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Abstract. In the general structure-from-motion (SFM) prob-
lem involving several moving objects in a scene, the essen-
iial first step is 1 segment moving objects independently,
We attempt to deal with the problem of optical flow es-
timation and motion segmentation over a pair of images.
We apply a mean field technique to determine optical flow
and motion boundaries and present a deterministic algorithm.
Since motion discontinuities represented by line process are
embedded in the estimation of the optical flow, our algo-
rithm provides accurate estimates of optical flow especially
along motion boundaries and handles occlusion and multiple
motions. We show that the proposed algorithm outperforms
other well-known algorithms in terms of estimation accuracy
and timing.
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1 Introduction

A major goal of vision is to infer physical properties of
cbjects present in a scene, such as their 3D structure and
motion, given a sequence of images. This is the so-called
structure-from-motion (SFM) problem in computer vision.
Much effort has been devoted to the egomotion recovery
problem, which considers only a single structure in the scene
so that the image-to-scene reconstruction can be studied sep-
arately from the problem of segmentation. The segmentation
problem arises as soon as more than one moving structure
is present in the scene. Thus an essential first step towards
solving the SFM problem in the more general case of a
scene containing multiple moving objects is the segmenta-
tion of the image into regions that are likely to correspond
to different objects (Adiv 1985).

The segmentation of independently moving objects in
image sequences becomes more difficult when the camera is
moving, and the motion parameters of the camera and each
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moving object are unknown. Although some image proper-
ties {e.g., color) can be used to segment the scene, percep-
tual studies (Braddick 1974; Julesz 1971) have shown that
the human visual system can segment a scene into distinct
objects based on motion information alone, as shown by our
ability to detect camoufiaged creatures as soon as they move.
Consequently, we focus on motion-based segmentation.
Conventional, gradient-based motion estimation approa-
ches impose a global smoothness constraint on the im-
age, which results in inaccurate opiical flow estimates near
Dubois (1992), Harris and Koch et al, (1990) and Heitz and
Bouthemy (1993), introduced line processes and a piecewise
smoothness constraint into the regulation formula to improve
the motion estimates. The problem is reduced to minimiz-
ing a nonconvex cost functional, for which two optimization
methods can be used; namely, simulated annealing (Konrad
and Dubois 1992), and the iterated condition mode (ICM)
(Heitz and Bouthemy 1993). Simulated apnealing converges
rather slowly to the global minimum, and ICM gets trapped
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is provided. Geiger and Girosi (1991) show that the mean
field technique is more appealing for minimizing the non-
convex cost functional, since it converges faster to the global
minimum.

In this paper, we deal with the problem of motion esti-
mation and segmentation over a pair of images. We apply
mean field techniques to determine the optical flow and mo-
tion boundaries, and we present a deterministic algorithm.
The theoretical framework is based on a global bayesian de-
cision associated with Markov random field (MRF) modeis
and mean field techniques from statistical mechanics (Geiger
and Girosi 1991). Since motion discontinuities are embedded
in the flow estimation via line processes, (the sites placed
midway between each horizontal or vertical pair of pixels),
our algorithm provides accurate estimates of optical flow es-
pecially along motion boundacdes. Our algorithm also han-
dles occlusion and multiple motions. Without the line pro-
cess, the pixels near the occluding boundary would mutually
affect the optical flow estimation.

The rest of the paper is organized as follows. A brief
description of the existing schemes is given in Sect. 2. The



problem for computing optical flow and detecting motion
boundaries is formulated based on MRFs in Sect.3. In
Sect.4, a deterministic, iterative algorithm is presented for
solving the problem. To deal with the problem of large mo-
tion, an adaptive multigrid approach is employed in Sect. 5.
Experimental results are provided in Sect. 6. Finally, a sum-
mary is given in Sect. 7,

The methods for estimating motion and its boundaries can be
divided into the following three categories: boundaries can
be detected either prior to, simultaneously with, or following
the computation of the optical flow field.

2.1 Boundary detection prior to motion computation

Reichardt and Poggio (1980), Hiidreth (1984), Spoerri and
Ullman (1987) propose methods that detect discontinuities
prior to the computation of the flow field. Reichardt and
Poggio (1980) use flicker detectors, which are stimulated
by the incoherent motion of moving of objects aggainst
the background near the edges of the moving objects, to
signal motion boundaries. Hildreth (1984) used the normal
flow component to detect motion boundaries; he based this
on the fact that if two adjacent objects move differently,
the normal flow components change in sign and/or magni-
tude across the boundary. Spoerri and Ullman (1987) extend
Hildreth’s work and present three methods for segmenting
moving objects independently: the bimodality method, the
Kolmogorov-Smirnov method, and the dynamic occlusion
method. The first two methods were motivated by the fact
that the potential displacements or the normal flow compo-
nents cluster around two points in a local histogram at a
motion boundary. The dynamic occlusion method is based
on the fact that the appearance and disappearance of thin
bars are associated with motion boundaries. After the de-
tection of motion boundaries by these methods, an accurate
estimate of optical flow can be obtained. Nevertheless, these
methods are sensitive to noise and are not very robust.

