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Recognition of objects is one of the main goals of computer vision. Several ap-
proaches have been proposed to solve this problem using 3-D shapes. In most of them
it is assumed that the 3-D shape (depth map) is available. Several object recognition
systems use range images to extract the 3-D shape.
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object recognition for simple objects. This method extracts the 3-D information from
a single intensity image, then segments the object into regions. After computing the
properties of the regions, it compares the input object with the model objects in the
database. To test our method, several images with slightly different viewing angles of
single objects are matched against five models in the database.
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1. INTRODUCTION

Recognition of objects is one of the main goals of computer vision. Several ap-
proaches have been proposed to solve this problem using 3-D shapes. In most of
them it is assumed that the 3-D shape (depth map) is available. Several object
recognition systems use range images to extract the 3-D shape. Since correct depth
information depends only on geometry and is independent of illumination and re-
flectivity, intensity image problems with shadows and surface markigs do not occur
in depth maps. Therefore, the process of recognizing objects by their shape should
be less difficult in range images than in intensity images.

There are a number of methods to derive 3-D shapes from intensity images.
These methods include shape from stereo, shading, motion, texture, etc. So far
there is no object recognition approach to our knowledge that obtains the object’s
depth information employing a shape from shading algorithm. The purpose of this
paper is to propose an object recognition method that gets the depth information
from an intensity image using a shape from shading algorithm and uses it for 3-D
object recognition of real objects.

One advantage of this method is that we need only one intensity image as input.
Methods such as shape from stereo and shape from motion require two or more
intensity images to estimate the depth map. An additional advantage of our method

denth infarmatin Tinall
is that we do not need laser scanners to acquire depth information, Finsll

3-D data enables us to compute properties, such as surface types (e.g. ellipsoid,
elliptic paraboloid), that could not be computed using only 2-D information.
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2. THE METHOD

‘We consider an object as a solid mass composed of convex parts and Lambertian
surfaces. A region is defined as a subset of the surface of an object. This method
has four main phases: extraction of 3-D information, object segmentation, region
properties computation, and matching,

The first step is to estimate the depth information using a shape from shading
algorithm. In this approach, we use a linear shape from shading method proposed by
Tsai and Shah.” The second step is to segment the input image. The segmentation
is performed by an edge-based approach. The region boundaries are detected using
the negative curvature extrema in the surface curvature. The negative curvature
extrema form boundaries which we connect to obtain the object regions. In the
third stage, the region properties (surface type, centroid, area and perimeter) to be
used in the matching are computed. The fourth stage, matching, has two phases.
In the first phase, for each model, an interpretation tree is used along with unary
and binary constraints to obtain a set of possible matches.? In the second phase, the
best match is selected based on the surface type similarities. The next step would
be to obtain the pose estimation and verification, but the step is not addressed in
this paper.

The input to the system is a real intensity image. We smooth the image once to
remove noise. Smoothing is done using two one-dimensional Gaussian masks.! Next,
we estimate the light source direction from the smoothed infensity image using Lee
and Rosenfield’s algorithm.® Once we have the light source direction, we apply the

CLLivd AW ALIATANL O CMn AL Avasial. e

linear shape from shading algorithm by Tsai and Shah.” This method uses the
discrete approximations for p and ¢ in terms of Z in the reflectance function, and
then linearizes it in Z{z,y). The reflectance equation is given by E(z,y) = R(p,q)
where E(z,y) is the gray level at pixel (z,y) and R is given by '

1+ pps +qg;
VI+P?+¢/1+pi+df

R(p,q} = (1)

Using the following discrete approximations for p and ¢

p=g—i'-=Z(m,y)—Z(m—1,y), (2)
q=%f—-—-2(x,y)—2(m,y—1), ®)

the reflectance equation can now be rewritien as:
f(Z(z,y)) = E(z,y) — R(Z(z,y) - Z(z - Ly), Z(z,y) — Z(z,y — 1)) = 0. (4)

By taking the Taylor series expansion of this function f about Z(z,y) = Z"*(z, ),
where Z"~1(z, y} is the depth at the n—1 iteration, up through the first-order terms,

3. EXTRACTION OF 3-D DATA: SHAPE FROM SHADING ALGORITHM l
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one has
0= f(Z(z,y))

