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Abstract—The motion of a walking person is analyzed by examining cycles in the movement. Cycles are
detected using autocorrelation and Fourer transform techniques of the smoothed spatio-temporal curvature
function of trajectories created by specific points on the object as it performs cyclic motion. A large impulse
in the Fourier magnitude plot indicates the frequency at which cycles are occurring. Both synthetically
generated and real walking sequences are analyzed for eyclic motion. The real sequences are then used in
a motion based recognition application in which one complete cycle is stored as a model, and a matching
process is performed using one cycle of an input trajectory.

Cyclic motion Spatic-temporal curvature Motion-based recognition

1. INTRODUCTION

Humans are very good at analyzing motion. Exper-
iments in psychology have revealed that people are
able to percetve the motion of objects from Moving
Light Displays (MLD). A MLD issimply a two-dimen-
sional movie of a collection of bright dots attached to
a moving object. Upon viewing MLDs, people can
recognize different types of motion undertaken by a
person, such as walking forward, backward and jump-
ing. Recognition of complicated motions, such as
couple-dancing, and sophisticated judgements such as
the gender of a subject and the gait of a familiar person,
have also been reported. Only the dots are seen in the
display (not the whole object) and there is no structure
present since none of the dots are connected. Even
though all parts of the object are not seen and no
structure explicitly exists, humans are able to derive in
their minds the three-dimensional structure of the ob-
ject from the motion information. From this structure,
they can recognize specifically what the moving object
is and how it is moving. This is one of the theories
about how humans interpret MLD type stimulus.
According to this theory humans use motion infor-
mation in the MLD to recover the three-dimensionai
structure, and subsequently use structure for ISCOg-
nition. There has been significant interest over the last
decade in the Computer Vision community in the
structure from motion theory. In this work, three-
dimensional coordinates of points on the movirig objects
and their three-dimensional motion is cecovered (tom
a sequence of frames. This ptoblem is formulated in

tThis research was supported by the Naijonal Science
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terms of systems of non-linear equations given two-
dimensional positions of moving points among frames.
Interesting theoretical work related to the number of
points required for a solution, the uniqueness of such
a solution, and the effect of noise on the solvtion has
been studied. In these approaches, it is assumed that
the recovered three-dimensional structure will subse-
quently be used for recognition.

Another theory, which has received much less atten-
tion in the Computer Vision cormunity, is the theory
that the motion information in the MLD is directly
used for recognition. By recognition, in this context,
we mean the recognition of action through motion,
For instance, the distinction hetween walking and
running using the motion of several points on 2 human
body is one form of motion recognition. The distinction
of the different gaits of two persons using motion is in
a general sense one form of object recognition. This
motion based recognition is in contrast to commonly
known object recognition which employs explicit three-
dimensional or two-dimensional shape. Both forms of
motion based recognition have been strongly demon-
strated by Goddard in his recent Ph.D. thesis.(V

A strong case for the theory that moticn information
is directly used for recognition is made by Johansson(®
in his paper on visual perception of biological motion,
In this paper he studies motion patterns without the
interference of the form aspect of the object (2 human
being in this case). He represents the motion of a body
using bright spots to describe the motions of the main
joints. He maintains that the pendulum-like motions
of the body's extremities are highly specific for different
types of motions, and that it is the mathematical spatio-
temporal relations in the patterns created by the moving
bright dots that determine perceptual response, The
question of how points moving together on a screen
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can give such a definite impression of a waiking person
is explained by maintaining that recognition is depen-
dent upon general principles for grouping in visual
perception. Experiments were performed using a vector
analysis type model to show that common motion
vector components among the moving bright points
are separated from the rest of the motion pattern, and
are seen as reference frames for the pendulum motion.
The recognition of walking from the motion of the
bright spots is shown to be independent of the course
of the common component. When a commeon com-
ponent was subtracted from the element motions in
the walking pattern, all observers still immediately
recognized a walking pattern. Similarly, all observers
immediately identified a walking pattern when an extra
component was added to the primary motion of each
element. These results show that the motion patterns
carry all the essential information needed for immediate
visual identification of such human motions as walking.
It was also demonstrated that people immediately
report seeing a walking human being when they are
only presented with a little less than half a step cycle
{one “step”).