2.2 Boundary detection following motion compuration

A common approach is to compute optical flow first and then
detect the motion boundaries (with, for example an edge de-
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cal flow. The two main approaches, intensity-based methods

" (Horn and Schunck 198 1) and feature-based methods {Anan-

dan 1989), have been proposed for determining the optical
flow. The intensity-based methods exploit the relationship
between the velocity and the spatial and temporal gradients
in the image brightness, and assume that the optical flow
varies smoothly in the image. This constraint is valid every-
where except at the motion boundaries, where it results in
an incorrect optical flow estimate. This in turn causes the
edge detector (Thompson et al. 1985) or other techniques
(Adiv 1985; Murray and Buxton 1987) to produce some er-
roneous motion boundaries. Feature-based methods usually
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produce a sparse optical fow, which needs 1o be smoothly
Interpolated to produce a dense fiow field. Although the mo-
tion boundaries are unknown at this stage, the interpolation
scheme causes the motion boundaries to be smoothed out.
Consequently, the motion boundaries may either be detected
but delocalized, or be smoothed out.

Based on the fact that dynamic occlusion occurs at ob-
Jject boundaries, Mutch and Thompson (1985) propose a cor-
respondence algorithm for motion analysis that detects oc-
clusion by locking for significant regions where matches
could not be found in the previous or subsequent frame.
In Thompson et al. (1985), 1. Smooth each scalar compo-
nent of the optical flow field with a symmetric Gaussian
kernel 2. Compute the laplacian transform of the smoothed
function 3. Subtract the two components to combine into
a component-wise laplacian transform of the original flow
field 4. Search the combined field for directional reversals,
which indicate motion discontinuities. Schunck (1989) uses
an iterative procedure. He computes the optical flow field
originaily by constraint line clustering, and to reduce the
noisy boundaries, he interleaves the application of an edge
detector to compute the motion boundaries with a smoothing
of the computed flow field between the motion boundaries.

Some researchers suggest that the flow field be seg-
mented with 2D or 3D motion models (Adiv 1985; Bouthemy
and Rivero 1987; Murray and Buxton 1987, Wang and Adel-
son 1993). Assuming that the scene consists of piecewise
planar surfaces, Adiv (1985) uses the Hough transform and
a split-merge procedure to segment the flow field into com-
ponenis, in which each component is consistent with the
rigid motion of a roughly planar patch. Based on the same
assumption, Murray and Buxton (1985) model the flow field
as spatial and temporal MRFs. They solve for the scene seg-
mentation with a maximum a posteriori (MAP) formulation
and giobal optimization by simulated annealing. Bouthemy
and Rivero (1987) test for likelihood ratios with 2D motion
models and construct regions according to motion homo-
geneity criteria in a split-and-merge manner. The segmenta-
tion begins with a constant motion model and is followed
by a more elaborate one (possibly linear). Wang and Adel-
son (1993) estimate affine parameters within each subregion
of the optical flow field, group the motion estimates from
patches that cover the same object by k-means clustering,
then use hypothesis testing on the motion models to reassign
the regions.

2.3 Detecting boundaries and simultaneously
i Jr;yiiffﬁg motion
Since accurate optical flow along motion boundaries can-
not be obtained without boundary information, it is prefer-
able to compute the optical flow field and its motion bound-
aries in parallel as shown by Harris et al. (1990), Heitz and
Bouthemy (1993), Konrad and Dubois (1992), Vlontzos and
Geiger (1992). The framework for this type of method is
based on a global bayesian decision associated with MRF
models, incorporating the line process to represent motion
discontintity.

Poggio et al. (1988) propose a method that uses infor-
mation from various vision modules such as stereo, motion,
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texture, and color, to refine the estimation of surface discon-
tinuities for better surface reconstruction. They formulate
the problem in the MRF model with a line process rep-
resenting a surface discontinuity. They used the simuiated
annealing technigue to find the global minimum. Within the
motion module, they computed the optical flow and motion
boundaries separately with the two methods (i.e., computing
motion boundaries either before or after computing optical
flow). Thus, Poggio and colieagues’ approach faces the same
problems as the other methods.

Konrad and Dubois (1992), Harris and Koch et al.
(1990), and Heitz and Bouthemy (1993) introduce line pro-
cesses and a piecewise smoothness constraint into the regu-
lation formulation to improve the motion estimates and com-
pute motion boundaries. The problem is reduced to minimiz-
ing a nonconvex cost function. Konrad and Dubois (1992)
use simulated annealing, at a huge computational expense,
particularly when several constraints are incorporated. Heitz
and Bouthemy (1993) use the ICM technique, which gets
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estimate is provided. Harris et al. (1990) implement the
line process with analog processing elements and provide
a method to compute optical flow and motion boundaries
with a very large scale integration (VLSI) technique. Unlike
their work, our goal is to develop a deterministic numerical
method for motion estimation.