~ (2PN y) + (2(ay) — 20N y) ok

dZ(z,y)

Then for Z(z,y) = Z™(z,y), the depth map at the nth iteration, can be solved
directly as follows:

@y B

- n=1
Z%(z,y) = Z”‘l(a:, y) + M (6)
2 (772 (a,))

=_1*( (ps +45) (p + g)(pps -+ 945 + 1) )
V@R G+l PP PR+ 1) (7
Now, assuming the initial estimate of Z%(z, y) = 0 for all pixels, the depth map
can be iteratively refined using Eq. (6).
This method results in a extremely simple iterative scheme for computing depth.
It is a linear method and requires only two or three iterations to get a good relative

depth map. This shane from shadine method assumes that the surface is Lamber-
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tian and its albedo is constant. Figure 1 shows the intensity images of the objects
used in this work and the corresponding plots of reconstructed 3-D shape.

4. OBJECT SEGMENTATION

Once we have obtained the relative depth map, we apply a segmentation approach
similar to the one applied by Fan.® Using the object surface’s directional curvature
values, we obtain the curvature negative extrema. The negative extrema corre-
spond to the object’s region boundaries. Next, those boundaries are linked to form
the boundaries of initial regions which will be merged to obtain the final object
segmentation.

The detailed stens in obhiect seoementation are as follows: first, the depnth manp
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Z(z,v), is smoothed with three ¢ values: 0.5, 1.0 and 1.5. Then, for each smoothed
depth map and for the original depth map, the directional curvatures are computed
in four different directions (0°, 45°, 90°, 135°). This process creates a total of
sixteen directional curvature sets, each one with a different ¢ and different angle.
The directional curvature, Kjp, in direction # is given by:

Ko = — Zoa x/1 + (Z cosf ~ Zysin 8)?

8
(1+ Z)3/2 1+ 22+ 22 ' ®
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Fig. 1. Intensity images for (a) Bottle, (b} Cup, (c) Mustard, (d} Toy and (¢) Glass. Estimated
depth maps using shape from shading method for (f) Bottle, (g) Cup, (h) Mustard (i) Toy and
(i) Glass.

where Z, and Z, are the first derivatives of the depth map, Z {(z,y), inthez and y
directions, Zg and Zgg are the first and second derivatives in the 6 direction. Next,
we detect the negative extrema in each of the sixteen directional curvature sets
and represent them in sixteen binary images, the black pixels being the extrema.
In Fig. 2, we show the result for the negative curvature extrema for the object
Bottle in the 90° direction. We can see that the smaller the ¢ value, the greater the
amount of detail. Consequently for the lowest ¢ most of the details will be detected,
including the noisy features. On the other hand, the highest ¢ value will contain
less noisy features, but their localization will be imprecise.
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Fig. 2. Negative curvature extrema for Bottle in 90° for (a) ¢ = 0.0, (b) ¢ = 0.5, (¢) ¢ = 1.0,
(d) ¢ = 1.5.
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Fig. 3. After scale space tracking for Bottle in degrees (a) 0°, (b) 45°, (¢} 90° and (d} 135°.

A scale-space tracking algorithm is applied next on the negative extrema ob-
tained in the same direction to combine the results obtained at different scales. In
this case, we are combining the negative curvature extrema obtained at different ¢
values in the same direction. The detection of the curvature negative extremum is
done at the coarsest level (highest o) and the localization is done at the most fine
level (¢ = 0.0). For each curvature negative extremum at o = 1.5, we look for its
corresponding negative extremum in the image at ¢ = 1.0 within a 2-pixel distance
in # direction. If found, we continue locking for its corresponding negative extrema
in the extrema image with the next lower o value (¢ = 0.5). Finally, the position of
the corresponding negative extremum at ¢ = 0.0 is marked, if found. If at any level
a corresponding negative extremunm is not found, that location will not be marked.
The scale space tracking will result in four binary images, one for each direction.
See Fig. 3 for results of scale space tracking. The four resulting binary images are
merged using the logical OR operator.

