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ABSTRACT
Human vision system actively seeks interesting regions in
images to reduce the search effort in tasks, such as object
detection and recognition. Similarly, prominent actions in
video sequences are more likely to attract human’s first sight
than their surrounding neighbors. In this paper, we pro-
pose a spatiotemporal video attention detection technique
for detecting the attended regions that correspond to both
interesting objects and actions in video sequences. Both
spatial and temporal saliency maps are constructed and
further fused in a dynamic fashion to produce the overall
spatiotemporal attention model. In the temporal attention
model, motion contrast is computed based on the planar mo-
tions (homography) between images, which is estimated by
applying RANSAC on point correspondences in the scene.
To compensate the non-uniformity of spatial distribution of
interest-points, spanning areas of motion segments are incor-
porated in the motion contrast computation. In the spatial
attention model, we have developed a fast method for com-
puting pixel-level saliency maps using color histograms of
images. A hierarchical spatial attention representation is es-
tablished to reveal the interesting points in images as well as
the interesting regions. Finally, a dynamic fusion technique
is applied to combine both the temporal and spatial saliency
maps, where temporal attention is dominant over the spa-
tial model when large motion contrast exists, and vice versa.
The proposed spatiotemporal attention framework has been
extensively applied on several video sequences, and attended
regions are detected to highlight interesting objects and mo-
tions present in the sequences with very high user satisfac-
tion rate.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing, Perceptual Reasoning.; I.4.10 [Image Process-
ing and Computer Vision]: Image Representation.

General Terms
Algorithms.
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1. INTRODUCTION
How to achieve a meaningful video representation becomes

an interesting problem in various research communities, such
as multimedia processing, computer vision and content-based
image and video retrieval. The effectiveness of the represen-
tation is determined by how well it fits to human perception
and reaction to external visual signals. Human perception
tends to firstly pick the regions in the imagery that stimulate
the vision nerves the most before continuing to interpret the
rest of the scene. These attended regions could correspond
to either prominent objects in the image or interesting ac-
tions in video sequences. Visual attention analysis simulates
this human vision system behavior by automatically produc-
ing saliency maps of the target image or video sequence. It
has a wide range of applications in tasks of image/video
representation, object detection and classification, activity
analysis, small-display device control and robotics controls.
Visual attention deals with detecting the regions of interest
(ROI) in images and interesting actions in video sequences
that are the most attractive to viewers. For example, in the
task of object/action detection, visual attention detection
significantly narrows the search range by giving a hierarchi-
cal priority structure of the target image or sequence. Con-
sider the following scenario, a video sequence is captured
by a camera that is looking at a classroom entrance. At
the time the class is dismissed, the majority of the students
will be going out of the classroom. In this situation, if two
people are trying to walk back into the room, their actions
would be considered “irregular” compared to the rest of the
students. Attention analysis is able to quickly highlight the
abnormal regions and perform further activity analysis on
these regions.

1.1 Related Work
Visual attention detection in still images has been long

studied, while there is not much work on the spatiotem-
poral attention analysis. Psychology studies suggest that
human vision system perceives external features separately
(Treisman and Gelade [25]) and is sensitive to the difference
between the target region and its neighborhood (Duncan
and Humphreys [6]). Following this suggestion, many works
have focused on the detection of feature contrasts to trig-
ger human vision nerves. This is usually referred as the
“stimuli-driven” mechanism. Itti et al. [10] proposed one of
the earliest works in visual attention detection by utilizing
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Figure 1: Work flow of the proposed spatiotemporal attention detection framework. It consists of two components,

temporal attention model and spatial attention model. These two models are combined using a dynamic fusion

technique to produce the overall spatiotemporal saliency maps.

