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Traditional shape from shading techniques, using a single
image, do not reconstruct accurate surfaces and have difficulty
with shadow areas. Traditional shape from photometric stereo
techniques have the disadvantage that they need all of the input
images together at once to minimize the total cost, and this
process must be restarted if new images become available. To
overcome the shortcomings of the above two techniques, we
introduce a new technique called shape from photomotion.
Shape from photomotion uses a series of 2-1) Lambertian input
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recover the depth map. In each of the input images, the object
in the scene remains at a fixed position and the only variable
is the light source direction. The movement of the light source
causes a change in the intensity of any given point in the
image. The change in intensity is what enables us to recover
the unknown parameter, the depth map, since it remains con-
stant in each of the input images. This configuration is suitable
for iterative refinement through the use of the extended Kalman
filter. Our novel method for computing shape is a continuous
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from photometric stereo in the sense that the shape estimate
will not only be computed for each light source orientation,
but also gradually be refined by photomotion. Since the camera
is fixed, the mapping between the depths at various light source
locations is known; therefore, this method has an advantage
aver those which move the camera (egomotion) and keep the
light source fixed. Results of this method are presented for
sequences of synthetic and real images. © 1996 Academic Press, Inc.

1. INTRODUCTION

A major task for computer vision is to derive a 3-D
scene description from its 2-D images. This led to the
development of the shape from X techniques, which in-
clude shape from motion, shape from texture, shape from
stereo, and shape from intensity. Shape from intensity ex-
tracts shape information from a series of intensity images
assuming each is generated by a single light source. It can
be further divided into three subcategories: Shape from
shading, shape from photometric stereo, and shape from
photometric sampling. The differences between them are
in the number of images and arrangement of light sources.
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Shape from shading uses a single light source, ie., one
image as mput, to recover the shape information [4, 10,
17]. It has the advantage that it requires the least amount
of input; however, this also introduces disadvantages. One
disadvantage is that since it has less image information
available, it is less accurate. At each pixel, intensity pro-
vides only one constraint; however, the description of sur-
face shape (surface gradient, or surface normal) requires
two parameters. Therefore, many shape from shading tech-
niques introduce additional constraints, such as smooth-
ness of surface, and use optimization methods to estimate
shape. Another disadvantage is that since it employs only
a single image, shape from shading will not be able to
provide a complete description of a scene with shadow
areas. Some methods also have problems when the scene
is illuminated from the side.

To overcome some of the above problems, shape from
photometric stereo was introduced [2, 3, 6-8, 13, 15, 16,
18]. The main idea behind photometric sterea is to take
multiple images of a scene with different light source direc-
tions for each image, while keeping the viewing direction
constant, Each image of the scene provides one constraint
on the surface shape. Hence, multiple images of the same
scene create an overconstrained system, which is solved
for the surface shape. Shape from photometric stereo com-
bines all of the input information together in order to
minimize total cost. This method can only be used to coim-
pute shape of the areas which receive light from all of the
light sources.

Another technique which is similar to photomeiric
stereo is shape from photometric sampling {11, 12, 14]. It
usually uses many light sources, instead of a few, and a
sequence of images corresponding to the light sources to
recover the shape information. The use of extra light
sources, rather than only three sources, eliminates the inac-
curate results caused by the improper choices of the source
positions in photometric stereo and makes the results
more accurate.

We introduce a new technique called shape from
photomotion. In this technique, a series of 2-D Lam-
bertian input images, generated by moving a light source
around a scene, are used to recover the depth map. In
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each of the input images, the object in the scene remains
at a fixed position and the only variable is the light
source direction. This novel method for computing shape
is a continuous form of the photometric stereo technique.
Tt significantly differs from photometric stereo in the
sense that the shape estimate is not only computed for
each light source orientation, but also gradually refined
by photomotion. Since the camera is fixed, the mapping
between the depths at various light source locations Is
known; therefore, this method has an advantage over
those which move the camera (egomotion, e.g., see [5])
and keep the light source fixed. Moving the light source
requires no warping of depth maps.

