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The behavior of the normalized gradient of the Gaussian edge
operator is analyzed over many scales in one and two dimensions.
A knowledge of the changes that occur over scale in the output of
the operator and the physical conditions that cause these changes
is essential for the proper interpretation and application of the
results. The behavior of several edge models and combinations of
edges is examined. As a result it is shown that the slope of an edge
can be estimated very accurately using one small scale. By follow-
ing the rate of change in the output of the operator as scale
changes, an optimai scale can be determined for estimating the
width and total contrast of the edge. Results on real images are
shown and it is demonstrated that the information obtained by
these methods can be used to characterize edge points. o 1993

Academic Press, Enc.

1. INTRODUCTION

While detecting the location of edges is an important
step in early image processing, information about the
shapes of edge profiles is also important in determining
the types of physical event creating the edges and in
matching problems such as stereo and motion. The types
of edge profiles created by different types of events, such
as occlusion, convex or concave fold edges, shadows,
surface markings, etc. have been discussed by a number
of authors [2, 6, 8]. Since Canny’s work [4], the edge
operator of choice has been the gradient of the Gaussian.
He has shown that this approach is very close to an “‘op-
timal”* edge detector. The equation of the Gaussian is

glxy, . . ., x,, o)

where #n is the dimension (usually 1 or 2) and o is the
standard deviation.

Because it is very difficult to identify one scale, or
value of o, which gives the best noise suppression with-
out smoothing out significant features, multiple scales are
often used [3, 10, 11, 14]. These authors have combined
the information at the different scales to determine which
edges were significant. Hildreth {7] used multiple scales
for another purpose, to compute characteristics of an
edge. This method used the slope of the zero-crossing, a
third derivative, at two scales to estimate the slope and
width of a ramp, but did not consider interaction with
nearby edges. In this paper we demonstrate how use of
the gradient of the Gaussian at multiple scales can yield
information about edge profiles and the type of interac-
tion with neighboring edges.

When an image smoothed at ¢ore scale is considered,
operations such as nonmaxima suppression and zero-
crossing detection are concerned only with the compara-
tive magnitudes of the gradient at different points, or with
points where the Laplacian of the Gaussian has zero val-
ues. Thus the normalizing factor of the r-dimensional
Gaussian (V2 o)™, is often omifted or repIaced by a
more convenient scaung Lactor; C.g., 7, 12, 1.)] How-
ever, when more than one scale is examined, the choice
of factor is important. Clark [5] shows that the contrast of
a zero crossing caused by a true edge decreases as o
increases, while that of a zero crossing caused by a gradi-
ent minimum increases. The magnitude of the gradient of
the Gaussian is an acceptable contrast function; thus it
satisfies this condition. However, omitting the (V27 ¢)~*
term gives a function for which this result does not hold.
For this function the magnitude of the response increases
and decreases as a result of edge profile and edge interac-
tion. Korn [9] suggests using a two-dimensional gradient
of the Gaussian operator which has been normalized by
multiplying by a factor of V2w o. He defines the scale of
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312 WILLIAMS AND SHAH

an edge to be the scale at which the magnitude of the
gradient vector obtained with this operator first reaches
its maximum value.

In this paper we separate the two-dimensional operator
into the product of a one-dimensional normalized gradi-
ent of the Gaussian operator and a one-dimensional
Gaussian. We analyze the behavior of the magnitude of
the response to the normalized gradient operator as scale
changes. This operator is of interest because the maxi-
mum response of an ideal step edge is constant for all
nonzero values of o, as shown in Section 3.1. This pro-
vides a basis for comparing edge responses at different

scales, and makes certain types of information about the

edges more accessible. In Section 2 we define the normal-

ized gradient of the Gaussian operator; then in Section 3
we discuss the behavior of idealized edges and combina-
tions of edges under the operator and define the circum-
stances under which the gradient magnitude will increase
or decrease. We also show that with the information de-
rived, a single small scale is sufficient to determine the
slope of a ramp edge, and that for isolated edges, the
stepsize and width of the edge can be determined by the
behavior of the gradient. Further, the stepsize of an edge
undergoing interaction with its neighbors, as well as in-
formation about the relative parity of the neighbors, can
be estimated using the methods developed in this paper.
In Section 4 we present simulations of the operator ap-
plied to ideal edges and also demonstrate how the theo-
retical results of Section 3 can be applied to obtain infor-
mation about edges in real images, while Section 3
presents conclusions and areas for further work.

