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Motion-based recognition:
a survey

Claudette Cédras and Mubarak Shah

Motion-based recognition deals with the recognition of an
object or its motion based on motion in a sequence of images.
In this approach, a sequence containing a large number of
frames is used to extract motion information. The advantage
is that a longer sequence leads to recognition of higher level
motions. like walking or running, which consists of a complex
and coordinated series of events that cannot be understood by
looking at only a few frames. This paper provides a review of
recent developments in the computer vision aspect of motion-
based recognition. We will identify two main steps in motion-
based recognition. The first step is the extraction of motion
information and its organization into motion models. The
second step consists of the matching of some unknown input
with a constructed model. Several methods for the recognition
of objects and motions will then be reported. They include
methods such as cyclic motion detection and recognition,
lipreading, hand gestures interpretation, motion verb recogni-
tion and temporal textures classification. Tracking and
recognition of human motion, like walking, skipping and
runping will also be discussed. Finally, we will conclude the
paper with some thoughts about future directions for motion-
based recognition.

Keywords: motion-based recognition, object recognition, motion
information, matching

Motion-based recognition deals with the recognition of
an object or its motion based on motion in a sequence
of images. Motion plays an important role in the human
visual system. We have the ability to recognize a distant
walking person by his/her gait. particular hand gestures,
dance steps. flying birds, all of which are made up of a
complex sequence of movements. Motion perception
helps us recognize different objects and their motion in
a scenc. infer their relative depth. their rigidity. etc. Qur
visual system is very sensitive to motion. and we tend to
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focus our attention on moving objects. Motionless
objects, in a scene, are not as easily detectable, and
several camouflage strategies of the animal kingdom
rely on that fact. Qur ease of perception and interpreta-
tion of motion suggests that our visual system is very
well adapted to process temporal information.

In psychology, motion perception has been studied
extensively using Johansson’s moving light displays
(MLDs)""?, MLDs consist of bright spots atached to
the joints of an actor dressed in black. and moving in
front of a dark background. The collection of spots
carry only two-dimensional information and no struc-
tural information, since they are not connected. A set of
static spots remained meaningless to observers, while
their relative movement created a vivid impression of a
person walking. running, dancing, etc. The gender of a
person, and even the gait of a friend can be recognized
based solely on the motion of these spots’. [t has been
shown that inverted (upside down) MLDs are usually
not recognized. even for some stmple movements®. This
would suggest that the familiarity of an observer with a
particular motion plays an important role in the ease
with which one can recognize it: an inverted movement
is not natural nor familiar, thus it is more difficult to
recognize. Nevertheless, our easy recognition of MLDs
would indicate that we can directly use motion as a
means for recognition.

There are two theories about the interpretation of
MLD type stimuli. In the first, people use motion
information in the MLD to recover the three-dimen-
sional structure, and subsequently use the structure for
recognition (structure from motion). In this case, the
moving object would be identified first, then the motion
it performs in the image sequence would be sought.
According to the second theory, motion information is
directly used to recognize a motion, without structure
recovery.

There has been significant interest over the last
decade. in the computer vision community, in the
determination of structure from motion (SFM)>?. In

0262-8856/95/$09.50 " 1995 Elsevier Science B.V. All rights reserved
Image and Vision Computing Volume 13 Number 2 March 1995 129



Moltion-dased recogmtion: C Cedras and M Shan

SI°M., the three-dimensional coordinates of points on
the moving objects and their three-dimensional motjon
is recovered from o wjuence of frames, This problem is
formulated in terms of systems of nonlinear or linear
equations given wo-dimensional positions of moving
potnts among a few frames. Interesting theoretical
work”” ' related 1o the number of points required for
a solution. the uniqueness of such a solution. and the
ctfect of noise on the solution has been studied. {n these
approaches, it is assumed that the recovered three-
dimenstonal structure will subsequently be used for
recognition. However. three-dimensional structure is
not sufficient alene for robust and accurate recogni-
tton, and the reconstruction is sensitive to noise.
Multiple cues like motion. specularities. textures, eic.,
are needed. The structure from motion methods
compute intrinsic surface properties, such as depth. But
depth maps and other maps of 2.5D sketch are still
basically images, which still need to be segmented and
interpreted before they can be used for more sophisti-
cated tasks.

Another approach for motion analysis deals with the
direct use of motion information for recognition, as our
easy recognition of MLDs would suggest. In this
approach. emphasis is not necessarily on the static
structure, and motion of information is not extracted
one frame at a time. Instead, a sequence containing a
large number of frames is used to extract motion
information in its continwum. The use of a longer
sequence leads to recognition of higher level
movements. like walking or running. Those movements
consist of a complex and coordinated series of events
that cannot be understoed by looking at only a few
frames. Therefore, more complex movements can be
examined at a more appropriate level.

Motion-based recognition is an approach that
favours the direct use of motion information extracted
from a sequence of images for the purpose of recogni-
tion. Knowledge about the object or motion is used to
construct models that will ultimately serve in the
recognition process. There exists a distinction between
motion-based recognition and motion recognition:
motion-based recognition is a general approach that
favours the use of motion information for the purpose
of recognition. while motion recognition is one goal that
can be attained with that approach. In this approach we
also include tracking using models. i.e. the tracking of
motion given not only a shape model of an object. but
also a motion model. [t is understood here that if proper
tracking ts achieved. then recognition s also achieved.

There are two main steps in motion-based recogni-
tion. The first step consists of finding an appropriate
representation {or the objects or motions we want to
model. from the motion in the image sequence. Those
representations can be relatively low-fevel. for instance
the trijectory of a particular point on a moving object. a
speed or direction throughout the sequence. and can, if
nceessary, be organized into very high-level representa-
tions, for example the scenarios in Goddard's work '™ '3,
or motion verbs as deseribed by Koller e al,™ and

15,16 H 3 -
Tsotsos” =" The low-level processing of the images

consiits of  the exdraction ol features. which  are
‘manipulated” and organized into these representations.
The models arc then created and extended as necessary.
The sccond step consists of the matching of some
unknown input with a model. The methods here are
more standurd. and are often common pattern classiil-
cation techniques. The term “recognition™ is sometimes
used as an ecquivalent to classification. although a
distinction must be made. Feature vectors are classi-
fied, ie. associated with a cluster representative,
according to a distance measure to that cluster.
Clusters can also be grouped or split. depending on a
predefined distance measure. or according to some
parameter introduced by the user. Recognition, on the
other hand. is an association to only one possible
model. If the input’s representation does not °‘fit’ a
model’s representation, then it is not recognized as such,
however close it might be. In this paper, recognition is
used in the usual broader sense that includes classifica-
tion or association with a particular class of object or
ntotion. )

Applications for motion-based recognition are wide.
1t has already been used in the medical field for the
study of left ventricular motion, to reveal damages,
impairments or abnormalities’>'®, The framework
developed can. furthermore, be adapted to other types
of diagnostic methods. In clinical gait analysis. the
location of various joints of a patient’s body are
tracked and analysed for abnormalities using a
computer. The study of the relative joint angles
throughout the cycle, along with some other type of
tools like eleciromyographical activity of involved
muscles, provides a basis for the comparisen of normal
and abnormal gaits and can pinpoint the location of
problems. For example. the assessment of the locomo-
tion of patients suffering from cerebral palsy can help in
the determination of appropriate surgical or orthotic
interventions: progression of neuromuscular disorders
can be examined: the evaluation of the effectiveness of a
prosthetic joint replacement. the improvement of
orthotic design. the changes in prosthetic design. all
help in the physical therapy of joint diseases, biomecha-
nical simulations. kinesiological analysis and ergonomic
designs'” 1.

Similarly in sports and athletic training, some fnitial
svstems already oxist. for example. to digitize the path
of a javelin and compute its velocity and angle of attack.
and to compare values ngainst a mathematical model of
the perfect javelin throw. Biomechanists use underwater
cameruas and computer systems to produce three-dimen-
sional coordinates of the swimmer's arm. and caleudate
the curve from the velocity of the hand. the angle of
pitch, and the speed of the swimmer'’. {n the futore.
systems could be built for analysing golf swings or
teanis strokes. Motion-based recognition systems could
also be used in the analysis of dance movements and as
an instructional tool for dancers.

Systems for the auwtomatic interpretiation of spoken
words (lipreading) and of sign language are under way.
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One application is in the development of better human-
machine interfaces. Another use would allow hearing
impaired people to communicate more casily by using
visual phones. Telephone networks cannot support real-
lime grey-level image transmission, however the require-
ments i precision and resolution for American Sign
Language arc relatively low as compared to greyscale
im: l%s" Methods that create some image compression
could be used for real-time sign language communica-
tion over the 'phone.

Surveillance systems, for which simple motion
detection might not be sophisticated enough. could be
another application. Motion recognition techaiques
could he]p disambiguate between possible or allowable
types of motion from a non-desirable type of motion in
a particular scene. In automatic monitoring systems,
those techniques could help locate problems leading to
possible failures in an automated line: given the
constraints of the allowed machine motions, an unex-
pected motion, or lack of motion, could be isolated
faster, and therefore be attended to without waste of
time. Other uses for motion-based recognition systems
include obstacle avoidance of moving objects for robots,
and satellite monitoring of weather disturbances.

This paper will survey different methods used for
motion-based recognition. The next section tackles the
problem of motion representation, i.e. how to extract
the spatial and temporal features from a sequence, and
how to organize them into a coordinated set. Onee a
representation is defined. a set of models can be built up
using the encoded features. then unknown sequences,
following the same process of encoding and organiza-
tion. can be compared for matching and recognition.
The matching step is also described. A description of
several methods for motion recognition is given. and
methods for the tracking and recognition of human
motion described. We finaily conclude with a brief
summary. and future directions for motion-based
recognition in computer vision applications and
research.

There are two main steps in motion-based recognition.
A motion representation must first be defined, so that
the appropriate motion information is extracted from a
segquence of images and organized into motion models.
Second. the representation of an unknown motion must
be compared with a stored meodel for matching or
recognilion.

The extraction of motion information from a
sequence of images is first performed. There are
generally two methods for extracting two-dimensional
motion: motion correspondence and optical  tlow.

Motion correspondence is concerned with the matching

of characteristic tokens through time, while optical flow
consists of the computation of the dlbpld(.t.l‘l'lu'll of each
pixel between frames.
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Molion correspondence deals with extracting intes-
esting poinds. characteristic features in win image. that
can be trucked mn time. This correspondence For mulliplc
frames results in what is culled o motion lfdj\..t.l\)l‘)’ Le.a
sequence of locations €, ) for i = ., n. where 7 iy
the number of frames in the sequence. A motion
trajectory can thus be considered a vector valued
function. that is. al cach tme we have two values x
and y. However, a single valued function is better suited
for computations. and therefore parametrization of

trajectories is necessary. The trajectories can be para-
metrized in several ways. for instance speed and
direction. velocities v, and v, and spatiotemporal
curvature.  Parametrized representations can  be
analyzed to identify important motion events. Motion
events can be seen as particular occurrences happening
in the motion, for example a change in the direction, a
stop, an acceleration. Gould, Rangarajan and Shah®'
and Gould and Shah®? identify motion events by
detecting zero-crossings in v, and v, Engel and
Rubin®™ use a polar velocity representation to
determine five types of motion events: smooth starts,
smooth stops, pauses. impulse starts and impulse stops.
Parameirized representations can also be used in
matchmfr and recognition. Rangarajan, Allen and
Shah®* used the scale-pace of speed and dlrectlon to
match two trajectories. while Allmen and Dyer™ use the
scale-space of the curvature of a spatiotemporal curve
to detect cyclic motion.

Optical flow can be computed from a sequence by
considering two consecutive frames at a time. Several
researchers used optical flow to extract two-dimensional
motion. and from which more elaborate motion
representations are later buitt”® !

Extraction of motion mformatlon over a region or
over a whole image can also be used. as opposed to
motion trajectories that carrv information about a
single point on an object. Features derived from the
use of an extended region or from a whole image are
here called region-based features. For instance. Polana
and Nelson™ * compute several features from the
normal flow (component parallel to the gradient) of the
whole image. One of them is the average flow
magnitude divided by its standard deviaion. Martin
and Shah®’, using dense optical flow fields over a
region, perform correlation between differant sequences
for matching. Storing different views of a non-rigid
object, and expressing motion of thiat object as a
sequence or combinustion of those views is another
approach that hdS been used with both binarized and
grey level images™ . Yamato er of.™ computed o mesh
feature from cach binarized image of a sequence. which
consists of an ordercd set of ratios of black to white
pixels. each from an element of an image divided into a
grid. Another way to use grey scale images would be to
compute a set of u;,mw.uors (eigen images) forming an
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function of those. as used by Kirby et af.’’
Figure | presents an overview of extraction of motion
information from a sequence of frames. The difterent
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Figure 1  Extraction of motion information from a sequence of frames

features extracted and their organization will be further
discussed in this section.

Once the motion information is extracted and
organized. matching between a model and an input
needs to be performed for recognition or classification.
Several methods use clustering techniques since their
models and inputs are encoded by feature vectors, but
other approaches have also been described. for example
a probabilistic method. and a connectionist method.

Motion extraction and matching methods vary widely
in the literature. In this section. we will examine the
kind of information that can be extracted from a
sequence of Images. and how recognition or classifica-
tion can take place. To make this paper self-contained,
this section thus intends to provide a summary of the
methods for extraction of motion features, their
encoding. and the recognition processes that are used
in the papers described in the following section. Its
purpose is to better explain the techniques involved.
Readers familiar with the techniques may browse
quickly or skip to the next section: others can get
acquainted with them. The next subsection briefly
describes methods for the computation of optical flow;
we then discuss methods for generating trajectories from
an image sequence. Procedures for extracting informa-
tion from those trajectories will be reported. refative
motion will be discussed, and motion events and region-
based motion features will be examined. Matching
techniques will be covered, and a summary of the
section will follow.