We are interested in pursuing the second theory of
movement analysis, which deals with the direct use of
motion information for recognition. It is our belief that
visual interpretation is a highly complex task. A single
source of information, for instance the structure of an
object, is not sufficient for robust and accurate recog-
nition. We need to employ a combination of multiple
cues such as motion, specuiarities, texture, etc, and
exploit information in each cue using several alternate
ways. The structure from motion methods compute
intrinsic surface properties, such as depth values, As
pointed out by Witkin and Tenenbaum,”® depth maps
and other maps of 2.5-dimensional sketches are still
basically just images. They still must be segmented and
interpreted before they can be used for 2 more sophisti-
cated task.

In this paper, cyclic motion is detected in the motion
paths of joint elements during human walking. Cyclic
motion can be defined as the motion undertaken by an
object that follows a repeating path over time. Examples
include a person walking, running, skipping, riding a
bike, a pendulum swinging, a ball bouncing, wings
flapping and piston moving. An application of cyclic
motion detection is the detection of gait problems in
an injured person by comparing the path followed by
specific points on the walking body of an injured
person to the path created by the same points on a
healthy person. Simitarly, athletic performance can be
improved when an expert examines the paths created
by points on an athletes body during training. The
detection of cycles is also useful in recognition probiems,
since specific types of motion may be recognized ac-
cording to the cycles @ moving object makes,

We use correlation and Fourier transform techniques
to detect cycles ia two-dimensional trajectories created
by points on a moving object. We consider the trajec-
tory as a spatio-temporal curve in {x, y. t) space. Cyclic

motion is detected by finding cycles in the curvature
of this spatio-temporal curve. We assume that the
oscillatory direction of an object ts perpendicular to
the viewing axis of the camera, and the input two-
dimensional trajectories contain cycles. A very good
example for this assumption is the metronome. The
repeated pattern of a metronome can be observed well
in front of the metronome, while it cannot be observed
well from the side. We also assume the orthographic
projection of image formation, so we do not need to
consider the distortion of trajgetories. The detected
cycles are then applied to a ‘method proposed by
Rangarajan et al.** for matching pairs of single trajec-
tories. Instead of storing all the trajectories with different
cycles as modeis in order to find the correct match for
an input trajectory, we store the irajectory with one
complete cycle as our model, and do the matching with
one cycle of the input trajectory.

In a first experiment the cycles in a sequence of points
generated by a program that simufates the movement
of a walking person are detected and extracted. Then,
a real walking sequence is tested for cycles. In ail cases,
the correct frequency of the cycles is detected from the
Fourier transform of pre-processed curvature functions
of the trajectories.

2. RELATED WORK

A great deal of work has been done in the ficld
of psychology to show that people can recognize ob-
jects from their trajectories.®* It has been theorized
that humans can recognize an object based on the
motion of several points on that object by inferring the
three-dimensional structure of the object from the
transformations the two-dimensional image undergoes.
Cutting'® gives examples of six different types of motion:
rolling wheels, walking people, swaying trees, aging faces,
the rotating night sky and expanding flow fields. Todd"”
is interested in distinguishing between rigid and several
types of non-rigid motion such as bending, stretching,
twisting and flowing. By displaying the trajectories of
either rigid or non-rigid objects. Todd shows that human
observers are able to distinguish betwgen the two.
Goddard™ has proposed a computational model for
visual motion recognition in the moving light displays.
He believes that the visual system continuously com-
putes invariants used to represent objects and move-
ment. These invariants are used to index into two-
dimensional memory models. Having identified the
most likely candidate, the viewpoint is computed and
a verification stage operating in three-dimensional
confirms or denies the hypothesis. Another possibie
method would use motion information to reconstruct
various static qualities, and use those static qualities
to index into memory and recognize the object. How-
ever, Goddard has argued for a recognition process
operating directly on motion information. Engel and
Rubin'® describe an implementation of an algorithm
for detecting motion boundaries given discrete positioft
input. Motion bouadaries comprise starts, stops, paus<s
and force impulses. Their algorithm represents image
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motion velocity in polar coordinates. Force impulses
are asserted when the slope of zeroc-crossing of the
second derivative of speed or direction exceeds a
threshoid.