2. THE NORMALIZED OPERATOR

In the following discussions the prime, ', always indi-
cates the derivative with respect to x. The derivative of
the one-dimensional Gaussian is g'(x, o) = (=x/V2«
o) exp(—x%/2¢-%). The area between the curve and the x-
axis is in two parts; that for x < 0 is above the axis, while
that for x > 0 is below. Multiplying the one-dimensional
gradient of the Gaussian by the factor V27 o- makes the
area of both regions under the curve constant and equal
to one. The product of the Gaussian with this normalized
gradient operator gives a two-dimensional gradient oper-
ator, V2 og'(x, o)gly, o), which gives the gradient in
the x-direction and has volume under the surface of | for
the negative and positive parts. The gradient in the y
direction is computed similarly. When two-dimensional
gradient magnitudes are discussed in this paper, the sums
of the squares of the gradients in the x and the y direc-
tions are intended. Since the gradient operator is separa-
ble, we can examine the normalized one-dimensional de-
rivative operator to determine the behavior of cross
sections of edges in two dimensions. The normalized gra-

dient operator is defined as G'(x, ) = V2w og'(x, o) =
{(—x/o?) exp(—x*¥20Y and for consistency, G(x, o) =
V27 og(x, o) = exp(—x2/2a2). Note that for a given o #
0, the maximum value of G(x, o) is 1 and occurs at x = 0.
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G0, o} = 1.

3. IDEAL EDGE MODELS

In this section we examine the behavior of certain ideal
edges as the normalized edge operator is applied.
3.1. Step Edge

The step edge with stepsize or contrast ¢ at x = Q is
represented by the equation

0 ifx<0
U(x)={

¢ otherwise,

Convolving a step with G’ gives U (x, o) = cU(x) = G'(x,
o) = cU'(x) = Glx, o) = ¢G(x, o), since U'(x) is the
impulse function and convolution with it gives the origi-
nal function. By the note at the end of the previous sec-
tion, U'(0, o) = ¢. The response is independent of o and
its value is the stepsize.

3.2. Ramp

A ramp edge is represented by the equation

0 ifx <0
(x) = 1mx

mw ifx>w,

f0o=sx=w

where m 15 the slope of the ramp and w s its width.
Convolving »'(x) with the normalized Gaussian gives
R'(x, o) = r'(x) = G(x, o} = m [i_. Glu, &) du. The
integral has its largest value at x = w/2, the ramp’s mid-
point: R'(w/2, o) = m [ Glu, o) die. When o is small
enough that most of the support of the Gaussian falls
inside the interval (—w/2, w/2), the value of this integral
is approximately m V27 or. As o increases, the value of
the gradient increases linearly with o until o becomes
large enough for the ends of the ramp to be included in
the support of the operator. Since 98% of the support of
the Gaussian falls in a 5¢ interval, the linear behavior is
apparent when 5S¢ is less than the width of the ramp.
Further, lim,.. R'(w/2, o) = mw, which is the total
contrast. At x = w/2, R’ is monotonic with respect to o.
Hence, if a ramp is isolated, the gradient magnitude in-
creases linearly with o until the ends of the ramp begin to
influence the value; then the rate of increase will slow,
but the value will continue to increase, approaching the
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limit |mw|. When the behavior of an edge over scale does
not display this behavior, it indicates interaction with a
nearby edge. In the following sections we see that a
neighboring edge of opposite parity causes values to de-
crease as ¢ increases, while a neighbor having the same
parity causes values to increase at a faster rate.

3.3. Staircase and Pulse

The staircase having steps of the same parity at x = —a
and x = g and relative heights & (0 = b = 1) is given by
the equation

Sy = Ux + o) + bUlx — a).

Convolving with the normalized gradient of Gaussian
gives

Six,a)=G(x + g, g} + bG(x — a, o).

When o is small, there is no interaction between the two
edges: Si(a, o) = b and §(—«4, ¢) = 1. Thus the individ-
ual edges behave like isolated step edges. When o is
greater than 0, a valley or phantom edge exists between
the two step edges. As ¢ increases the two edges move
together, and the weaker edge and the phantom edge join
and disappear, while the stronger one remains [13]. For
large values of o, limg. S.(x, ) = 1 + b. Thus for large
o, the staircase appears like a single step having stepsize
equal to the sum of the separate stepsizes, and its loca-
tion is x = a(b — 1)/(b + 1) [15]. This behavior is demon-
strated for a sample edge in Fig. [.

