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Abstract

In this paper, we propose a novel approach for scene

modeling. The proposed method is able to automatically

discover the intermediate semantic concepts. We utilize

Maximization of Mutual Information (MMI) co-clustering

approach to discover clusters of semantic concepts, which

we call intermediate concepts. Each intermediate concept

corresponds to a cluster of visterms in the Bag of Vis-

terms (BOV) paradigm for scene classification. MMI co-

clustering results in fewer but meaningful clusters. Unlike

k-means which is used to cluster image patches based on

their appearances in BOV, MMI co-clustering can group the

visterms which are highly correlated to some concept. Un-

like probabilistic Latent Semantic Analysis (pLSA), which

can be considered as one-sided soft clustering, MMI co-

clustering simultaneously clusters visterms and images, so

it is able to boost both clustering. In addition, the MMI co-

clustering is an unsupervised method. We have extensively

tested our proposed approach on two challenging datasets:

the fifteen scene categories and the LSCOM dataset, and

promising results are obtained.

1. Introduction

The scene is defined as the physical setting of the en-

vironment where the image is taken. Some examples of

scenes include outdoor, indoor, beach, mountain, forest, of-

fice and urban landscape. Image scene classification has

a wide range of applications, such as intelligent image

processing and content-based image indexing and retrieval

(CBIR)[20]. In CBIR, an efficient and effective classifica-

tion method can significantly improve the retrieval accuracy

by removing the irrelevant images. Scene classification has

posed a significant challenge to the research community of

computer vision due to interclass variability, illumination

and scale changes.

In general, we can model a scene from the hierarchical

viewpoint. On the bottom level, a scene can be modeled as a

statistical distribution of color of pixels or interest patches.

Yet beyond the low level, we can also describe a scene by

the composition of objects such as cars, buildings, and per-

sons. The objects can be further described in terms of parts

e.g. a wheel of a car, a window of a building, or a face of a

person. The highest level could be the scene as a whole.

Earlier scene modeling approaches mainly focused on

modeling a scene using the global statistical information of

an image rather than the local details [20] [16]. However,

these approaches were not extensible to multi-category clas-

sification [15]. Later some approaches were proposed to

classify images into multiple categories e.g. [14] and [21].

The key idea of these approaches is to utilize “semantic con-

cepts” to represent an image. These “semantic concepts”

are objects or object patches in the scene. However, in this

work “semantic concepts” were determined by manual an-

notations. Hence, these approaches are less flexible to be

applicable to other sematic categories.

Local interest-points and their descriptors have attracted

lots of attention. Bag of Visterms (BOV) approaches, which

have achieved inspiring performance [3] [10], model im-

ages as sets of orderless local features. The key process

in BOV modeling is to quantize the local image patches

into visterms using k-means algorithm, which clusters the

patches based on appearance similarity. It has been noticed

that the size of the codebook affects the performance and

there is an optimal codebook size which can achieve max-

imal accuracy [13][22]. In general, thousands of visterms

are used to achieve better performance. However, they may

contain a large amount of information redundancy. There-

fore, the researchers have attempted to find a more compact

representation. Winn et al proposed an agglomerative Infor-

mation Bottleneck (IB)[19] based method to generate opti-

mized codebook size by merging the initial large number of

visterms [23]. This is a supervised procedure which needs

to manually label the training regions. Latent Dirichlet Al-

location (LDA) [1] or probabilistic Latent Semantic Analy-

sis (pLSA) [7] modeling is another attempt. Fei-Fei et al.

[5], Quelhas et al. [15], Sivic et al. [18] and Bosch et al.

[2] have respectively applied LDA and pLSA to discover la-

tent semantic concepts beyond the BOV. Those models were
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originally used in the text processing field [1][7], then suc-

cessfully applied to scene classification and object recog-

nition in Computer Vision. Here, an image is modelled

as the distribution of the hidden concepts that can be es-

sentially considered similar to the “semantic concepts” in

[21]. The difference is that hidden concepts can be discov-

ered automatically from document-word or image-visterm

co-occurrence matrix.