In Computer Vision the work related to detection
of motion before recognition has been reported, Allmen
and Dyer® detect cyclic motion by tracking curvature
extfema in spatio-temporal images. Repeating patterns
are detected using a scale-space representation. In
their approach, three-dimensional spatio-temporal
volumes are formed by stacking a dense sequence of
image frames, and when an edge operator is applied,
this ST-volume contains surfaces and volumes which
represent object motion swept out through time. ST-
curves are detected on the ST-surfaces by connect-
ing edge points into contours, and the curvature extrema
are then found. The curvature extrema are used as
tokens which are connected from one frame to the
next, forming ST-curves. The ST-curves recover the
cyclic behavior of the ST-surfaces. Repeating patterns
in the ST-curves are then detected by matching the
scale-space features of every curve. Both fine and coarse
cvchc motion can be observed since curvature ceale-
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space represents curvature over many scales.
Koller er al!'® characterize vehicle trajectories by
motion verbs. They exploit internal representation of

about ninety German motion verbs to automatically
characterize traiectorv segments. The Enclich tranela-
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tion of their German verbs are: to reach, to come

nearer, Lo move away, to accompany, to go beside, etc.
Hogg'!' ! addresses the problem of finding a known

object in an image using a generate and test strategy.

He models humans with generalized cylinders of vary-

ing sizes. From the model, the occluding edges are
predicted, and the hypothesis is verified by the number
of edge points lying near the predicted edges. When
dealing with a sequence of images, a difference picture

et al
is used 1o identify the approximate position of moving

objects in the first frame. He also uses kinematic con-
straints to reduce the search space in identifying the
object in subsequent frames.

Tsotsos et al.'!? present a framework for the abstrac-
tion of motion concepts from sequence of images. The
{ramework includes: representation of knowledge for
motion concepts that is based on semantic networks;
and associated algorithms for recognizing these motions
concepts.

Polana and Nelson''? used similar tcChﬁlqucs to
Jjudge the degree of periodicity; this differs with our
main concern which is to extract one cycle from an
input trajectory with unknown cycles, and subsequently
uses it for matching. They considered an image sequence
as a spatio-temporal solid with two spatial dimensions
and one time dimension, and detected periodicity
using the Fourier transform. They compute reference
curve {which is essentially a trajectory) by tracking the
centroid of moving region in several frames. They
use reference curve to align the frames, and then
compute gray-level signals at every pixel in the image

frame. The gray-level signals are used to detect period-
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icity. The gray-level signals used by Polana and
Nelson''™ are different from the curvature signals,
aenernted from the tralermr;ec used inour npprnar-h
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3. DETECTION OF CYCLES USING THE
FOQURIER TRANSFORM

Atrajectory isdefined asa sequence of points ({x,, v,},
(X2, ¥2) (%3, ¥3h - ... (X, 3,)), ordered by an implicit time
dimension. We can represent a two-dimensional tra-
jectory as two one-dimensional trajectories, x(t) and

. - - L
y{t}, or two one-dimensional time funétions, namely
speed and direction, Onge ¢oordinates of points that

make. up a trajectory are acquired, this one-dlmen-
sional information can be Fourier transformed to
detect cycles. However, when a two-dimensional

trajectory is represented by two one-dimensional
signals, different frequencies from the two signals may
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be detected, and a problem s how to combine two
different frequencies to get the correct frequency for
the trajectory.

To avoid these problems we will instead consider a

trajectory as spatio-temporal curve ([x(1), y{1), 1],

[x(2). y(2),2], [x(3). 9(3),3],.....[x(e), (1), 23). We
compute the curvature of this curve which is a function
of time by using a one-dimensionai version of the

quadratic surface fitting procedure described by Besl

(14)
and Jain "% The curvature, x, is defined as follows:

= 1
() +(y) + ()} ®
where
A=y:, I”!, B=|I' x , and C=|" y.
yot " X" x" ¥y

The notation {-| denotes the determinant. We use the
discrete approximation to compute the derivatives,
for example, x'{t) = x(t) — x{t — 1) and x"(t) = x'(t) —
x'{(t— 1}. Since we assume At! to be constant, ¢’ will
equal I, and ¢” will be 0.