In photomotion, the shape from shading method is em-
ployed for each light source orientation. Therefore, shape
from shading can be considered as a special case of shape
from photomotion, where only one light source i3 used. In
contrast, photometric stereo cannot be applied to a single
image; it needs at least two images, and commonly three
images are used.

2, RELATED WORK

Shape from photometric stereo was first introduced by
Woodham [18] in the early 1980s. In this method, Wood-
ham proposed that the surface gradients could be solved
for by using only two input images, if the surface aibedo
at each surface point were known. Furthermore, if the
albedo were not known, both gradients and reflectance
factors could be solved for by the addition of one more
image. This allowed the reflection factor to vary from point
to point on the surface. The method was simple and effi-
cient, but it only dealt with Lambertian surfaces and was
sensitive to noise. In his recent paper, Woodham [19] ap-
plied photometric stereo technigue to compute optical
flow.

Pentland’s linear shape from shading [10] had problems
with images of quadratic surface reflectance. Therefore,
Pentland [9] proposed photometric motion to solve for
shape and reflectance. The images needed in his approach
were taken at different time framess while the object was
rotated. The guadratic component of the surface re-
fiectance function was factored out by subtracting one im-
age from another. The ratio of one of the images and the
difference image was used to cancel out the albedo and to
obtain the surface shape. Therefore, at least two images
were required for the shape recovery. This approach was
also extended to three-image photometric motion by con-
sidering second derivatives in the discrete form. The im-
portant difference between Pentland’s and our method is
that in his case the object is moving; therefore, he needs
warping to align the images. In our case the light source
is moving, s¢ no warping is needed, and we successively
refine the depth map in each image.

Tkeuchi [6] was the first to obtain the shape of a specular
surface using the photometric stereo methed. In his re-
search, he used a distributed light source obtained by un-
even illumination of a diffusely reflecting planar surface
and three input images. His solution involved solving a set
of nonlinear equations. A logkup table, made from the
reflectance map, was used to perform the numerical inver-
sion of the three reflectance maps. This method assumed
a known object position and required accurate measure-
ments of reflected brightness.

Based on Ikeuchi’s approach, Sanderson et al. [14] devel-
oped a structured highlighting approach for specular sur-
faces, which used an array of point sources for illumination.
The simple property of specular reflection was used to
solve for the surface normal. Results were only shown for
smooth objects.

Tagare and deFigueiredo [16] estimated the shape of

.......
lar properties). An energy function was minimized with
respect to the surface normal and the weights of the Lam-
bertian and specular components. They proved that 10
light sources were needed to get a unique solution. This
approach was based on the assumption that the Lambertian
and specular components could be preseparated.

Ikeuchi et al. {11, 12] presented a method for recovering
the shape of a hybrid surface, and relative strengths of the
Lambertian and specular components, using an array of
extended light sources. Their algorithm first separated the
specular component from the Lambertian component. At
each surface point, two surface orientations were calcu-
lated, one from the Lambertian component and one from
the specular component. The final surface crientation was
the weighted average of the two surface orientations. The
implementation assumed that only two consecutive images
contained nonzero specular components for each point and
was only suitable for 2-D; that is, it required that the light
source, camera, and object be coplanar.

Park and Tou [8] developed a normal vector equalization
method for hybrid surfaces based on the simplified Tor-
rance~Sparrow model for specular reflection by Healey
and Binford [4]. Three input images were used to solve
nonlinear equations in order to extract the specular compo-
nent. After the extraction of the specular component, the
surface normal could be computed using Woodham’s pho-
tometric stereo method for Lambertian surfaces. This was
a straightforward method whose only drawback was the
need to solve a set of nonlinear equations.

Coleman and Jain [3] solved for shape from hybrid sur-
faces using four-light-source photometric stereo. It was
based on the assumption that only one of the light sources
caused specularity for each surface point; therefore, they
used relative deviation to determine the specular source.
This reduced the problem to Woodham's photometric
stereo solution for three sources.

4%
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Solomon and Tkeuchi [15] extended Coleman and Jain’s
solution by dividing the object into different areas, de-
pending on the number of light sources illuminating them.
The areas illuminated by four sources were solved by Cole-
man and Jain’s method. Three source areas were solved
by adding the constraint that the surface normals be unit
vectors. Two source areas could only be solved if neither
light source caused specularity.

