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filtering. The simulation of an electronic neural network setup show
that the detection of a moving image is not only possible in real-time
but also with high resolution and lower level noise. This demonstrates
that biologically inspired quasiparallel processing has advantages
in processing moving image information, and provides a new way
for hardware implementation for motion processing functions. The
proposed algorithm which solves the problem of image-background
discrimination by binding current motion information with previously
acquired afterimages may be have some usefulness in robot vision.

ACKNOWLEDGMENT

The authors are grateful to our anonymous referee for the most
appreciated comments and the substantial help in improving grammar
of this paper.

REFERENCES

[1] W. Reichardt, M. Egellhaaf, and A. Guo, “Processing of figure and
background motion in the visual system of the fly,”Biol. Cybern., vol.
61, pp. 327–345, 1989.

[2] P. Burt and G. Sperling, “Time, distance, and feature trade-offs in visual
apparent motion,”Psychol. Rev., vol. 88, no. 2, pp. 171–155, 1981.

[3] J. P. H. Santen and G. Sperling, “Elaborated Reichardt detectors,”J.
Opt. Amer. A, vol. 2, pp. 300–321, Feb. 1985.

[4] M. A. Fischler and O. Firschein,Intelligence, the Eye, the Brain and the
Computer. Reading, MA: Addison-Wesley, 1987, pp. 207–238.

[5] T. Poggio, E. B. Gamble, and J. J. Little, “Parallel integration of vision
modules,”Science, vol. 242, pp. 436–440, 1988.

[6] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images,” inIEEE Trans. Pattern Anal.
Machine Intell., vol. PAMI-6, pp. 721–741, 1984.

[7] A. Guo and W. Reichardt, “An estimation of time constant of movement
detectors,”Naturwissenschaften, vol. 74, pp. 91, 1987.

[8] S. Neuenschwander and W. Singer, “Long-range synchronization of
oscillatory light responses in the cat retina and lateral geniculate
nucleus,”Nature, vol. 379, pp. 728–733, 1996.

[9] P. Buser and M. Imbert (Translated by R. H. Kay),Vision. Cambridge,
MA: MIT Press, 1992, pp. 172–174.

[10] H. Lu, X. Wang, S. Liu, M. Shi, F. Liu, and A. Guo, “A model for
visual-background discrimination by relative movement,”Sci. China,
series C, vol. 40, no. 1, pp. 79–89, 1997.

[11] M. A. Sivilotti, M. A. Mahowald, and C. A. Mead, “Real-time com-
putations using analog CMOS processing arrays,” in1987 Stanford
Conf. VLSI, P. Losleben, Ed. Cambridge, MA: MIT Press, 1987, pp.
295–312.

[12] C. Koch, “Implementing early vision algorithms in analog networks:
An overview,” in Applications of Neural Networks, H. G. Schuster, Ed.
New York: VCH, 1992, pp. 3–23.

[13] H. Ogmen, “A neural theory of retino-cortical dynamics,”Neural
Networks, vol. 6, pp. 254–273, 1993.

[14] J. Aloimonos, “Purposive and qualitative active vision,” inProc. 10th
Int. Conf. Pattern Recognition, Los Alamitos, CA, 1990, pp. 346–360.

Shape from Intensity Gradient

Ruo Zhang and Mubarak Shah

Abstract—Unlike existing global shape-from-shading (SFS) algorithms
which involve the brightness constraint in their formulation, we propose
a new SFS algorithm which replaces the brightness constraint with an
intensity gradient constraint. This is a global approach which obtains
the solution by the minimization of an error function over the entire
image. Through the linearization of the gradient of the reflectance map
and the discretization of the surface gradient, the intensity gradient can
be expressed as a linear function of the surface height. A quadratic
error function, which involves the intensity gradient constraint and the
traditional smoothness constraint, is minimized efficiently by solving a
sparse linear system using the multigrid technique. Neither the infor-
mation at singular points nor the information at occluding boundaries
is needed for the initialization of the height. Results for real images are
presented to show the robustness of the algorithm, and the execution time
is demonstrated to prove its efficiency.

Index Terms—Intensity gradient, multigrid technique, physics-based
vision, shape-from-shading.