A pulse is defined as two neighboring steps of opposite
parity. The + in the staircase equations is replaced with a
—. Again, for small values of ¢ the two edges behave as
step edges. As the edges begin to interact, they move
apart. When o becomes large, lim,_.. Pgx, o) = 1 — b;
the pulse appears as a single step edge having contrast
equal to the difference of the two steps. The stronger
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FIG. 2. Thiree-dimensional plot of gradient magnitude for pulse hav-
ing b = 0.5,

edge will approach the location x = a(b -+ 1)/(b — 1) [15].
The weaker edge approaches the horizontal parabola x =
—o?ln b/2a as o increases [13]. But Pi{~o2ln b/2a, o) =
0; the gradient value of the weak edge approaches G. This
behavior is demonstrated for a sample edge in Fig. 2.

This behavior can be summarized in the following theo-
rem:

CONSERVATION OF CONTRAST. [f two adjacent step
edges have contrasts b and ¢, then the sum of the gradi-
ent maxima is b + ¢ when the image (s smoothed with the
normaltized gradient of the Gaussian operator having
o = 0. The gradient maximum for the stronger edge also
approaches b + ¢ as a— . If b and ¢ have the same sign
then the maximum for the weaker edge will disappear for
some value of o if b = c the two maxima will combine to
become one. If b and ¢ have opposite signs, then the
gradient maximum of the weaker edge approaches 0.
When b = —c the gradient maxima for both edges ap-
proach 0.

It is interesting that although this principle holds for
o = 0 and <, experimental results indicate that it does not
hold for intermediate values, As can be seen in Tables 2b
and 2c, after the weaker edge has disappeared (in the
case of a staircase), or become very srnall (in the case of a
pulse), the magnitude of the stronger edge continues to
change, approaching the limiting value. Thus an edge
near a stronger one continues to influence the response of
the stronger one even at scales at which it cannot itself be
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detected.

3.4. Ramp Staircase and Ramp Pulse

Just as most isolated real edges are approximated more
closely by a ramp than by a step, adjacent pairs of edges
more closely resemble ramp pairs. We call these pairs
ramp staircase and ramp pulse. The equations of a ramp

nnnnnnn a rein wnloa tha ~Asntam FII—\

ot A ity m arg A
DEALLLADS Al A 1ailp) PLUIDE WILLL LHC LUIELLLI D Ul




314 WILLIAMS AND SHAH

at x = g and x = —a are given by

rs(x) =rx + a+ wi2) > rx—a+ wi2).

A Lo -

e e S TR S Ot DU [P i S P
AJCT COnvo VlIlg WII.H LG HontllallZed ZrdQiCcil Ol Udus-

sian, the equations are
x+atwi2
RS'(x, o) = Glu, o) du
Xta=wi2
a2
= m Glu, o) du
x—a-wil

These equations display complex behavior. Each of
the individual terms increases, as isolated ramps do, for
smaller values of o. However, edge interaction at larger
values of o causes behavior similar to step edge pairs. In
the case of the ramp staircase, the two terms will com-
bine, causing aRS’/do at the maxima to increase as the
interaction begins. In the case of the ramp pulse, the
maximum values of RS’ will increase, then decrease.
Both of these behaviors can be detected, as shown by the
simulations in Section 4.1.

The behavior of the edge models discussed in this sec-
tion is summarized in Table 1.

4. SIMULATIONS AND EXPERIMENTAL RESULTS

Simulations were performed on a number of synthetic
one-dimensional images of the ideal edges examined the-

oretically. The normalized gradient operator was also ap-
plied to real two-dimensional images. For these the
slopes of the edges were estimated and the edges were
characterized by the behavior of the gradient maxima at
different scaies.

4.1. Simulations

Table 2 details the behavior of examples of the ideal
edges described above as the normalized gradient of
Gaussian operator is applied. Figure 3 shows graphs of
the edges used in the simulation. Values of the gradient
for o = 1 appear lower than expected due to the fact that
the discrete gradient mask does not accurately approxi-
mate the continuous one. When a location in the table is
given as a closed interval, then the entire interval has the
same gradient value,

The first two sections of Table 2a give ramps having
the same slope and different widths, to demonstrate how
the interaction with the ends of the ramp develop. The
estimate of the slope for the narrower ramp is beginning
to be affected when o = w/3 = 2 with less than 2% of the
Gaussian outside the ramp Using this information, it can
be seen that an estimate of the width of an isolated ramp
is given by finding the value of o at which the slope first
decreases, then using the formula w = 5¢. Note that the
estimate of the slope for the ramps in Tables 2a, 2d, and
2e, where w = 10, are very close to the actual values
when o = 1, 2, then begin to decrease. The third column
in Table 2a is for a ramp with m = 10 in the center,
steepest portion of the ramp and width approximately 20.