Optical flow

Optical flow methods are very common for assessing
motion from a set of images. Optical flow s an
approximation of the two-dimensional fiow feld from
imuage intensities. Several methods have been developed
(sec Barron e ™ for a recent review). however,
accurate and dense measurements are difficult to
achieve, The methods are divided into four classes:

Mesh Featre Model Views
Codebook Eigen Images

differential methods, region-based matching. energy-
based techniques and phase-based techaiques.
Differential methods compute the velocity from spatio-
ternporal derivatives of image intensity. Methods for the
computation of first order and second order derivatives
were devised. although estimates from second order
approaches are usually poor and sparse. In region-based
matching. the velocity is defined as the shift vielding the
best fit between image regions, according to some
similarity or distance measure. Energy-based (or
frequency-based) methods compute optical flow using
the output from the energy of velocity-tuned filters in
the Fourier domain. while phase-based methods define
velocity in terms of the phase behaviour of band-pass
filser outputs. for example the zero-crossing techniques.

One problem with optical flow in general, is that it is
susceptible to the aperture problem, which. in some
conditions, onty allows the precise computation of the
normal flow, i.e. the component parallel to the gradient.
It is also prone to boundary oversmoothing. i.e. back-
ground pixels around object boundaries might have a
non-zero flow value. Problems also arise with multiple
moving objects, where segmentation can be difficult to
achieve, and by the multiple legitimate velocities in a
small neighbourhood that might occur as a result of
transparency. Despite afl, it has successfully been used
as a source of information; methods based on optical
flow are described later on.

Motion correspondence

The trajectories derived from the location ot pacticular
points on an object, in time, are very popular because
they are relatively simple to extract. and their inter-
pretation is obvious. The gencration of motion trajec-
tories from a sequence of tmages typically involves the
detection of tokens in each frame. and the correspon-
dence of such tokens from one frame to another. The
tokens need to be distinctive enough for casy detection,
and be stuable through time so that they can be tracked.
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Tokens include edges. corners. interest points, regions
and limbs. Corners are points where the gradient
direction changes rapidly. and correspond to physical
corners of objects. They are useful for scenes containing
polyhedral objects. automobiles, etc.. but might be rare
in other types of scenes. Moravee's™ interest operator is
another feature detector that has proved useful in many
applications.

The correspondence problem can be defined as: given
n frames taken at different time instants, and given m
points in each frame, map a point in one frame to
another point in the next frame such that no two points
map onto the same point. This problem is combinato-
rially explosive, and the occurrence of occlusion and
disocclusion also adds to the difficulty of the problem.
One needs to introduce constraints to limit the search
space. Constraints include proximal uniformity®
maximum velocity, small velocity change or smoothness
of motion*" 42, common motion, consistent match,
rigidity, ete.**. An important issue in the correspon-
dence problem is to convert the above qualitative
heuristics (constraints) into quantitative expressions,
which become cost functions. Jenkins® proposed an
algorithm for tracking the three-dimensional location of
points from a stereo view of the two-dimensional
location in the images, which is based on a general
smoothness assumption. stating that the location, scalar
velocity (speed) and direction of motion of a given point

11 ame 1t~ tha novt
are relatively unchanged from cone frame to the next,

Scthi and Jain™ used the principle of path coherence
and of smoothness of motion as the basis for their
algorithm for monocular image sequences. called the
Greedr Exchange. They proposed an iterative optimiza-
tion algorithm to find optimal trajectories. in order to
maximize the smoothness of each trajectory and of the
set of trajectories. Rangarajan and Shah*® proposed a
method based on a proximal uniformity constraint,
which savs that most objects in the real world follow
smooth paths and cover a small distance in a small
amount of time. The resulting trajectories are smooth
and uniform and do not show abrupt changes in the
velocity vector over time. Their algorithm minimizes a
proximal uniformity cost function and establishes
correspondence over n frames. Cheng and Aggarwal®!
devised a method for the correspondence problem using
a two-stage algorithm. The first stage is the sequential
forward scarching algorithm. which extends trajectories
Up o the current frame. and the second stiage is a batch-
type rule-based backward correcting algorithm, whose
purpose is to correct the wrong correspondences among
the last few frames. The only assumptions made are that
of the smoothness of motion. for the first stage. and
simple error (no chain error) for the second stage. 1n ail
the methods above. the smoothness of  motion
constraint was defined in a very similar manner, and so
far this assumption has been very useful. However, it
might not necessarily be true in all conditions. and
sometimes abrupt motion might need to be interpreted
as such. In those cases, the smoothness assumption will
not be sulficient und the algorithms will probably fail.
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In the papers surveyed. several methods  were
developed for loken extraction and trajectory determi-
nation. For mstance, a trajectory can be extracted from
a spatiotemporal cube {ST-cube). which is the represen-
tation (.l't.d[cd by stacking a scquence of image frames.
fn Afltmen®®, the instaniancous motion of cach point in
an ST-cube is first computed to produce what is called
the spatiotemporal surface flow (ST-surface flow)
Fix) = {Ax, Ay, Ar), where x = (x, p.1). A spatiotem-
poral curve fST»(_"I_U_’VP\ defined as a three dimensional
curve z(t} = (x(¢),¥(2),1), IS a trajectory through the
5T-cube such that time is strictly increasing, and such
that the tangent vector at a point on the curve is equal
to the ST-surface flow. Another example for deter-
mining trajectories is to track the centroid of some
“blobs” approximately indicating the presence of motion
or of some object. Polana and Nelson® compute the
normal flow direction and magnitude between succes-
sive pairs of frames; pixels with significant motion are
marked and their centroid determined and tracked. An
approximate trajectory is then computed by fitting a
line through the sequence of centroids. Davis and
Shah*, in their hand gesture recognition algorithm, use
the direction of motion and displacement of each finger.
The fingertips were marked and tracked through the
sequence by locating the centroids of the markers after a
binarization step, using the algorithm proposed by
Rangarajan and Shah®® as described above. Koller
er al'* used methuuo origmally developed by Kories
and Zimmermann®® and Sung’ to generate the trajec-
tories subsequently used for the recognition of vehicle
trajectories using motion verbs. The trajectories of the
vehicles are determined by first classifying each pixel
into one of eight categories, according to local grey-level
information. The centroid of connected pixels belonging
to the same class (blobs) is computed, and then tracked
along a number of frames. Their displacement is
mapped to a vector chain, and the starting position of
that vector along with the total displacement define an
image displacement cluster.

As can be seen, the tracking of some points
throughout the sequence can be performed in a variety
of ways. In the case of MLD type of input. the location
of tokens is already given. such that the correspondence
process can be performed directly. In other cases,
interest points, centroids and other tokens have to be
extracted firsi. in a robust and consistent way, before
the correspondence process can take place.

Trajectory parametrization

Simple trajectorics do not usually provide sufficient
information for recognition and. as mentioned earlier,
they ure vector valued functions. which are not as easy
to work  with  as  single  valued  functions.
Parametrization of the trajectories is thus very useful.
One representation is the trajectory velocity, v, and vy,
Le. the velocity in x and p relative to time. They are
simply comptuted as follows:

“nn
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where (e, ¢ p, 1) and (x,, y,) are the location of a point
in frumes i—1 and /i The velocity is translation
invariant. but not rotation nor scale invariant. Speed
and direction are another useful parametrization. They
are defined as:

i
; 2, 2
so= A =) F (e — )

;= arctan (y—-————"‘l ,__v,.)
Xipy ™ N

where s, is the speed and d; is the direction of a point at
frame i; x and y are as above. Speed and direction are
both translation and rotation invariant. Furthermore,
the direction is scale invariant, but not the speed. The
direction 1s however more sensitive to noise, due to the
nonlinear operation of arcran. Velocity parametrization
and speed and direction parametrization are fairly easy
to compute from the trajectories, and generate curves
which are easy to interpret. However, it is not cbvious
how to combine those trajectories for higher level
interpretation. for example to detect cyclic motion.
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another common representation. It is determined as
follows:
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The notation |-| denotes the determinant. A discrete
approximation is used to compute the derivatives, for
example x;=x;—x_; and x/=x/-x;_,. It is
accrmed 1.-.." N cometant an ff =1 and N Ts
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has been shown in differential geometry that any space
curve is completely defined by its curvature and torsion,
up to a rigid rotation and translation. The curvature has
the advantage over other trajectory parametrizations
that a single function is able to capture information, as
opposed to two functions with v, and », or speed and
direction. Curvature of a trajectory was used by Allmen
and Dyer’ and Tsai e al.*® for cyclic motion detection.

Muase and Pentland®® used multiple trajectories,
although in a very different manner. The average
optical {flow was computed in four windows around the
mouth of a speaker. in successive pairs of frames. A
principal component analysis was performed with the

flow eomnoanenis and twa faneriane O 1 exprassinge
HOW COIMPONLTIS, Qnd (WO (UNSUons, L) CXpPIossing

mouth opening in time, and E(¢) reflec the elonga-
tion of the mouth as 4 function of' ume were then
created:

(D =y, + v+
e -3 L e a Y

1
Ey=sv,~u+u

where v wovov, are the ¢ components of the flow
vector of the upper, lower, feft and right windoss, and
t,. 1y arc the x component of the flow in the right and
felt windows. respectively.

Any type of wrajectory can be further processed in
urder Lo be used for recognition. For example. the seale-
space can be computed. by increasingly smoothing o
curve using Gaussian masks. and by detecting zero-
crossings or level-crossing at each level. Scale-pace of
trajectories were used in several studies deseribed in the

L T R _--..-_ e i it T
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Relative motion

In the trajectory parametrizations of the previous
section. absolute values of velocity, speed, direction
and curvature were used. However, absolute values
might sometimes be inadequate. In the case of human
motion, the absclute velocity of a body part has less
significance than the relative velocity between moving
parts, and relative joint angles with respect to time
carry important information. Cutting and Proffitt®
showed that relative motion is an important aspect in
human visual perception. The pETCEptxuu of an object’s
absolute motion can be divided into two component
motions, commen motion and relative motion.
Common motion is the perceived global movement of
an object relative to the observer, each element of the
object sharing that motion, while relative motion is the
movement of an element with respect to other
elements. The absolute motion of a point, ie. its
trajectory. is defined as the sum of common and
relative motions. Cutting and Proffitt hypothesized
that a minimization process is applied to both the
common and the relative motions, and that the one
that is resolved first explains what is perceived by the
observers. The authors found that relative motion

- H - il
between the elements of an object was usually

extracted first. i.e. relative motion is more revealing
for the understanding of the motion and recognition of
an object than common motion.

In his thesis. Allmen®® tries to define more
formally this minimization process. The absolute
motion A(/) as a function of time s defined as
A() = C) + R(1). where C(f) and R{:) represent
common and relative motions. respeclively, as a
function of time. (/) is recovered from the image
sequence for f € [4.1,]. and those equations are used
as constraints to be satisfied. The following function
is then minimized:

SICR)Y = YT (RHCWN + K3 (R(D)]
o

where x, 15 the time derivative of the curvature along
path. Allmen proposes two upprouaches for solving this
system, and he believes that the celative and common
motions can be computed such that the results explain
the observers' perception.
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Because relative motion was shown to be invelved
in the humuan visual svstem and the pereeption of
motion. this kind ol information should thercfore be
very helpful in computer vision systems. Multiple
trajectories can be used to compute relative motion.
For example. refative angles can be computed between
pairs of points relative to a given axis. or ay the joint
angle between three points, in cach frame. The
differcnce ol angle is then determined between succes-
sive frames. which can be considered as angular
velocities. if we assume the time between each frame
is constant. This method of computing angular
velocity using relative angles between pairs of points
can be used, for instance for discriminating between
two actors performing the same action. One problem
with muitipie trajectories 1s that the computation of
relative motion between every element is combinato-
rially explosive. Also. relative motion between two
unrelated elements might not be very revealing.
Heuristics can be developed for selecting appropriate
relative motions among all possible. Knowledge about
the shape of the object will obviously help in that
determination, Nevertheless,relative motion plays a
very imporiant role in human perception, and this
avenue should thus be further investigated.

Motion events

Motion events are defined as significant changes or
discontinuities in motion. A sudden change of direction,
a stop. a pause. can provide important clues to the type
of object and its motion. A study of temporal subsam-
pling of American Sign Language sequences showed
that choosing images where low activily occurs. i.e.
between motion events, was better for understandability
than to pick images at constant time intervals™ . Motion
events ure usually detected by the presence of disconti-
nuities. which can be found. for instance. by computing
the scale-space of a speed curve.

Gould and Shah's®™?* Trajectory Primal Sketch
(TPS) is a representation for the significant changes in
motion. Changes are identified at various scales by
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v, extracted from a trajectory. This results in a set of
TPS centours, each contour corresponding to a change
in motion. The strengrh of the contour, e, the number
of zero-crossings belonging to that contour. the shape
or straightness of the contour, i.e. the sum of the
distance between each successively linked zero-crossing
from the contour divided by strength-1. and the frame
number at which the contour originated. reveals a lot
about the event, This representation has been shown to
distinguish basic motions like translation, rotation,
projectile and ¢veloid. Their results show that the first
derivative discontinuities in the rotation and cycloid
trajeciornes have o sing/cosine relationship with respect
to vach other, so that they can be separated from the
projectile and translation type trajectorics. Rotation can
be further distinguished from cycloid by the presence of

v and
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a sine cosine retationship in the first derivative of the
selocity. i in the acecleration. which is absent in the
cycloid trajectory. As Tor translation, it can be classified

into straight line transiation or curved translation,’

depending on the respective values of the acceleration.
On a straight line ranslation, both slopes of v, and v,
must be the same. while in @ curved translation, the
slopes will be different. By studving the velocity,
acceteration and TPS from different primitive trajec-
tories, it wus thus possible to discriminale them.
Composite TPS or CTPS?' s an extension of the TPS
in which the trajectory of several points on an object
can be reconstructed given some initial information like
their starting point. the TPS of one of the trajectories,
the frequency, in the case of rotation. The reconstruc-
tion has been shown for transiation and rotation
motions.