Viontzos and Geiger (1992) propose an algorithm for
optical flow estimation that uses a mean-field technique. In
their method, the sparse optical flow field is computed by a
window matching scheme, then the dense flow field 1s com-
puted by interpolating and smoothing the sparse flow field
except at the motion boundaries. In our method, the prob-
lem is formulated directly in terms of intensity, avoiding
the intermediate step of computing the flow by correlation.
Zhang and Hanauer (1993} apply the mean-field theory to
the displacement field estimation. They formulate the prob-
lem in terms of intensity values at two consecutive frames
and three coupled MRF fields, namely the displacement field,
the line field, and the segmentation field. However, including
both the line field and the segmentation field into the for-
mulation introduces redundant computations, since motion
boundaries obtained from the line field also yield segmenta-
tion results. We introduce only two coupled MRF fields, the
optical flow field and the line field, to formulate the prob-
lem in terms of intensity gradients. Thus our algorithm is
simpler and computationally more efficient. Abdelgader and
Rajala (1993) also propose a mean-field annealing approach
to motion estimation in which only the displacement field is
involved in the MRF formufation. Our coupled MRF model
includes the flow field and the horizontal and vertical line
fields. Thus motion estimation and segmentation are solved
simultaneously.

Other methods have been proposed for motion detection
and segmentation. Irani and Peleg (1992) do not compute
the optical flow or the displacement field. Instead, they ap-
proximate the motion of objects by 2D parametric models,
and compute the motion parameters of the dominant object,
which is then eliminated from subsequent analysis. They

reneat the nrocece for the remaining recione tao detect other
ICpCal e Prottoss 100 il 1CMalilily 101005 (0 UGILL Yuaka

objects and their motions. Black and Anandan (1991} present
a method to estimate motion velocity incrementally and seg-
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ment the independently moving objects over multiple image
frames. They exploit the MRF formulation and the incremen-
tal stochastic minimization algorithm to overcome the disad-
vantage of simulated annealing. Jepson and Black (1993) use
a probabilistic mixture model to represent multiple motions
within an image patch and employ the expectation & maxi-
mization (EM) algorithm to compute a maximum likelihood
estimate for the various motion parameters.

3 Determining optical flow and motion boundaries
with MRFs

3.1 Problem formulation based on MRFs

For rigid motion, since the optical flow field U, where
U = (u, %)Y, consists of patches of vectors of similar ori-
entation and length with potential discontinuities at motion
boundaries, the probability distribution for U at site ¢ de-
pends only upon the neighborheod N;. Hence, the flow field
U can be modeled as a 2D vector MRFE. Moreover, another
ficld, the line process, located in the dual lattice, is used to
represent the possible location of motion boundaries. Line
process fields are defined as the sites placed midway between
each horizontal or vertical pair of pixels. The dual lattice is
another lattice coupled with the flow field lattice such that
for each site of the flow field lattice there are two sites in the
dual lattice, one corresponding to the horizontal line and the
other corresponding to the vertical line, as shown in Fig. 1.
The horizontal (vertical) line process represents motion dis-
continuities between pixels along the vertical (horizontal)
direction. The horizontal line process, dp,;, connects pixel
(2, ) to pixel (i — 1, j), while the vertical line process, d,,;,
connects pixel (4,7) to pixel (4,  — 1) in the lattice.

The global bayesian estimation associated with MRF
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tion and detect motion boundaries from the observed image
sequence. The problem we are considering is to estimate the



2D optical flow field U and line process fields, d;, and d,,,
from the image gradient VI, where VI = (I, I, I,).

There are two possible types of errors in the estimation
process. One type of error is in the derivative computations
due to camera and guantization noise, aliasing, imprecision
in the derivative filters, etc. If we describe this type of uncer-
tainty as white gaussian noise n; with a standard deviation
&1, then we have:

1
C'1_l exp [ﬁ Z (ui,jlx,-_j +'Ui-jfyi.,1 + Iti.j)z 3 (I)
&.J

where u;; and v;; are the optical flow field defined at site
(¢, /) of the lattice and () is a normalization constant. The
term in the exponential in Eq. 1 is based on the brighiness

constancy equation of Horn and Schunck (1981).
Another type of error is caused by changes in lighting

or reflectance, or the presence of mn]hnlp mnhnr}c in which

FR RN LEN0) Ludy 4L VAL

case the brightness constancy constramt is unsatisfied. This
type of error can similarly be modeled independently of n;
as white gaussian noise n, with a standard deviation a9,
Within the bayesian decision approach, a prior probabil-
ity, P(u,v,dn,dy), can be defined to impose a piecewise
smoothness constraint on the optical flow field:

P(u, v, dn, dy)
=5 exp{ _

J'

+H|U; 5 — Uiyoill* (1 — do, ) ] +ydn, +’Y”du,-,3-} , (2)

[nUzj — Um0 (1 = dae,)

PYy)
2t

where (7 is the normalization constant, and:
2 2
U;; = Usm il = (ui; —wicrg) + (vig —vicy)
2 2
[Us; — Uiyl = (w5 — s 5—1)” + (025 = vi5-1)

The first two terms in the exponential part of Eq. 2 contain
the sum of local interactions of the flow field and line process
fields between the nearest neighbors in terms of the smooth-
ness constraint to solve the well known aperture problem.
If the gradient of the « flow or v flow in the horizontal or
vertical direction is very high at site (2, 7), the corresponding
line process is likely to signal a discontinuity (d,,, =1 or
dp;; = 1) to increase P(u,v,dp,d,). The third term in the
exponential part of Eq. 2 takes into account the penalty paid
each time a discontinuity is created, and is needed to prevent
the creation of discontinuities everywhere,
By Bayes’ theorem,