I. INTRODUCTION

The goal of shape-from-shading (SFS) is to reconstruct the three-
dimensional (3-D) shape of an object from its two-dimensional (2-D)
intensity image, assuming a proper reflectance map, which models the
relationship between the intensity and surface shape, is given. Surface
shape can be represented by height, gradient, surface normal, slant
and tilt, or curvature. Since the reflectance map is a nonlinear equation
in terms of the shape, simplifications are needed in order to restrict the
problem. The first simplification, which is also the biggest for most
SFS algorithms, is the assumption of diffuse reflection: that surfaces
reflect light equally in all directions. The second simplification is
that the illumination is from a point light source at infinity. Other
simplifications include assuming a known viewing direction, known
light source direction, and orthographic projection. Together, these
assumptions introduce a simple Lambertian model which describes
the intensity in terms of the cosine value of the angle between the
surface normal and the light source direction. This model allows
for the use of the information at singular points (points which have
maximum brightness in the image) and occluding boundaries (the
contour on the object where the gradient is nearly 90� to the viewing
direction). In order to obtain a correct solution for SFS, the local
spherical assumption [10], the brightness constraint [2], [4]–[9], [11],
[14], [16], [17], [20], [22], [23], the brightness derivative constraint
[23], the smoothness constraint [4], [6]–[9], [11], [20], and the
integrability constraint [7], [8], [20], [23] are used in addition to the
information at singular points and occluding boundaries [2], [4]–[7],
[14], [20].

The spherical assumption approximates the local surface by a
spherical patch. The brightness constraint minimizes the error be-
tween the reconstructed intensity and the input intensity, and the
brightness derivative constraint minimizes the error between the
reconstructed intensity derivatives and the input intensity derivatives.
The smoothness constraint requires that the reconstructed surface be
smooth. The integrability constraint ensures that the reconstructed
surface is integrable.
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There are several simple and efficient SFS approaches which
use only local intensity information to derive shape. These include
Pentland’s methods [16], [17], Lee and Rosenfeld’s method [10],
and Tsai and Shah’s method [22].

Pentland [17] solved for the surface slant and tilt, the radius of
curvature, and the light source direction using six equations obtained
from the intensity, as well as the first and second derivatives of
the intensity. His approach can classify a surface into one of five
categories: planar, cylindrical, convex, concave, or saddle surface.
However, it is limited to surfaces with equal-magnitude principal
curvatures.

Lee and Rosenfeld [10] considered the derivatives of the intensity
in both thex and y directions, and found that, in the light source
coordinate system, the tilt of the surface was the same as the angle
of the intensity gradient. This result was obtained by approximating
the local surface with a spherical patch. The slant of the surface
was obtained under the assumption that the surface has uniform
reflectance, and the brightest point on the surface has its normal
pointing in the light source direction. The disadvantage of this
approach is its limitation to spherical surfaces.

Another approach by Pentland [16] linearized the reflectance map
in terms of the surface gradient, through the Taylor’s series. By
taking the Fourier transform of the linearized brightness equation
and considering the relationship between the Fourier transform of
the surface gradient and the Fourier transform of the height, the
height can be recovered through the inverse Fourier transform of the
intensity. Since no smoothness constraint is needed, this algorithm
is applicable to complex natural surfaces. However, it has difficulty
with images of quadratic and higher order surface reflectance because
of the linearization of the reflectance map.

Instead of linearizing the reflectance map in terms of the gradient,
Tsai and Shah [22] employed a discrete approximation to the gradient
first, then linearized the reflectance map in terms of the height.
Consequently, at each pixel, the intensity can be expressed by a
linear function of the height at neighboring pixel, and the Jacobi
iterative scheme can be applied to solve the entire linear system.
This algorithm breaks down when self-shadows exist in the image.

Although local approaches are simple and fast, they have limita-
tions, especially in the case of noisy real images. Therefore, several
SFS algorithms use global information to ensure robustness.

The first two global approaches were by Ikeuchi and Horn [8], and
Brooks and Horn [4]. Both combined the brightness constraint and
the smoothness constraint to form an error function, then minimized it
using variational calculus. In his later approach, Horn [7] added the
integrability constraint to the error function. To solve the problem
of slow convergence for Horn’s approach, Szeliski [20] used the
hierarchical and preconditioned conjugate gradient descent method to
improve the efficiency. Unlike the above algorithms, which involve
the recovery of either the surface normal or the surface gradient,
Leclerc and Bobick [9] used a discrete approximation of the surface
gradient to introduce height into the error function, which consists
of the brightness constraint and the smoothness constraint. Then
they directly solved for height by taking the derivative of the error
function and applying the conjugate gradient technique. All of the
above techniques require known shape information at occluding
boundaries in order to enforce correct convergence. Leclerc and
Bobick’s approach needs the height output from stereo as the initial
estimate.

