes
system works within this footprint to achieve a realistic
looking simulation. The above data structures can be
used in a DIS. We can simulate a fluid on one host, send-
ing data in the end list to networked simulators. The end
list provides the fluid height and surface boundaries. This
information is sufficient to reproduce similar fluid sur-
face appearances on networked simulators. Therefore,
only the fluid end lists on network simulators need to be
updated, keeping network traffic to a minimum. We will
further explain the method of synchronizing physically
based modeling in a DIS later, in the section “Synchro-
nization in DIS.”

Application examples
In all the examples given here, unless otherwise spec-

ified the initial values of the Reynolds number Re =300,
grid size in the x and y directions is 1 meter, time slice ∆t
= 0.001 second, penalty parameter ε = 0.005, and fluid
field size is X × Y where 60 ≤ X ≤ 120 and 60 ≤ Y ≤ 120.

Fixed or movable boundary conditions
A flow is internal if the flow field resides inside a chan-

nel, pipe, or any other external boundaries. It is external
if the flow field lies outside a tower, bridge, or any other
internal boundaries. A fluid flow can be both internal

∆h
V P

W
= − *

IEEE Computer Graphics and Applications 57

Fluid boundary

x,y

x,yx,y

x,y

x,y

x,y

x,y

x,yx,y

x,y

x,y

x,y

6 Fluid bound-
ary structure.

.

and external if it has both internal and external bound-
aries. The fluid boundary changes determine the fluid
area, but the fluid boundary condition changes deter-
mine the fluid behavior. Therefore, the boundary con-
ditions prove important in achieving the required fluid
flow simulation. The boundary conditions can be fixed
or moving—they are inputs to the computation.

For example, consider the initial conditions of the fluid
as ui+1/2;j = 5, vi;j+1/2 = 0, and pi;j = 0 for all i = 0, 1,…,
X − 1 and j = 0, 1, . . ., Y − 1. If we add a fixed external
boundary condition representing the edges and bound-
aries of a channel as ui+1/2;0 = 5, vi:1/2 = 0,
ui+1/2;Y−1 = 5, vi;Y−3/2 = 0, u1/2;j = 5 + 2∗ (Y − j) ∗ j∗ (j mod 3
and j > Y/3 and j < 2∗ Y/3)/Y, v0;j+1/2 = 0,
uX−3/2;j = (uX−3/2;j + uX−1/2;j)/2, and vX−1;j+1/2 = (vX−1;j+1/2

+ vX−2;j+1/2)/2 for all i = 0, 1,…, X − 1, and j = 0, 1, . . .,
Y − 1, we get frames of the simulation shown in Figures
3a and 3b (dam flow). If we change the above boundary
condition to uX−3/2;j = (uX−3/2;j + uX−1/2;j)/4, and

vX−1;j+1/2 =(vX−1;j+1/2 +vX−2;j+1/2)/4, we get frames of the
simulation shown in Figure 3c (dam flow with vortices).

We can iteratively modify the boundary conditions
to change the fluid behaviors. Therefore, depending on
the applications, the boundary conditions can be fixed,
movable, not modified, or modified at each step. For
example, by specifying a small internal boundary area
inside the fluid flow field and moving the area and its
boundary conditions in the fluid field, we can achieve
the behavior of a boat moving inside the fluid. Providing
the initial and boundary conditions of a channel flow
as ui+1/2;j =30 +(Y − j)∗ j/Y, vi;j+1/2 =0, and pi;j =0, ui+1/2;0

= vi;1/2 = ui+1/2;Y−1 = vi;Y−3/2 = 0, u1/2;j = (u1/2;j + u3/2;j)/2,
v0;j+1/2 = 0, uX−3/2;j = (uX−3/2;j + uX−1/2;j)/2, and vX−1;j+1/2

= (vX−1;j+1/2 + vX−2;j+1/2)/2 for all i = 0, 1, . . ., X − 1 and
j = 0, 1, . . ., Y − 1, then such a moving boat can be rep-
resented as ui+1/2;j = WakeSpeed, ui−1/2;j+1 =
WakeSpeed, ui−1/2;j−1 = WakeSpeed where (i; j) is the
current location of the moving boat, which in our exam-
ple repeatedly changes along the path from (0; Y/2),
(1; Y/2), . . ., to (X − 1; Y/2) and where WakeSpeed
equals the current boat speed. These conditions result
in the animation frames shown in Figure 7. These con-
ditions amount to setting the fluid velocities in the inter-
nal boundary area in correspondence with the
movement of the boat. If the internal boundary area
moves slowly, the wake behind the area is very small,
producing the effect of a sail boat in the fluid as shown
in Figure 7a (WakeSpeed = 50). Compare this with the
result in Figure 7b, in which the area moves fast, caus-
ing a large and turbulent wake simulating the effect of
a speed boat (WakeSpeed = 70). We can put several
internal movable boundary conditions together into the
fluid to achieve the animation of different boats in the
same fluid. Later, we’ll discuss the blending of fluids of
different colors and the drifting of objects shown in
Figure 7b.