Based on psychophysical considerations, Engel and
Rubin® described the significant changes in motion as
motion boundaries, of which they found five types:
smooth starts, smooth stops, pauses. impulse starts and
impulse stops. They are considered as motion events
that partition a global motion into its psychological
parts. Their method of detecting those boundaries use
polar velocity representation (s,¢). and the features
used for the detection of the percepiual boundaries are
first and second derivatives of the speed s and s”, and
the second derivative of angle ¢”. Force impulses
imply a discontinuity. i.e. zero-crossing in consecutive
pairs of s” and ¢” estimates. If a zero-crossing exists in
either or both, and its slope exceeds some predefined
threshold, then force impulses are confirmed. Starts
and stops are found when speed is low. but increasing
or decreasing sufficiently. again determined using
thresholds. The simultaneous presence of a start or
stop and a force impulse indicates an impulse start or
stop. while a pause occurs when a start (smooth or
impulse) follows a stop (smooth or impulse). The
authors studied cycloidal motion at two different
speeds, fast and slow. At sach cusp. a boundary was
detected; the slow motion detected a ¢” zero-crossing,
along with a pause. while the fast motion asserted force
impulses for both s” and ¢”, but no start. stop or
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Goddard'?, in his work on human motion. used
changes in rotational velocity of body segments along
with changes in direction. as motion events. For
example. six ranges of angular velocity values were
used (2000 {-200. —100% [—100. OF [0, 100k {100,
200); = 200 degreesisecond), along with four quantiza-
tions of the orientation. taken us the four 907 quadrants.
Any change in the orientation or angular velocity
constitutes a motion cvent, which will trigger some
action in his connectionist system.

Motion events have been shown for simpler motions
as for projectile and cycloid motions, as well as for
compiex moltions like human movements. Motion
events are thus of wide applicability, and can be used
alone or in conjunction with other types of features,
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Region-based features

For certain types of objecls or motions, the extraction
of precise motion information for cach single point is
not desirable nor necessary. Instead. the ability to have
a more general idea about the content of a frame might
he sufficient. Fealures gencruted from the use of
information over a relatively large region or over whole
images are referred to here as region-based features.
This approach has been used in several studies. For
instance, Polana and Nelson®™?? gathered a set of four
features based on the computation of the normal flow,
i.e. the component of the flow field parallel to the
gradient. over regions of interest. The first feature is the
mean flow magnitude divided by its standard deviation.
The normal flow is computed at each pixel of a region,
and tts mean magnitude calculated, then divided by the
standard deviation, ensuring for scaling invariance. The
positive and negative curl and divergence estimates were
also used. Divergence is the dot product of the gradient
operator and the flow vector, while the curl is their cross
product. They are computed for every pixel of a region,
and the positive and negative values separated. The
features used are the average values of the positive and
negative curl and divergence over the region of interest.
The non-uniformity of flow direction feature requires the
computation of the histogram of the eight discretized
directions over the relevant region of the image. The
sum of the abselute deviation from a uniform distribu-
tion will give an approximation of the non-umformity
of direction. This approximation is then normalized by
using the four-way histogram of gradient directions, in
order to reduce the dependency of the flow direction
with respect to the intensity texture. Finally, the
directional ri;ff'erence statistics in f‘nur directions were
computed. Using the eight dsscreuzed directions of
motion, along with the first feature above, the authors
compute second order statistics of the normal flow
direction. Co-occurrence matrices are built for four
directions, using pixel pairs at a distance proportional
to the average flow magnitude, again ensuring for
scaling invariance. In each direction, the ratio of
number of pixel pairs differing in direction by at most
one over the number of pairs differing by more than one
is computed. The logarithm of the ratio is then used as
feature. Four new features then emerge from the
directional statistics, one from each direction. Once all
those values are computed, they are then put into vector
form for classification.

In another paper, the same authors describe a
representation  for periodic motions like walking,
running. jumping. and exercising®®. It is. as above,
based on the computation of the normal flow direction
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a selected portion of the sequence of images. catled the
spatiotemporal (ST) cube. The ST-cube consists in x, y
and time dimensions, as described above. The authors
devised two different motion models. The first one is to
compute a set of four statistics over the whole ST-cube,
namely the vertical and horizontal stick-like motion,

and the vertical and horizontal worm-like motion.
Those statistics use the direction of motion at every
pixel of the ST-cube. The stick-like motion is character-
ized by a set of consceutive pixels, arranged vertically or
horizontally, showing the same motion direction,
horizontal or vertical, respectively. The worm-like
motion 15 characierized by a set of horizonially or
vertically arrunged pixels showing motion in the
horizontal or vertical direction, respectively. The
second representation is a three-dimensional feature
vector, created by partitioning the x, p and rime
dimensions of one cycle of the ST-cube (one sequence
contains four cycles). In each of the resulting three-
dimensional cells, a statistics is then computed.
Experiments with three different statistics were
performed: the summed normal flow magnitude in each
cell, the dominant motion direction in each cell, and the
summed motion magnitude in the dominant motion
direction of each cell. This dominant direction is
approximated by computing the histogram of the
discretized normal flow direction of motion weighted
by its corresponding magnitude, and taking the
direction with the highest value.

Eigen images extracted from a set of grey level images
of an object provide enough information to directly
represent new images of that object. Kirby er al.” used
that method with mouth images. The eigen images are
the eigenvectors of the ensemble averaged covariance
matrix C:

F
C = IP; uWy

where u is vector formed from the concatenation of
the columns of the jth ImﬂoP and i’ is the transpose of
u. C is non-negative, and its eigenvectors form an
orthonormal basis. They are computed within the
Karhunen-Loéve framework, since the system would
be too large to be otherwise solved efficiently. Once the
eigen images are extracted, an tmage can then be
expressed as a linear combination of those eigenvec-
tors, i.e. by a vector of coefficients, each coefficient
associated to an eigenvector. An image sequence of a
spoken word could then be represented by a vector for
each frame of the sequence, thus forming a matrix of
coefficients.

A set of model views of an object is the approach
taken by Darrell and Pentland with hand gestures™ *.
Their method automatically stores the appropriate
number of views necessary to represent an object using
correlation. If optical flow can be reliably extracted
from a sequence of images, correlation using optical
flow might be more appropriate as compared to
correlation using plain grey levels. With this idea in
mind, Martin and Shah? use a sequence of dense
optical flow fields around the mouth of a speaker,
which are then correlated, for matching with a sequence
of optical flow frames. Dense flow fields create
redundancy in data that allows for better performance
and robustness.
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Using binarized images, Petajan er ol created a
codebook of mouth images. i.e. a set of images of the
different shapes ol the mouth while speaking. The
motion of a spoken work can be described as a
sequence of elements of this codebook. This sequence
can be defined using the images directly, or by using an
index identifying each image: this process is called
vector quantization.

Yamaio et al.’® used a mesh feature extracted from
each binarized frame of a sequence. An image is divided
into a grid, and the proportion of black to white pixels
in each grid element is computed; the ordered set of
ratios for an image is called the mesh feature. Motion is
detected by variations in the ratios from one image to
the other.

There are advantages and disadvantages in each
representation. For imstance, in Darrell and Pentland’s
work, the number of views necessary to represent an
object might get too large for storage and/or recognition
purposes. In this perspective, Kirby’s approach seems
more elegant and efficient, since once the eigenvectors
are found, any image can be expressed as a small set of
coefficients. The interpretation of Petajan er al’s
codebook images is straightforward, but their storage
{they used at most 255) is costly in space. The mesh
feature used by Yamato er al. can represent an image in
a very simple form, but this abstract format prevents
easy interpretation of the feature.

Matching and classification

Once the representation has been defined and the
features from both models and unknown images
properly encoded. a comparison must be made so that
classification or recognition can take place. Of course,
this comparative step depends on the type of features
that are used to encode both models and inputs. The
methods described here usually involve some kind of
distance calculation between a model and an unknown
input, the model with smallest distance is taken to be
the class of motion to which the input belongs.

Scale-space of trajectories have been used in different
ways. Rangarajan. Allen and Shah® computed the
diffused scale-space of speed and direction of different
points extracted from their trajectory. They argue that
for similar motions, the scale-space will be simitar, such
that the point by point difference between the scale
space of the speed and direction curves from different
points undergoing similar motion will be much smaller
than with points undergoing very different motions.
Allmen and Dyer™ ™ used the scale-space of curvature
values computed from spatiotemporal curves to detect
¢ycles in the motion of the moving object. If cycles
occur. the scale-space will also contain repeating
patterns. which can be detected.

If the features can take the form of a vector. then
clustering of features is 4 method which has been often
employed, in particular by Polana and Nelson®® 3032
The approach is based on the assumption that simiiar
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motions will generate similar feature vectors, which can
he classified using a ncarest centroid classifier, or else
any kind of classifier bused on wvectors. A principal
component analysis can also be useful in determining
which features are more important in the classification.
Pelajan ¢r «l*, in their lipreading scheme. matched
quantized vectors, which are the representation of word
samples. The maiching process tnvolved computing the
distance between an input and a model vector, and the
model with the smallest distance was chosen as the
representation of the input. Finn and Montgomery®!
also used feature vectors, and recognition consisted of
choosing the model that generated the smallest root
mean square distance. Mase and Pentland®® used a
sampling of their two functions (mouth opening and
elongation functions, see above) to create a vector used
for input and model comparisons, and a match was
established with the model that gave the smallest
weighted squared difference.

Another approach taken was the connectionist or
neural network, found in Goddard’s work'®. His
representation consists of an ordered sequence of
events which are coordinated by temporal and motion
events. A hierarchy is used: at low-level, the presence of
a low-level feature triggers an event which is sent to the
layer above in the hierarchy, Combination of events at
that level trigger other events at yet higher levels, and so
on, until the coordinated sequence of events of a bedy
in motion can trigger one motion model at the highest
tevel. This is all done in a connectionist framework,
where the detection of a feature or an event activates
one of mote units, which might trigger units at higher
levels, up to the output level. representing the global
motion of walking, running or skipping.

Yamato er al.’® took a probabilistic approach to the
classification of different motions. They used a sequence
of symbols, one per frame, derived from a mesh feature
at the image level, sequence determining an inter-
mediate-level representation. Sequences like these are
used to train Hidden Markov Models {HMM), which in
this case are symbol generating machines. Matching of
an unknown sequence with a model is don¢ through the
calculation of the probability that an HMM could
generate the particular unknown sequence. The HMM
giving the highest probability is the one that most likely
generated that sequence.

Clustering techniques are very commoen and well
documented. and since several methods use a vector
tvpe of representation. the matching can be done in a
fairly efficient manner. Other matching methods will
obviously depend on the type of representation used,
and will thus vary accordingly.

Summary

A wide varicty of representations are built from basic
information extracted from an image sequence. The
most common kind of information is related to motion
trajectories, as described earlier, which are usually
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simple to compute and interpret. Region-based features,
like the mesh feature, are more abstract and their
interpretation is not as obvious. Optical flow was
frequently computed. ofien as part of a region-based
feature. Features using grey level image information are
not as common, might be more costly in space or
computation, and must be able to cope with the
inherent noise involved. However. the use of whole
images and their intrinsic redundancy might capture
some subtle information that a small set of discrete
features could not provide.

Some features are more appropriate for the motion of
particular kinds of objects. For the motion of rigid
objects in & scene. trajectory representations are very
useful: speed. direction, velocity, and their time deriva-
tives, curvatures. Region-based features were also
reported, for instance, codebooks containing images of
an ovject’s different shapes. and eigenvectors forming a
basis for describing an object’s shape. Features based on
optical flow have also been used, like normal flow
statistics. With articulated objects like the human body,
joint angles and angular velocity computations are
commonly used.

MOTION RECOGNITION

Relatively few papers encountered in the literature
describe the whole process of recognition, from the
image sequence up to the recognized object or motion.
Most of them only describe various representations,
without taking their system a step further by discussing
ways to create a database of models and 1o index it for
recognition or classification. Sometimes this step is
relatively simple. However, if the system is not
designed to do so. it might be very difficult and/or
costly to "add it". It is thus important to have this goal in
mind when designing a recognition system.

The previous section was concerned about the two
stages of recognition, namely motion information
extraction and representation. and the recognition/
classification. This section will describe individual
recognition methods. First we examine methods whose
purpose is to detect and recognize the presence of
cyclical motion. Then we discuss approaches that have
been designed for lipreading and hand gestures recogni-
tion. respectively. Motion verb recognition and
temporal textures classification will be discussed. and a
summatry concludes the section.

Cyclic motion detection

The presence of cyelic motion in a sequence of images
can reveal a lot about the object showing that type of
motion. A rigid object can perform a cyvelic movement,
for example a ball in a peadulum motion, while an

et ~h o~ 1
articulated object can perform much more complex

motions. Furthermore, ditfereat cyclic motions could
occur concurrently with the same or with ditferent

frequencies and  phase rvelative to cach other. The
following three studies describe how opclic motion iy
detected. and in one case how Uns iformation can be
used o recognize hwman motion.