Zheng and Chellappa [23] were the first to consider the first
derivative of intensity in the variational calculus approach. However,
their derivatives were taken along thex andy directions. Their error
function contains the brightness constraint, the brightness derivative
constraint, and the integrability constraint. For smooth Lambertian

surfaces, since the change of intensity is small, the brightness con-
straint in their error function still dominates. The Taylor’s series was
applied to linearize the reflectance map, and discrete approximations
for surface gradients, and their derivatives, were used. The iterative
scheme was implemented using a hierarchical structure to solve for
surface height and gradient simultaneously. The initial values for the
height and gradient could be zero. Their results showed inaccuracies
around the light source direction, which is due to the brightness
derivative term.

Lee and Kuo’s approach [11] involves the brightness and smooth-
ness constraints. The linearization of the reflectance map was com-
bined with the triangularization of the surface to express the re-
flectance map as a linear function of the height. A quadratic error
function was minimized by solving a sparse linear system. The
multigrid method, with successive linearization, was used to solve
this linear system. All height values could be initialized to zero.

Both Zheng and Chellappa’s method and Lee and Kuo’s method
can recover good low frequency information, but high frequency
information, the details, are smoothed out. Zheng and Chellappa’s
results are affected by the background value. Lee and Kuo’s method
tends to oversmooth the surface and the recovered height is incor-
rectly slanted upward in one direction.

Rouy and Tourin [19] presented a solution to SFS based on Hamil-
ton–Jacobi–Bellman equations and viscosity solutions theories in
order to obtain a unique solution. A link between viscosity solutions
and optimal control theories was given via dynamic programming.
Moreover, conditions for the existence of both continuous and smooth
solutions were provided.

Another approach is by Dupuis and Oliensis [5], [14], [15]. Oliensis
[14] observed that the smoothness constraint is only needed at the
boundaries if we have initial values at the singular points. Based on
this basic idea, Dupuis and Oliensis [5], [15] developed an iterative
algorithm to recover depth using discretized optimal control and
dynamic programming. The proof of equivalence between the optimal
control representation and SFS was illustrated. At first, they did
not deal with a general light source and multiple singular points.
Later, they removed these restrictions and allowed for a general light
source and multiple singular points. However, their initial algorithm
[5] requires a priori depth information for all singular points. A
later extension [15] can determine this information automatically
by assuming twice differentiable depth, isolated singular points, and
nonzero curvature at singular points.

Bichsel and Pentland [2] simplified Dupuis and Oliensis’s ap-
proach. They found that a minimum downhill principle could remove
the ambiguity introduced by singular points, so that the height
information at singular points can be propagated to build a contin-
uous surface. The propagation follows the principle that the height
information is only passed to pixels that are farther away from the
light source. Among all the pixels that are farther away from the
light source, they choose the one that is the closest. The closest point
is the one that has maximum height among those that lead away
from the light source. This is based on the fact that since bothx

and y are fixed at each pixel, the distance to the light source is a
monotonically increasing function of the surface height if the angle
between the light source direction and the optical axis is less than
90�. Eight directions in the image grid are considered, and the image
is prerotated to align the projection of the light source direction in the
image plane with thex-axis, since the directions for which a solution
exists form a very narrow angle with the light source direction, at low
brightness points. For each of the eight directionsd, if we consider
d to be both thep direction (x component of the surface gradient)
and the direction of steepest descent, then in the orthogonal direction
q (y component of the surface gradient), the reflectance map should
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vanish. Consequently,q is obtained by differentiating the reflectance
map with respect toq, and solving it for zero. The change of height
along directiond is thep value corresponding to thisq. This approach
used the concept of the derivative of the reflectance map with respect
to q, but it does not directly use the intensity gradient information.
The problem with this method is that it has difficulty with multiple
singular points and is sensitive to noise.

Similar to Horn’s and Dupuis and Oliensis’s approaches, Kimmel
and Bruckstein [3] reconstructed the surface through layers of equal
height contours from an initial closed curve. Their method applied
techniques in differential geometry, fluid dynamics, and numerical
analysis, which enabled the good recovery of nonsmooth surfaces.
The algorithm used a closed curve in the areas of singular points for
initialization.