the contrasts in color, intensity and orientation of images.
Han et al. [8] formulated the attended object detection us-
ing the Markov random field with the use of visual atten-
tion and object growing. Ma and Zhang [15] incorporated a
fuzzy growing technique in the saliency model for detecting
different levels of attention. Lu et al. [14] used the low-
level features, including color, texture and motion, as well
as cognitive features, such as skin color and faces, in their
attention model. Different types of images have also been
exploited. Ouerhani and Hugli [19] has proposed an atten-
tion model for range images using the depth information.
Besides the heavy investigation using the stimuli-driven ap-
proach, some methods utilize the prior knowledge on what
the user is looking for. Milanese et al. [16] constructed the
saliency map based on both low-level feature maps and ob-
ject detection outputs. Oliva et al. [18] analyzed the global
distributions of low-level features to detect the potential lo-
cations of target objects. A few researchers have extended
the spatial attention to video sequences where motion plays
an important role. Cheng et al. [4] has incorporated the mo-
tion information in the attention model. The motion atten-
tion model analyzes the magnitudes of image pixel motion in
horizontal and vertical directions. Bioman and Irani [2] have
proposed a spatiotemporal irregularity detection in videos.
In this work, instead of using read motion information, tex-
tures of 2D and 3D video patches are compared with the
training database to detect the abnormal actions present in
the video. Meur et al. [12] proposed a spatiotemporal model
for visual attention detection. Affine parameters were ana-
lyzed to produce the motion saliency map.

Visual attention modelling has been applied in many fields.
Baccon et al. [1] has proposed an attention detection tech-
nique to select spatially relevant visual information to con-
trol the orientation of a mobile robot. Driscoll et al. [5] has
built a pyramidal artificial neural network to control the fix-
ation point of a camera head by computing the 2D saliency
map of the environment. Chen et al. [3] has applied the
visual attention detection technique in devices with small
displays. Interesting regions with high saliency values have
higher priority to be displayed comparing to the rest of the
image. Attention models were used in image compression
tasks by Ouerhani et al. [20] and Stentiford [24], where
regions with higher attention values were compressed with
higher reconstruction quality. Peters and Sullivan [22] has
applied visual attention in computer graphics to generate
the gaze direction of virtual humans.

1.2 Proposed Framework
Video attention methods are generally classified into two

categories: top-down approaches and bottom-up approaches.
Methods in the first category, top-down approaches, are task-
driven, where prior knowledge of the target is known before
the detection process. This is based on the cognitive knowl-
edge of the human brain, and it is a spontaneous and volun-
tary process. Traditional rule-based or training-based object
detection methods are the examples in this category. On the
other hand, the second category, bottom-up approaches, are
usually referred as the stimuli-driven techniques. This is
based on the human reaction to external stimuli, such as
bright color, distinctive shape or unusual motion, and it is
a compulsory process.

In this paper, we propose a bottom-up approach for mod-
elling the spatiotemporal attention in video sequences. The
proposed technique is able to detect the attended regions as
well as attended actions in video sequences. Different from
the previous methods, most of which are based on the dense
optical flow fields, our proposed temporal attention model
utilizes the interest point correspondences and the geomet-
ric transformations between images. In this model, feature
points are firstly detected in consecutive video images, and
correspondences are established between the interest-points
using the Scale Invariant Feature Transformation (SIFT [13]).
RANSAC algorithm is then applied on the point correspon-
dences to find the moving planes in the sequence by esti-
mating their homographies. Projection errors of the interest
points by the estimated homographies are incorporated in
the motion contrast computation. In the spatial attention
model, we have constructed a hierarchical saliency repre-
sentation. A linear time algorithm is developed to compute
pixel-level saliency maps. In this algorithm, color statistics
of the images are used to reveal the color contrast infor-
mation in the scene. Given the pixel-level saliency map,
attended points are detected by finding the pixels with the
local maxima saliency values. The region-level attention is
constructed based upon the attended points. Given an at-
tended point, a unit region is created with its center to be
the point. This region is then iteratively expanded by com-
puting the expansion potentials on the sides of the region.
Rectangular attended regions are finally achieved. The tem-
poral and spatial attention models are finally combined in a
dynamic fashion. Higher weights are assigned to the tempo-
ral model if large motion contrast is present in the sequence.
Otherwise, higher weights are assigned to the spatial model



(a) Image 1 (b) Image 2 (c) Motion Regions

Figure 2: One example of the point matching and motion segmentation results. Figure (a) and figure (b) show two

consecutive images. The interest points in both images and their correspondences are presented. The motion regions

are shown in figure (c).

if less motion exists. The work flow of the proposed at-
tention detection framework is described in Figure 1. To
demonstrate the effectiveness of the proposed spatiotempo-
ral attention framework, we have extensively applied it to
many video sequences, which contain both sequences with
moving objects and sequences with uniform global motion.
Very satisfactory results have been obtained and presented
in the paper.