In this paper, we propose a novel approach for auto-

matically discovering intermediate concepts from visterms

by Maximization of Mutual Information (MMI). Recently,

information-theoretic clustering has received more atten-

tion in data clustering [6][8][19]. Co-clustering via the

Maximization of Mutual Information (MMI) is a success-

ful strategy to group words into semantic concept clusters

(e.g. “pitching”, “score”,“teams” etc. can be clustered into

“baseball” concept; and “biker”, “wheel”, “ride” may be

clustered into “motorcycle” concept.), which has been suc-

cessfully used in text classification area[4]. The critical

point is to simultaneously maximize the mutual informa-

tion (MI) of the words and documents when clustering these

words into semantic concepts, which are somehow analo-

gous to the hidden concepts. However, there are signifi-

cant differences between them. pLSA is a generative model,

which employs hidden variables; while MMI co-clustering

does not use hidden variables. Secondly, pLSA assumes

conditional independence, i.e. given the latent variable the

image and visterm are independent which are not required in

MMI co-clustering. Besides, MMI co-clustering performs

hard clustering, and it simultaneously clusters both words

and documents. Moreover, in practice we have observed

that pLSA needs a considerable number of EM iterations to

reach convergence.

Similarly, the IB also can preserve the MI between words

and documents. However, it is one-sided clustering. Even

the double IB [19] only sequentially clusters words fol-

lowed by the documents. It does not guarantee a global

minima of loss function. However, MMI co-clustering sys-

tematically gives the global minimum of the loss of MI, and

it has been proved the loss function of MI is monotonic[4].

1.1. Proposed Framework
Fig.1 shows the workflow of our framework for both

learning and classification. Other than using MMI co-

clustering technique to automatically discover intermedi-

ate concepts, we also investigate ways to capture the spa-

tial information of the intermediate concepts. We form

a codebook from a collection of local patches sampled

from the training images using k-means algorithm which

can efficiently group visually similar patches into one clus-

ter (visterm). And then we use MMI co-clustering to

further cluster the visterms into some intermediate con-

cepts(unsupervised). Unlike k-means, MMI co-clustering

can group the visterms which are highly correlated to some
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Figure 1. Work flow of the proposed scene classification frame-

work.

concept. In order to capture the spatial information of the

semantic concepts in the scene, we exploit the Spatial Pyra-

mid Matching (SPM)[12] and weighted Spatial Concept

Corellogram (SCC). Finally, we use a SVM as a classifier

to train and test these models.

We have tested our approach on two diverse database:

the 15 semantic scene categories [12] and the LSCOM

dataset 1(we provide the details in section 3). Our results

show that MMI co-clustering (Bag of concepts: BOC) can

clearly achieve much better performance than clustering ob-

tained by k-means algorithm (Bag of Visterms: BOV); this

improvement is quite significant especially when the num-

ber of clusters (visterms or intermediate concepts) is small.

We have also explored the different possible cases (differ-

ent sampling distances, strong vs weak classifier, differ-

ent number of clusters etc) under which MMI co-clustering

can achieve much better or competitive results compared to

original BOV. This is due to the fact that MMI Co-clustering

generates fewer but more meaningful clusters of visterms

called intermediate concepts. Besides, we also apply the

learnt intermediate concepts to two types of spatial models:

SPM and weighted SCC. The experiments verify that SCC

further improves the results over MMI co-clustering, and

SCC+BOC gives better performance than SCC and BOC.

Besides, SPM using intermediate concepts can also im-

prove the performance of SPM using visterms from 2% to

5% in terms of average accuracy. Finally, we would like to

note that the proposed intermediate concepts model with

spatial information can achieve competitive performance

with much lower dimensions compared to that of visterms

model (see the section 3 for the details). Lower dimension

is quite important for computation speed, especially for a

large dataset like LSCOM.

The rest of this paper is organized as follows: Section 2

describes the MMI co-clustering. Section 3 presents the ex-

perimental results and comparisons with other approaches.

1http://www.ee.columbia.edu/ln/dvmm/lscom/
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Figure 2. The graphical explanation of MMI co-clustering. The goal of

MMI co-clustering is to find one clustering of X and Y which minimize

the distance between the distribution matrix p(x,y) and q(x,y).

Finally, Section 4 concludes our work.