None of the above methods deal with interreflections—the mu-
tual illumination between surface facets. Nayaret al. [12], [13]
addressed the shape-from-interreflection problem using photometric
stereo. They observed that the erroneous shape extracted by shape-
from-photometric-stereo algorithms in the presence of interreflections
was shallower than the real shape. Therefore, they proposed a method
to iteratively refine the shape. Similar formulation of interreflection
was also discussed by Forsyth and Zisserman [1].

Common problems among the existing SFS algorithms include
oversmoothing, lack of robustness, and excessive execution time. To
overcome these problems, we introduce a new SFS algorithm, which
follows the traditional global approach, but provides more realistic
and reliable results with a fast execution time.

In the following, we first present the theory of the proposed
method in Section II, then describe its multigrid implementation in
Section III. Section IV presents the results. Finally, we provide the
conclusion in Section V.

II. SHAPE EXTRACTION USING THE INTENSITY GRADIENT

In our approach, we use neither the spherical assumption as in
Lee and Rosenfeld’s and Pentland’s approaches, nor do we base our
algorithm on singular points. Unlike Zheng and Chellappa’s approach,
which considered the intensity derivatives in thex andy directions,
the brightness constraint, and the integrability constraint, we drop
the traditional brightness constraint and use the intensity gradient
constraint. The direction of the intensity gradient is the direction in
which the shape of the surface changes the most in the Lambertian
model. The directional derivative of the reflectance map, rather than
the reflectance map, is linearized using Taylor’s series. The discretiza-
tion of both the surface gradient and its directional derivative, in
terms of height, is used in order to express the derivative of the
reflectance map as a linear function of height at neighboring pixels.
To enforce a unique solution, the smoothness constraint, instead of
the integrability constraint, is applied. The resulting nonlinear error
function, which includes the smoothness constraint and the simplified
intensity gradient constraint, is minimized through the solution of a
sparse linear system, which is solved by the multigrid technique.

We use the traditional Lambertian model, based on the assumption
of an infinite point light source

Ii; j = Ri; j =
(�pi; j ; �qi; j ; 1) � ~S

p2i; j + q2i; j + 1
(1)

where Ii; j is the input intensity at pixel(i; j), which is equal to
the reflectance mapRi; j , (pi; j , qi; j) is the surface gradient, and

~S = (Sx; Sy; Sz) is the unit light source direction. We then take the
directional derivative of the reflectance map (1) along the intensity
gradient directiondi; j as shown in (2), at the bottom of the page,
wherepd andqd are the directional derivatives ofpi; j andqi; j
along the intensity gradient direction.

The first order Taylor’s expansion around the fixed point
(pi; j ; qi; j ; pd ; qd ) yields the following linear approximation
to the directional derivative:

Rd �Rd (pi; j ; qi; j ; pd ; qd )

+
@Rd

@pd
(pd � pd ) +

@Rd

@qd
(qd � qd )

+
@Rd

@pi; j
(pi; j � pi; j) +

@Rd

@qi; j
(qi; j � qi; j): (3)

By rewriting (3), we obtain

Rd ��i; jpi; j + �i; jqi; j + i; jpd + �i; jqd + �i; j

�i; j =
@Rd

@pi; j

�i; j =
@Rd

@qi; j

i; j =
@Rd

@pd

�i; j =
@Rd

@qd

�i; j =Rd (pi; j ; qi; j ; pd ; qd )

� �i; jpi; j � �i; jqi; j � i; jpd � �i; jqd : (4)

We use the following discrete approximations forpi; j , qi; j , and their
derivatives:

pi; j = zi; j � zi; j�1

qi; j = zi; j � zi+1; j

px = zi; j � 2zi; j�1 + zi; j�2

py = zi; j � zi; j�1 � zi+1; j + zi+1; j�1

qx = zi; j � zi+1; j � zi; j�1 + zi+1; j�1

qy = zi; j � 2zi+1; j + zi+2; j

pd = px �xi; j + py �yi; j

qd = qx �xi; j + qy �yi; j

wherepx and qx are derivatives along thex direction, py
andqy are derivatives along they direction,�xi; j = cos �, and
�yi; j = sin � [� is the angle of the intensity gradient at pixel
(i; j)]. Then the directional derivative of the reflectance map (4) can
be expressed as a linear function of the height at neighboring points

Rd ��i; j(zi; j � zi; j�1) + �i; j(zi; j � zi+1; j)