We observed that noisy contours were attached to the actual region boundaries.
Those contours must be removed before connecting these boundaries because they
may produce false boundary connections. The noisy contours are removed as fol-
lows: first, a line thinning algorithm is applied. Second, every line end point is
traced until a fork is reached. If the number of points traced is less than four, the
points are removed. See Fig. 4 for results after removing noisy contours.
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Fig. 4. {a) Result after the logical OR operation for Bottle. (b} Result after removing noisy
contours.

An edge linker algorithm is applied to close boundaries and get the surface
regions. The edge linker finds open boudaries and tries to close them, following
the direction of the end point up to a distance of 10 pixels. To separate the object
regions from the background, only the regions whose average depth is above the
background level are taken into consideration.

Next, those regions connected by weak boundaries are merged. A boundary is
weak if more than 60% of the pixels forming it were added during the edge liking.
The merging is done in a recursive fashion. In Fig. 5, we show the results for the
final segmentation for five objects.

5. REGION PROPERTIES

Four region properties are used in this method: 3-D surface area, centroid, perimeter

and surface type of each significant region. A region is significant if its area is

greater than 500. These properties are to be used later in the matching phase.
The area, A, of each 3-D surface is computed as follows:

A=ff\/Z§+Z§+1dxdy.

Let n be the total number of points in a region. The coordinates of a point, %,
in the region are denoted by (zi, ¥, z:). The centroid, ¢, of that region is given by
(%, §, z) where

z?:l Tq E?:l yi

. gE=ELE =

E?=1 23
, )

n n n

T =

The perimeter, P, of a region is defined as the total number of pixels that are
on the boundary of the region.

The surface type is classified as one of the eight possible types: ellipsoid, hyper-
boloid of two sheets, hyperboloid of one sheet, cone, elliptic paraboloid, hyperboloid
paraboloid, invalid, point or conic section.

The surface type is obtained by fitting the quadratic polynomial to each region:

flz,y,2) = Az® +- By? + C2° + Day + Exz+ Fyz+ Gz + Hy+ Iz+ 7 =0. (9)

The coefficients A, B, C, D, E, F, G, H, I and J are determined using the least
square fit method.
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Fig. 5. (a) Results of scale space tracking. (b) Results after removal of noisy contours. {¢) Final
segmentation. Different gray levels indicate different regions: Bottle (6 regions), Cup (2 regions),

Mustard (4 regions), Toy (3 regions} and Glass (5 regions).

Once we know the values of each coefficient, we get the surface types. Levin®

uses the following classification approach:
Let

TW=A+B+C,
To = AB+ BC + AC - D? - E? - F?,

oy o ]

T3 = ABC +2DEF — AE® - BF? - CD?
3 )

Dy=AB+BC+C+A+AC+B~-D?*-FE*-F2_G? - H? - J?,
Ds = ABC+AB+ AC+BC+2%(DEF+FGJ+DGH+EHG)— (C+1)D?~
(A+1)E? ~ (B+1)F2 — (B+C)G? ~ (A+ C)H? — (A + B)J?,
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The classification is done as follows®:

*

ellipsoid: T3 # 0 and (T > 0 aend (T1 * T3} > 0 and Dy < 0)

o invalid: T3 # 0 and (T2 > 0 and (T = T3) > 0 and Dy > 0)

e point: T3 # 0 and (T2 > 0 and (T3 * T3} > 0 and Dy = 0)

o hyperboloid 2 sheets (hyperboloid-2) : T3 # 0 and (Tp < 0 or (T3 + T3) < 0 and
Dy <)

o hyperboloid 1 sheet (hyperboloid-1) : T3 # 0 and (T2 <= 0 or (T1 * T3) < 0 and

.D4 > 0)

cone: T3 #0 and (T <=0 or (T1xT3) < 0 and Dy = 0)

elliptic paraboloid: Ts =0 and Dy <0

hyperboloid paraboloid: T5 = 0 and Dy > 0

conic section: Ta =0 and Dy = 0.

6. THE MATCHING

Our recognition system has a database with the models of the objects we want to
recognize. The properties of the models are obtained in the same way that the
properties of the deta objects are.

Matching is performed in two stages. In the first stage, we use an interpretation
tree for each model object to select a list of possible matches.?