A number of pre»processing stcps can be used to
improve the detection of cycles. The curvature function
exhibits large and narrow impulses at points of sudden
changes on the trajectory. These impulses contain large
high frequency components that may interfere with the
detection of cycles, and it would be beneficial to be
suppressed. A median filter is particularly suitable
filter for this task since it can suppress narrow impulses
while preserving smoother regions of the curvature. In
our work the first step is to suppress narrow impulses
using a conditional median filter’*® which can better
preserve the shape of the curvature function while
suppressing the large and narrow impulses. This filter
performs median filtering only on samples where the
absolute value of the difference between the sample
and the corresponding median exceeds a threshold.
With this strategy smooth signal regions remain intact,
but sufficiently narrow and large impulses are sup-
pressed. The second pre-processing step is to remove
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the DC component of the curvature in order to avoid
the zero frequency impulse. We subtract the average
vitlue of the curvature function from the original cur-
vature function before we perform the Fourier transform,
The third step is to compute the autocorrelation of
the curvature. if the motion is cyclic there will be some
self-similarity within the curvature function which be-
comes more evident in the autocorrelation function.
Finally the Fourier transform of the autocorrelation is
used to detect the presence of ¢cycles and the period of
the cyclic motion. A large impulse will occur on the
frequency axis of the Fourier magnitude plot at the
fundamental frequency of the cycles that are present.
Smaller impulses may also be present (harmonics) at
integer muitiples of the fundamental.

PunG-SiNG Tsar er ol

This approach for detecting cycles is simpler than
one that uses curvature scale space, because scale space
approach essentially matches portions of scale spuce
to find repeated patterns of curvature for periodicity,
which s time consuming. Also, our approach can
detect pertodicity not evident in the spatial domain
because of the presence of uncorrelated noise, It is aiso
computationally efficient because the Fourier transform
can be computed via the FFT (Fast Fouder Transform)
algorithm.

4. EXPERIMBNTS

In our experiments we used the FFT algorithm to
compute the Fourier transform. To achieve sufficient
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(requency resolution the data array to be transformed
was padded with zeros to become of length 2048 samples
and a 2048-point FFT was used. 1t should he noted

that computation of the autocorrelation function prior
to transformation is not necessary because by the
Wiener-Khintchine theorem the Fourier transform of
the autocorrelation of a signal is the same as it’s energy

AN
spectral density (Fourier magnitude squared). However,

in order to demonstrate the effect of each pre-processing
step, the autocorrelation function was still computed.
In general on a Sun-4 Sparc workstation, for a sequence
of 512 irames, computing the curvature function takes
about 0.1, each pre-processing step takes less than
0,1s,2nd a 2048-point FFT takes 0.4 5. Overall, it takes

less than 0.8 5 to process a sequence with 512 frames.

4.1. Synthetic duta

N ot st
The first experiment was performed using synthetic

dara obtained from a program by Cutting,'™ which
generates files containing the coordinates of certain
points on the body of & simulated walking person.
Values are input to the pmgram to determine factors
such as hip swing and shoulder excursion, and the
program uses laws of physics to determine the x and
y<oordinates of each point as the person walks. Feature
points are at the following locations: ank!€, wrist, elbaw,
knee{right and left), hip, shoulder (right} and head. For
each cycle there are 40 instances at which coordinates
are calculated, and the program outputs coordinates
for 12 cycles, giving a total of 480 frames. Figure |
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shows the results for motion of the right ankle point.
The 12 cycles that were created by the Cutling program
are shown in Fig. i(a), which shows the trajectory
created by the x and y coordinates of the right ankle
point. The curvature function is shown in Fig. 1(b).
The result of the autocorretation is shown in Fig. 1(c),
and the magnitude of the Fourier transform of the
autocorrelation is shown in Fig. 1(d). We can clearly
see that a large impulse occurs on the frequency axis
of the Fourier magnitude plot.