+ i; j [(zi; j � 2zi; j�1 + zi; j�2)�xi; j

+ (zi; j � zi; j�1 � zi+1; j + zi+1; j�1)�yi; j ]

+ �i; j [(zi; j � zi+1; j � zi; j�1 + zi+1; j�1)�xi; j

+ (zi; j � 2zi+1; j + zi+2; j)�yi; j ] + �i; j : (5)

Now compute the height,zi; j , by minimizing the following function:
n�1

i=0

n�1

j=0

(Id �Rd )2+�

n�1

i=0

n�1

j=0

(p2x +p
2

y +q
2

x +q
2

y )

(6)

Rd =
(�Sxpd � Syqd )(p2i; j + q2i; j + 1)� (Sz � Sxpi; j � Syqi; j)(pi; jpd + qi; jqd )

(p2i; j + q2i; j + 1)3=2
(2)
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wheren is the image size and� is the weight of the smoothness term.
The first term is the intensity gradient constraint and the second term
is the smoothness constraint. SubstitutingRd from (5) for the first
term of (6), we obtain

n�1

i=0

n�1

j=0

a
2

i; jz
2

i; j + b
2

i; jz
2

i; j�1 + c
2

i; jz
2

i+1; j

+ d
2

i; jz
2

i; j�2 + e
2

i; jz
2

i+1; j�1 + f
2

i; jz
2

i+2; j

+ 2[ai; jbi; jzi; jzi; j�1 + ai; jci; jzi; jzi+1; j

+ ai; jdi; jzi; jzi; j�2 + ai; jei; jzi; jzi+1; j�1

+ ai; jfi; jzi; jzi+2; j + bi; jci; jzi; j�1zi+1; j

+ bi; jdi; jzi; j�1zi; j�2 + bi; jei; jzi; j�1zi+1; j�1

+ bi; jfi; jzi; j�1zi+2; j + ci; jdi; jzi+1; jzi; j�2

+ ci; jei; jzi+1; jzi+1; j�1 + ci; jfi; jzi+1; jzi+2; j

+ di; jei; jzi; j�2zi+1; j�1 + di; jfi; jzi; j�2zi+2; j

+ ei; jfi; jzi+1; j�1zi+2; j + ai; jgi; jzi; j

+ bi; jgi; jzi; j�1 + ci; jgi; jzi+1; j + di; jgi; jzi; j�2

+ ei; jgi; jzi+1; j�1 + fi; jgi; jzi+2; j ] + g
2

i; j (7)

where

ai; j = � �i; j � �i; j � i; j(�xi; j +�yi; j)

� �i; j(�xi; j +�yi; j)

bi; j =�i; j + i; j(2�xi; j +�yi; j) + �i; j�xi; j

ci; j =�i; j + i; j�yi; j + �i; j(�xi; j + 2�yi; j)

di; j = � i; j�xi; j

ei; j = � i; j�yi; j � �i; j�xi; j

fi; j = � �i; j�yi; j

gi; j = Id + �i; j :

The second term of (6), the smoothness constraint, can be rep-
resented by a template, to be applied to the 2-D height, as follows
[11], [21]:

V :
1

h2

1
2 �8 2

1 �8 20 �8 1
2 �8 2

1

:

Here,h is the spacing between pixels. The templates for the image
boundary can be found in [11] and [21].

Equation (7) can be rewritten in the following matrix form:
1

2
z
T
Uz � !

T
z + �:

(a) (b)

Fig. 1. Synthetic input images. (a)Letters with light source direction
(�1; 1; 1) and (b)Pennywith light source direction(5; 5; 7).

Adding the smoothness term (8) to this quadratic equation, we have

1

2
z
T
Tz � !

T
z + � (9)

whereT = U+�V . U is ann2�n2 (n is the image size) symmetric,
sparse matrix consisting of the second-order terms from (7).U can
be formed by using a(2n� 3)� (2n� 3) template�Ui; j given in
(10), shown at the bottom of the page, whose nonzero elements are
the properly positioned coefficients from (7). The diagonal elements
of �Ui; j are the coefficients of the squared terms. The symmetric
elements are obtained from the coefficients of the remaining second
order terms. Initially,U is zero; then for each(i; j), �Ui; j is added
to the proper position inU where the upper-left corner of�Ui; j

corresponds to position(x� 2; x� 2) in U , andx = i �n+ j. This
procedure will form a sparse banded matrix which can be represented
by an n2 � 19 matrix.