TABLE 1
Summary of Gradient Behavior

Max magnitude of
normalized gradient

Location of edge

Change in grad.

Edge type When o =0 When o = = as o increases mag. as o increases
Step Contrast Contrast Al step Constant
Ramp mV2Ima =0 Contrast Middle of ramp Up
Staircase {strong) Conirast Sum of conirasts Al step, moving to Up

a+5 ath — Db + 1)
Staircase (weak) Contrast — Moves toward 0, Up
then disappears
Pulse (strong) Contrast Difference of Al step, moving to Down
contrasts, {1 — b) alb + DB -1
Pulse (weak) Contrast 0 Al step. moving to Down
o ln b2a
Ramp staircase mV2Ir o =0 Sum of contrasts Same as staircase. Up
a is ramp mid pt.
Ramp puise mViz o =0 Difference of contrasts Same as pulse, Up then down

a is ramp mid pt.

Note. In formulas, o is the scale, m is slope of ramp edges. Step and ramp edges are at 0, pairs of edges in staircases and pulses are at a, —a, with

the step at —a having contrast 1, that at ¢ baving contrast b, 0 < b = 1.

L
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TABLE 2

Results of Applying Normalized Gradient to Ideal Edges

315

2

Ramp, m = 10, w = 20

Ramp, m = 10, w = 10

Smoothed ramp, m = 10, w = 20

o Location Gradient m o Loc Gradient m o Location Gradient m
i -7, 25 9.97 1 —2,2] 25 9.97 1 [—4.4] 25 9.97
2 £-3.3] 50 2.99 2 O 49.6 9.89 2 o 501 $.99
4 0 98 9.82 4 0 78.9 7.87 4 0 95.6 9.53
' 8 0 157 7.85 B 0 93.5 4.66 8 0 148.9 7.43
- 20 0 189 377 20 0 97.4 1.94 20 0 185.7 3.70
. b
’ Pulse, location -5, 5
Stepsize = 100 Stepsizes = 100, —60}
o Locations Gradient o Locations Gradient
t [~6,-5] [5.6] *91.2 1 [—6.-5] [5.6] 91.2 —-354.7
2 [—6,-5]) [5.6] +97.85 2 [-6.-5] [5.6] 97.9 —-58.7
4 -6 6 +97.66 4 -6 6 58.2 —-58.0
6 -17 17 *39.8 16 -12 30 58.6 —12.7
20 ~21 21 *32.2 30 -7 45 47.5 -.9
¢
Staircase. location -3, 5
Stepsize = 50 Stepsizes = 40, 60
o Locations Gradient o Locations Gradient
1 [~6,-5] [5,6] 45,6 1 [—6,-3] [5,6] 36.5 54.7
2 [—6,—5] [5.6] 48.9 2 [-6,-5] [5.6] 39.1 58.7
4 -5 5 51.0 4 -5 5 41.4 60.6
8 0 0 78.5 8 — 2 — 799
20 0 ] 94.7 )] — 1 — 949
d e
Ramp pulse, loc —10, 10, m = 10 Ramp staircase, loc -10, 10, m =5
contrast = 100, —100 contrast each = 50
o Locations Gradient m o Locations Gradient Agrad/Ac m
: 1 [—12,-8] [8,12] 25 9.97 1 [—12,-8] [8.12] 12.5 [ 4.99
4 2 -10 10 49.6 9,89 2 -10 10 24.8 123 4.94
4 -10 10 78.9 7.87 4 —-10 10 39.5 7.3 3,94
L 3 -1 11 88.6 4.42 8 -8 8 30.3 2.7 2.51
- 1 ~12 12 84.6 3.37 12 ] 0 70.2 4.9 2.33
20 =21 21 54.2 1.08 16 0 0 80.9 2.7 202

The slope estimates for small o are the same as for the
ramp, but begin to decrease sooner.

difference of the two gradient values in the case where
stepsizes are unequal is near 40 for small values of o

Table 2b gives results for a pulse with equal and un-
equal stepsizes. The decreases in the gradient value can
be seen as the two steps of opposite parity interact. The

where there is little interaction. However, for larger val-
ues of o, the difference of the two becomes greater than
40. When the smaller edge has almost disappeared, the



316 WILLIAMS AND SHAH

gradient magnitude of the stronger edge continues to de-
crease. This phenomenon of an undetectable edge contin-
uing to affect a nearby edge can be seen more strikingly in
(¢), a staircase with equal and unequal steps. The weaker
edge combines with the phantom edge between o = 4 and
o = 8 and disappears as a gradien! maximum, but is still
present as an inflection point in the gradient magnitude
graph. For larger values of o the magnitude of the
stronger edge continues to increase and the edge con-
tinues to move.