Bascd on studics of the human visual system, Allmen.
along with Dyer™ > argue that cyclic motion detection
(1) does not depend on prior recognition of the moving
object. i.c. cycles can be detected even if the object is
unknown: {2) docs not depend on the absolute position
of the object: (3) needs long sequences (at least two

complete cycles); {4) is sensitive to different scales. i¢
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cydes at dnffercm levels of a moving object can be
detected. To study cyclic motion detection. the authors
use curvature as @ low level description of motion.
Given the three dimensional location of a point over a
iong sequence. its path can be parametrized by
2(2) = (x, 3. 2). for all frames of the sequence. x{r) is
defined as the curvature at «(f). A cyclic motion of
period At = £, — £ is detected if:

Il —w(t+ A0l <, Yie(n. )

Ouly two cycle intervals are needed for detection. The
two-dimensional projection of three dimensional paths
are used, and it is assumed that if cycles occur in the
projection, they will also occur in three-dimensional
space. The definition of cyclic motion is further
extended to rigid objects and articulated objects®

The authors used ST-curves recovered from the ST-
cube representing the sequence of images (see the
section above on motion correspondence). Allmen®®
shows that if a solid object in a scene undergoes cyelic
motion such that the periodic motion is preserved under
projection, the curvature of the ST-curves extracted and
corresponding to that object will be cyclic. The ST-
curves are equivalent to x(s) defined above, and the
cyclic motion definition can be applied. To detect cycles,
curvature scale-space was proposed as a representation.
For the detection of cycles, a modified version of a
uniform cost algorithm was used. in which a node is
associated for every possible pair of features in the scale
space. where the features are defined to be local
maxima. along with their left and right contours. A
md[Cl"I. cOsi 15 ut‘:‘u‘:tmmtu ‘-Vﬁ.[\ t:d(.n ﬂOUt‘. medsurmﬁ
how different the two features are. The pattern with
lowest cost and which repeats over the sequence is the
result of the match.

The advantage of curvaiure scale-space for cycle
detection is that cycles are position invariant and the
curvature scalg-space is position invariant as  well.
Another advantage is that it should be possible 1o
deteet cveles at different scales: coarser ¢veles would
appear at coarser seale, while finer oveles could be
detected at finer scule, However. due to the way the
curvature is computed, points of sudden changes in the
trajectory will create high and narrow impulses in the
curvature function, containing high frequency compo-
nents that may interfere with lower u‘f:'LiuCi‘:C:y' Compo-
nents. It is not obvious how the two can be separated

without getting rid of those impulses in some way™. It is
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not ¢lear how Allmen and Dyer’s method is effective in
doing so,

Polana and Nelson™ alse used an ST-cube to detect
cycles. In their approach, the first part consists of
extracting a reference curve. as described earlier. The
reference curve is in tact the approximate trajectory of
an object. und simply provides the approximate location
of the centroid of an object in time. The frames are then
aligned with respect 10 the centroid of the object, such
that it remains stationary in time. However, if the object
presented some periodic motion, for example a person
walking, the motion of the legs und arms remains, which
will create some periodic grey level signals over the
image. especially around the centroid. The periodic
motion will be extracted from the grey level signals

using a Fourier transform. The periodicity measure Pr of
the signal fis defined as the normalized difference of the
sum of the power spectrum values at the highest
amplitude frequency and its multiples, and the sum of
power spectrum values at the frequencies halfway in

between:
5 5= T Pl
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where Fis the energy spectrum of the signal /. and w- the
frequency corresponding to the highest amplitude of the
spectrum. Since the signal along any one curve may be
ambiguous. the pericdicity measure must be computed
for a number of reference curves of the same moving
object. all parallel to the original curve. and be
combined together. To do so, a form of non-maximum
suppression was devised. Given »n reference curves. the
periodicity of the signal along each curve was calcu-
lated. Each frequency w is then assigned a value P,
equal to the sum of the periodicity measured from all
signals whose highest arnplitude is w, The maximum
value of this combined signal is taken as the funda-
menial frequency. and its periodicity £ is defined as the
average of the periodicity measures of the contributing
signals. The periodicity detection is invariant to the
magnitude of motion, speed of activity. and is fairly

all changes in viewine aneles. In this naner
ail changes 1n vigwing angles. Iln o paper,

robust in 3
linear motion of the object (constant velocity, linear
path) wus assumed, but nonlinearly moving objects can
be handled by tracking objects given a coarse estimate
of its initial location and velocity, to give a reference
curve that is not a straight line.

The authors go even further by describing o method
for recognizing different periodic moticns, in an
upcoming paper’. The overall periodicity measure
described above is first used to refine the scgmentation
of the moving object. A normalization procedure then
produces a spatio-temporal solid (ST-solid) that is
invariant to spatial scale and translation, and invariant
to temporal scale, ie. frequency. The motion models,

represented by feature vectors, are then created using -

information from this ST-solid. They arc based on the
computation of statistics based on the normal flow
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direction and magnitude, and were described above,
The classification is performed using a nearest centroid
algorithm,

Tsai et al™ used the spatiotemporal curvature for
cycle detection. As explained above, the trajectory of a
point on an object that performs some cyclic motion is
used to compute curvature as a function of time. A
median filtering is then applied to suppress high and
narrow impulses that can interfere with the detection of
cveles: the DC component. ie. the component that
doesn’t change with time, is also removed to avoid zero
frequency impulses. An autocorrelation is performed to
emphasize self-similarity within the curvature function.
A Fourier transform is finally applied to that signal to
detect the presence of cycles and their period: a high
impuise indicaies ihe presence of c¢ycles and their
fundamental frequency.

Both Allmen and Dyer’™ and Tsai et al.*® used a
curvature function as input, although Tsai performed
some preprocessing steps on the curvature function.
Polana and Nelson®' used grey level signals of the
aligned frames as input. Allmen and Dyer use a uniform
cost algorithm on the scale-space of the curvature to
detect cycles, while Tsai er af. and Polana and Nelson use
Fourier transforms to directly detect the frequency of
cvclic motion. It seems reasonable and sensible to use
Fourier transforms to detect cyclic motion, and the Fast
Fourier Transform algorithm makes the process more
efficient. Furthermore, it is more robust to uncorrelated
noise. Motion-based recognition from cyclic motion has
been reported in Tsai er ai. (see secticn on discrimination
between humans from their motion) and Polana and
Nefson™. Their method provides good results on a
variety of periodic motions. Furthermore, it possesses
several desirable invariances. for instance to spatial and
temporal translation and scale, and can handle small
variations in viewing angle. varying image illumination
and contrast. and even some amount of background
motion.

Lipreading

facial expressions. gestures, even the so-called “body
language’. Hearing impaired people further develop this
ability since most of them can perform some lipreading
and/or understand sign language. Lipreading is a very
dithicult task, especially since certain phonemes can
appear visually identical {phonemes are minimal mean-
ingful units of sound from which two words can be
distinguished). For instance, the phonemes *b’, p’ and
‘m" sound different but look the same when spoken®'.
Acoustically-based automatic speech recognition (ASR)
is still not completely speaker independent. limited in
vocabulury and sensitive to noise’'. Combination of
acoustic and visual speech recognition is one possibility
to better achieve lipreading capability. This section will
describe several lipreading methods developed so far;
gesture interpretation will be discussed later.

Humans have the very complex ability of interpreting
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fn Petajun ez @/, the lipreading task is performed by
using the mouth opening arcu of a speaker to create a
codebook. as described cartier. Trucking the nostrils in
order 10 recover the precise location of the mouth
window. the mouth images were binarized, then thres-
holded. such that only the mouth opening created a

durk area. This large set of

by clustering to ubour 255 clusters. A representative of
euch cluster was stored in a codebook of mouth images.
The images in this codebook were ordered by increasing
sizc of dark area. and identified with an index value,
Once the mouth images codebook has been created, an
inter-cluster distance table is computed, for faster
computation during the matching process. The models
of spoken words (the spoken letters and digits from zero
to nineg) are stored and vector quantized. Vector
quantization replaces each mouth opening image of a
sequence by the index of the closest image in the
codebook, thus creating a vector of indices representing
the sequence. Recognition i{s done by computing the

. . . A
distance between vector quantized word samples and

every vector quantized word model. The model with
smallest distance represents the sample. Recognition
without vector quantization was also performed, by
directly using the image distance measurements. Results
were actually better than with vector quantization.
Combination of visual and acoustic recognition was
also tested, which increased the recognition rate as
compared to the acoustic method. Results were,
however. divided as compared to visual recognition
alone. The authors, however, believe the combination
of methods would probably produce optimal recogni-
tion performance.

Finn and Montgomery's algorithm®" uses distances

between different points around the mouth, in combina-

tion, to distinguish between different spoken sounds.
Twelve dots were placed around the mouth of a speaker
and tracked during the experiments; a total of 14
distances were measured, and used as a feature vector.
The data were normalized relative to time and overall
amplitude of distance measurements. The recognition
consisted of computing a total root mean square value
between two utterances: the model with smallest
difference was considered the correct model. Some
optimization was also performed by using a weighted
set of the distances contributing the mosi to the
recognition.

A different scheme was developed by Mase and
Pentland™. They observed that the most important
teatures that art"ect mouth shape relate to the elonga-
tton of the mouth. and to the mouth opening. affecting
upper and lower lips. Using optical fow as described
above, the authors came up with the specification of
two principal types of motions of the mouth expressed
as functions with respect o time: mouth opening (/)
and elongation of the mouth £(1). O{) and E{) are
computed in each frame, then smoothed and normalized
to a fixed vartance. Word boundaries were taken to be
times when G{f) = 0. i.e. when the mouth is closed, and
citn casily be located on the O(¢) plots. Templates were

red Y]
mouth images was reduced

used for reeognition. and matching was performed,
after o resampling step that nosmalizes the time to
speak one word (Ume warping). A sampling of the
termplates was  used  for matching with a similar
sampling of the data. A match was established between
a template and the data if the weighted squared
difference between the sampled emplaies and data was
smallest among  all  templates.  Because the dana
consisted of several contiguous words, the templates
were compared 10 data between each set of potential
word boundaries.

In Martin and Shah®’, the authors use a sequence of
dense optical flow fields around the mouth of a speaker,
which are then spatially warped. temporallv warped,
then corretated, for matching with a sequence of optical
flow frames. Spatial warping is used to locate the
window containing the lips of each mode} frame with
each input frame. Each model optical flow frame is
compared to each input optical flow frame using a
correlation procedure. The best match is found and the
location and match score are stored in a table.
Temporal warping addresses the problem of one
speaker speaking faster or slower, from one time to the
next or from another speaker, and it uses the table
created from the spatial warping step. The purpose is to
find the best representatives of a longer sequence so that
model and input can be directly compared. This is done
through Sakoe and Chiba’s algorithm, which rake the
above table to be the adjacency matrix of a graph. and
find the best path through this graph®. This list of
points of the best match are stored for the next step.
Correlation matching takes the average of the correla-
tion values of the frames of the input and irn the best
path, for each model. of the above procedure. The
model with the highest average is taken to be the one
representing the input.

Kirby er al’” chose to express mouth images as a
function of a fixed set of feature images. This fixed set is
the set of the eigenvectors of the ensemble averaged
covartance matrix C (see above). A spoken word made
up of a sequence of # images can then be expressed as a
Q x P matrix of coefficients computed with respect to
the set of Q ‘eigenlips’. The recovery of images in this
way was performed. with very good results, except for
some smoothing due to the elimination of smaller scaled
eigenfunctions. Although the main goal of this work is
to provide a low-dimensional vocabulary for the
analysis and synthesis of lip motion and as a means of
compression for transmission, some experiments were
done on word classification. Identification of particular
words in a sequence using spatial eigenfunctions was
performed using a tentplate matching technigue to tind
the minimal necessary number of coefficients for correct
match. which was determined to be three. With
temporal eigenfunctions, correlations were computed
word-wise, i.e. duta used in constructing the eigenfunc-
tions came from a single word. Each eigenfunction was
expressed as & one-dimensional function with respect to
time. The values from the second and third eigen-
functions were plotted against each other (0 create a



stanature” araph. which the authors estiraate is distine-
tive enough for discrrminaiion. However, no precise
method  was  deseribed for recognition  using  the
signature griphs,

Finn and Montgomery’s
the markers around the mouth are not very practical: lip
reading should be performed without any “clues” around
the mouth. and ultimately in real-time. Martin and
Shah's™” work uses densc optical flow as the main
feature. and malching using correlution beiween every
frame of the model and input sequences, which is
computationally expensive since the input needs to be
compared to every model. Mase and Pentland’s mouth
opening and elongation functions are simple enough
and address continuous speech, but the difficult part,
according to the authors. is to find the beginning of the
first word. Petajan er al’s?? method is interesting, since
when the codebook is complete, a distance table is
computed, which makes image comparison somewhat
faster. However, the vector quantization did not work
as well as direct image comparison, so the number of
codebook images might need to be increased. Kirby
et al’s’’ method is also very nice. and has the advantage
of reducing tremendously the quaniity of daia for image
transmission, by only transmitting a coefficient matrix
for a sequence. as opposed to transmitting whole
images. More extensive work on lipreading per se¢ is
needed. but the authors provide a nice basis for such
work. The biggest problem for any of those methods is
that of speaker dependence. Integration of both
acoustic and visual inputs was attempted by Petajan
et al>® with better results. Finn and Montgomery™!
didn’t actually experiment on combination of visual and
acoustic input. but they discuss the possible contribu-
tion of visual information to acoustic speech recogni-
tion.

U method is the simplest. but

Gesture interpretation

Humans have the capability or can develop the ability
to interpret gestures. and gestural languages have been
developed to allow hearing impaired people to commu-
nicate more eastly. Systerns built for gesture interpreta-
tion might serve several goals. First. they counld be used
te develop a human-machine interface for a more
natural way to interact with humans; so far. the human
had to learn how to communicate with the computer.
The inverse so far hasn’t been very successful! Second,
efficient methods of data compression for image
transmission need to be developed. Although the era of
visual phoucs is right around the corner’, actual
bandwidths on the telephone network cannot support
real-time grey scale visual transmission: static images or
very low image transmission rates only have been
achieved. For hearing impaired people, the possibility
of using visual phone to sign would be most useful.
since it is the most usual and fastest way for them to
communicate. [t was shown that the requirements in
precision and resolution for American Sign Lunguage
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(ASL) are relatively low us compared 10 grey scale
images. Sperling er " compared several offective
methods for creating compressed ASL images, for
example  using  binarized images. space and  time
subsampling of grey seale images, and outline imagpes.
A previous study shows that moving Tight displays can
successtully be used in ASL™. A temporal subsampling
of ASL based on event boundaries was reported in
Parish ¢f al.™".

not as common as for compression and transmission.
One method uses colour markers on a glove, which are
tracked during the motion of the hand. and from which
three-dimensional information is exiracted, using a
structure from motion approach. This method is
performed in real-time and is used to modify an image
of a model®*. Another system, called Finger-Pointer,
recognizes pointing actions and simple hand forms, also
in real-time, but needs sterecscopic image sequences to
do so. It is used in the remote control of computer-aided
presentations®>. The disadvantages are that colour
imaging is required in the first case, and stereoscopic
images necessary in the second. Two studies are
described beiow. one that auiomatically learns, iracks
and recognizes human gestures and that performs in
real-time, and the other providing a simple data
structure for representing and recognizing hand
gestures. which also performs in real-time.