Lee and Kuo [7] were the first ones to introduce parailel
and cascade photometric stereo, In their recent paper, they
showed that shape from shading algorithms had a problem
that the accuracy of the reconstructed surface was related
to the slope of the reflectance map function defined on the
gradient space. They proposed two different photometric
stereo concepts: Parallel and cascade. Parallel photometric
stereo took all of the photometric images together to pro-
duce the best estimation of the surface. Cascade would
take the images, one after another, in a cascading manner.
For each image, their shape from shading method, using
triangular element surface approximation, was applied.
The estimated shape from the previous image was used as
input for the initial estimate of the next image. They used
a two-source photometric stereo method and concluded
that the best results could be obtained when the two light
source directions were orthogonal to each other. Lee and
Kuo’s approach is close to ours; however, there are signifi-
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cant differences. We successively refine the shape estimate

and explicitly use the confidence measurement (covariance
matrix) to represent the accuracy of the shape estimate.
Our method for computing shape in each iteration is faster,
simpler, and more straightforward than Lee and Kuo’s
method.

Recently, Clark [2] proposed an active photometric
stereo approach, which models the motion of the light
source in infinitesimal steps. He was the first to use perspec-
tive, instead of orthographic, projection, thus, removing
the need for the light source to be modeled at infinity. The
computation was local, noniterative, and directly solved
for depth in a closed form equation. To measure the infini-
tesimal image gradients with respect to the change of the
light source, seven images were needed to provide a dis-
crete approximation. The problem with this approach is
that the results shown in his paper were not very accurate,
due to the discrete approximation of the infinitesimal gradi-
ents. To solve the problem of inaccuracy, a lot of images are
needed in order to use least squares or median estimatort to
decrease the errors.

None of the above methods dealt with interreflections,
the mutual illumunation between surface facets. Tkeuchi
et al. [13]} were the first to challenge the interreflection
problem using photometric stereo. Their observations
were based on the fact that the erroneous shape extracted
by shape from photometric stereo algorithms, in the pres-
ence of interreflections, was a little bit shallower than the

real shape; therefore, it could be iteratively refined. The
limitation of their algorithm was that it only dealt with
Lambertian surfaces.

3. SHAPE FROM PHOTOMOTION

In this paper, we present a2 model for shape from pho-
tomotion, which uses a series of 2-D Lambertain input
images, generated by moving a light source around a scene,
to recover the depth map. In each of the input images, the
object in the scene remains at a fixed position and the only
variable is the light source direction. The movement of the
light source causes a change in the intensity of any given
point in the image. This change in intensity allows us to
recover the unknown parameter, the depth map, since it
remains constant in each of the input images. We use a
Lambertian refiectance model, employ the discrete ap-
proximation for p and g, and compute Z.

The main thesis of this approach is to recover whatever
information is possible at a given time, then move to the
next image to refine the previous estimates and also at-
tempt to recover information at new points for which previ-
ous estimates are not available.

Our formulation is suitable for the extended Kalman
filter [1]. The basic process of the Kalman filter is as follows:
A set of measurements of a fixed number of parameters
are taken as input to estimate a number of unknown param-
eters, based on how good the current measurements are
and how accurate the current estimations are. The estima-
tions from the previous iteration are used together with
the new measurements in the current iteration in order to
gradually refine the estimates. A major advantage of the
Kalman filter is that it can be started at any point, stopped
at any point, and continued at any time.

The reflectance function, of a Lambertian surface, at
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point (I, j} can be CXpressed as
Ei_.j = Ni.}'. L» (1)

where E;; is the gray-level intensity, N, is the unit surface
normal, and L = (L,, L,, L;) is the unit light source
direction. The surface normal, N, can be expressed in
terms of the gradient, (pi;, 4:)). as

N, = (Pij» Gij» — 1)
MUNpE g+ 1
Pyt qi;

Substituting for N;; in Eq. (1) yields

Lp+Lg-—1
E;_j=‘——‘2#. (2)
piytait+ 1
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FIG. 1. Sphere images for ssgmentation. (a) The first image (light source direction is (1, 0, 1}, so the left part of the sphere is not visible). (b)
The second image (light source direction is {0, 1, 1), so the bottom part of the sphere is not visible). (c) Results of segmentation. The light gray
area can only be recovered in the first image, the dark gray area can only be recovered in the second image, the white area can be recovered/
refined in both images, and the small dark area in the lower left corner will not be recovered in either image.