2. Co-clustering by Maximization of Mutual

Information

In this section, we present details on how co-clustering

of visterms and images is performed by maximizing the

mutual information. Consider two discrete jointly dis-

tributed random variables X and Y , where X ∈ X =
{x1, x2, ..., xn} and Y ∈ Y = {y1, y2, ..., ym}. In prac-

tice, X may represent a set of words in text classification

or visterms in image classification, and Y may be a set of

documents or images. In scene classification based on BOV

modeling, the similarity of two images can be measured by

their visterm conditional distributions p(x|y). One critical

procedure for BOV modeling is to form codebook X via

vector quantization using k-means algorithm, which groups

the local patches by their appearance similarity. If code-

book size is small, it may cause over-clustering with higher

intraclass distortion. Therefore, it is common to choose an

appropriate larger value of codebook size. However, this

large size may introduce information redundancy in the co-

occurrence matrix.

So, we seek to find a more compact representation of

X , say X̂ which is able to capture the “semantic concepts”.

This procedure is called “word clustering” in text classifi-

cation. One criteria for X̂ is to maximize the mutual in-

formation I(X̂;Y ). Since our original goal is to cluster Y ,

we can simultaneously perform clustering on X and Y by

maximization I(X̂; Ŷ ).

2.1. Mutual Information
Given two discrete random variables X and Y , the MI

between them is defined as:-0.1in

I(X;Y ) =
∑

y∈Y,x∈X

p(x, y)log
p(x, y)

p(x)p(y)
, (1)

where p(x, y) is the joint distribution of X and Y , p(x) and

p(y) are the probability distributions of X and Y respec-

tively. MI is used to measure the dependence of two random

variables, that means how much information of variable X
is contained in variable Y . Using Kullback-Leibler diver-

gence, also known as relative entropy, the MI also can be

expressed as:

I(X,Y ) = DKL(p(x, y) ‖ p(x)p(y)), (2)

where DKL computes the distance between two distribu-

tions. Thanks to BOV image representation, we can easily

make an analogy between images (visterms) and documents

(words). As noted earlier in the context of this paper, X and

Y represent visterm and image respectively.

2.2. Co-clustering Algorithm

Consider a training image dataset Y with c cate-

gories, and its associated codebook X with n visterms,

we seek to simultaneously cluster Y into c categories

Ŷ = {ŷ1, ŷ2, ..., ŷc}, and X into w disjoint clusters X̂ =
{x̂1, x̂2, ..., x̂w}. Actually, we can consider the clustering

as two mapping functions X̂ = CX(X) and Ŷ = CY (Y ).
In order to evaluate the quality of clustering, we utilize the

following mutual information loss:

∆MI = I(X;Y ) − I(X̂; Ŷ ). (3)

Because I(X;Y ) is fixed for specified data collections,

the optimal co-clustering actually attempts to maximize

I(X̂; Ŷ ), given the number of clusters c for Y , and w for

X respectively. It is straightforward to verify that the MI

loss also can be expressed in the following form [4]:

∆MI = DKL

(

p(x, y) ‖ q(x, y)
)

, (4)

where q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ). This is the objective

function when performing co-clustering. The input to co-

clustering algorithm is the joint distribution p(x, y), which

records the probability of occurrence of a particular visterm

x in a given image y. The aim is to determine clusters with

distribution q(x, y) which is as close as possible to p(x, y).
The process is pictorially shown in Figure 2. For each new

clustering X̂ and Ŷ , we first compute the joint distribution

matrix p(x̂, ŷ) as follows:

p(x̂, ŷ) =
∑

x∈x̂,y∈ŷ

p(x, y). (5)

Then for x ∈ x̂ we compute the conditional distribution

p(x|x̂),

p(x|x̂) =
p(x)

p(x̂)
, (6)

where the marginal distribution p(x) =
∑

y∈Y p(x, y) and

p(x̂) =
∑

ŷ∈Ŷ
p(x̂, ŷ). For x /∈ x̂, p(x|x̂) = 0. Simi-

larly, we can get the conditional distribution p(y|ŷ). Conse-

quently, the quality of this specified clustering is evaluated

by DKL

(

p(x, y) ‖ q(x, y)
)

.