As an example, given(i; j), the term2ai; jbi; jzi; jzi; j�1 in (7)
will add the value2ai; jbi; j to U at the symmetric positions(x1; x2)
and (x2; x1) (where x1 = i � n + j and x2 = i � n + j � 1).
This corresponds to assigning2ai; jbi; j to �Ui; j at the symmetric
positions (x3; x4) and (x4; x3) [where x3 = x1 � (x � 2), and
x4 = x2�(x�2)]. [Note: (x�2; x�2) is the position of upper-left
corner of�Ui; j in U .]

The vector! is ann2�1 vector consisting of the first order terms
from (7). Initially, ! is the zero vector, then for each(i; j); 0 �

i; j < n, we locate the corresponding position in! asx = i �n+ j,
then subtractdi; jgi; j , bi; jgi; j , ai; jgi; j , ei; jgi; j , ci; jgi; j , fi; jgi; j ,
from positionsx�2, x�1, x, x+n�1, x+n, x+2n, respectively,
in !. Finally, � is a scalar consisting of the sum of the constant

�Ui; j = 2

1

2
d2i; j bi; jdi; j ai; jdi; j 0 � � � 0 di; jei; j ci; jdi; j 0 � � � 0 di; jfi; j

bi; jdi; j
1

2
b2i; j ai; jbi; j

n�2

0 � � � 0 bi; jei; j bi; jci; j

n�1

0 � � � 0 bi; jfi; j

ai; jdi; j ai; jbi; j
1

2
a2i; j 0 � � � 0 ai; jei; j ai; jci; j 0 � � � 0 ai; jfi; j

n� 2

0
...
0

n� 2

0
...
0

n� 2

0
...
0

di; jei; j bi; jei; j ai; jei; j

n�2

0 � � � 0 1

2
e2i; j ci; jei; j

n�1

0 � � � 0 ei; jfi; j

ci; jdi; j bi; jci; j ai; jci; j 0 � � � 0 ci; jei; j
1

2
c2i; j 0 � � � 0 ci; jfi; j

n� 1

0
...
0

n� 1

0
...
0

n� 1

0
...
0

di; jfi; j bi; jfi; j ai; jfi; j

n�2

0 � � � 0 ei; jfi; j ci; jfi; j

n�1

0 � � � 0 1

2
f2i; j

(10)
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Fig. 2. Results for theLetters image. (a) Three-dimensional plot of the true depth, (b) 3-D plot of the recovered depth from Lee and Kuo’s algorithm,
(c) 3-D plot of the recovered depth from our algorithm, (d) range image of the true depth, (e) range image of Lee and Kuo’s recovered depth, (f)
range image of our recovered depth, (g) shaded image for (b) using light source(�1; 1; 1), (h) shaded image for (b) using light source(1; �1; 1), (i)
shaded image for (b) using light source(1; 1; 1), (j) shaded image for (c) using light source(�1; 1; 1), (k) shaded image for (c) using light source
(1; �1; 1), and (l) shaded image for (c) using light source(1; 1; 1).

terms of (7)

� =

n�1

i=0

n�1

j=0

g
2

i; j :

The minimization of (9) is done by solving the linear system
Tz = !.

III. M ULTIGRID TECHNIQUE

The multigrid method [18] was first introduced by Brandt in the
early 1970’s for solving elliptic partial differential equations (PDE’s).
It is a fast technique to solve either linear or nonlinear elliptic
problems; we are looking for a solution to a linear problem.

The basic idea behind the multigrid method is to combine a
traditional relaxation method with coarse-grid correction, so that the
error generated in the finer grid can be corrected in the coarser grid
to yield a more efficient, and accurate, solution. The number of grid
levels,L, in one iteration of the multigrid method is determined by
the size of the image,n, to beL = log

2
n�1. The multigrid method

can be performed iteratively by using the solution from the previous
iteration as the initial value for the next. One iteration of the multigrid
method, from the finest grid to the coarsest and back to the finest,
is called a cycle. There are different structures for the cycle [18].
We use the V-cycle structure since it is simple to implement, yet
provides reasonably good results.

The process of one cycle for solving the linear systemTz = !,
can be described as follows.

1) Initialization: Start at the finest gridh (h indicates the spacing
between pixels).

2) Presmoothing:Apply a relaxation method to compute an ap-
proximate solution,~zh, to Thzh = !h, on grid h, with zh
initially zero.