P(VI | U, v, dh:dv)P(ua U:dh:dv)
PV ’

where P(VI) is the probability of the image gradients. We
assume that it is a constant, without a priori knowledge of
the distribution of the image gradients. Since the error in
the derivative computation is independent of the line pro-
cess dh and dv, which are taken care of in the probabil~
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ity Plu,v,dp,d,), the following relation holds: P(VI |

w,v,dp, dy) = P(VI | u,v), where P(V] | u,v) is given
in Eq. 1. Now, we have a posterior probability for the vari-
ables u, v, ds, and d,,, given the image gradient VI:

Plu,v,dp,dy | VI) =
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P(u,v,dn,dy | VI) =

1
C"exp{ Z 27 (uwijla.; +vijly, +I¢”)2

#357 [106s = VicuslP (1 = o)

+”Ui,j - Ui,j—l ”2 (l - dv;'_j) ] +7hdhi,j +nfvd?.1,"j } - (3)

The posterior probability can be written in the following
form:

P{uv,dp,dy | VI) = Z7 exp -V (u,v,dp.d))], (4

where Z is the normalization constant, called a partition
function:

2>
{w,v,dn,dy}

where 3 [,v,dn o} is the sum over all the possible config-

urations {u, v, dn, d, } of the system. V is a cost function of
the following form, which is similar to the weak membrane
model:

V (u,v,dp, dy) = Z{

exp[—V (u,v,dn. dv)] ,

2
uZ)JIa:l i + Ui JI?,': 7 +Iﬁ= J)

+2—Og {IEUi,;.- - Uiy 5 (1—ds,,)
#HUss = UggalP (1~ doy,) ]
v dn,  + 7”dt._,} . &)

The cost function consists of the brightness-constancy con-
straint, the piecewise smoothness constraint, and the penalty
term for creating a motion discontinuity. Finding the MAP
estimate of fields u, v, dy, and d,, is reduced to the problem
of minimizing the energy function V.

3.2 Energy minimization by mean field technigues

In this section, we address the minimization problem of the
energy function associated with line processes. The global
minimum of the nonconvex cost function V' can be obtained
by using simulated annealing, or a deterministic technique
called the graduated nonconvexity (GNC) algorithm. In solv-
ing the problems of image segmentation and surface recon-
struction, Geiger and Girosi (1991) use mean field tech-
niques from statistical mechanics to find the deterministic
equations with solutions that approximate the MAP estima-
tor. They show that the mean field essentially represents the
minimum variance bayesian estimator, and therefore can be
used as a measure of field value. We propose to use mean
field techniques to obtain an estimate of the global minimum
of our energy function.

A well-known result (Geiger and Girost 1991) from sta-
tistical mechanics and probability theory indicates that all
mean values of the system can be obtained from the par-
tition function Z, so we must compute the function Z. By
introducing 3, we have:
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7- %

{uv.dp,do}

exp[—3V (v, v,dn, dv)].

The introduction of 3 allows us to apply continuation meth-
ads similar to simulated annealing. From Eq. 5, the partition
function becomes:

1
Z= Z pr{ - .BZ [5;5 (ui,jIIi,j +Ui,5‘rya.j + Iti.j)z
i

{uw}

) 5 {ogie-aie

+(l '”13)6"1 ]} (6)
where Gh 2 ”U i5— UscrgllP =™, and
arv = Lngi N PPy L

i 20_% 1} "] g

The line process term in Eq. 6 is the partition function of
two independent spin systems, dp, and d,,, in an external field,
G"* or G¥, with no interaction between neighboring sites.
Each spin contributes to the partition function independentiy.
Therefore, the line process can be successfully averaged out
to yield an effective cost function depending only upon the
fields = and ». The partirion function can then be rewritten
as:

Z= Y exp[~BVn(s,v)}
fu,v}

— (1 .2
where Vg (u,v) = L i F (ui,jIx{‘J. + vi,jly‘.‘j + 11, ,)
.4 1

—é]n [(1 +e‘ﬁcti) (1 +e‘56¥-i)] +P +7’”} .

Using the mean field technique (Geiger and Girosi 1991),
we can derive the following mean field equations for the line
process fields:

da, = {T+exp [B(¥* — Uiy — Uiy 122601, D)
dyy = {1+exp [B(1* = Vs = UsymiIP/203)]} 7 - ®

For simplicity we assume * = +¥ = -y, where « is one of
the predefined parameters. Notice that the mean values of
the iine process fields can vary continuously from O to 1.