Using the discrete approximations for p;; and ¢;; as

Pij=Zij— Zijy,
Gi;= Zi.j - Zs—l,j,

where Z,; is the depth at point (i, j}, Eq. (2) become

£ = LZij~Zij)+ L(Zi; - Ziy ;) — L
! A (Zr‘,j - Zr‘.f—l)2 + (Zi.j - Zi-l,j)2 +1

Now our aim is to compute Z;; such that the following
function is minimized:

fE;, L Z,))
L (Zij— Zij) ¥ L(Zi;— Ziy) — L,
VA(Zij— Zijo )+ (Zij— Zi )P + 1

=E,;~

()

If we use superscript & to indicate the kth input parame-
ters and kth output parameter and approximate the above
equation by a first-order Taylor expansion, we have

FBY;, LA, 251 + s af (E,,—Ef‘,)+ af (Lo~ L)
af (- L+ af (L~ L)

af _ -
az,,(z” ZEh =0

where

of

L/ S

6E,"j ’ (4)
af _ _ Zij— Zij1 )
OLx V(Zi; = Zija 2+ (2= Zia ) + i

of __ Zij — Zirj (6)
Ly \/(Zi.j —Zij Y+ (Zi;— Zi ) i
af _ 1 @
aLz V(Z,] - Z,‘J-j)z + (ZU - Z,*_I‘j}z + 1’

(LelZij— Zij} + Ly(Zij— Ziey ) — L)
of (2Zij = Zijr ~ Ziny)

&,_, - (Zij— Zijr P+ (Zij— Zie j)F + 1)
L L2y~ Zign P (Ziy — 2P+ D)
(Zij= Zija P+ (Zij~ Zia Y + 1P
' (8)

and the partial derivatives are estimated at (Ef;,

ZE ). Note that in Eq. (3) we assumed that Z,., ; and Z,,,_l
are constants, which we are given by the previous iteration.
Therefore, in the Taylor series expansion, we have consid-

ered fin Eqg. (3) to be a function of E;;, L, and Z;; only.

Z;.1;and Z; ;- can also be treated as variables. This results
in #? (for an n X n image) coupled linearized equations,
each with three knowns. It can be shown that when this
sparse system of linear equations is solved using Jacobi’s
iterative method, it reduces to the scheme used here in
which Z;_; and Z; o1 are treated as constants [17].

The depth map ZF; at the kth iteration can be computed
iteratively using the recursive Kalman filter

-y
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FIG. 2. Results for the sphere images. (a} One of the 72 images. (b) Three-dimensional plot of the final estimated depth map. (¢) Error plot

for average estimated surface normal after processing each image.

ZE=ZE + K(Y — MZEY, (9)
K = SKM(W + MS*'\MTY, (10)
§¢= (1~ KM)S*, (11)

— af | 1
Y - az . Z‘f _f(El.h L, Z!.j 3 (12)
r.f
_9f
M=z (13)

where § is the 1 by 1 covariance matrix of the estimation
error for the depth, and

af 7
(E;;, Ly~

__ 9
W‘aawmA

A is a 4 matrix which indijcates the covariance of the input,
Le., the intensity E;, and source direction (L., L,, L,).
The input of the system is a set of measurements: intensities
and light sources; the state is indicated by the current esti-
mates: depths. The previous estimates are combined with
the current measurements in order to gradually refine the
estimates. The refinement is done by considering how good
the input measurements are and how accurate the esti-
mates are.