Fixed or changeable boundaries
The fluid boundary can also be fixed or changeable.

Note that the change of the fluid boundaries differs
from the change of fluid boundary conditions. The fluid
boundary changes determine the fluid footprint on a
terrain; the fluid boundary condition changes deter-
mine the fluid surface behavior. The channel flow in
Figure 3 is an example of a fixed boundary. The fluid
flow field has a fixed given area, while the general flow
on a terrain as shown in Figure 8 has changeable exter-
nal boundaries. Users can control the movement of the
green straw in Figure 8, which specifies the location of
the current fluid source.

Viscous or inviscid fluid flow
A fluid’s Reynolds number is inversely proportional

to its viscosity. Thus we can simulate different fluid
flows by changing the Reynolds number. If the
Reynolds number is small, the fluid is viscous and the
flow laminar. If the Reynolds number is large, the fluid
tends to be inviscid and the fluid more turbulent. For
example, Figure 3 depicts the same fluid flow situation
with Re = 1, Re = 10, and Re = 300 from top to bottom,
respectively.

Shape and Motion Modeling

58 May–June 1997

7 Movable
boundary con-
ditions of a
(a) slow sail
boat and
(b) fast speed
boat.

8 Changeable
boundaries:
(a) a user mov-
able fluid source
and (b) fluid
emanating from
the source.

(a)

(b)

(a)

(b)

.

Floating objects and color elements in the
velocity field

The fluid velocity field provides a convenient tool to
simulate objects floating in the fluid. Floating objects
will flow in the fluid field with the velocities at their cur-
rent locations. When an object reaches a new position,
its velocity changes to the velocity at that position.

A simple method mixes fluids of different colors, pro-
ducing a realistic look of color blending, as follows. We
consider fluids of different colors to contain elements
of different colors that can mix their colors when they
flow to the same grid position in the flow field. Each ele-
ment updates its color and the grid position’s color to
which it travels by averaging the grid color and all ele-
ments at the same grid position. The color elements float
in the fluid with the velocities at their current locations.
Figures 3b and 7b display results from this approach.

Fluid in a dynamic virtual environment
We use a soil slippage model to show how the bound-

aries change and how to conserve volume in a dynam-
ic virtual environment. Figure 9a shows the fluid flow
in a dynamic terrain in which a bulldozer will break the
dam. Figures 9b and 9c show the fluid flow after this
happens. A user can place fluid sources at any point on
the terrain. The fluid will emanate from these points and
follow the environment. We calculated and animated
the soil slippage and fluid flow in real time.

Synchronization in DIS
An entity is an object such as a bulldozer, boat, piece

of changing terrain, or even a piece of fluid surface sim-
ulated in a DIS. Each entity has a local variable
(lastTime) that records the last time this entity updat-
ed its state. When an entity begins to update its state, it
can read the simulator’s clock to get the current time
(currentTime) and subtract the lastTime to determine
the period between the current time and the last time
the state was updated. This period equals the time slice
passed; its value, together with the old state, deter-
mines the new state. At the same time, lastTime updates
to currentTime.

Each entity proceeds at its own pace—synchronized
by our clock’s uniform time scale. The whole system is
synchronized in the sense that, at a certain instance, all
entities have advanced approximately the same amount
of time. For a simulator with a fast simulation cycle, the
time slice tends to be small and the fidelity high; for a
simulator with a slow simulation cycle, the time slice
tends to be large and the fidelity low. This synchroniza-
tion ensures that all entities use the same time scale.

When an entity updates its corresponding entities on
a different host, it sends its current state to them. They
update their states by the received state and the network
delay. When an entity receives a message, it computes
the network delay between the time the message was
sent and when it was received. When the sender sends a
message including the current time information of the
sender’s clock, the receiver decides the network delay of
the received message by looking at its own clock and the
time information sent with the received message. For
example, if we know that the time difference between

simulator 1 and simulator 2 is exactly three seconds (sim-
ulator 1 is three seconds earlier than simulator 2), then
if simulator 2 sends a message to simulator 1 at 12:00:04
p.m. (on simulator 2’s clock) and simulator 1 receives
the message at 12:00:03 p.m. (of simulator 1’s clock),
we know the network delay equals two seconds.

Two major advantages of this synchronization mech-
anism exist. One is that it needs very little network
information. Synchronization does not result from
sending messages across the network. The other advan-
tage is that you can predict activities and record time
elapses of events. For example, if we know the speed of
a vehicle, then we can predict its position ahead of the
simulation at an instance. Thus, the simulated envi-
ronments provide a better perception of real-world
time.