We pointed out earlier that the estimate of 2 and v ob-
tained by minimizing the energy function V' coincides with
the maximum a posteriori estimate of Eq. 3 after summing
out the line fields. This corresponds to minimizing Ve with
respect to % and v, and yields the following differential equa-
tions:

WVerr(w, v)/Ouz; = 0, ©)
8Ve;f(u, ’t))/avij =0. (10)

From Eqs.9 and 1{), we obtain the following equations:

(ui,jIxi.j +Ué.jf'!h.j + Iti.j) Ixi.j

0.2
"'}‘;2'{ (U= dn, ;) (a5 — wim )

- ( - dht*l 3) (Uﬁi,j - ui,j)
+(l — dn _,) ('Um’}j - u,_"j_l_)
( 'Ua J+1) (ui,j+| - ui,j) } = O: (l .[)

(u'ivj‘[xi-j + ”i»jrys.j '*'Its.j) Ly, ;
o2
+cr_;2{ (1~ dni ;) (vi5 =~ vi-5)
- (1 - dhiﬂ.j) ('U'i-i-l,j - Uz’,j)
(L= do ) (vig — Vi)
= (1= duy j1) (vi,501 — i) } =0. (12)

We solve the stmultaneous Eqgs. 11 and 12 to find the
mean field solution of u;; and v;; in terms of dp,; and
dy, s

First we define the local average of discontinuity at pixel
(1,7 as:

5 1

di!j = 2 [4 - dhi.j - dhm.j - dua.; - dui_,-.|] : (13}
and the local averages of w and v at pixel (3, §) as:

_ 1

iy =g T = dny ) wimry + (1 — doy ;) g

a1 A A, .
A1 Yhet i) “"""":J

By = [(1 dn, ;}vicri+ (1= dy, ;) vism

+{1 = dp,,,,; ) Virr + (1 = dy, i) g ] - (15}
We also assume A = 407 /0%, Then Egs. 11 and 12 become:
(uijley; +visly, + It;) Loy + A{dijus; — @55) =0, (16)
(il +vigly, + Iny) Ty, # A (diuy — T5) = 0. (D)

Rawmriting thaca ahava Natinne 1uos
AEWIIAE (Ges€ adiye L) <

a1 714N
il {14}

Y, 1
u-v, ger Y gt

compact equatlons

T 2
(Adij +I ) U5 +IxijIyijvtj = /\uq II'UItu . (18)
r,__r__;w..J_(u,; =72 Yo =Aj.. -1 I 1o
Togy dyyy Uiy + My + Ly, Joyg = My — gl {19

Solving the simultaneous Eqs. 18 and 19, we get:

(Ady; + IZ, g — Loy Ly, By — dUIxUIt,J
g = T,00; + 12+ 12.)
. Iy, Ty g+ O + I )% — dijly, I,
iy =

13(,\0!13 +12 + 12 )

Yij
Finally, the iterative formulae are obtained as follows:

™ = [~ oLy 2 eo
gw!) [ﬁgt) (n) Iy-.;] / CZ,E;L) ’ (21)

where

al? = [Ixu oy + Iy, B0 + JE?’J}U] / { MR+ 2+ Iju]



and the superscript denotes the iteration number.

During an updating cycle, the new approximation of the
optical flow, ¥™*1 and v, can be determined from the
estimated brightness derivatives, I, I, and I, and from the
focal average of the previous flow, @™ and %™, and line
process estimates, d'™, respectively. The line process can be
updated from the previously estimated mean values of u™
and +“. Note that the forms of Eqs.7, 8, 20, and 21 are
very suitable for a fast, parallel, and iterative scheme for a
soiution.

It is interesting to note that Horn and Schunck’s (1981)
method becomes a special case of our scheme when the line
process fields are set to zero. In their method, a smoothness
constraint is imposed over the whole image, so considerable
error occurs in the vicinity of the object boundaries. In our
scheme, however, the line process prevents the smoothness
constraint from being imposed across motion boundaries.
Assume that the scene contains two moving objects, say ob-
Ject 1 and Object 2. When the local averages of the optical
flow at a pixel belonging to object 1 are computed according
to Eqs. 14 and 135, its neighbors belonging to object 2 will be
inhibited by the line process from participating in the com-
putation if the current pixel and/or its neighbors belong to
motion boundaries. Without the line process, the pixels near
the occluding boundary would mutually affect the estimation
of the corresponding optical flows.

4 The iterative algorithm
4.1 Algorithm

The iterative algorithm for computing optical flow and mo-
tion boundaries that uses Egs.7, 8, 20 and 21, derived in
Sect. 3, is given in algorithm 1. In this algorithm, we use a
three-point approximation (Battiti et al. 1991) to calculate
the spatial and temporal brightness derivatives I, I, and
1;, since a three-point approximation of derivatives provides
a better estimate than the two-point forward difference for-
mula (O(Az)? error versus Q(Az) error). We also apply the
additional constraint that motion discontinuities usually co-
incide with intensity edges. If no intensity edge is present,
we increase the threshold € by increasing -y andfor ¢, by a
factor of ten.

Algorithm 1

1. Calculate the spatial and temporal brightness derivatives
fm, Iy, aid It.

2. Apply Canny’s edge detector and initialize the line pro-
cesses, dp, and d,,, by edges. ~

3. Compute the local average value of discontinuity (d; ;),
and optical flow (&; ;,8; ;) by Egs. 13-15.

4. Calculate the new approximation of optical flow, (u, v),
by with Egs. 20 and 21.

5. If the pixel is not at an intensity discontinuity, in-
crease threshold € by a factor of ten, Otherwise, leave
£ = 021/27 unchanged. Next, compute the new approxi-
mations of dy and d, with Eqs.7 and 8.