Darrell and Pentland present a new method for
tearning. tracking and recognizing human gestures
from a sequence of images™ **. The method uses an
automatic view-based approach to build the set of view
models from which gesture models will be created. The
model views of an object are built using normalized
correlation. The first view is chosen by the user as one
of the images from & sequence. The object in the
subsequent input images is tracked, and when the
correlaiion score r, drops beiow a predetermined
threshold, a new model view is created with the current
input image. This process is repeated until no more
models are necessary. Once all views of an object have
been gathered, gesture models need to be created. A
gesture is a set of views over time. A gesture will be
correlated with each stored view of the object (the
hiand), and the score plotted, for each view, with
respect to time. Several examples of the same gesture
the correlation scores with respect to model view mr will
be used to represent that particular gesture g. The
gesture models need first to be adjusied to the same
ength, and this is done through dynamic time warping
TW). To compare i new input gesture, each frame of
he new sequence is correlated with a model view and its
score determined. The score results for the whole
sequence is plotted with respect to time. The same
process is repeated for all model views, and the score
results for each model stored in a vector r(r). The input
gesture will be compared to all gesture models.
However, since this new sequence might contain several
gestures, the cost of the optimal path of the DTW is
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defined differently. as a function of g.,(i). a7 (g, (). i.e.
the mean score and corresponding varianee of view
model arat time 0 and £,4)), the correlation score lor
model m at time /. The score of the model gesture is the
minimum of any of the partial sums that account for all
time sumples in the gesture:

Mg.r)= win Cror
s

where Tand 77 are the number of time steps in g and r,
respectively, and Cy, is the minimal cost to align g{0. T}
and r{0.t] for 0 <r< T The score is defined as
1/d(g,r). Such a score is computed at each time frame
for the new sequence. and for each model. The scores
for each model can then be piotted, and the peaks
indicate a match for the model in the new sequence.

Davis and Shah* report a simple method for hand
gesture recognition by tracking the trajectory followed
by each finger and using their motion as a basis for
recognition. The direction of motion and displacement
of each finger was computed as described earlier. The
models are constructed by averaging the direction and
displacement information from several samples of the
same gesture: they are then stored along with the name
of the gesture. A motion code is then derived from this
information: it consists of a five-bit number, each bit
associaied with a finger. A bit will be set if motion of its
motion code is used for matching in the following way:
the model gestures are stored as an array of linked lists
of gestures. The motion code serves as an index for all
gestures sharing a particular motion code. The direction
of motion and displacement. along with the motion
code of an unknown gesture is then computed. and the
gesture will be compared only to those models with the
same motion code. with the use of thresholds. A finite
state machine (FSA) is used to model a generic gesture.
A gesture is characterized by four phases: (1) static start
position. for at least three frames; (2) smooth motion of
the hand and fingers until the end of the gesture; (3)
static end position. for at least three frames: (4) smooth
motion of the hand back to the start position. The user
must be restrained. however, in following these four
phases in order for a gesture to be properly modelled or
recognized.

Automatic interpretation of hand gestures is in a way
more difficult than lipreading because the motion of the
hand  can  become  very complex. Durrell  and
Pentland's™ ™% system performs in real-time on a
special  purpose  image  processing  machine. Their
method was tested with four gestures. one of them
almost  adways  successtully  recognized  even  when
pertormed by different users. On the vther hand. Davis
and Shah's® ulgorithm represents very succinetly any
gesture, and vel produces very good resulls on a set of
seven real image gesture sequences. Their method also
performs in real-time. Their use of a finite state diagram
prevents the need lor dynamic time warping to align
gesture seyguences of different length, which was demon-
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strated  in the experiments. U s, however, very
important to be able 1o find the correet bounds of each
gestures, otherwise the finite state machine might work
asynchronousty with the sequence and jeopardize the
recognition for the rest of the sequence. So far, the two
methods devised were tested on very smali set of simple
gestures and thus have very limited scope. The problem
remains on how to design a system that can work with a

iviotion verb recognition

Motion verb recognition deals with the association of
natural language verbs with the motion performed by a
moving object in a sequence of images. Artificial
intelligence and machine vision are thus combined to
provide us with a natural language description of scene
motion. Badler®® and Neumann and Novak®’ did some
initial important work in motion verb recognition.

Koller, Heinze and Nagel'® describe a method which
automatically characterizes the trajectories of moving
vehicles extracted from an image sequence using natural
language motton verbs. Association of a motion verb to
trajectortes of those candidates is done wusing an
artificial intelligence type approach. A set of 119 verbs
with 67 different definitions which apply to vehicle
moiion were extracted {rom a German dictionary.
Those verbs were divided into four categories: verbs
describing the action of an agent (vehicle) only; verbs
which make additional reference to the road; verbs
which make additional reference to other objects: verbs
which make additional reference to other locations.
Another subdivision discriminates between inchoative
verbs. durative verbs and resultative verbs, i.e. verbs
describing the beginning. middle and end of a motion
event. Attributes are computed from the sequence,
which help describe more precisely the trajectory
segments. the position of a vehicle with respect to the
street or other objects. its orientation. velocity, etc. A
total of 13 such attributes were defined. In addition. for
all verbs there exists a set of three predicates, whose
truth value is determined at each time instant: (1) a
precondition, which is true if’ some predefined attribute
values are within the expected range at the beginning of
an interval of validity for a verb: (2) a monotonicity
condition. which indicates if’ the direction and amount
of change of associated attributes remain acceptable:
(3) a postcondition, indicating it attribute values are
within the range expected at the end of an interval of
validity tor a verb. An interval of validity is the time
period for which a particular interpretation is true. und
depends on the truth values of the predicates. A tinite
state automaton is used to determine intervals of
validity. The transitions from one state to another
depend on the predicate valugs, .. monotonicity. pre
and posteonditions. The algorithm can  successfully
determine the motion verb most appropriate for an
object in a frame interval.

4 P
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The goal of Tsolsos work wus o build an

artificial intelligence system, called ALVEN, capuable of

using motion information o recognize normal and
abnormal  behaviour of a heart’s left  ventricular
motion. Whaen the heart s impaired or damaged,
abnormalitics oceur regionally. and different scgments
of the left ventricle (LV) often behave differently.
Furihermore. some evidence indicates that if a segment
is damaged, other segments may overperform, thus
crealing a new behaviour on other segmentis too. The
authors used a semantic net representation with frames,
type hierarchies. inheritance and exception handling. as
the basis of organization of their knowledge-base. Based
on previcusly released studies, natural language
semantic component were developed to describe
motion concepts using English motion verbs.

In patients that were receiving corrective heart
surgery, nine markers were implanted on the LV wall,
roughly in the same plane, and two clips were attached
to the aorta, which served as reference points.
Cineradiography was performed in a follow-up exam-
ination. The assessment of the left ventricular motion is

. based on the velocity profile of its wall segments. using

location changes of points, length changes of axes and
perimeter. area and shape variations. The extent,
velocity and acceleration of contractions must be
measured. and processing is done frame-by-frame. The
wall is divided in three segments: the anterior, posterior
and apical segments. The image sequence was divided
into two phases. the expansion phase or diastole, and
the contraction phase or systole; each phase was further
subdivided into subphases. For the normal case. those
different phases were characterized by assigning them
different time ‘constraints’: minimum start time,
maximum end time. minimum/maximum duration,
mimmum maximum rates of contraction. Each
constraint has exceptions associated with it: too short/
long (duration of event), too fast/siow (rate of area
change) and too late/early (time slot in which the
motion was recognized with respect to the LV cycle).
Abnormalities such as asynchrony, hypokinesis and
diskinesis were defined, among others. ALVEN
provides a summary describing the dynamics of the LV
as a whole, and if necessary, at the segment or even at
the marker level. with their associated guantities, for
verification or for precisely locating reasons for an
abnormal summary description.

Both methods describe systems that are very inter-
esting because of the interaction of computer vision an
artificial intelligence. for the description of the motion
of vehicles at an intersection or the behaviour of the left
ventricle of the heart,

Temporal textures classification

[n their paper. Nelson and Polana describe how the
movement of the ripples on water, the wind in the leaves
of trees, a cloth waving in the wind, can be classi-
fied™ . Those motions, referred to us temporal
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textures, show complex and non-rigid motions. The
term temporal texture 5 oused to emphasize that the
motion  patterns are of indeterminate  spatial and
temporal extent. Different features based on optical
flow ficlds. when combined together. provide enough
information for classification. The four features chosen
were the mean flow magnitude divided by its standard
deviation, the positive and negative curl and divergence
estimates, the non-uniformity of flow direction, and the
directional difference statistics in four directions, They
are based on optical flow fields, and were described
above. The feature values are arranged into a vector,
and the authors used, for classification, a nearest
centroid classifier. Three sequences were used to
compute the cluster centres, i.e. train the classifier,
while using a fourth one as the unknown. None of the
single features is sufficient, alone, for correct classifica-
tion. However, using curl and divergence estimates
along with the directional difference statistics in four
directions provide enough information to correctly
classify all motions used in the experimenis. A
principal component analysis of the features was also
performed, which also confirmed the relative impor-
tance of those two features.

Because Polana and Nelson's algorithm seems to use
all the data from all the frames of a sequence, this

method looks computationally expensive, but it might
be necessary (o prnde the cmhuhr\, and invariance

needed for a good classification.

Summary

Recognition schemes for objects and motions were
described in this section. Cyclic motion detection and
recognition were discussed, along with lipreading,
gesture interpretation, motion verb recognition and
classification of temporal textures. Among those
studies, several are very versatile. Tsotso’s framework
could be modified for use with different types of images
for different diagnostic tools, for instance arrythmia
interpretation from electrocardiograms, or foetal acortic
valve function evaluation using ultra-sounds'>'s.
Petajan er al.’s codebook of mouth openings™ and
Kisby e al.’s eigenlips®” could be easily generalized for
other types of objects. perhaps even articulated.
Although a framework general enough for all sorts of
applications has yet to be found. some of the methods
described here have a great potential for a large range of
use.

HUMAN MOTION TRACKING AND
RECOGNITION

This section will be concentrating on methods designed
to recognize human motion. There are several ways to
view this task. The first one is to recognize the action
performed by a person in-a scene, among a database of
human action models, in a way similar to what was
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described in the previous section. The sccond way is to
be able to recognize the different body parts like arms,
legs, ete. throughout a sequence. using motion. This
approach s referced o here as fubelling. The third way,
tracking, 1s to define motion as a sequence of object
configurations or shapes through time, The knowledge
of the shape and motion of an object, in this case the
human body. is used to guide the interpretation of an
image sequence to determine a succession of shape
modifications. When those modifications in the shape
agree with the motion in the sequence, then proper
tracking is achieved. and, by extension, recognition is
achieved. The tracking methods described here make
use of motion models. which is not usually the case with

other tracking methods. We will thus be describing

several methods of body parts labelling and of tracking
of human motion. We shall then be concerned with the
recognition of the different motions that can be
performed by a person, and how it is possible to
discriminate between different persons performing the
same action.

Human motion tracking using motion models
Algorithms for tracking humans while they perform

some action. usually walking. has been studied by
several researchers. Some are concerned only about

tracking and iabelling of body parts in the sequence of

images. where all the work remalns two-dimensional,
while the majority of studies used three-dimensional
shape models along with the motion moedel. The
modelling of the human body and of human motion is
an important step in body labelling and tracking, A
good shape model should allow the system to easily
recognize a human body and any of its postures, i.e. all
allowable posmons of its parts with respect to each
other, yet be auuplc cuuuvu to minimize the number of
parameters necessary to represent the body adequately,
This kind of balance is seen between the volumetric
models and the stick figure models, described below
first. We then describe how the walking motion has
been modelled, ie. what king of qualitative and
quantitative information is necessary for good
tracking. We then review some of the methods in

labetling, tracking with stick-figure models and
tracking with volumetric models resnectively
tracking wiln vorumetnrne modals, respecilv

Modelling of the human body

To properly study human motion, good body models
must be defined. The models differ somewhat if they are
used for body parts labelling or for tracking. Stick
figure models and volumetric modetls are used for three-
dimensional tracking. [n the case of tabelling, only the
projection of three-dimensional models have been used
in the methods that will be described below.

The stick figure model consists of segments usually
connected at their endpoints and representing the body.
This model can thus be scen as a skeleton (taken in a
computer vision sense) of 2 human body and can be as

detailed as necessary. Akita's™ model consists of six
segments: two arms. two legs. torso and head. However,
no joints are cxplicitly defined. Lee and Chen's
modet™™ " contains 14 joints and 17 scgments. The
joints are left and right shoulders, clhows, wrists, hips.
knees and ankles. plus a pelvis and neck joint. The
segments are the left and right lower legs. thighs.
forearms. upper-arms, plus the scgments joining the
two shoulder and the two hip joints, the neck with each
shoulder joint and with the pelvis joint, and finally the
pelvis joint with each hip joint, The torso is formed by
the neck, shoulders and pelvis joints, and the hip part is
formed by the pelvis and hip joints. Both torse and hip
parts are assumed rigid. Six additional points charac-
terize the head, but they are only used in a camera
calibration step. The length of each segment is also
given. Tracking with such a model consists of finding
the location in space of each joint and the three-
dimensional angle between each pair of contiguous
segments, Parameters used are the segments™ length
and location in space of their extremities.