In the interpretation tree, there are n levels, where n is the number of regions
in the data object. Each node has m + 1 siblings, where m is the number of regions
in the model object. Each node in the tree represents a match of a region of the
object date (the node level) to a region of the model object (the position of the
node with respect to its siblings}. A path from the root to a node in the bottom
level of the tree matches each region of the data to some region in the model or
a null region. The null region allows for the case that the data object has more
regions than the model and occlusion. The tree is pruned in a depth-first manner.
We apply the unary constraint, region compactness, between single regions and the
binary constraints between the current data region and model region and each of
the regions matched in its path. If all the constraints are satisfied, continue going
down the tree; otherwise, back up and continue onto the next branch.

‘We prune each tree using unary and binary constraints. In a unary constraint
the properties between one region in the model (m) and one region in the data (d)
are compared.

We use one unary constraint, the region compactness constraint.

¢ Compactness (p): Compactness is defined as the ratio of area over perimeter

squared. ¢ = P
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d
If lz—ml < (1+thr,) and I;‘%‘,id > (1 —thry) then the regions are consistent, where
d and m superscripts denote respectively data and model. The threshold is £hr,,.
In a binary constraint the properties between two regions in the model (m)

and two regions in the data (d) are compared. We use two binary constraints, the
relative distance between two centroids and the ratic of surface areas difference:

o Relative distance between the centroids of two regions (w): Let § be the distance
between the centroids of two regions:

§=+/(Z1 — Z2)2 + (1 — F2) + (21 — B2)2.

The relative distance between the centroids is defined by w =

§
ma.x(Pl P Pg) )
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d d
if |%| < {1+ thrg) and |w—ml > {1 — thrg) then the regions are consistent,
w w
where d and m superscripts denote respectively data and model. The threshold
for this constraint is thrg.
e Ratio of surface aree difference () is defined as:
o= | Ay — Ag|
T max(A;, Az)
The surface area constraint is the following:
d ol
If f%l < (1+thry) and |[—| > (1 —thry} then the regions are consistent, where
o o™
d and m superscripts denote respectively data and model and erry is the area
threshold.

The result will be a set of possible matches. In the second stage, the surface type
properties are used to select the best match. The model that matches the greatest
number of surface types would be chosen.

7. EXPERIMENTAL RESULTS

In our experiments, we obtained intensity images of five objects: Bottle, Cup, Toy,
Glass and Mustard Container (shown in Fig. 1}. We built a database containing
these objects as follows. First, we used stages one, two and three of our method to
find the object regions in the images and to calculate those region properties which
would be stored in the database. The database holds five records, each holding the

cnrranmanAding nhisnatle neanartisae ahtainad fran tha 2.7 infarmmatian
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To test our method, we used several intensity images for each object with slightly
different viewing angle as shown in Fig. 6. Given each input image, the system
obtains 3-D information using shape from shading, segment the object, compute
the region properties and match those against the models in the database.

The segmentation produces the following results. The intensity images for the
Bottle object were always segmented into three main regions, which were classified
as ellipsoids (except for two regions which were classified as invalid types). The
images for the Cup were generally segmented into two or three regions, correspond-
ing to the handle, the liquid container and a noisy region obtained from a shaded
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Fig. 6. Intensity images for (a) Bottlel, (b) Bottle2, (c} Bottle3, (d) Bottled, (¢) Cupl, (f) Cup2,
(g) Cup3, (h) Cup4, (i) Cups, (i) Toyl, (k) Toy2, (1) Toy3, (m) Toyd, {n) Mustl, (o) Must2,
(p) Must3, (q) Glassl, (r)} Glass2, (s) Glass3.

surface of the cup. These regions were classified as ellipsoids, or as hyperboloids
of one sheet. The Toy was always segmented into three major regions, which were
consistently classified as ellipsoid, hyperboloid of one sheet and ellipsoid. The seg-
mentation for the Mustard varied, producing two, three or four regions. The Glass
produced only one region, an ellipsoid.

In Figs. 7 through 11, we summarize the properties obtained for each region
in the object, namely 3-D surface area, perimeter, centroid (z,y,z) and the sur-
face type. In each figure we give the object properties in the model (*), then the
computed properties for the test data.

For the Bottle, Cup, and Toy, all the intensity images for different views were
matched correctly. The Mustard was correctly identified in two of three trials. In
the third case, the input (w1th four regions) failed to match the Mustard model
{which had only two regions). Consequently, the input allowed two null matches,

which were also satisfied by the Cup model. In addition, the Cup model matched
more surface types, so the Mustard was classified as a Cup.