6. Calculate an error norm for the last iteration step. (The
average difference value between the new and old ap-

37

proximations of optical flow over all the image points
has been used.)
7. Test the termination condition. If the error norm is less
than a set threshold, then the algorithm is terminated.
8. Update the optical flow and line fields with the new ap-
proximation values, and then go to step 3.

end

4.2 Parameters

There are several parameters, namely ¢, o2, -y, and 3, in-
volved in the algorithm. The parameter oy is the standard
deviation of the error in the intensity gradient, and &, is
the standard deviation of the error when the brightness con-
stancy constraint is not satisfied, as in the case of multiple
motions or changes of reflectance or lighting. The new pa-
rameter introduced in our formula. A = 467 /3, plays a role
similar to that of the regularization parameter in Horn and
Schunck’s approach. The parameter A controls the balance
between the “trust” in the data and the smoothness term.
However, it is more meaningful to define A as the ratio of
variance of the two types of errors, namely the gradient error
and the error due to brightness constancy constraint. If o)
is relatively large, we cannot get accurate intensity deriva-
tives, and A becomes a larger value that increases the weight
of the smoothness term; if o5 is large, the brightness con-
stancy constraint does not hold, A becomes a smaller value
which decreases the weight of the smoothness term and lim-
its smoothing to some extent. The parameters ¢ and g3 can
be estimated for each given image sequence with the math-
ematical methods described by Geiger and Girosi (1991). In
our experiments, however, no attempt was made 10 estimate
the actual value of o) or o3. From Egs.20 and 21, one can
see that A (the ratio of gy to o) affects the optical flow
estimation. Thus we always set u = 1/2¢73 to 1, and visually
adjust A for each given image sequence.

For the parameter «y, from Eqs. 7 and 8, one can see that

Araating o

RV '}'jfji. is the thrﬁsho}d for Cidaulig a motion discoﬂﬁn'ﬁi{y,
where = 1/203. Let us denote /7 /uz by £&. We notice that
if gradient of U is above &, dy,,; (or dy,;) is greater than 0.5,
thus there is less smoothing, whereas if the gradient is below
&, more smoothing is applied. The parameter & affects the
quality and the amount of the motion boundary estimates. To
find a good pattern of motion boundaries, £ must be between
1 and 3 in our experiments; the exact value of £ depends on
the magnitude of the relative motion of objects.

The parameter § is introduced as an extra degree of free-
dom; continuation methods (e.g., simulated annealing) can
be applied by varying £. Since the temperature of the sys-
tem is defined as T = 1/(, varying § in the minimization
process is equivalent to varying T. Sometimes, a finite 3
solution may be more desirable or robust. Our experiments
show that varying 3 does not make much difference; thus 3
must always be set to 5.

5 The adaptive multigrid approach

The basic assumption made in solving Eqs. 11 and 12 with
the discretized versions Eqs.20 and 21 in the previous sec-
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tion is that the spatial and temporal sampling steps are small
compared to the motion amplitudes. If the object moves very
fast, the brightness changes rapidly, and the gradients I, I,
and I, fail to be accurately estimated by a two-point or a
three-point discrete approximation, since in this case, the
step is not infinitesimal.

The multiscale pyramid scheme can be used to deal with
this problem. Since the high spatial frequencies are attenu-
ated at the lower resolutions, the spatial and temporal gradi-
ents are smoother and more accurate, unless the discretiza-
tion error dominates. Analyzed by Battiti et al. (1991) the
relative error in the flow field consists of derivative estima-
tion error and quantization error, given by:

E= 09 [(ADP — (A1 ~ (A7

{1/ [(QaD? + (A T + 1/A D2} 22)

where A l=20Ax A J=2I,Ay AJ=2LA,

and Az, Ay, and Af are the spatial and temporal sampling
steps. I, I, and I, are obtained by three-point approxima-
tion of the first derivatives. C' is suggested to be 272/3 by
Battiti et al. (1991), and ¢ is the standard derivation in the
distribution of intensity values. The first term of Eq. 22 cor-
responds to the derivative estimation error, while the second
term corresponds to the quantization error.

The quantization error is the largest at the coarsest scale
while the derivative estimation error is the largest at the
finest scale, and the total error reaches the minimum on some
middle scale. Based on this observation, Battiti et al. (1991)
propose an adaptive multigrid algorithm to compute the flow
field. The algorithm starts by estimating the flow field at a
reasonably coarse scale. This approximation is then updated
on successive finer scales only on some regions of the image
where the estimated flow error is greater than a predefined
threshold, 7i. In this coarse-to-fine strategy, regions of the
image involving various motion amplitudes are processed at
the appropriate scale, avoiding corruption of good estimates
due to poor derivative estimation at a finer scale.