Since our method is purely local, the computation of X,
the Kalman gain, only involves the inverse of a 1 by I matrix.
Currently, the initial value for S is set to 1 to indicate a poor
initial guess, and the initial values for A are small, to describe
inputimages with very little noise. The depth map is initially
set to zero everywhere. A can also be derived using some
noise models for the intensity and light source.
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FIG. 3. Results for cake images. (a) First image (light source direction is (1. 0, 1)). (b) Second image (Jight source direction is (0, 1, 1)). (¢)
Third image (light source direction is (=1, 0, 1). (d) Fourth image (light source direction is (0, —1, 1)). (¢) Three-dimensional plot after processing
the first image. {f) Three-dimensional plot after processing the second image. (g) Three-dimensional plot after processing the third image. (h) Three-
dimensional plot after processing the fourth image.

This method can be implemented using the following 4. Compute the depth, Z%;, from Eq. (9).

simple algorithm: 5. Update the covariance matrix S* from Eq. (11).
1. Initialize all the depth values, Z%; to zero. 6. If the covariance matrix indicates inprovements, up-
2. Compute the partial derivatives of/aE;;, af/aL., date the depth.

dffaL,, aftaL,, aflaZ;; from Eqs. (4) to (8). 7. Set k = k + 1 and goto 2.

3. Compute K, Y, and M from Egs. (10), (12), The above process is done for each point in the image,
(13). and for each image in the sequence.

a
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FIG. 4. Results for womato images. (a) Gne of the 72 tomato images. (b) Thrce-dimensional plot of the final estimated depth map. (¢} Error

plot for average estimated surface normal after processing each image.

4, SEGMENTATION

The recovery of accurate depth information requires
that there must be adequate intensity information avail-
able. Once the depth has been recovered at a surface point,
it should only be refined if there is adequate intensity
information available; otherwise, the refinement may de-
grade the recovered depth. This demonstrates the need
for segmentation.

An example of inadequate intensity information is shad-
ows. Shadows can be divided into self-shadows and cast
shadows. Self-shadow is the part of an object which is not
luminated by direct light, and cast-shadow is the area
projected by the object in the direction of direct light. In
general, self-shadow is brighter than cast shadow since it
gets lights from interreflections. However, both of them

create dark regions with very little intensity information
available, Therefore, we can treat them in the same
manner.

Segmentation is done during the processing of each im-
age in the sequence. While processing the current image,
the scene is segmented using the following four categories,
depending on whether or not the area contains sufficient
intensity information in the current and previous images:

1. The areas which contain adequate intensity informa-

tion in both the current image (k) and the previous image
(k- 1)

2. The areas which contain adequate intensity informa-
tion in the previous image, but not the current image.

3. The areas which contain adequate intensity informa-
tion in the current image, but not the previous image.
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FIG. 5. The experimental setup for taking real images.

4. The areas which do not contain adequate intensity
information in either one of the images.

The segmentation is done through intensity thresh-
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the previous image will be refined by the current image.
For the second category, the estimated depth from the
previous image will remain unchanged. For the third cate-
gory, the depth will be recovered for the first time using
the current image. For the last category, nothing will be
recovered. Figure 1 gives an example of the segmentation.
In Fig. 1c, the white area is the region of the sphere which
contains adequate intensity information in both of the im-
ages; therefore, its depth is recovered by the first image,
then refined by the second image. The light gray area is
the region which contains adequate intensity information
in the first image, so its depth is recovered by the first
image and not refined by the second image. The dark
gray area is the region which contains adequate intensity
information only in the second image, and its depth is
recovered by the second image. The small dark area in the
lower left corner is that which does not contain adequate
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FIG, 6. Results for block images. (a) First image (light source dirgction is (0, — 1. 1}). (b) Second image (light source direction is {0, L. 1)). (¢}
Three-dimensional plot after processing the first image. (d) Three-dimensional plot of the final estimated depth map.
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FIG. 7. Results for the cylinder images. (a) The first image (light source direction is (- 1. 0. 1}). (b) The second image (light source direction
is (—0.7. 0.7. 1)). {¢) The third image (light source direction is (¢ 1. 1)). (d) The fourth image (light source direction is (0.7. 0.7. 1)). (e} The fifth

image (light source direction is (1. 0. 1)).

intensity information in either one of the images; the depth
e

in this area will not b
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recoverad
recovered.