In order to illustrate that the proposed method can
deai with the presence of uncorrelated noise, we added
Gaussian noise¢ with variance 0.1 to the curvature
function of Fig. 1(b), and the resultant noisy curvature

is shown in Fig. 2(a}. The cesult after filtering through
the conditional median filter is shown in Fig. 2(b). The
autocorrelation of the filtered curvature is shown in
Fig. 2(c), and the magnitude of the Fourier transform
is shown in Fig. 2(d). We can see that the autocor-
refation of the noisy filtered curvature is still very
similar to the autocorrelation of the noise-free cur-
vature [as shown in Fig. l{c)], and a large impulse
clearly occurs on the frequency axis of the Fourier
magnitude plot.

Figure 3 demonstrates that the proposed method
can detect and extract one ¢ycle from a trajectory with
unknown number of cycles. Figure 3(a) and (c) are the
curvature functions of Fig. 1(b) with different length
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{180 frames and 310 frames). The proposed method
successfully detected and extracted the sume cycle [as
shown in Fig 3(b} and (d)] for both cases.

4.2, Real data

The proposed method was also tested on a real
walking sequence that was obtained from Goddard'"
at University of Rochester. He used the WATSMART
image processing system, which is designed specifically
to gather data on human gait. It consists of two cameras
arranged to give a stereo view, a set of light-emitting
diodes (LEDs), a calibration frame, and an IBM RT

with software for processing the camera signals, The

1597

LEDs are taped to the actor, and wires string from the
LEDs to the computer. As the actor moves, the system
gathers data by sequentially flashing each LED and
recording the location of the LED in the camera frames.
The system can gather data from 8 LEDs at up to 400
framess™'. Software computes the three-dimensional

location of each LED in each frame by examining the

two-dimensional frame data from the two cameras.

Goddard operated the system at 100 framess ™!, with
LEDs attached to the six proximal joints (shoulder,
elbow, wrist, hip, knee, ankle) and the 1we most visible
distal joints (wrist and ankle). Actor motion was roughly
rarmandisilar ta tha Aalihiratinn avio fob R,

PAIPOnGICUIET 10 UiC CRNloTatlion axis (ine average of
two camera axes). He then converted raw data files
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containing three-dimensional LED locations to two-
dimensional by omitting the depth coordinate, which
did not change much during the recordings. The raw
data were converted into orientation angles for each of
the limb segments 2nd software was written to display
and edit the data in order to smooth it and ensure that
the starting and ending point of a cycle were identical.
Finally, he resampled the data to produce 60 frames
per cycle for each set of data in order to normalize the
cycle time. A walking person sequence obtained from
Goddard with 132 frames was tested. The stick figure
of the first 60 frames is shown in Fig. 4(a). Eight points
on the person’s body are shown in the stick figure, The
trajectary of the shoulder point is shown in Fig, 4{b).
The curvature function is shown in Fig. 4(c). The quto-

correlation of the pre-processed curvature function is
shown in Fig. 4(d). The magnitude of the Fourier
Transform of the autocorrelation function is shown in
Fig. #{e). A large impuise is clearly shown on the fre-
quency axis of the Fourier magnitude plot. Figure 4f}
shows one cycle which is extracted using the proposed
method. The correspondent cycle of the trajectory is
shown in Fig. 4g).

5. APPLICATION: MOTION-BASED RECOGNITION

One important application for cyclic motion detec-
tion is in motion-based recognition. In many casés | ‘
where an object has a fixed and predefined motion, the 1
trajectories of several points on the object may seem §
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(h)