Existing efforts in physically based modeling have
used different approaches and physical laws (such as
Newton’s second laws, energy equations, Lagrange equa-
tions, and Navier-Stokes equations) to achieve model-
ing and simulation. All these physical laws are functions
of time. The numerical simulations of these physical laws
include calculating current state from last state and the
time passed between last and current states. In a stand-
alone simulation, ∆tn is often a chosen constant allow-
ing the same numerical stability for all n values. In a
real-time DIS, three major activities exist between states

IEEE Computer Graphics and Applications 59

9 (a) A bulldoz-
er moving
toward a dam,
(b) the bulldoz-
er just after
breaking the
dam, and
(c) fluid flow
after the bull-
dozer breaks
the dam.

(a)

(b)

(c)

.

of simulation as shown in Figure 10: processing (net-
work) messages and other information, calculating next
states of the (physical) entities, and rendering the cal-
culated entities graphically. To achieve real-time simu-
lation, all the activities cannot be slower than certain
thresholds.

The network synchronization method introduced ear-
lier synchronizes the network activities and minimizes
the network traffic in DIS. However, it could happen that
the varying time slices between states are so big that the
numerical computation for physically based modeling
diverges. As we know in physically based modeling and
simulation, the time slice must remain smaller than a
certain criterion to retain numerical stability and to limit
the numerical offset error. For example, the numerical
calculations of the Navier-Stokes equations need small
time slices to retain numerical stability.

Here we provide a time differential solution for this
problem. Instead of using a big time interval ∆tn, we can
differentiate it into smaller time slices satisfying the
numerical calculation requirements of the physical
equations. For example, if we know that ∆t satisfies these
requirements, we still use it to calculate the physical
equations regardless of the varying time slice between
simulation states, yet we can also synchronize all the
physical models’ activities in the network. When we get
∆tn larger than ∆t, we can divide ∆tn into a number of ∆t
values and calculate the activities of the physical phe-
nomena ∆ tn/∆t times. The residue of the time division
can be added to the next simulation period. If ∆tn proves

smaller than ∆t, we can consider it as a residue time and
add it to the next simulation period.

Figure 11 illustrates this process. Notice the differ-
ence between the time slice used to calculate the state
changes and the time slice between state changes.

In cases where the time slice is small but the physical
phenomena evolve so fast that the animation appears
jumpy (temporally aliased) after a series of calculations,
we can render every frame after each numerical calcu-
lation (see Figure 12). This situation occurs when we
simulate fast particle movements in a DIS.

Discussion and conclusion
Although our fluid model examples are simple and

limited, they can serve as a testbed to simulate many
more fluid phenomena by changing the boundary con-
ditions, adding interactions between fluids and objects,
mixing fluids of different properties, and adding fluids at
different locations in the dynamic virtual environment.

However, our fluid model does have some limitations.
Specifically, the 2D solution with the addition of pres-
sures is not physically equivalent to the solution of 3D
Navier-Stokes equations, which precisely describes the
fluid behavior. For example, the boat wakes don’t show
differential wave curvature. The images look rigid com-
pared to real water. Our model cannot be used for any
accurate engineering purpose. However, it is useful in
applications where the fluid effects are more important
than the accuracies of the computational results. In a
simulated virtual environment for real-time pilot train-

Shape and Motion Modeling

60 May–June 1997

State n−1 State n State n+1

Time

Processing Calculating Rendering Processing Calculating Rendering

∆tn−1 ∆tn

10 Activities
between simu-
lation states.

State n State n+1

Time

Processing Calculating Calculating Calculating Rendering

∆tn

11 Physical
models needing
a small time
slice.

State n State n+1

Time

Processing Calculating Rendering Calculating Rendering

∆tn

12 Physical
models needing
a small time
slice but evolv-
ing fast.

.

ing, for example, the real-time fluid behaviors will great-
ly enhance the realities of the training environment. The
boat wakes can provide pilots with useful visual cues
even without accurate results.

Some other problems remain. For example, the simu-
lation may not stay stable after a long period of time if
the Reynolds number is too high. Also, our fluid model
does not account for fluid jump and fluid refraction. In
subsequent work we plan to model the interactions
between floating objects and fluid and address some of
the problems.

We are currently working on improving our fluid
model and using it for interactive distance learning and
a networked training environment. ■

Acknowledgments
We are grateful to Xin Li for providing suggestions and

for his dynamic terrain soil slippage model code;
Michelle Sartor, Art Cortes, and Curt Lisle for providing
comments and suggestions; the people at the Visual
Systems Lab (VSL) for their support; and the VSL of the
Institute for Simulation and Training (IST) for providing
the facilities for our initial research.