3) Coarse-Grid Correction:

a) Compute the residual on gridh: rh = Th~zh � !h.

b) Reduce gridh into H.

c) Restrictrh (on the fine gridh) into rH (on the coarse
grid H): rH = R(rh).

d) If H is the coarsest grid, use an exact solver to obtain a
solution ~zH for THzH = rH on gridH. Go to (f).

e) Obtain a solution~zH for THzH = rH on grid H.
Recursively repeat (2) through (4) for coarser grids.

f) Upon returning from the recursion, prolongate the cor-
rection to a finer grid:�~zh = P(~zH).

g) Correct the solution on gridh: ~zh = ~zh +�~zh.

4) Post-Smoothing:Take ~zh as initial value, apply a relaxation
method to refine the approximate solution,~zh, to Thzh = !h
on grid h.
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Fig. 3. Results for thePenny image. (a) Three-dimensional plot of the true depth, (b) 3-D plot of the recovered depth from Lee and Kuo’s algorithm,
(c) 3-D plot of the recovered depth from our algorithm, (d) range image of the true depth, (e) range image of Lee and Kuo’s recovered depth, (f)
range image of our recovered depth, (g) shaded image for (b) using light source(5; 5; 7), (h) shaded image for (b) using light source(�5; �5; 7), (i)
shaded image for (b) using light source(�5; 5; 7), (j) shaded image for (c) using light source(5; 5; 7), (k) shaded image for (c) using light source
(�5; �5; 7), and (l) shaded image for (c) using light source(�5; 5; 7).

In our multigrid implementation, Gauss–Seidel was used for both
the relaxation method and exact solver. Full-weighting restriction

R:

1

16

1

8

1

16
1

8

1

4

1

8
1

16

1

8

1

16

(11)

was applied to transfer the residual from finer grids to coarser grids,
and bilinear prolongation

P:

1

4

1

2

1

4
1

2
1

1

2
1

4

1

2

1

4

(12)

was applied to make the correction from coarser grids to finer grids.
At each level, the size of the grid is reduced by half.

IV. RESULTS

Among existing SFS techniques, Lee and Kuo’s approach is one
of the newest and provides very good results. They also applied the
multigrid technique. Therefore, we implemented their algorithm and
compared the results with ours.

The results for our algorithm are given after one multigrid cycle;
since the results after one cycle are already accurate enough, any extra
cycles will not yield significant improvement. However, the property

TABLE I
MEAN p–q ERROR FOR SYNTHETIC IMAGES

of coarse-to-fine-correction in the multigrid technique makes even
one cycle meaningful. The smoothing factor� was chosen as 2000.
The maximum number of iterations for Gauss–Seidel is 500. The
initial heights were chosen as zero for all tests. In order to show
the performance, the top view of the 3-D plots of the recovered
heights are presented. In addition, we also compute the mean surface
orientation error for results on synthetic images and compare our
algorithm with Lee and Kuo’s.

We first show the results for the proposed algorithm on two
synthetic images:Letters and Penny (Fig. 1). Letters is generated
from the synthetic depth of a text string “TEST” with light source
direction(�1; 1; 1), andPennyis generated from the range data of
a penny with light source direction(5; 5; 7). Both images are 128
by 128.

Fig. 2 shows results for theLettersimage It contains 3-D plots of
the true depth, the reconstructed depth from our algorithm and Lee
and Kuo’s (all of them have the same view); range images for the true
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Fig. 4. Results for real images. (a)Mask [the estimated light source direction is(�0:479847; �0:907563; 1)], (b) Mannequin[the estimated light source
direction is(�0:345; 0:345; 0:875)], (c) Lenna [the estimated light source direction is(1:5; 0:866; 1)], (d) David [the estimated light source direction is
(�0:707; 0:707; 1)], (e)–(l) 3-D plots of the recovered height from Lee and Kuo’s algorithm [(e)–(h)], and from our algorithm [(i)–(l)].

TABLE II
CPU TIME (IN SECONDS)

depth and the reconstructed depths from both algorithms; and shaded
images of the true depth and both reconstructed depths using the
original, the opposite, and the orthogonal light sources respectively.
Similarly, Fig. 3 shows the results forPenny.