The remainder of this paper is organized as follows: The
temporal and spatial attention models are presented in Sec-
tion 2 and Section 3, respectively. Corresponding interme-
diate results are also presented. Section 4 describes the pro-
posed dynamic fusion method to combine the two individ-
ual attention models. Section 5 presents the experimental
results and the performance evaluations. Finally, Section 6
concludes our work.

2. TEMPORAL ATTENTION MODEL
In the temporal attention detection, saliency maps are of-

ten constructed by computing the motion contrast between
image pixels. Most of the previously developed methods
generate dense saliency maps based on pixel-wise computa-
tions, mostly dense optical flow fields. However, it is well
known that optical-flows at edge pixels are noisy if multiple
motion layers exist in the scene. Furthermore, dense opti-
cal flows maybe erroneous in regions with less texture. In
contrast, point correspondences (also known as the sparse
optical flows) between images are comparatively accurate
and stable. In this section, we propose a novel approach
for computing the temporal saliency map using the point
correspondences in video sequences. The proposed tempo-
ral saliency computation utilizes the geometric transforma-
tions between images, which model the planar motions of
the moving segments.

Given images in a video sequence, feature points are lo-
calized in each image using the point detection method.
Correspondences between the matching points in consecu-
tive frames are further established by analyzing the proper-
ties of image regions around the points. In our framework,
we have applied the Scale Invariant Feature Transformation
(SIFT [13]) operator to find the interest points and com-
pute the correspondences between points in video frames.
Let pm = (xm, ym) be the m-th point in the first image
and p′m = (x′m, y′m) be its correspondence in the second
image. One example of the interesting point matching is
shown in Figure 2. Given the point correspondences, the
temporal saliency value SalT (pi) of point pi is computed

by modelling the motion contrast between the target point
and other points,

SalT (pi) =

n∑
j=1

DistT (pi,pj), (1)

where n is the total number of correspondences. DistT (pi,pj)
is some distance function between pi and pj . In our formu-
lation, we analyze the geometric transformations between
images. The motion model used is homography. Homogra-
phy is used for modelling the planar transformations. The
interesting point p = [x, y, 1]T and its correspondence p′ =
[x′, y′, 1]T can be associated by,
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Here, p̂′ = [x̂′, ŷ′, t̂′]T is the projection of p in the form
of homogeneous coordinates. Parameters {ai, i = 1, · · · , 8}
capture the transformation between two matching planes,
and they can be estimated by providing at least four pairs
of correspondences. For simplicity, we use H to represent
the transformation matrix in the rest of the text. Also,
we normalize p̂i, such that its their element is 1. Ideally, p̂′

should be the same as p′. With noise present in the imagery,
a point p̂′ matches with p′ with an error computed after
applying H, as,

ε(pi,H) =‖ p̂′i − p′i ‖ . (3)

Motions of objects are only meaningful when certain ref-
erence is defined. For instance, a car is said “moving” only
if visible background is present in the scene and disagrees
with the car in terms of the motion direction. This fact
indicates that multiple moving objects are in the scene to
indicate local motion existence. In these types of situations,
a single homography is insufficient to model all the corre-
spondences in the imagery. To overcome this problem, we
apply RANSAC algorithm on the point correspondences to
estimate multiple homographies that model different motion
segments in the scene. The homographies are later used in
the temporal saliency computation process.

For each homography Hm estimated by RANSAC, a list
of points Lm = {pm

1 , · · · ,pm
nm
} are considered as its inliers,

where nm is the number of inliers for Hm. Given the ho-
mographies and the projection error definition in Eqn.3, we
can define the motion contrast function in Eqn.1 as,
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Figure 3: Example of the proposed temporal attention

model. Figures (a) and (b) show two consecutive images

of the input sequence. Figure (c) shows the interest-

point correspondences. Figure (d) shows the detected

temporal saliency map using the proposed homography-

based method. In this example, the camera follows the

moving toy train from right to left, while the calender

is moving downward. Thus, intuitively, the attention

region should correspond to the toy train. The saliency

map also suggests that the second attended region corre-

sponds to the moving calender. Brighter color represents

higher saliency value.