Fig. 5. Image Sequence K1 in which person K is walking. There ate 32 frames in this sequence. (a)-{f)
Frames 1.6.12, 18, 24 and 30 of the sequence K 1.(g) The stick figure drawings of 9 body points. (k) Trajectory
of K 1lheel'

to uniquely identify the object. Therefore, it should be
possible to recognize certain objects based on motion
information obtained from the trajectories of represen-
tative points, Rangarajan et al.'* proposed a method
for matching pairs of single trajectories utilizing a
scale-space representation as the basis for matching.
They represent a 1wo-dimensional trajectory as two
one-dimensional functions. namely speed and direction,
and convolve the one-dimensiona speed and direction
signals with the second derivative of Gaussian over a
range of & values 1o produce the two-dimensional
scale-space image. They then determine the strength
and polarity by applying the first derivative of the
Gaussian at euch zero-crossing point in the scale-space
image. The strength and polarity of cach Zero-crossing
15 referred 1o as the sero-crossing potential. Match
stores between the two trajectories are determined by
computing the dilference between thetr smoothed zero
Crossing potenadals.

The Rangarajin method assumes that the corre-
spondence between the maode! 1rjectory and the input

trajectory s known. For an object with cyclic move-
ment. they need to store all the trajectories with dif-
ference cycles as models in order to find the correct
match for an input trajectory. Since we can detect
cycles in an input trajectory {assuming the object has
cyclic motion), we only need to store and do the maich-
ing with one complete cycle as our model. In order to
minimize the computation and problems due to the
noise sensitivity of the direction function, we use one
cycle of the filtered curvature for the matching algorithm,
instead of speed-direction as Rangarajan did. The
modified matching algorithm is summarized as follow-
my:

{1y Compute the curvature signal, x[¢], from one
complete cycle of the input trajectory [using equation
(1], and filter it through a conditionai median {ilter.

12) Cenerate the curvature sc

1er SIURLTLNL S L sl

le-snace imaas by
le2-xna

LS SRaES Y

convolving the filtered curvature signal with the second

dertvative of the Gaussian aver @ cange of g values, and
locate the curvature zero-crossings by scanning the
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Fig. 6. Image Sequence K? in which person K is walking. {a), (b) First and last [rames of the sequence

K2. (¢) The stick figure drawings of 9 body points. (d) Trajectory of K., There are 128 frames which are

obtained by repeating the original sequence four times. (¢) The curvature function. (f) The magnitude plot

of the Fourier Transform of the pre-processed curvature function. The proposed method extracted 32 frames
as one cycle.

scale-space image and testing the values in a neighbor-
hood around each point.

(3) Determine the strength and polarity by applying
the first derivative of the Gaussian to the curvature
k[t] (i.e. k{t]%{ —t/no?Ie "2y at each zero-cross-
ing point in the scale-space image. The strength
(e[t *( —t/ra?)e *****’]) and polarity {sign} of each
zero-crossing is referred to as the zero-crossing potential.
This step produces a two-dimensional array, 8.[t, #],
containing the zero-crossing potentials at each point.
In this array, points which are not zero-crossings will
hold a zero value.

{4} Diffuse the zero-crossing pot

L]
o0
-
=
[y
=
x
=
7]
<
=
s
o

two-dimensional Gaussian mask with sigma equal to
one, and store the result in array y,.

{5) Scale the value in v, by the scaling factors
IZa, [r,06)/ZEy.[t.0]). where z,[t, 0] is the diffused
zero-crossing potentials for one complete eycle of the
model trajectory.

(6) Perform an element by element subtraction of
the « and y arrays, and store the result in array ..

(7) Compute the maich score as | — [ZX|e (¢, o)l/2*
1ZZa, (t. N ]

A perfect match between trajectories will produce 2
match score of 1.
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To demonstrate this application, the walking se-
quences of persons K and W shown in Figs 5,6 and 7

wars géard Wa videntsnad a nercon. K walkine at twao
Wwere used, We videotaped a person, KX walk Xing at two

Jifferent times, and generated two distinct image se-
quences, K1 and K2. We also videotaped another
person, W, and generated a single image sequence, W1,
From each image sequence, we produced a set of

tratantacios hy manpally trasking nina hady nainte
{rajecilni®s oY manuaidly racking nine oo0Yy poinis.

There are 32 frames in each sequence. Figure 5(a)
through (f) show frames 1, 6, 12, 18, 24 and 30 of
sequence K1, Figure 5(g) shows the stick figure of the
nine body points. Figure 5(h) is the trajectory of the

Laft hoal maime whirh ic nced ae the madat
igfi nedl poInt, Wallll 13 ustd &35 Wi MoGL..