The algorithm starts with randomly initial partitions C0
X

and C0
Y . The number of clusters for X and Y are specified

as w and c respectively. At each iteration t of the algorithm,

two phases are involved:



1. Clustering of X while keeping Y fixed. For each

x, assign it to its new cluster, which means Ct+1

X =
argminx̂DKL

(

p(y|x) ‖ q(y|x̂)
)

where q(y|x̂) =
p(y|ŷ)p(ŷ|x̂). Update the probabilities based on the

new X cluster.

2. Clustering of Y while keeping X fixed. For

each y, find its new cluster such that Ct+2

Y =
argminŷDKL

(

p(x|y) ‖ q(x|ŷ)
)

, where q(x|ŷ) =
p(x|x̂)p(x̂|ŷ). Update the probabilities based on the

new Y cluster.

The iterations of the co-clustering stops when

∆tMI − ∆t+2MI < ǫ, (7)

where ǫ is the threshold.

In summary, in order to assign intermediate concepts to

each image patch, we apply two steps. We first use k-means

algorithm to cluster the image patches into visterms. Since

the criterion for k-means is based on appearance similarity,

patches belonging to one visterm are visually similar. Fur-

ther, we group the visterms into some semantic clusters (in-

termediate concepts) via MMI co-clustering. The number

of intermediate concepts is much less than that of visterms.

Our experiments show that we can do better scene classifi-

cation using intermediate concepts than using visterms.

3. Experiments
We have extensively applied our proposed approach to

two diverse datasets: fifteen scene categories [12] and the

LSCOM (Large Scale Concept Ontology for Multimedia)

dataset. For both datasets, only gray level images are used.

The default experiment setting is as follows. We utilize

dense features sampled using a regular grid with sampling

space of M=8 pixels. The patch size is randomly sam-

pled between scales of 10 to 30 pixels. SIFT descriptor

[9] is computed for each patch. We use a support vec-

tor machine (SVM) with Histogram Intersection kernel as

a classifier. For 15 scene categories, we choose the one-

versus-all methodology for multi-class classification. The

binary SVM classification is applied to the experiments on

LSCOM. All the experiments on 15 scene categories are re-

peated 5 times. For each experiment the training dataset

is randomly selected. The final results are reported as the

average accuracy.

3.1. Classification of Fifteen Scene Categories
The fifteen scene categories are the same used by [12],

which is union of the 13 scenes reported in [5] and two ad-

ditional scenes added by Lazebnik et al. In fact, the thirteen

categories contain 8 scenes originally reported in [14]. Each

category has 212∼410 images. The average image size is

about 250 × 300. We use 50 randomly selected images

from each category to form the visterm codebook of size

Nc�Nv 20% 60 80 100 200 300

BOV 47.25 61.69 65.34 67.72 70.81 71.46

BOC 63.32 68.53 70.25 73.01 75.16 74.62

Table 1. The average accuracy (%) achieved using strong and weak

classifiers.

Nv . Further, we use MMI co-clustering to discover Nc in-

termediate concepts from the codebook. We try several Nv ,

and finally fix Nv = 1, 500 which gives better performance.

Then an image can be represented by visterms histogram

(BOV model) or a intermediate concepts histogram (BOC

model). In SVM classification phase, 100 images are ran-

domly selected from each category as a training set, and the

rest are used for testing.

3.1.1 Classification using orderless features

We investigate the gain of MMI co-clustering (BOC model)

compared to the k-mean approach (BOV model) in two

ways. One is to compare them using the same number of

clusters(Nc = Nv), and the other is to compare BOC with

the original BOV with Nv=1,500 (Original BOV means di-

rectly representing an image using bag of visterms from

which the intermediate concepts are created.). We conduct

classification on the 15 scene categories using both BOV

and BOC models by using different values of Nv or Nc from

a set: {20, 60, 80, 100, 200, 300}. Table 1 shows the results.

Overall, BOC is able to improve the performance between

3.16% to 16.07% compared to BOV; especially when the

number of clusters is small. This is due to better clustering.

K-means algorithm groups the image patches into visterms

based on the appearance of the patches. When Nv is small,

the intra-cluster variance is larger, which hurts the perfor-

mance. However, when grouping the 1,500 visterms into

semantic intermediate concept clusters, MMI co-clustering

tries to preserve the mutual information between visterms

and images, such that the visterms in the same cluster share

certain common intermediate concept. So that they are not

necessarily similar in visual appearance. Although in MMI

co-clustering intra-cluster variance of appearance may be

large, it can preserve some meaningful concepts. Therefore,

MMI co-clustering can still achieve better classification per-

formance even with small Nc. The best performance for

BOC is achieved when Nc = 200.