5. RESULTS

5.1. Synthetic Images

The proposed method is first tested on a sequence of 72
synthetic images of a sphere. The images are generated by
keeping the slant (the angle between the light source and
the Z axis) of the light source at 5°, while changing the tilt
{the angle between the projection of the light source in
the X-Y plane and the X axis) of the light source in 5°
steps. Figure 2a gives one of the original images. Figure
2b shows the corresponding 3-D plot of the recovered
depth map. The error plot in 2C indicates the average error
in the estimated depth, compared with the true depth, after
processing each image. It shows that the improvements
are large in the beginning iterations, then become relatively
small after the results become stable,

Here, we want to emphasize that it is not always neces-

sary to uge 72 imaces in our method. ac it 1§ clear that the
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recovered depth map is quite good after processing a few
images. Our main aim in this experiment is to show that,
with additional images, the shape estimate either improves
or becomes stable.

The second test is performed on a set of synthetic cake
images. These images were generated with the tilt of the
light source changing in 90° increments. Each of the images
contain different shadow areas caused by the layers of the
cake, as shown in Fig. 3. After processing the first image,
the shadow area has not been recovered (Fig. 3e). The
subsequent images refine the original depth estimates to
yield a good representation of the shape of the cake (as
shown in Figs. 3f-h). The hole on the left side in Fig. 3e,
caused by the shadow area of the first image, is filled.

This algorithm is also tested on a sequence of tomato
images generated using a range image. The tilt of the light
source was moved in steps of 5°, and the slant remained
at 5% Figure 4 shows one of the input images, the 3-D plot



230 ZHANG, TSAIL AND SHAH

- ¢ﬁ%%t@r%&%

ot

B =
.

g %’D&b@%ﬁv& t
g

]

+&Wﬁ%%ﬁt%ﬁﬁﬁ%%%%

FIG. 8. The needle map after processing the first. second, third, and
fourth images. The fifth needle map is the same as the fourth, so it is
not shown.

of the recovered depth, and the error plot. The error plot
was generated by comparing the recovered depth, after
processing each input image, with the original range image.
5.2. Real Images

Next, two tests are performed on real image sequences
taken with a video camera. The experimental setup is

shown in Fig. 5. A platform, with a hole in the center and
an arm on the side, is used to rotate the light source around
the object. The object is placed in the center hole, and a
lamp is attached to the arm. The camera is directly above
the object. In order to create images with different light
source directions, the platform is rotated to align the arm
with each of the light source directions, while the object
in the center hole remains stationary.

The first sequence only contains two images (Fig. 6).
The objects in the scene are a wooden block and a paper
box. The wooden black is placed on the top of the paper
box, which creates shadows on the paper box. The first
image (shown in Fig. 6a) has a shadow area on one side
of the block, and the second image (shown in Fig. 6b) has
a shadow area on the other side of the block. The shadow
area in the first image is recovered through the second
image. The rotated (to provide a good view) 3-D plots
after processing each image are given in Figs. 6¢ and 6éd.

In another sequence, we took images of a cylinder sitting
on top of a block. There were a total of five images. The
light source was rotated from 0 to 180°, in steps of 45°
The original set of images, and the needle map describing
the surface orientation after procesing, are shown in Figs.
7 and 8. We can see that the shadow area from the first
image is gradually recovered during the processing of the
following images.

6. CONCLUSION

Shape from photomotion iteratively refines the shape
obtained from a sequence of images. It can take any se-
quence of images, in any order, as input. The process can
be stopped at any iteration and restarted from any other
point without loss of accuracy. When there is only one
input image, shape from photomotion is reduced to shape
from shading.

Thus far, the movement of the light source we have
considered has been arbitrary. In order to get better results
and to reduce the number of input images required, we
can also try to determine the optimal movement of the
light source. The optimal movement of the light source is
affected by the shape recovered from the current image
and the shadows. It’s always better if the light source is
moved to illuminate as much of the shadow region as
possible in the next image, while maintaining enough over-
lapping of bright regions between successive images. By
moving light in an optimal manner, we can reduce the
number of images required to a minimum and eliminate
shadow regions as much as possible. Also, we would like
to extend the photomotion to specular surfaces.
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