Y

Lurmgy

7

(e)

In order to get longer sequences with different num-
ber of cycies, we generated the sequence K with 128

fromoac hy renaatime tha dictorted varcinn nfthe orioinal
rames 0y repeating lnd Qistorics version o lac ongina:

K2 sequence four times, and the seqitence W' with 256
frames by repeating the distorted version of the original
Wi sequence eight times. The distortion was introduced
by adding some random noise after the first cycle of

aanh canranca to aunid the nracica raniicatian
€aCn sequindS Lo avOIC UL Precist repilCaiion.

Figure 6{a) and (b) show the first and last frames of
sequence K2. Figure 6(c) shows the stick figure. Fig-
ure 6(d) is the trajectory of the left haeel point. The
curvature of the trajectory is shown in Fig. 6(¢). The
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Fig. 7. Image Scquence W' in which person W is walking {a), (b) First and last frames of the sequence

sy s
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obtained by repeating the original sequence eight times. (e} The curvature function. {[) The magnitudue plot

of the Fourier Transform of the pre-processed curvature function. The proposed method extracted 32 [rames
as one ¢ycle
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Fig. 8. The matching results for K1 and K2. (a) The zero-crossing potential of the curvature scale-space of

trajectory K 1. (b) The zero-crossing potential of the curvature scale-space of trajectory K2. (c) The diffused

version of {(a). (d) The diffused version of (b). (¢) The dilference picture between (c) and (d). The match score
between K1 and K2 is 0.836.
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processed curvature function is shown in Fig. 6(1). The
proposed method extracted 32 frames as one cycle,
which ts detected correctly.

Figure 7(a) and (b) show the first and last frames of
sequence W 1. Figure 7(c) shows the stick figure. Figure
7td) is the trajectory of the left heel point. The curvature
of the trajectory is shown in Fig. 7(2). The magnitude
plot of the Fourter Trunsform of the pre-processed
curvature function is shown in Fig. 7(1). The proposed
method also extracted 32 frames as one cycle.

The matching results for sequences K1 and K2 using
one comptlete cyele are shown mn Fig. 8. Figure 8 (a)
and (b} are zero-crossing potentials of the curvature
scale-space of trajectories KL and K2 and Fig. 8(cyand
td) are the diffused version of the zero-crossing poten-
tiah. The difference picture between Fig. 8(e) and (d) is
shown in Fig 8{e). The match score between K1 and

K2 s b33 (For a petfect matching the match score
should be 1)

The matching cesults for sequences A oand 171
using one complete evele are shown in Frg, 9. Figure
Yz and ibiare zero-crossing potentials of the curvatuee

(d) ' (e)

Fig. 9. The maiching results for K1 and W1.(a) The zero-crossing potential of the curvature scale-space of

trajectory K 1. (b) The zero-crossing potentiz] of the curvature scale-space of trajectory Wl ic) The diffused

version of (a). (d) The diffused version of (b). {e} The difference picture berween (¢) and {d). The match score
between K1 and W1 15 0.137

scale-space of trajectories K1 and W1, and Fig. 9{c)
and {d} are the dilfused version of the zero-crossing
potential. The difference picture between Fig. 9(¢) and
{d) is shown in Fig. 9(¢). The match score between K1
and W1 is 0.137, which is low enough to declare a
mismatch.

It is clear that the cyelic motion detection is help-
ful in reducing the overhead of the motion-based
recognition,

6. CONCLUSIONS

In this puper. we presented @ methad for cyclic
motion detection using autovorrelition and Fourier
Transform techniques, We represent a two-dimen-
stonal trajectory as a one-dimenstonal signal: curvature,
which is a function of time, Cycles are detected suceess-
fully in the frequency domain by using the Fourier
Truansform of the pre-processed curvature signal of the
trajectory. The proposed methoed wis tested on some
synthetic dat and real duta of walling person. We
also demonstrated an application. motton-based re-
coenition, for the cyele detection metust

i
|
|
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