In Battiti’s approach, however, since motion boundaries
are not taken into account, the flow field is smoothed contin-
uously across the motion boundaries in each scale. To deal
with this problem, our approach is embedded in an adaptive
multigrid algorithm:

Algorithm 2

1. Build the Gaussian Pyramid (Burt 1984) associated with
three successive images. The number of levels depends
on the maximal displacement of pixels. An inhibition flag
associated with each point of the image is initialized as
0 (noninhibited).

2. Apply Algorithm 1 to the noninhibited pixels at the cur-
rent scale.

3. Calculate the relative error of flow, E, with Eq.22 for
each pixel. Check whether £ is below the selected
threshold. If it is, the estimate of the optical flow can
be considered accurate enough, then the inhibition flags
of the imme- diate four children of this pixel are set to
I (inhibited).

4. Apply bilinear interpolation to interpolate the optical
flow values to the next finer scale, where they are used
as initial estimates of optical flow. Then go to Step 2.

end

6 Results

The real image sequence shown in Fig. 2a,b used for this test
contains two toys, Dale and Scrooge (Disney World charac-
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ters), MOVInE in the Oopposie directions. The measured dis-
placement is about 1 pixel/frame for each toy. The edge
map, shown in Fig. 2¢, obtained by a Canny edge detector
was used to initialize the line processes. Figure 2d,e shows
the optical flow and motion boundaries obtained from al-
gorithm 1, respectively. As we can see after applying our
algorithm, spurious edges that do not correspond to motion
discontinuities have been smoothed out. and only the true
motion boundaries remain.

Our algorithm was also tested on a relatively compli-
cated scene, the Hamburg taxi sequence Fig.3a. This se-
quence contains several moving objects; a taxi is turning the
comer, a car in the lower left is moving from left to right,
and a van in the lower right is moving right to left. The
image velocities of the moving objects are approximately 1,
3, and 3 pixels/frame. We only used the lower-left portion
of the image to study the approach deseribed in this paper.
We applied the adaptive multigrid algorithm to this sequence
due to large motions. A three-level gaussian pyramid is used
for this sequence. Since the motion of the taxi is small, the
computation for the taxi portion continues from the coarsest
level to the finest level because the estimated error of the
optical flow is always above a predefined threshold, and we
must keep on refining the optical flow to reduce the error.
However, for the car portion, computation terminates at the
intermediate level since the estimated error of optical flow
due to derivative estimation error and/or quantization error is
below the threshold at the intermediate level. If the compu-
tation were continued further for the car portion, the optical
flow would be corrupted at the finer level due to poor deriva-
tive estimation at this level. The gaussian pyramid for frame
1, initial values for the line process, and the resulting optical
flow at three levels are shown in Fig. 4. It is clear that the
opticai flow has been refined through multiscales. The op-
tical flow and motion boundaries are displayed in Fig. 3¢,d.
We observe that there is no oversmoothing due to the in-
troduction of the line process, and the adaptive multigrid
algorithm does give better and faster results even for image
sequences with different ranges of optical flow velocity.

6.1 Comparison

Barron et al. (1994) present a comprehensive evaluation and
comparison of existing optical flow methods, Here we com-
pare our method with Anandan’s (1989) method, Horn and
Schunck’s (1981) method, and Fleet and Jepson’s (1990)
method on the same inputs, using the performance measures
of Barron et al. The random dot synthetic square image se-
quence shown in Fig. 5 is used for quantitative performance
comparisons. The optical flow error is measured in terms
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Fig. 2a—e. Results for toy images with A=25, v=5, = 1/20'% =1, and
B =75 aframe I; b frame 2; c initial value for the line processes, obtained
by the Canny edge detector; d optical flow; e motion boundaries

Fig. 3a—d. Results for Hamburg Taxi with A= 100, y =7, p = 1/20% = |,
B =5, Terr = 0.4, and the sampling rate = 4, a frame 1; b the lower left
portion of frame I; ¢ optical flow; d motion boundaries

Fig. 4. Top: Gaussian pyramid for frame I: middle: initial values for line
process at each scale, obtained by Canny edge detector. Bottom: optical
flow at each scale

Fig. 5a,b. A random dot, synthetic square image with displacement of |
pixel/frame
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of the angle between the correct velocity and the corre-
sponding estimated velocity. Table 1 shows the mean error
and the standard deviation of the error for the flow com-
puted by these methods, and the density of the computed
flow field as well. It is surprising to see that Fleet and Jep-
son’s method does not work well for the random dot images
that involve texture and high-frequency data. However, their
method works well with uniform, nontextured image data. In
these experiments we have used Fleet and Jepson’s program
obtained by anonymous ftp (Ftp@csd.uwo.ca). To be
sure that we have used Fleet and Jepson’s program properly,
we also experimented with the translating, uniform square

Fig. 6a-d. Comparison of the optical flow for Hamburg taxi sequence:
a Fleet and Jepson’s results; b Horn and Schunck’s results; ¢ Anandan’s
results; d our results

Fig. 7a—d. Occlusion and multiple motions — results for the synthetic se-
quence with two squares moving in opposite directions with displacement
1 pixel/frame: a frame 1; b frame 3; ¢ the optical flow computed by our
algorithm; d the optical flow computed by Homn and Schunck’s algorithm