In Table 2d, a pulse composed of ramps rather than
steps is given. The gradient value begins low, then when
o = 8 2 maximum estimate of contrast, 88.6, is reached.

A more accurate value for contrast could be obtained by

first estimating the width of the ramp by the method de-
scribed above. The value of o at which the slope estimate
begins to decrease is 2. Multiplying by 3 gives an esti-
mated width of 10. This is multiplied by the largest slope
estimate (9.97) to give a very good estimate of 99.7 for
contrast. Finally, Table 2e gives a staircase composed of
ramps rather than steps. Of special interest here is the
rate of change of gradient value. Between o = 8 and o =
12, the rate increases. For an isolated ramp edge the rate
of increase should be a decreasing function. The increase
indicates that there is interaction with an edge of the
same parity. In this case the best estimate of contrast is
given by the gradient value at o = 8 and is 50.3. Higher

conloc rance the fyyn
scales cause the two edges to be combined.

4.2, Analysis of Real Images

Because edges in real images often appear like ramp
edges or smoothed ramp edges, applying the smallest
practical Gaussian to the image gives an estimate of the
slope of the edges. Larger scales should be used to distin-
guish significant edge points from noise and fine texture.

In order to estimate stepsize, the behavior of edges is
analyzed as follows:

1. When a point is identified as an edge at the present
scale, search in the direction of the gradient for an edge at

tha navf laroar crala
ne next arger scaic.

2. If the direction of the new edge is different or the
unnormalized magnitude increases, assume that it is not
the same edge as the one at the present scale.

3. If an edge is found with similar direction, it is as-

sumed to be the same edge.
(a) If the magnitude is the same or smaller at the
next scale, choose the present scale (the closest neighbor
must have Opposite parity)
{b) If the rate of change of magnitude is larger at the
next scale, choose the present scale (the closest neighbor

must have the same parity).

(=2

le}

-10 0 12 -10 o 10
d e
FIG. 3. Graphs of edges in Table 2.

(c) If the present scale is the largest scale being con-
sidered, choose the present scale (the edge is a wide
ramp).

(d) Otherwise, go to the next larger scale.

Edges having small scale are those having nearby edges,
which includes much of the noise, and those having a
small width. Diffuse edges, for example those due to illu-
mination gradients or shadows, have larger scale.

Whenever multiple scales are to be used, two issues
which must be addressed are what the interval separating
scales (Ao) should be and what range of scales should be
used. We did not find much benefit from using values of o
below 1. Most of the edges had a scale of 4 or smaller in
the images tested, thus this was the largest value used. If
too large a value of Ao is used, events of f interest may be
missed. Thus, Ao performs as a threshold even though it
is not normally identified as such. Its value should be
large enough to smooth small irregularities in the shape of
a ramp, but not so large as to miss significant edge inter-
actions. If Ao is 1, then most edge points do not move
more than 1 pixel [1, 15].

An example is given of applying these tests to a real
image. In Fig. 4, the original picture is (a), the slope is
given in (b), the stepsize in {c) and the scale at which the
stepsize was estimated is (d). In the scale image, the
smallest scale is brightest. The image is 128 x 128 pixels.
The values of o used were 1, 2, 3, and 4.

In the upper right part of Fig 4 there is a shadow edge
its bl()pt', is smaller than the UUqu cugé‘: castmg the
shadow, but its stepsize is close to that of the object.
Note also that the slope of the rather isolated shadow

g,
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FIG. 4. Part image: (a) original image. (b) stope, (c) stepsize, (d) scale for estimating stepsize.

edge in the middle bottom is small, while the scale chosen
to estimate its size is large due to its isolation and width.,

5. CONCLUSION

A normalized Gaussian operator, which can be sepa-
rated into normalized functions in the x and y directions,
was presented. The behavior of the gradient values of
step and ramp edges and combinations of pairs of these

idealized edges obtained using this operator was ana-
lyzed. It was shown that the slope of a ramp edge could
be estimated using the gradient operator at a single small
scale and that the contrast and width of a ramp could also
be estimated using only gradient information. In addition,
the relative parity and the distance of the nearest neigh-
bor can be estimated. Thus the gradient is shown to con-
tain much more information than is typically used in gra-
dient based edge detectors. Simulations were performed
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on
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ideal edges and edge pairs to demonstrate the actual

behavior of the operator for intermediate values. The op-
erator was also applied to real images, and slope, con-
trast, and scale obtained at gradient maxima points were
displayed.
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