The classification accuracy is 76.38% when using BOV

model with Nv = 1, 500, which is slightly better than the

best performance of BOC model. This is consistent with

the results of Lazebnik et al.[12] and Quelhas et al. [15].

We conjecture that this improvment may be due to the di-

mension reduction achieved by the MMI co-clustering tech-

nique. While Bosch et al. claimed in their paper [2] that

compared to original BOV, pLSA which is another dimen-

sion reduction technique similar to our MMI co-clustering,

performs better. We feel that the gain in performance due



to the dimension reduction depends on classifier type and

the performance of original BOV. The performance of BOV

can vary with the patch sampling [13], and the number of

visterms [22]. If the patch sampling and Nv has been opti-

mized, it is not easy to achieve higher accuracy with any di-

mension reduction techniques, because BOV representation

is not that sensitive to noise. Another reason may be due

to the performance of the specific classifier. Some weak

classifiers like K-Nearest Neighborhoods (KNN) perform

poorly with high dimensional features. Therefore, when the

dimension is reduced, they are able to achieve better perfor-

mance. However, some strong classifiers (i.e. SVM) which

are good at classification of high dimensional features, may

not be able to achieve better performance with dimension

reduction because of certain information loss.

In order to verify our conjecture, we conducted two

groups of experiments. Table 2 shows the results using dif-

ferent sampling spaces denoted by M . Here, multi-class

SVM is used as a classifier. The first row lists the results us-

ing BOV model with Nv=1,500, and the second row shows

the results using BOC model where the intermediate con-

cepts are extracted from the corresponding BOV codebook.

When we increase the sampling space, the difference be-

tween the performance of BOV and BOC decrease from

about 3.6% to -1.33%. In particular, the sampling setting

in the third column is similar to the sampling in [2], and the

performance of BOC is better than BOV. In fact, large sam-

pling space generates fewer sampling features. Space with

M=4 corresponds to more than 4,000 patches for each im-

age, while space with M=10 correspond to only about 500

patches. Therefore, we feel that with a large number of sam-

pling patches, the BOV performs better. Our further exper-

iments verified this. For M=8 (each image has more than

1,000 patches), we randomly select about 200 patches from

each image to evaluate the performance. Then the results

for BOV and BOC are 67.29% and 69.21% respectively.

Therefore, the number of patches sampled from the image

affects the comparison between BOC and original BOV.

We further investigated the performance of classification

using different classifiers. Table 3 demonstrates the per-

formance comparison of the SVM classifier and the KNN

classifier with Euclidian distance. In both cases, 100 ran-

domly selected images from each category were used for

training. The first column with Nv=1,500 shows the BOV

baseline, and the following column shows the result of BOC

with different Nc. It is very clear that the KNN classi-

fier does not work well for high dimensional data. Hence,

the dimension reduction technique can improve the perfor-

mance quite much. However, SVM is a strong classifier

which is able to handle high dimensional data. With rea-

sonable Nc, the SVM can still achieve competitive results.

However, low dimensional features provides us much better

computational efficiency, which is very important for learn-

M = 4(%) M = 8(%) M = 10(%)

BOV(Nv=1,500) 78.32 76.38 69.81

BOC(Nc=200) 74.69 75.16 71.14

Table 2. The results achieved under different sampling spaces.

Nc \ Nv 1500 40 60 80 100

SVM 76.38 64.60 68.53 70.25 73.01

KNN (K=12) 58.17 61.22 63.76 64.54 66.37

Table 3. The average accuracy (%) achieved using strong and weak

classifiers.

ing/classification of a large dataset like LSCOM.

Finally, we compared the performance of MMI co-

clustering, pLSA and IB. For all of them, we use the de-

fault experiment setting. pLSA achieves the best perfor-

mance of 71.24% at Nc = 80. The best performance of

IB is 72.49% when Nc = 150, while MMI co-clustering

can achieve 75.16% at Nc = 200. Besides, in the experi-

ments we observed that pLSA converged after about 100 it-

erations, while MMI co-clustering can converge in less than

40 iterations. This is consistent with the claim in [11] that

in practice it takes a considerable number of of EM itera-

tions for pLSA to converge. The time complexity for co-

clustering, pLSA and IB are O(t · R · (c + k)),O(t · R · k)
and O(|I|3) respectively (where t is number of iterations,

R is the number of nonzero entries, c is number of cate-

gories, k is number of intermediate concepts and I is num-

ber of training images). Therefore, IB is not suitable for

large dataset[19].