From the results forLetters,we can see that our algorithm provides
a more accurate recovery. This can clearly be seen from the range
images, since each range image is scaled from the depth data into the
range [0, 255] to provide more contrast. The recovery of the bottom
two letters from Lee and Kuo’s algorithm can hardly be seen in their
3-D plot due to oversmoothing, while our algorithm recovers all of
the letters reasonably well. The shaded images, generated from our
reconstructed depth, are also better.

For Penny,Lee and Kuo’s method loses a lot of detail, which
causes the shaded output image to appear blurry. Moreover, the 3-D
plot shows that their algorithm recovers a twisted background of the
penny. On the other hand, our algorithm does not seem to exhibit
any of these problems.

To further analyze the results of the two algorithms, we compare
them in terms of the mean surface gradient error (Table I). The

reconstructed depth is first rescaled according to the true depth, then
a discrete approximation is used to estimate the surface gradient.
Table I indicates that our results have approximately 18 to 59%
less error than Lee and Kuo’s.Letters image is quite simple as
expected error is much less than thePenny image. Also note that
the light source directions are different in both cases. The depth error
is not computed here since a single peak or valley point (outlier)
in the recovered depth may cause big error due to the shift in the
renormalization.

The remaining results are given for four real images with
the light source directions estimated by Lee and Rosenfeld’s
method [10]: Mask [the estimated light source direction is
(�0:479 847; �0:907563; 1)], Mannequin [the estimated light
source direction is(�0:345; 0:345; 0:875)], Lenna [the estimated
light source direction is(1:5; 0:866; 1)], and David [the estimated
light source direction is(�0:707; 0:707; 1)]. The sizes ofMannequin
and Lennaare both 256 by 256, and the sizes ofDavid and Mask
are 128 by 128. The results for Lee and Kuo’s algorithm, and for
our own algorithm, are shown in Fig. 4. Since a small error in the
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depth can cause a big error in the surface orientation, especially in
the case of noisy real images, the shaded versions of the recovered
depth for the real images are not included here.

For Mask, Mannequin,andDavid, the recovered heights from Lee
and Kuo’s algorithm are very flat, even for small� values. In contrast,
our algorithm gives very good, detailed height information forMask
andDavid. It also provides much more detail forMannequin,despite
the noise at the object boundary. Lee and Kuo’s algorithms recovered
very good height information for the real imageLenna,but details
are missing. Our result forLennashows accurate details. The rough
height recovered in the area ofLenna’s hair is due to the change in
albedo, which violates the constant albedo assumption.

Although both Lee and Kuo’s and our algorithms employ the
multigrid technique, our method is significantly faster than Lee and
Kuo’s in all cases except forLetters,no matter what threshold is used
for Gauss–Seidel. This can be seen in Table II. The speedup ranges
from 6.4 for theMask image to 1.6 for theMannequinimage. The
analysis was done on a Sun SPARC 4.

V. CONCLUSION

We presented a new SFS algorithm, which replaced the traditional
brightness constraint with an intensity gradient constraint based on
the fact that the direction of the intensity gradient is the direction in
which the shape changes the most. The results have shown that our
algorithm has robust performance for different images, and that it is
more efficient than the existing multigrid SFS technique.
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Fast Implementation of Forward Robot Kinematics of
Position with Distributed Arithmetic Architecture

B. G. Mertzios and G. K. Grigoriadis

Abstract—This paper refers to the fast implementation of the forward
kinematic equations of position of robotics manipulators, using a dis-
tributed arithmetic-based pipeline architecture. The building blocks of
this pipeline architecture are the distributed arithmetic-based circuits that
implement the matrix-vector multiplications involved in the calculation of
the forward kinematics of position. The matrix-vector multiplications are
implemented in the distributed arithmetic technique by using auxiliary
binary functions, which are stored in look-up tables. The digit-serial
configuration of the proposed implementation is described. The serial
and the parallel configurations may result as special extreme cases of the
digit-serial configuration.

Index Terms— Digit-serial configuration, distributed arithmetic,
forward kinematics of position, matrix-matrix-multiplication (MMM),
matrix-vector-multiplication (MVM), pipelining.

I. INTRODUCTION

Robotics manipulators are articulated chains of rigid bodies (links),
which are connected serially by joints. One end of the chain is
attached to a supporting base where a inertial frame (the base) is
established, while the other end (the end-effector) is free, in order
to accomplish the manipulation tasks. Forward (direct) kinematics
deals with the problem of determining the position of the end-effector
from a given set of joint coordinates. Inverse kinematics addresses the
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