Stick figure models can be described using only a few
parameters, In the case where the trajectory of each
joint is given, as in MLD studies, and the connectivity is
known in advance, then the segments are implicitly
given. If the connectivity is not known, or if the only
available information is a set of point locations in each
frame of a sequence. then some intermediate steps are
needed to determine the connectivity. Rashid®' tackled
this problem with his system. called Lights. Lights was
provided with the location of a set of peoints on one or
more object in each frame of a sequence. It could track
and cluster points belonging to independently moving
objects. Within a cluster, the relative motion of object
points was also analysed. and groups representing
independently moving subparts were segmented,

A problem with stick figures, in general. is that depth
is difficuit to judge from an image sequence. Occlusion
and disocclusion helps in depth evaluation; since line
segments cannot occlude one another. depth cannot be
determined®®. If the three-dimensional location of the
endpoints of the segments are known. then it can be
determined which segment is closer 1o the observer.

Volumetric models are intended to better represent
the complexity of the human body. Generalized cones
are the most commonly used models, A generalized
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of (.ons[‘m[ shape but smoothly varying size along an
axis®. However. the volumetric models described below
all use generalized cones restricted to having a cross-
section of constant shape and size. and are called
generafized cviinders. The cost for better representation
is an increase in the number of parameters in order to
describe the cylinders and their degrees of freedom.
Usual parameters are thus the length of the long axis
along with the radius of both major and minor axes, the
location of the origin of the local coordinate system,
and the transformation matrix relating the local coordi-
nate system to the coordinate system of contiguous
(connected) segmients and/for to the origin of the model.
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The model proposed by Marr and Nishihara® consists
aof 1 hicrarchy ol cylinders. starting with o umique

cyvlinder deseribing roughly the size and orientation of

the body. This overall model can be refined using a
collection of component cylinders representing  the
different body segments, giving more detailed informa-
uon about the spatiad orgamziation ol the human shape.
Euach component cyhinder s attached to another
cylinder and its location in space defined relative to the
principal axes of the model. in this case of the torso. by
predefined relations. Marr and Nishihara specify those
relations using cylindrical and spherical coordinates,
which they called adjunct relations. One axis is deter-
mined relative to another by specifying the location of
one of 1ts endpoints in cylindrical coordinates with
respect to the other axis. then by specifying its orienta-
tion in spherical coerdinates. The model has the
advantage of being as refined as needed.

In O’Rourke and Badler’s®® work, the model has a
well-defined structure, consisting of segments and
joints. Segments are defined as abstract rigid bodies
with an associated embedded coordinate system. Each
segment may have a number of joints at fixed locations
in its coordinate system. A joint is a unique point
joining two segments. The model is made up of 24
segments and 25 joints. The “flesh’ is modelled by a
collection (about 600) of spheres located at fixed
positions within a segment’s coordinate systemn. The
model includes constraints on joint angles, and a
collision detection method for non-adjacent segments.

Hogg's®® body model follows Marr and Nishihara’s.
The prior information relates to the three-dimensional
shape and structure of the body, which is modelled by a
set of 14 elliptical cylinders representing the feet, legs,
thighs, hands, arms, upper-arms, head and torso. Each
part is defined by its length and the size of the major
and minor axes of the cross-section. The origin of the
coordinate system of a part is the centre of its
corresponding cylinder, and its principal axes X, Y and
Z are running to the left, top and forward. Relative
position of body parts is determined using geometric
transformations that carries the coordinate axes of one
part onto the other. the connection between parts is
done explicitly: the joints between parts are specified in
terms of the parts it connects. and a geometric
transformation that defines the pOSiLiOi‘t of one part
relative to the other. The transformations are composed
of a translation from the origin of the first part to the
joint, followed by a rotation to align the axes of both
parts, then a second translation to overlay the axes.

Rohr®®% also follows Marr and Nishihara's model,
and his model also consists of u set of 14 elliptical
cylinders. Each cylinder is described by its length, and
the size of the major and minor axes of the cross section.
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the origin of the whole body is the centre of the torso.
Transformations between different coordinate systems
are done through transformation matrices using homo-
geneous coordinates. The absolute size of the body parts
is used and includes clothing. The author argues that
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the most usual way of seeing people is when they are
clothed, <o the parameters of the body should be
representative of that Fact.

One way to represent the projection of ¢ human body
in an image plance is to model i1 as a collection of
ribbons or of anuparallel lines. also called apars (a
special case of o ribbon). The body is actually modetled
by the regions enclosed in the ribbons. 1n Leung and
Yang's*® work. the body is represented as a collection of
six apars (two legs, two arms torso and head). The
relative location of each segment is of little importance;
more weight is given to the width and length ratios
between each segment, and the length/width ratio of the
head. No precise description of each body part is
necessary.

There is a reasonable equilibrium to be attained
between the ability of the model to truly represent the
body, and its simplicity, i.e. the number of parameters
necessary to represent it. Obviously, the good models
are nicer to the eye, while simpler models might seem
crude, but the overhead generated by the ‘nice’ model
might not be worth the trouble. Generalized cylinders
are a good middle ground and are often used. Stick
figures are simpler and could lead to faster implementa-
tions, but are not as interesting. .

Modelling of human motion

Human motion can be modelied using joint angles.
Joint angles have been extensively studied in physical
medicine; Murray® provides an extensive study of gait
parameters for a group of normal and some abnormal
subjects, as well as a bibliography on human gait. Joint
angles are more formally expressed as flexion/extension,
abduction and rotation angles. Flexion occurs when two
body segments change their relative position such that
the angle formed between them decreases: for example,
bringing the thigh up toward the abdomen is a hip
flexion. Extension is the return from flexion, i.e. when
the angle between the two segments increases.
Abduction (adduction) is the movement of a body
segment away (towards) the midline of the body or of
the body part to which it is attached. An example of
abduction at the shoulder is the movement of the arm
up from its original position; bringing it back would be
the adduction of the shoulder joint. Rotation occurs
when a segmeni rotates about its longitudinal axis. for
instance, rotation of the head left or right with respect
to the spine. Joint angles are usuaily expressed relative
to one walking cycle, which is defined as the time
interval between successive instants of contact of one
foot to the floor. for the same foot. The forward motion
has been shown to be almost constant within a cycle,
while the vertical displacement of the head is relutively
small considering the g,lobal motion. From the study
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forward translation of the trunk and rhythmicity in the
length of successive steps, as well as in the duration of
successive temporal components of the walking cycle. In
patients impaired in some way in theie walking, the
smoothness and rhythmicity are not necessarily present.
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Some systems aiming at the computation of the
characteristic parameters of normal and abnormal
wialking motion, and which can be used to generate
motion  models  Tor  vision  systems, have  been
described'™ ™7 The common systems use a set of
cameras to track the displacement of markers placed
on the limbs of a person. including at the joints. and
from which the three-dimensional location of the
markers can be recovered. Others use more direct
measurement devices lke electrogoniometers. which
directly assess joint angles, but require a more
claborate equipment attached to the subject that might
stightly modify the motion and thus produce artifacts.
Electromyographic data, to assess muscle activity, is
sometimes used in addition to the above data.

In the computer vision field. the joint angles plotted
in time (joint curves) for one waling cycle are used as a
walking motion model for humans. They provide
sufficient information for the determination of the
posture of a person, i.e. the relative position of each
body segment. throughout the cvcle. Not all of the
possible angle curves are used: the most common are the
hip flexion/extension and the knee flexion/extension
curves, along with the shoulder and elbow flexion/
extension curves. Those angles curves can be used in
two ways, First. given a particular time with respect to
the walking cvcle. the angles of all the joints above can
be determined: conversely, given the angles at several
joints. the time within the cycle can be estimated. Those
angle curves are a very useful tool for modelling human
walking motion. Other types of information can also be
extracted to provide additional knowledge. for example
constraints on possible angles for each joint. along with
constraints on angular velocities. This kind of informa-
tion could reduce the search space during tracking by
constraining the possible angles and angular velocity
between frames.

Hogg® uses flexion/extension curves for the left hip.
knee, shoulder and elbow joints in his walking model.
Those curves were generated by hand using data from
one walking subject. Each curve is defined as a periodic
cubic B-spline specified by nine control parameters, and
is scen as an idealized joint curve. Each curve gives an
angle. in degrees, as a function of the walking cycle,
represented by a parameter cailed PSTR varying from Q
to |. The beginning of a cycle (PSTR = () corresponds
to the left ieg stretched Forward and right feg stretched
backward. and a PSTR value of 0.5 means the body is
halfway through the cycle. The walking motion on the
right side is assumed symmetrical with respect to the left
side, and the angle value for the right knee at PSTR =10
hence corresponds to the angle value of the left knce at
PSTR =0.5. Given a value for PSTR. the eight joint
angles can be extracted and a body posture can be
determined. In Hogg's method, the world coordinate
sysic has its origin on the ground phine. The Y- 2
planc is parallel to the ground plane, and the ¥ axis is
vertical. A geometric transformation connects the torso
to the world. A parameter, TRS_B. determines the
direction of motion of the body relative to the ground

plane. and is actually o rotation about the vertical axis
Y. A parameter catled SP0 represents the speed of the
pody in that direction. Parameters TRS_Y and TRS ~
determine the position ot the torso with respect to the
ground, and their time derivative is a function of both
TRS_B and $PD. Constraints on the values of PSTR.
TRS_B and SPD and their time derivatives can he used
to restrain the search space in the next frame. For
example. knowing the current PSTR parameter and its
frame cun be evaluated. Constraints on SPD and the
derivatives of PSTR and TRS_B are given in advance.
Assignment of values to the joint angles, the speed and
direction of the body model. in a frame, defines its static
representation, or posture. A set of such assignments,
one for each frame of a sequence. defines a motion. A
particular motion, like walking, is specified by placing
constraints on the parameters of the model and their
time derivatives. This set of constraints associated with
a particular model and motion is cailed the model
constraints.

Rohr® ¢ also uses the flexion/extension curves of the
hip, knee, shoulder and elbow, However, the curves
originate from the data of a study on the gait of 60
men®®. Each curve is the result of taking the joint angle
al ften time instances within a walking cycle. and
smoothing them by using periodic cubic splines. Rohr
is the first to use kinesiological data as a basis for a
walking motion model. He also uses a parameter called
pose, similar to Hogg's PSTR, i.e. it represents a time
instance within the cycle such that given pose, all joint
angles can be found, and vice versa.

More specific knowledge about the walking motion
has been used by Chen and Lee®®. They defined five
rules pertaining to walking. The first two general rules
are that (1) the two arms (legs) cannot be both in front
of behind the torso simultaneously, and (2) the arm/leg
pair on the same side of the body cannot swing forward
or backward at the same time. Three other more
stringent rules are also defined: (3) when the shoulder
and elbow joints on either arm swing, they must do so in
a cooperative manner (a similar rule applies for the hip/
knee joints), (4) the trajectory plane on which the arm
or leg swings is generally parallel to the moving
direction: (3) at any time, there exists at most one knee
having a flexion angle. Moreover. when there is such a
flexion in one leg. the other leg stunds ncarly vertically
on the ground.

A different approach for the modelling of motion was
taken by Akita™. who used a sequence of stick figures,
called key frame sequence, to model rough movements
of the body. Key frumes were used traditionally in
animation, where they provided the essential frames ot a
sequence. They were created by ‘master’ animators,
while the frames in between those key frames were
filled-in by other animators®™. In the case of Akita's
work, the key frame sequence consists of an ordered
sequence of stick figures, cach differing from its
predecessor and successor such that a body segment
has crossed or uncrossed another body segment. The



key frume sequence is determined in advance and
referred to in the prediction process. Both Rohr and
Hogg used keyframes in carly versions of their work,
but discarded this motion model in fuvour of the model
based on jotnt angles from real humans, as described
above,

Recognizing body parts
The main goal of the methods described here s to track
and label each region of a body performing some
action. The tracking consists of determining  the
location and shape of body parts. from frame-to-frame,
while  labelhng  involves identifying them. The
movements performed are in this case arbitrary.
Akita® used a key frame sequence of stick figures to
approximately predict the location of a body part with
respect to the other part, in the current image. The
actual body is modelled using generalized cones,
However, as far as the paper is concerned, only their
projection on the image plane is used. The recognition
of the parts is done in the following order: legs, head,
arms and trunk. The author feels that the legs are the
most ‘stable’, ie. more prominent and easier to
recognize, while the trunk is the least prominent,
because of its frequent change of shape due to
occlusion. The legs are determined by finding the
position of the inner and outer boundary pixels of each
leg, using the original grey level image and a binary edge
map image. The head is then detected using ihe
predicted region estimated from the previous image
along with the head diameter. The arms are then
detected and labeiled: all pixels outside what is
estimated as the trunk’s side lines and that don't
belong to the legs or the head are arm pixel candidates.
Their boundaries are determined at a later stage. The
outline pixels from the estimated trunk region are
labelled as trunk. When occlusion occurs, the authors
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find the precise outline of the body parts. The
determination of legs. head, arms and trunk para-
meters is performed at every frame. Correspondence
between frames is established using one of two methods.
When the position change of a segment is smali enough.
its position can be predicied from the previous frame,
using window code distances. which are defined in the
paper. If window codes cannot find a correspondence,

then the kﬂ\l frame seguence is used to find the current
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posture of the body. The position of the body parts is
then recomputed.

In this method. the body structure must be known in
advance, along with the key frame sequence of stick
figures. The problem with this model is that the key
frame sequence only gives us information about the
relative position of the body segments, thus no temporal
information is available trom that representation: it
cannot be predicted when a segment will cross another
in the image sequence, nor the time (number of frames)
between those events. Only the order in which the events
will oceur is given. The authors never mention explicitly
how constraints on the body parts arc computed and
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used. The authors do not show how the feature points
or characteristic points are chosen for correspondence
with window codes. Alse, the computaiion of veloeity
and acceleration is not defined.