3.1.2 Classification using intermediate concepts and

their spatial information

In order to capture the spatial information, we implement

two models: Spatial Pyramid Matching (SPM)[12] and

Spatial Concept Correlogram (SCC). For SPM, we repeat-

edly divide an image into subblocks and compute local his-

togram of intermediate concepts for each block. Finally,

an image is represented by combining the local histograms

from the subblocks of the pyramid. The representative

vector has high dimensions of 1

3
(4L − 1)Nc, where L is

the number of pyramid levels. In our experiments, we set

L = 3. From table 4, we can see thanks to intermedi-

ate concepts, the SPM IC (SPM using intermediate con-

cepts) can improve the performance from about 2.79% to

4.28% , especially when the number of cluster is smaller.

Interestingly, we notice that when Nc = 80, the SPM IC

can achieve competitive performance to SPM V (SPM us-

ing visterms) at Nv = 400 , while the dimension is reduced

by 5 times. The best performance achieved by SPM V is

80.46% 2 and 83.25% for SPM IC.

We modify the correlogram and make it fit to our SCC,

which is able to capture the spatial correlation of the inter-

mediate concepts in the image. It represents the probability

2In [12] the best performance for SPM visterm is quoted as 81.4%.



40 50 80 100 200 400

SPM V 75.24 76.14 77.62 77.81 80.27 80.46

SPM IC 79.52 80.19 80.93 81.33 83.19 83.25

Table 4. The performance (average accuracy %) of SPM using visterms

and intermediate concepts. SPM IC and SPM V denote SPM using inter-

mediate concepts and visterm respectively.

40 60 80 100 200 400

BOC 65.48 68.53 70.25 73.01 75.16 74.21

SCC 65.97 69.71 72.40 74.39 77.76 78.15

BOC+SCC 71.10 73.06 75.18 78.33 81.49 81.72

Table 5. The average classification accuracy (%) obtained by various mod-

els (SCC, BOC, and SCC+BOC).

of two patches at a distance D having the same intermediate

concept. We can define the SCC as follows,

R(Dk, li, lj) = Pr
(

l(p2) = lj |l(p1) = li, d(p1, p2) ∈ Dk

)

,
(8)

where p1, p2 are two patches, li, lj are two concept labels,

and Dk represents the quantized distance. Assume R1 and

R2 respectively represent SCC of image 1 and image 2, then

the similarity between them is computed as,

Sim(R1,R2) =

K
∑

k=1

L
∑

i,j=1

wk × min(R1(Dk, li, lj),R2(Dk, li, lj)),
(9)

where wk is the weight assigned to the matches made at
distance Dk. Thus, we can assign a higher weight to the

match found at a smaller distance.

In our experiments, we consider autocorrelogram. When

computing the SCC, we divide the image into 2 by 2 blocks,

and for each block, we compute its SCC. We set D1 =
[1 64] and D2 = [64 128] in term of pixels in x and y

direction. Table 5 shows the classification results. We can

see the combination of SCC and BOC can achieve better

performance over SCC and BOC. Interestingly, correlatons

reported in [17] performs much worse than BOV. However,

our SCC performs better. This might be due to the fact

that our intermediate concepts correlogram is computed on

patches, and weighted by different quantized distances. The

best performance for SCC+BOC is 81.72%, which is little

worse than SPM IC, but better than SPM V. The number of

dimensions, 9Nc, is much lower than that of SPM IC. Fig.3

shows the confusion table for the 15 sceene categories using

SCC+BOC approach.