Fig. 8a-d. Qcclusion and multiple motions - resulis for a sequence of
toy vehicles. a frame [; b frame 3: ¢ the optical flow computed by our
algorithm; d the optical flow computed by Horn and Schunck’s algorithm

image sequence, which is the same as the sequence shown in
Fig. 5 except that the background and objects have constant
gray levels, 0 and 255, respectively. We used 21 frames of
the square images as the input. Their program provided quite
accurate results with an average error and standard deviation
of error equal to 0.034° and 0.028°, respectively, which are
very ¢lose to (0.07°, 0.08°), the error measurements of Fleet
and Jepson’s method for their uniform square sequence, as
reported by Barron et al. (1994). The same program was
then applied to the random dot sequence, which provides
the sparse optical flow field with average error and standard
deviation of error, and density of the optical flow equal to
7.38°, 11.79°, and 13.2%, respectively.

Figure 6 illustrates the optical flow field obtained by
multigrid Horn and Schunck’s method, Anandan’s method,
Fleet and Jepson’s method, and our method for the Hamburg
taxi sequence shown in Fig. 3. Fleet and Jepson’s method
provides the sparse optical flow field shown in Fig.6a.
In Horn and Schunck’s and Anandan’s results shown in
Fig.6b.c, the optical flow field has been smoothed across
the motion boundaries. Some spurious optical flow vee-
tors are present at the stationary regions. Neither Horn and
Schunck’s nor Ananadan’s approach takes motion bound-
aries into account. Therefore, the results appear to be over-
smoothed. However, our method explicitly takes motion
boundaries into account, and provides better results as shown



Table 1. Performance comparison of optical flow methods on the random
dot. square images.

Method Average  Standard  Density
error deviation

Fleet and Jepson 7.38° 11.79° 13.2%

Horn and Schunck  2.89° 2.01° 100%

Anandan 2.16° 8.47° 100%

Proposed method 0.61° 3.70° 100%

in Fig.6d. For the Hamburg taxi sequence, the execution
time on a Sun Sparc 4 for Fleet and Jepson’s algorithm,
Horn and Schunck’s algorithm, Anandan’s algorithm, and
our algorithm are 21.8 min, 1.5 min, 14.2 min, and 4.4 min,
respectively. Our algorithm, with the overhead of computing
line process, is a factor of three times slower than Horn and
Schunck’s algorithm. However, this deterministic approach
is computationally more efficient than the other methods for
minimizing the cost function involving the line process, such
as simulated annealing, ICM, etc. Also, the adaptive multi-
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greatly reduces the computation time.

6.2 Occlusion and multiple motions

Introducing line process fields into the regularization for-
mulation allows us to handle multiple motions. As an ex-
ample, we first generated a synthetic sequence with two
squares moving in opposite directions with a displacement
of 1 pixel/frame. In this sequence one square occludes the
other square in frame 3. The image sequence is shown in
Fig. 7a,b. The optical flow obtained by Horn and Schunck’s
algorithm is shown in Fig.7d, where the optical flow has
globally been smoothed without the motion boundaries be-
ing taken into account. Qur algorithm explicitly takes care
of motion boundaries to ensure that smoothing is not im-
posed across step-intensity edges or occlusion boundaries in
an ateempt to handle occlusion. The optical flow computed
by our single-scale algorithm is shown in Fig. 7c, and it is
much better than Horn and Schunck’s algorithm near the
motion boundary.

Next, the real image sequences shown in Fig. 8a,b were
used for this experiment, which contains two toy vehicles
moving in the opposite directions. The measured displace-
ment is about 1-2 pixels/frame for each vehicle. The results
for the optical flow obtained from our single-scale algorithm
and Horn and Schunck’s algorithm are shown in Fig. 8c,d.
Our algorithm provides better results, particularly along mo-
tion boundaries,

7 Summary

In this paper, we address the problem of opiical flow estima-
tion and motion segmentation. Line processes and a piece-
wise smoothness constraint are introduced to formulate the
problem based on Markov random models, and the mini-
mization solution is obtained by mean field techniques. The
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imposed across motion boundaries. Since motion disconti-
nuities represented by the line process are embedded into the
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optical flow estimation, our algorithm provides accurate es-
timates of optical flow especially along motion boundaries.
It handles occlusion and mutltiple motions. Experimental re-
sults indicate that our approach provides good estimates of
optical flow and motion boundaries. Using the performance
measures proposed by Barron et al. (1994), we show that
the proposed algorithm outperforms other well-known algo-
rithms in terms of estimation accuracy and timing.

Our algorithm requires the edge detector to provide com-
plete motion boundaries, along with some possible spurious
edges, as initial values for the line processes. The spurious
edges are smoothed out by our algorithm. No robust ini-
tialization is applied beyond the Canny edge detector. If the
Canny edge detector produces incomplete motion boundaries
for a given image sequence, our algorithm performs simi-
larly to Horn and Schunck’s algorithm on this sequence.

We are currently working on extending this framework
to track coherently moving regions over stream of images.
Furthermore, we can apply the SFM algorithm to each seg-

mented movino obiect to obtain the motion narameters and
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a depth map.
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