References
1. Institute for Simulation and Training, The DIS Vision: A Map

to the Future of Distributed Simulation, Version 1, Univ. of
Central Florida, Orlando, Fla., May 1994.

2. A. Fournier and W.T. Reeves, “A Simple Model of Ocean
Waves,” Comp. Graphics, Vol. 20, No. 4, Aug. 1986, pp. 75-
84.

3. D.R. Peachey, “Modeling Waves and Surf,” Comp. Graph-
ics, Vol. 20, No. 4, Aug. 1986, pp. 65-74.

4. P.Y. T’so and B.A. Barsky, “Modeling and Rendering Waves:
Wave-Tracing Using Beta-Splines and Reflective and
Refractive Texture Mapping,” ACM Trans. on Graphics, Vol.
6, No. 3, July 1987, pp. 191-214.

5. G. Miller and A. Pearce, “Globular Dynamics: A Connect-
ed Particle System for Animating Viscous Fluids,” Com-
puters and Graphics, Vol. 13, No. 3, 1989, pp. 305-309.

6. D. Terzopoulos, J. Platt, and K. Fleischer, “Heating and
Melting Deformable Models (From Goop to Glop),” Proc.
Graphics Interface, Canadian Information Processing Soci-
ety, Toronto, June 1989, pp. 219-226.

7. M. Kass and G. Miller, “Rapid, Stable Fluid Dynamics for
Computer Graphics,” Computer Graphics, Vol. 24, No. 4,
Aug. 1990, pp. 49-55.

8. M.E. Goss, “A Real-time Particle System for Display of Ship
Wakes,” IEEE Computer Graphics and Applications, Vol. 10,
No. 3, May 1990, pp. 30-35.

9. J. Wejchert and D. Haumann, “Animation Aerodynamics,”
Computer Graphics, Vol. 25, No. 4, July 1991, pp. 19-22.

10. J. Stam and E. Fiume, “Turbulent Wind Fields for Gaseous
Phenomena,” Proc. Computer Graphics, Addison Wesley,
New York, Aug. 1993, pp. 369-376.

11. J.X. Chen and N.V. Lobo, “Toward Interactive-Rate Simu-
lation of Fluids with Moving Obstacles Using Navier-Stokes
Equations,” Graphical Models and Image Processing, Vol. 57,
No. 2, Mar. 1995, pp. 107-116.

12. R. Peyret and T.D. Taylor, Computational Methods for Fluid

Flow, Springer-Verlag, New York, 1985.
13. W.R. Fox and A.T. McDonald, Introduction to Fluid Mechan-

ics, 4th edition, John Wiley and Sons, New York, 1992.
14. R. Temam, Bulletin de la Societé Mathématique de France,

Gauthier-Villars, Paris, 1968, pp. 115-152.

Jim X. Chen is an assistant professor
of computer science at George Mason
University in Fairfax, Virginia. His
research interests include physically
based modeling, real-time simulation,
and scientific visualization in graph-
ics. He received a PhD in computer sci-

ence from the University of Central Florida in 1995, and
MS and BS degrees in computer science from Southwest
Jiaotong University, China, in 1986 and 1983, respective-
ly. He is a member of the IEEE Computer Society and ACM.

Niels da Vitoria Lobo is an assis-
tant professor in the Department of
Computer Science at the University of
Central Florida in Orlando. His
research interests are in vision and
physical modeling for graphics. He
received a BS at Dalhousie University

in Canada in 1982, and an MS and PhD at the University
of Toronto in 1985 and 1992, respectively. He is a member
of the IEEE Computer Society.

Charles E. Hughes is a professor of
computer science at the University of
Central Florida in Orlando. His
research interests are in distributed
interactive simulation, constraint logic
programming, parallel processing,
and object-oriented paradigms. He

received a PhD and MS in computer science from Pennsyl-
vania State University, and a BA in mathematics from
Northeastern University. He is a member of the IEEE, IEEE
Computer Society, and ACM.

J. Michael Moshell is a professor of
computer science at the University of
Central Florida in Orlando. He found-
ed the Visual Systems Laboratory of
the Institute for Simulation and Train-
ing at the University of Central Flori-
da and currently serves as its chief

scientist. His research interests are in applying simulation
and virtual environments to training and education. He
received a BS in physics from Georgia Institute of Technol-
ogy in 1968 and a PhD in computer science from Ohio State
University in 1975. He is senior editor of Presence. He is a
member of the IEEE and ACM.

Contact Chen at George Mason University, Department
of Computer Science, MS 4A5, Fairfax, Va., 22030-4444,
e-mail jchen@cs.gmu.edu.

IEEE Computer Graphics and Applications 61

.