\
i
l
|
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Bottlel* Region 1 Region 2 Region 3
area 4402.7 5491.2 5174.6
perimeter 270.0 287.0 270.0
centroid {129.6,75.6,-0.8) | (128.7,140.8,-0.4) | (127.5,210.3,-0.6)
type ellipsoid ellipsoid ellipsoid
Botitle2 Region 1 Region 2 Region 3
area 4657.5 5473.9 5290.3
perimeter 262.0 275.0 262.0
centroid (162.9,73.6,-0.9) | (133.8,132.6,-0.6) | (102.2,195.4-0.8)
type ellipsoid invalid ellipsoid
Bottled Region 1 Region 2 Region 3
area 4347.4 5356.8 5332.3
perimeter 248.0 267.0 282.0
centroid (180.1,114.5,-0.6) { (48.1,118.7,-0.5) | (117.0,116.8,-0.4)
iype ellipsoid ellipsoid ellipsoid
Bottled Region 1 Region 2 Region 8
area 5146.4 5422.0 4286.9
perimeter 240.0 248.0 2340
centroid (187.0,59.7,-0.4) | {147.4,116.2,-0.3) | (110.0,168.1,-0.4)
type ellipsoid invalid ellipsoid

Fig. 7. Computed properties of Bottle.

Cupl® Region 1 Region 2 Cup? Region 1 Region 2
area 14838.4 1973.6 area 14581.7 1915.4
perimeter 462.0 260.0 perimeter 462.0 227.0
centroid (130.3,123.7,-1.2) | (208.7,134.1,-2.0) | | centroid (127.2,134.2,-1.0) | (203.7,126.6,-1.7)
1ype ] ellipsoid hyperbolid-1 iype ellipsoid hypetbolid-1
Cup3 Region 1 Region 2 Region 8
areq 2406.1 844.9 13834.8
perimeler 318.0 221.0 470.0
centrowd (126.3,58.8,-1.7) | (70.3,131.1,-1.7) | (135.4,138.4-1.1}
type ellipsoid hyperbolid-1 ellipscid
Cupf Region 1 Region 2 Region 8
area 13476.8 763.9 2451.3
perimeter 475.0 212.0 294.0
centroid (132.4,117.6,-1.3) | (76.4,125.6,-3.2) | (206.4,125.7,-2.3)
fype ellipsoid hyperbolid-1 hyperbolid-1
Cup§ Region 1 Region 2
areq 1865.9 14579.0
perimefer 277.0 398.0
centroid (183.3,67.6,-1.1) | (129.2,127.4,-0.6)
type ellipsotd ellipsoid

Fig. 8. Computed properties of Cup.

Each of the Glass images was matched to several different models in addition to
the correct model. Since each of the Glass images had only one region (an ellipsoid),
only the region compactness constraint and surface type constraint were used. All
the other models had two or more regions, and at least one of these could be matched
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Toyl” Region ! Region 2 Region 3
area 4067.7 2228.2 2767.0
perimeler 224.0 199.0 238.0
centroid (164.9,74.1,0.5) | (117.6,134.7,0.6) | (69.8,194.8,0.6)
type ellipsoid hyperbolid-1 ellipsoid
Toy2 Region ! Region 2 Region 8
area 4117.3 2523.2 2475.8
perimeter 208.0 218.0 236.0
centroid (200.1,106.3,0.5) | (46.4,110.1,0.6) | (119.2,108.0,0.5)
type ellipsoid ellipsoid hyperbolid-1
Toy3 Region I Region 2 Region 3
area 2749.0 2256.9 4103.9
perimeter 249.0 225.0 212.0
centroid (128.2,47.6,0.8) | (123.1,125.9,0.7) | (118.3,202.4,0.7)
type ellipsoid hyperbolid-1 ellipsoid
Toy4 Region 1 Region 2 Region 8
area 4075.7 2852.3 2228.8
perimeter 208.0 254.0 219.0
centroid (55.7,124.0,0.7) | (206.4,132.5,0.7) (132.1,128.0,0.7)
type ellipsoid hyperbolid-1 ellipsoid
Fig. 9. Computed properties of Toy.
Musil Region 1 Region 2 Region 3
area 669.8 650.4 10243.6
perimeler 92.0 115.0 398.0
centroid (138.8,53.0,0.1) | (136.5,72.4,0.3) | (126.8,151.7,0.4)
type hyperbolid-1 ellipsoid ellipsoid
Must2* Region 1 Region 2
erea 10716.4 705.9
perimeler 415.0 095.0
centroid (116.1,111.0,0.2) | (208.5,107.0,0.1)
type ellipsoid ellipsoid
Must3 Region 1 Region 2 Region 3 Regton 4
area 636.0 668.0 9607.2 617.1
perimeter 89.0 100.0 333.0 144.0
centroid (79.1,60.1,0.2) | (93.9,82.1,-0.1) | (150.3,131.6,0.0) | (202.5,168.9,-0.5)
type invalid invalid ellipsoid hyperbolid-1