3.2. Classification of LSCOM Dataset
The LSCOM dataset which includes more than 400 an-

notated categories is a very challenging dataset and has

has been explored by the TRECVID community for sev-

eral years3. This dataset contains 61,901 keyframes ex-

tracted from a variety of real TV news programs. The

3http://www-nlpir.nist.gov/projects/trecvid/

Figure 3. Confusion table for the SCC+BOC model. The average perfor-

mance is 81.72%.

size of the keyframe is fixed to 240 × 352. In our exper-

iments, the following 28 categories including scenes and

objects are evaluated: airplane, animal, basketball, boat or

ship, building, charts, clouds, weather, crowd, desert, flag-

US, maps, meeting, military, mountain, road, studio, tennis,

trees, urban, waterscape, computer TV-screen, explosion or

fire, industrial setting, car, fields, office and vegetation. In

this experiment, we want to demonstrate how the differ-

ent classification approaches perform. Unlike the images

of 15 scene categories, the keyframes of LSCOM may con-

tain several overlapping high level concepts. For example,

in one keyframe, you probably can see crowd, buildings,

cars or roads. Therefore, each keyframe may be classified

into multiple categories. We use binary SVM as the clas-

sifier (The keyframes from one category are positive, and

the rest are treated as negative). The average precision (AP)

is adopted as the performance measure. Assume that D re-

trieved keyframes are ranked, and R of them are relevant

(R < D), then we can define the AP as follows,

AP =
1

R

D
∑

j=1

Rj

j
∗ Ij , (10)

where Ij = 1 if the jth shot is relevant, otherwise 0. Rj
is the number of relevant keyframes in the top j retrieved

keyframes.

To form the visterm codebook, we randomly selected

50 keyframes from each of the 28 categories and 500

keyframes from categories other than the 28 categories.

And finally a Nv = 3, 000 codebook generated. Fur-

ther, the “intermediate concepts” using MMI co-clustering

and pLSA are generated from the Nv = 3, 000 codebook.

We tried different values of Nc, and chose the value of

Nc which gave us the best results. In the SVM learn-

ing/classification phase, we randomly divided the dataset

into three parts: one half for training, 1/4 for validation

and 1/4 for testing. Fig 4 shows the AP of each category.

Only for 3 categories, pLSA (pLSA-BOC) performs better

than the MMI co-clustering (CC-BOC). Compared to the

BOV with reduced dimension (Nv = 250), the CC-BOC

always performs much better. Besides, for most cases, the

CC-BOC can achieve competitive results compared to orig-

inal BOV (Nv = 3, 000). However, the gain of CC-BOC is
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Figure 4. The AP (Average Precision) for the 28 categories. BOV-O and

BOV-D represents the BOV model with Nv = 3, 000 and Nv = 250

respectively. CC-BOC and pLSA-BOC denotes the BOC model created

by co-clustering and pLSA.

BOV-O CC-BOC BOV-D pLSA-BOC

MAP 61.91% 59.48% 45.07% 55.77%

Table 6. The MAP (Mean Average Precision) for the 28 LSCOM cate-

gories achieved by different approaches. BOV-O and BOV-D represent

the BOV models with Nv = 3, 000 and Nv = 250 respectively. CC-

BOC and pLSA-BOC denotes the BOC model created by co-clustering

and pLSA respectively.

computational efficiency with lower dimension when per-

forming SVM learning and classification on a large dataset.

(e.g. it takes about 23 hours to learn and test the 28 cat-

egories for BOV with Nv = 3, 000, while it only takes

about 6 hours for BOC with Nc = 250 on a 2.99GHz ma-

chine.) The advantage of MMI co-clustering can be clearly

noticed in table 6 which demonstrates the Mean Average

Precision (MAP) of the 28 LSCOM categories using differ-

ent approaches. Compared to BOV-D, the benefit of MMI

co-clustering is about 14.4% in terms of MAP, which fur-

ther verifies that MMI co-clustering can get more meaning-

ful clusters. Even compared to pLSA, MMI co-clustering

performs about 4% better.

4. Conclusion
In this paper, we propose a novel approach for scene

modelling. The proposed method first extracts intermediate

concepts from visterms by using MMI co-clustering. Un-

like k-means clustering, MMI co-clustering can preserve

the mutual information of visterms and images when clus-

tering. Therefore, the more compact image representation

can significantly improve the performance of classification.

Besides, in order to capture the spatial information of the in-

termediate concepts, the framework uses two spatial models

SPM and SCC. Experiment results show that both of models

can improve the classification accuracy significantly.
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