Leung and Yang™ alse tackle the problem of body
lubelling in o sa,qumu. of images. In @ concurrently
reteased paper”™. the authors described a segmentation
method using difference images and past history. The
advantage of difference images is that motion can be
loculized to a particular portion of the image, therefore
focusing attention, History referencing handles the case
where no current motion is detected for a region. but
where motion was detected. tor that same region. in the
previous frame. These region where motion previously
occurred are added to the current segmented picture.

The process is made up of two sieps: region descrip-
tion and body part identification. The region descrip-
tion process abstracts the segmented image from the
segmentation algorithm, to extract the antiparaliel lines
(apars) that will be used for labelling. An oriented line
estimation of the region boundaries is first performed.
An apar detection is performed. followed by a growing
procedure which recursively finds new pairs of antipar-
allel lines and concatenates them to the current apar.
More processing is done on the detected apars to delete
unwanted ones or concatenate more apars, according to
some heuristics defined by the authors. Finally. apars
are selected according to the following: (1) if they have
been concatenated: (2) if the ratio length/width > 1;
(3) if they are moving apars closed at either or both
ends.

The labeliing is performed in three steps. The first
will. according to some constraints, map potential apars
to the model. The constraints are that (l) the width ratio

{2) the Iength/mdth ratio of the head smaller thdn 1.2,
(3) if a pair of apars are labelled as arms or legs, they
must possess similar intensity distribution; and finally
(4) the width of the trunk is a bit larger than twice leg
width. These heuristics have been determined experi-
mentally. After labelling the apars, the choice for the
best representatives is done by assigning weights that
reflect the likelihood of an apar to be one of the six
body apars. The choice of the six body apars is done by:
(1) interval partitioning, which partitions the apars in
three groups with width ratios 1:2:4: (2) pairing (for legs

and arms). o gassociate apdr pairs in o2 siame interval
ANG arms), (o0 assouale apdr pars n & ne nlerval

according to the constraints mentioned above: (3)
selection process, which determines the most appro-
priate apars to represent the model. The arms are the
two pairs with highest total weight of the first interval.
The legs and head, both from the second partitioned
interval, are chosen next, again with highest total
weight. The trunk is the apar with highest weight of its
category, but its width must be twice that of the legs.
Both Akita's and Leung and Yang's works are to
label body parts in a sequence of frames. Both use a
similar body model consisting of six body parts; Leung
and Yang, however, use a collection of apars bounding
a region, while Akita uses generalized cones {more
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precisely. their two-dimenstonal projection) to describe
the regions. In both cases. length and width of each
regton necds Lo be computed, as well as the axis in
Akitrs case. As mentioned  previously, Leung and
Yangs approach is more dependent on predefined
thresholds, Akita's method seems more sound: the key
frame sequence is a good idea for rough representation
of motion. although no temporal information can be
extracted from it. Both works involve labelling of body
parts. and Akita’s also include correspondence in
successive frames. Another advantage of trucking is
that computation from frame-to-frante can use current
information, which is done in Akita’s work through
window codes. In Leung and Yang's work, the labelling
process seems to be repeated at every frame; use of the
current information to predict even a rough position of
the body parts might be more cost-effective than 1otal
recomputation. Akita’s work expiicitly addresses the
problem of occlusion of body parts: its key frame
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described for occluding/occiuded parts. Leung and
Yang's implicitly address the problem in their segmen-
tation algorithm. Both use difference images for that
purpose. Akita’s work, to our opinion, is simpler yet
more complete than Leung and Yang’'s, which depends
too much on thresholds that might vary eventually with
every person. However. Akita’s work need more a priori
information; the motion must be known and be
explicitly described with the key frame sequence.
Tracking with stick-figure models

The goal of the work done by Chen and Lee is to
find the sequence of three-dimensional body configura-
tion (postures) of stick figures which, when projected on
an image plane. would give rise to the image sequence,
given the set of end point positions in each frame. The
first part consists of finding all possible three-dimen-
sional configurations for each frame. The first part
consists of finding all possible three-dimensional config-
urations for each frame. After this is done. the task is
then to find the best sequence of configurations.

The structure of the model consists, as mentioned
earliecr of 14 joints and 17 segments, plus six more
feature points on the head. The three-dimensional
length of all segments is given, along with the relative
three-dimensional location of the six head feature
points. Using those six feature points. the transforma-
tion matrix from body coordinate system into a camera
coordinate system is determined. After the location of
the head features are determined in camera coordinate
system, the location of the joints of the body model can
be recovered from joint to joint, using the given segment
lengths. 1t was shown® that there are generally two
possible solutions for the three-dimensional coordinates
of a feuture point serving as the end point of a segment,
given the three-dimensional location of a start point and
the length of the segment. The set of joints are
represented as o tree with the known neck joint serving
as root. The nodes at each level represent the possible
three-dimensional locations of a joint. Each node has
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twWo  successors corresponding  to the two  possible
solutions, except for degencrate cases where there s
only one solution. A path from the ool to a leaf
determines a0 body configuration or body posture.
However. among those, quite @ few are not allowed
because of body constraints. Knowledge of physical
constriaints and motion constraints are used to prune
this tree.

Physical constraints  comprise angle constraints,
distance constraints, and collision-free constraints.
Four categorics of angles are associated with the body
joints: flexion/extension, abduction/adduction, rotation
and bending {lateral flexion). The ranges allowed for
each joint are precisely defined™ for each of the
categories above. Distance constraints are used in
particular to recover the coordinates of the joints.
Collision-free constraints imply checking if arm
segments penetrate the torso, and whether arm and leg
segments collide with each other. Angle constraints are

not sufficient to iimit the l-\r\rh: conficuration tha
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valid for the walking motion. A set of rules has been
defined for this purpose, and they can be as general or
as stringent as one needs. These were defined earlier. If
a configuration does not satisfy those rules, it will be
rejected.

The normal movement during walking is a smooth
and continuous motion. In this study, this movement is
considered as a collected of smooth and continuous
angular motions of all body segments, which is
expressed as a nearly constant angular velocity. or
equivalently a close to null angular acceleration. For a
configuration {X;} in frame i, the position of each joint
is used to compute the relative translational velocity V
of segments between two consecutive frames. The
relative angular velocity @ 47 and acceleration % 73 of
segment A8 are aiso computed. An angular acceleration
function associated with body configurations x;. ¥,
and x;,» was defined as:

S X1 Xie2) = E o 55 (i e 1s i 2)
“8
ie. the sum. over all segments, of their angular
acceleration. The overall angular acceleration function
over N frames is defined as:

Sl xa o0 i) = filxn o ) + (0 e xy)
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So finding a smooth motion is done by minimizing the
function f(x.....xy), which is solved as a graph search
problem.

In this method, the relative three-dimensional
location of the head points are necessary at every
frame in order to compute the transformation matrix
for the camera coordinate system and then determine
the rest of the joint locations.

Tracking with volumetric models
Tracking with volumetric models is more complex
because of the increase of the number of paramcters



required to represent the model itsell. The body models
consist of a eylinder for cach hand. arm, forearm, foot,
leg, thigh, trunk and head. The three-dimensional
position ol the body model and the relative position of
its scgments (its posture) must be determined in each
frame. The posturc is parametrized by a parameter.
PSTR in Hogg's work, pose in Rohr's (PSTR and pase
are the same). ranging from 0 to 1. In both, this
parameter is determined and plotted as a function of
the frame number. along with its posttion with respect
to the world coordinate.

In Hogg’s work. the three-dimensional body model
described earlier is used to estimate the three-dimen-
sional motion of a person seen in an image sequence. A
frame analysis will provide an estimate of the person’s
three-dimensional position and posture. As already
mentioned, the body model uses a set of cylinders to
represent body parts. Each cylinder is determined by the
length of its axes and the centre of its coordinate system.
The relative position between the parts and defined
explicitly by geometric transformations. Important
parameters are PSTR. speed SPD and direction of
motion TRS_B. Assigning a value to each parameter of
the body model defines its posture, and a sequence of
such assignments. one for each frame, specifies a motion
of the body. The purpose here is thus to find the set of
assignments to the parameters that satisfies the
constraints that define the walking motion for that
model. The system will track, i.e. will estimate, at each
frame. the best parameters and verify that the projection
of the body model on the image plane fits with the
person seen in the image sequence.

The tracking at each frame is done through a function
called TRACK. TRACK wuses a fuaction called
SEARCH, which searches the optimal parameter
assignments for the current image. The parameters
chosen for the previous frame, along with the model
constraints, define a range of possible postures for the
current frame., which is a subset of the model
constraints. This subset will be searched to find the
best set of parameters. Box constraints are used to
simplify the process, i.e. constraints are partitioned into
seis of closed intervais. An evaluation function wiil be
given representatives of those intervals, and the result
used as part of a plausibility function. The evaluation
function takes a set of parameters and determines if the
model it defines is plausible. All the possible combina-
tions of parameters will be evaluated. The plausibility of

the modei is computed by projecting the model on the’

image plane and matching its projection with the actual
edge features of the image. If a good match occurs, then
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The plausibility EVAL of the model is defined as the
sum of the plausibility of its parts:

EVAL = Z wox PEVAL;

where Y, w; = | and PEVAL; is the plausibility of the
ith part. The weights are given beforchand, and relate
to the confidence we have on each part’s assessment.
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For instance, more weight has been placed on the legs
than on the arms because the latter are more often
obscured by the torso.

The global scarch is organized in the following
way: all possible positions of the torso are generated.
For cach torso position. an independent search for
cach limb is performed to find the optimal limb
positions relative to  the torso. Combining the
evaluation for cach limb with of the torso and head
provide the optimal plausibility of the eatire model
relative to the position of the torso. This calculation
is repeated for all possible torso positions. and the
model with the highest plausibility value is then
chosen as the posture or configuration for the
current frame. The whole process is then repeated
for the next frame, and so on.

When strong constraints already exist, SEARCH is
the best method to provide the best configuration. But
when the search domain is too large for SEARCH, as in
the first frame of the sequence when no previous
information restricts the position of the body within
the scene, and the PSTR parameter is unknown, two
alternate functions are described, HSEARCH and
DIFF, which will provide estimates of the parameters
that wiil be used subsequently by SEARCH.

In Rohr’s approach, the body model consists of 14
cylinders with elliptical cross-sections, as described
earlier. The motion model uses joint angle curves based
on walking motion studies. The method comprises two
phases. The first phase. called the initialization phase,
provides an estimate for the posture and three-dimen-
sional position of the body using a linear regression
method; the second phase, starting with the estimate
from the first phase, uses a Kalman filter approach to
incrementally estimate the model parameters.

The initialization phase analyses the first 10-15
images to obtain starting values for the next phase.
Image analysis consists of the segmentation into
moving and non-moving regions, using a change
detection algorithm. The fits are compared from frame
to frame, and the image points where change occurred
are marked. A rectangle surrounding the marked pixels
is determined, along with the outiine of the moving
object and the velocity field. An estimate of the three-
dimensional position, using this enclosing rectangle and
an assumption about the height of the pedestrian is
found by solving a system of linear equations. For a
better estimate of the three-dimensional position and
the determination of the pose parameter. model
contours are matched with image edges. Edge points
in the image are linked using an eigenvector line fitting
atgorithm. For each pl‘O_;ECiC(; model contour, ie. for
the projection, on the image plane, of each contour of
cach body part. an enclosing window is determined,
and the line ftted edge points inside this window will
be used in a similarity calculation. The similarity
involves computing the length 4 of the projection of
the fitted edge on the model contour whose length is
[y. s angle Ad, relative to the contour, and the
distance «; between the midpoint of the edge (inside the
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window) and ils corresponding projection on  the
contour line:

L (U= 1)° o AP
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where a,.0, depend on [y and ., 15 constant. The
overall similarity between the model edges and the grey-
level edges is the sum of s; for all visible model edges,
normalized by the sum of corresponding values /y;:

n
>
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The model’s pose and three-dimensional location,
represenied by parameter p, 1s chosen such that s(p} is
maximized. Fixing the three-dimensional position and
varying the pose parameter within the walking cycle, a
similarity curve is created; the state of motion with
highest similarity is the one chosen as pose. Once the
image analysis is done and the parameters determined
for those images, a linear regression analysis 1is
performed to provide initial values for the Kalman
filter. From this point on, the image analysis will be
limited to the search for the three-dimensional position
and parameter values by matching with grey-level edges,
to provide a current measurements’ vector at ¢ach frame
for the filter. The knowledge of the pose parameter and
its time derivative allows for a greatly reduced search
space, as opposed to the whole cycle of the initial phase.
The size of this search space will depend on the
parameters’ uncertainiies, represented by the covar-
tance matrix of the Kalman filter. They can vary
somewhat from frame to frame, a high uncertainty
leading to a larger search space. Typically, the search
space will be around +£0.2 of the estimated pose
parameter. The state vector for the Kalman filter is
Pk =X, X, Yu, Yo Zuy 2, posex, posel)’, where
(Xk» Yi, Z¢) is the three-dimensional position in frame
k, and x’ represents the first derivative with respect to
time. At each frame, the three-dimensional position and
pose parameter is thus computed and fed to the Kalman
filter, which will then provide an estimate for the new
position and pose in the next frame. These two steps are
repeated, and the model parameters are thus determined
for the whole sequence.

Rohr's and Hogg's approach might seem very similar
1o one another from a global point of view. Both use a
similar three-dimensional model, Hogg's PSTR and
Rohr's pose parameter carry the same information;
they both use joint angle curves for the same joints of
the body. However. they differ in several ways. Rohr
removes hidden contours of his bedy model, arguing the
recognition will be more robust. The joint angle curves
in Rohr’s approach were taken from kinesiological data,
while Hogg’s data is the result of one person walking.
The similarity measure in Hogg's paper uses edge
points, while Rohr uses edge lines, which also appears
more robust. In both cases, the similarity measure is

computed for cach body part. although Rohr computes
a global similarity measure while Hogg finds the best for
cach hody part. Rohr does not use box constraints for
the paramecters, instead, the search space for the pose
parameter and the three-dimensional location s
controlled automatically according to the uncertainties
of the paramecters. The use of the Kalman filter provides
also more robust and smoother results. Rohr provides
no tesults when the pedestrian does not walk on a plane
puarallel to the image plane: Hogg provided some results
on such a sequence. Rohr has a starting phase that
provides starting values for the Kalman filter computa-
tion, using a change detection algorithm and linear
regression. Hogg uses one of two procedures, DIFF or
HSEARCH. the first based on a difference approach
and providing an approximate location of the body, the
second providing an approximate location and config-
uration of the body. However, in a few experiments,
some of the parameters have been entered by hand
instead of using one of those two procedures.