Fig. 10. Computed properties of Mustard.

to the Glass image’s region. A region number constraint could help to solve this
problem. In Fig. 11, we sumnmarize the results of the matching.

We also analyzed the efficiency of the constraints used. In Fig. 12, we show how
often a given constraint helped to prune the tree. The constraints were appited in the
order shown in the table: compactness, relative distance between the centroids and
relative difference between the 3-D areas. The most helpful constraint was region
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compactness which is the ratio of the 3-D surface area over perimeter squared. By
using the 3-D data, we are able to obtain more information from each region as
compared to the 2-D anlaysis. In addition, using 3-D data allows us to compute
properties, such as surface types, which in 2-D could not be computed.

Glassl™® Region I
area 8755.8
perimeler 415.0
centroid || (111.4,112.9,0.3)
type ellipsoid
Glass2 Region 1
area 8800.8
perimeter 376.0
ceniroid (137.3,116.8,0.54)
type ellipsoid
Glass3 Region 1
area 8988.9
perimeler 401.0
centroid (127.2,147.3,0.54)
type ellipsoid

Fig. 11. Computed properties of Glass.

Input p | Bottle | Mustard | Glass | Toy
Cupl
Cup?2
Cup3
Cup4
Botl
Bot2
Botd
Bot4
Toyl
Toy?2
Toy3
Toy4
Glassl
Glass2
Glass3
Mustl
Must2

Must3 ||
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ANEN(EN
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Fig. 12. Summary of results.
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Input || compaciness | dist. cent. | diff. area
Cupl |f (26) 90% (02) 7% | (01) 3%
Cup2 || (29) 88% (04) 12% | (80) 0%
Cup3 |} (73) 100% | (00) 0% | (00) 0%
Cup4 || (19) 100% | (00) 0% | (00} 0%
Cup5 | (33) 97% (00) 0% | (01) 3%
Botl || (49) 40% (33) 58% | (02) 2%
Bot2 || (32) 36% (28) 32% | (28) 32%
Bot3 || (28) 32% (24) 28% | (34) 40%
Bot4 || (30) 42% (36) 50% | (06) 8%
Toyl | (34) 44% (35) 45% | (08) 11%
Toy2 || (37) 53% (17) 24% | (16) 23%
Toy3 | (51} 80% (11} 17% | (02) 3%
Toy4 | (39) 76% (10) 20% | (02) 4%
Mustl || (24) 36% (27)41% | (15) 23%
Must2 | (18) 49% (15) 45% | (02) 8%
Must3 || (94) 65% (30) 21% | (20) 14%

Glassl || (03) 100% | N.A. N.A.
Glass2 || {02) 100% | N.A. N.A.
Glass3 || (02) 100% | N.A. NA.

Fig. 13. Evaluation of constraint effectiveness.

8. DISCUSSION

We have presented a method that uses a shape from shading algorithm to perform
3-D object recognition for simple objects. This method extracts the 3-D information
from a single intensity image, then segments the object into regions. After com-
puting the properties of the regions, it compares the input object with the model
objects in the database.

The experimental results are quite encouraging. The models are easy to build;
we just use intensity images. The system computes object properties and store the
properties in the database. The compactness constraint has been found to be the
most helpful constraint in pruning the interpretation tree. Finally, we have shown
that the estimated depth map can be used in object recognition.
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