Human motion recognition

Human motion presents a special challenge because of
the amount of possible configurations of the body, seen
as an articulated object. In this case the different
motions of the body segments need to be determined
with respect to each other. Two aspects can be seen to
that problem: the recognition of the motion performed
by a human, and the discrimination between different
people performing the same action. They will be
discussed below.

Recognition of human movements

Recognition of human motion implies the ability to
discriminate between different actions, those actions
being actor dependent or not. One of the works will
describe how to distinguich between walking, running
and skipping actions; the other describes a method for
the recognition of tennis strokes.

Using MLDs, Johansson' showed that human
motion like walking can be recognized within 200 ms,
less than half of a cycle. The scope of Goddard's thesis'?
ts the recognition of 400 ms MLDs generated from
single actors moving parallel to image plane, using a
connectionist approach. The most interesting part of his
work consists of the spatial and temporal integration of
low-level shape and motion features to form higher level
features, and the indexing of high-level models of
movements into a database of known models,

Given the set of trajectories of points in a sequence,
line segments are extracted by processes outside the
network; they are the lowest level features actually used
in the network. The goal is to combine line segments
together to form legs or arms, then to combine pairs of
arms and pairs of legs together to form upper and lower
body limbs, and finally to combine upper and lower
limbs for the description of the complete motion.
However, not only do the arms and legs pairs need to



be properly linked 10 space, their relative motion in time
must also correspond to proper body motion. To
achieve this level of complexity. a hierarchical system is
described, comprising two pathways, the shape pathway
and the motion pathway. They both work in similar
fashion, in that they start at the segment fevel, the next
level combines segments and is called the component
{evel; the third level combines two components together
and is cualled the wssembly fevel. The shape pathway
records  variation in length and direction of the
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{in a coarser manner) and changes in rotational velocity
of the segments. At each level. if a feature is present, its
spatial location is determined, and a unit at this location
1s activated. Components and assemblies are combined
in a higher level hierarchy called the scenario hierarchy.
Scenarios . represent temporal series of events, with
information on sequence and duration (the scenario
model representation is based on Feldman’s’® paper).
The scenario hierarchy is made up of two levels. The
lower level integrates shape and motion information
from the shape and motion pathways, and the scenarios
represent temporally extended movements of the
objects. The higher level represents temporally and
spatially coordinated combinations of lower-level
scenarios. This level is the object level which determines
the type of gait that is being represented. An example of
lower level scenario is the motion of a pair of legs
through one walking gait cycle. while at the highest
level, the pair of legs has to be coordinated in time and
space with the motion of a pair of arms to describe the
motion of the whole body during a walk. The
knowledge-base consists in a set of valid scenarios that
the system has been “trained” to recognize. In this case, it
consists in a scenario for each of three different gaits for
one actor (in the first set of experiments), or in an
raggregate’ of scenarios for the same three gaits, but
taken from four actors: those scenarios are intended to
be actor independent.

The discrimination between different tennis sirokes
was investigated by Yamato er a/.*® using Hidden
Markov Models (HMM). A HMM counsists of a set of
states Q = {¢1.4>,....q}, a set of output symbols
V= {vi.v...., v}, a matrix 4 whose elements consist
of probabilities of transition between every state, a
matrix B of output symbol probabilities for each state,
and a vector m of initial state probabilities. The model
works as follows. The initial state ¢; is chosen with
probability n;. The HMM will change state from ¢; 1o 4;
according o probability A(/. k). At each state ¢, only
one output symbol v, is produced with probability
Bik.m). For a sequence of length ¢ ¢ cutput symbols
will be produced. '

An image sequence is processed in three steps. In the
fiest step, an observed sequence O of output symbols is
derived, cach symbol associated to a mesh feature. as
computed eariier. For # the size of the feature vector
(i.e. the number of mesh clements), the space R is
divided into clusters via pattern classitication techni-
ques, and an output symbol v; is assigned to cach of the
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clusters, In other words, an output symbol v, is assigned
to cluster centre ¢, A feature vector will be transformed
into the symbol assigned 1o the closest cluster centre
usting an arbitrary distance measure.

In the sccond step. sequences are used to train the
HMMs. There will be as many HMMs as there are
different motions. in this case tennis strokes, to be
recognized. During this phase. the parameters i = {4,
B.n} of an HMM are optimized for one particular
tennis stroke, i.e. the HMM will generate the sequence

of output symbols for that stroke. This is done using the
Baum~Welch algorithm?®®. The probability values of A4,
B and =w are iteratively refined until they maximize
P{0]4). Once the set of parameters /; for every HMM i
are determined. the learning phase is done.

Finally, the recognition is done in the following
manney: given the sequence of observed symbols
0 =0,0,...0, we want to find the HMM j which is
most likely to generate the same sequence, ie, find J

such that:
j= arg{m?,x (P(i;| O))}

The likelihood of each HMM is calculated, and the
most likely is the one chosen.

Both methods described above generated strong
recognition results. Because of the probabiiistic nature
of the HMMs, along with the characteristics of mesh
features, the method used by Yamato er al.%¢ is not too
sensitive to noise. It is very versatile and the recognition
part could be parallelized. Furthermore, is easy to add a
new stroke to recognize, by simply training an HMM
for a new motion and then adding it to the already
trained set of HMMs. However, several preprocessing
steps are necessary before feature vector extraction can
be performed on each frame. Goddard’s approach is
very interesting'>. Each motion is defined as a coordi-
nated sequence of angular velocity changes, which could
be seen as another type of motion model. The temporal
factor is very important, and, the set of events, for a
particular motion, but in the wrong order will not lead
to recognition of that motion. Actor-dependent and
actor-independent recognition was achieved with his
connectionist approach.

Discrimination between humans from their motion

From our own experience. it is relatively easy to
recognize a friend from the way he or she walks, even
though this person is at a distance so that the face
features are not recognizable. The studies described here
can be used in a general way to distinguish between
trajectories, and can be directly used for motion
discrimination as in the previous subsection. However,
the authors go fturther, and devised a method for
recognizing different people from the subtle differences
in the way they walk.

The work of Rangarajan er «l?® aims at gait and
motion discrimination. The authors describe & method
that will be able to distinguish between objects having
the same shape but differgnt motions, and between
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objects having sume motion but different shapes. They
basc their algorithm on the trajectorivs of the joints of &
human body performing walking motion, 1.¢. moving
light display type of input. Two algorithms are
described. ‘The 1irst uses only motion informauon for
matching a pair of wajectories. The second s an
extension of the lirst for matching multiple trajectories.
which will ultimately be integrated inte an object
motion-based recognition system.

MLD type stimuli are used as input; the trajectories
are then parametrized using speed and direction, as
described earlier. The matching algorithm is based on
matching the diffused scale-space of both the speed and
direction curves. The scale-space is computed by
repeatedly convelving the input speed or direction
signal with a second derivative of Gaussian mask with
various ¢ values. The output is then checked for zero-
crossings, indicating discontinuities. The location and
potential (the absolute difference between the values
where the zero-crossing occurs) of each zero-crossing is
stored in a set of arrays, one for each ¢ value. The set of
arrays is organized into a two-dimensional table, with
the location (frame number) as the x axis and ¢ as the
y axis. The zero-crossing from that table are diffused by
convolving with a two-dimensional Gaussian of
standard deviation equal to 1. The diffusion is
necessary because convolution with a Gaussian leads to
a delocalization of the zero-crossing relative to the
discontinuity. The diffusion ensures that similar trajec-
tories will produce overlapping scale-spaces. and thus
increases the robustness and decreases sensitivity to
noise. Scaling is then performed. The maiching itself is
done by an element by element subtraction of the
diffused input and model scale-spaces. The absolute
values from the subtraction are stored. and match
scores are computed. At the end, two tables containing
the results of the subtraction, one table for the speed,
the other for the direction. are left. Match score for
speed and direction are given as:

Z Z IES(I’!, U)I
2«55 (s, o)

Z: E |5d(nv J)l
25122 X aqln. o)

where g, and g; are the arrays containing the element by
element subtraction of the input and model. for speed
and direction respectively, and «,, %, represent model
speed and direction. The global match score is the
average of speed and direction match scores. The
matching of multiple irajectories is an aggregate of
simple trajectory matches. This scheme uses also shape
information. Motion information is used in each
individual component trajectory, as described above,
while spatial information is gathered between any pair
of components. For spatial information, Euclidean
distance between points in each frame is used; a
measure for spatial match between trajectory pairs is
given in the paper.

speed score =1 —

direction score = 1 —

Tsai et al.’s method™ tor cyclic motion detection hag
been extended 1o object recognition sinee. in many
cases, the trajectory of several points on an object with
a predefined motion can identify it Given the curvature
of a trajectory and ity computed frequency, one cyele
can he isolated and used tor recognition, as in
Rangarajan es af.>%. One limitation to that recognition
method s that both model and unknown must he
aligned with respect to their cycles, but the authors are
working on resolving that problem.

Summary

Several methods were reported that analysed the motion
from a sequence of images to recognize the different
parts of the body, or to recognize motion in time. They
are flexible enough to allow for small differences in
shape and/or motions, and can be applied to any type of
motion. The tracking methods can distinguish between
allowed and non-allowed configurations or postures.
The distinction is possible through the description of a
body and motion model, which put constraints on
configurations and on changes allowed between two
consecutive configurations in time. The methods are
also relatively robust to noise, since most of the real
image sequences were taken in an outdoor environment.

CONCLUSION AND FUTURE DIRECTIONS

Mation-based recognition consists of the recognition of

objects or motions directly from motion information
extracted from the sequence of images. Knowledge
about the object or motion is used to construct models
that will ultimately serve in the recognition process.
This paper intended to emphasize the process involved
in motion-based recognition, and to describe the
different methods so far reported. The process consists
of mainly two steps: the extraction of motion informa-
tion from the image sequence and their organization
inte the models; and the matching of an input sequence
with a model in a database of models. Most of the
information obtained from the images is derived from
optical flow or from token extraction and correspon-
dence throughout the sequence, which determine a
trajectory. Trajectories are often parametrized into
velocity v, and v, speed and direction, or curvature. in
order to get single valued functions as opposed to vector
valued functions. Relative motion is an important
aspect of our perception of motion. [t has been
successfully used in the case of articulated motion with
the computation of angular velocities, Motion events,
like starts and stops, also proved to be useful, since they
are actually perceived by our visual system. Region-
based features extract some motion feature over a
region of interest and suramarize them with only a few
representative values. Matching is often performed
through classification techniques, although in several
studies specific methods have been developed for that
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purpose. Several methods were reported, in particular
the detection and  recognition of c¢yclic motion,
lipreading. gesture interpretation, motion verb recogni-
tion and temporal textures classification. Methods for
reeognition of human motion. like walking and running,
Jabelling and tracking from motion and shape models,
were wlso discussed.

There ure several problems to be addressed in the
future. In the case of multiple objects moving in a scene,
proper segmentation of the different objects in the
image remains a difficult task. It is sometimes difficult
to correctly locate an object in the scene, i.e. to detect
features, lines and joints, because of poor contrast,
noise or other similar reasons. In the case of humans,
clothing can cause segmentation errors or a tracking
program to erronecusly estimate the position of a limb,
for example. These are reasons why experiments are
usuaily performed in constrained environments or with
special apparatus, e.g. glove with contrasting tips*® or
dots placed around the mouth of a speaker’' for
consistent tracking. If motion-based recognition
methods are io be used more widely, feature extraction
will have to be performed in noisy environments and
without any particular enhancements. For instance,
stereo images could be used, where surfaces could help
locate the object’s shape. Explicit three-dimensional
models of objects could be used to track them. For
example. a three-dimensional model of a hand that is
tracked in a manner similar to that described for the
human body could provide more precise information
about a performed gesture.

Perceptual organization of trajectories or spatiotem-
poral curves is an emerging theme. It has been shown
that spatial invariants exist, which permit us to infer
three-dimensional information from a two-dimensional
image projection. For instance, it is highly likely that
two parailel lines in two dimensions correspond to
parallel lines in three dimensions. Those types of
invariants applied to motion could be very insightful.
For example, two-dimensional elliptical irajectories
imply a rotation motion in three dimensions; a set of
elliptical trajectories with parallel major and minor axes
corresponds to the motion of points on a single rotating
object in three dimensions. The determination of those
types of motion invariants that are reliable and stable
provide a new avenue for this type of research.
Stmilarly. the clustering of spatiotemporal flow curves
can provide a representation for coherent motions like a
translation or rotation’>. A hierarchical clustering of
these curves can lead to the detection of different
objects. their particular motion, their occlusion/disoc-
clusion by one another, and even relative and commeon
motion coukd be inferred. Thus, dynamic perceptual
organization can be a very useful research direction that
could lead to very intersting approaches and results.

A significant part of future research will remain
application oriented, i.c. the need will dictate the kind
of systems that will be developed. Applications will
furtherntore preferably run in real-time, and hardware
solutions will be necegssary. Although some of the
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methods described here are very versatile, recognition
of a wide variety of objects and motions remains to be
achicved. Such systems would necessitate a large
number of features to be oxtracted. w very general
representation and probuably more robust and sophisti-
cated matching procedures. Keeping the systems small
enough so that they run efficiently and remain manage-
able thus requires them to be task specific. We think this
trend will remain for some time.
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