DistT (qi,qj) = ε(qi,Hm), (4)

where qj ∈ Lm. The sizes of the inlier sets play dominant
role in the current saliency computation. It is well known
that the spatial distribution of the interest points is not
uniform due to variance in the texture contents of image
parts. Sometimes, relatively larger moving objects/regions
may contribute less trajectories, while smaller regions but
with richer texture provide more trajectories. One example
is shown in Figure 2. In these cases, the current tempo-
ral saliency definition is not realistic. Larger regions with
less points, which often belong to the backgrounds, will be
assigned with higher attention values. While foreground ob-
jects, which are supposed to be the true attended regions,
will be assigned with lower attention values, if they possess
more interest-points. To avoid this problem, we incorporate
the spanning area information of the moving regions. The
spanning area of a homography Hm is computed as,

αm =
(
max(xm

i )−min(xm
i )

)
×

(
max(ym

i )−min(ym
i )

)
, (5)

where ∀pm
i ∈ Lm, and αi is normalized with respect to the

image size, such that αi ∈ [0, 1]. In the extreme cases, where
max(xm

i ) = min(xm
i ) or max(ym

i ) = min(ym
i ), to avoid zero

values of αm, the corresponding term in Eqn.5 is replaced
with a non-zero constant number (in the experiment, we
use 0.1). The temporal saliency value of a target point p is
finally computed as,

SalT (p) =

M∑
j=1

αj × ε(p,Hj), (6)

where M is the total number of homographies in the scene.
In the degenerated cases, where some point correspondences
do not belong to inlier sets of any of the estimated homogra-
phies, we apply a simplified form of the homography to each
of these point correspondences. Suppose {pt,p

′
t} is one of

the “left-out” correspondences. The transformation is de-
fined as a translation matrix Ht = [1 0 dt

x; 0 1 dt
y; 0 0 1],

where dt
x = x′t − xt and dt

y = y′t − yt, and the inlier set
Lt = pt.

Up to this point, we have the saliency values of individual
points and the spanning regions of the homographies, which
correspond to the moving objects in the scene. To achieve
object-level attention for Hm, the average of the saliency
values of the inliers Lm is considered as the saliency value
of the corresponding spanning region. All the image pixels
in the same spanning region have the same saliency value.
Since the resulting regions are rectangular, it is likely that
an image pixel is covered by multiple spanning regions. In
this case, the pixel is assigned with the highest saliency value
possible. If the pixel is not covered by any spanning region,
its saliency value is set to zero. One example of the pro-
posed temporal saliency map computation is demonstrated
in Figure 3, where the camera follows a moving toy train
from right to left, and apparently the attention region in
the sequence corresponds to the moving toy train.

3. SPATIAL ATTENTION MODEL
When viewers watch a video sequence, they are attracted

not only by the interesting events, but also sometimes by
the interesting objects in still images. This is referred as
the spatial attention. Based on the psychological studies,
human perception system is sensitive to the contrast of vi-
sual signals, such as color, intensity and texture. Taking
this as the underlying assumption, we propose an efficient
method for computing the spatial saliency maps using the
color statistics of images. The algorithm is designed with a
linear computational complexity with respect to the number
of image pixels. The saliency map of an image is built upon
the color contrast between image pixels. The saliency value
of a pixel Ik in an image I is defined as,

SalS(Ik) =
∑

∀Ii∈I

‖ Ik − Ii ‖, (7)

where the value of Ii is in the range of [0, 255], and || · || rep-
resent the color distance metric. This equation is expanded
to have the following form,

SalS(Ik) = ||Ik − I1||+ ||Ik − I2||+ · · ·+ ||Ik − IN ||, (8)

where N is the total number of pixels in the image. Given
an input image, the color value of each pixel Ii is known.
Let Ik = am, and Eqn.8 is further restructured, such that
the terms with the same Ii are rearranged to be together,

SalS(Ik) = ||am − a0||+ · · ·+ ||am − a1||+ · · ·+ · · · ,

SalS(am) =

255∑
n=0

fn||am − an||, (9)
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Figure 4: The distance map between the gray-level color

values, which can be computed prior to the pixel-level

saliency map computation. Brighter elements represent

larger distance values.
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Figure 5: An example of the spatial saliency computa-

tion. The left figure shows the input image. The center-

top figure shows the histogram of the R-channel of the

image, while the center-bottom figure shows the saliency

values of the colors. The horizontal axis represents the

values of the colors, where an ∈ [0, 255]. The saliency

values are close to what human expects, since higher

frequency indicates repeating information in the image,

and therefore, relatively unattractive. The right figure

shows the resulting spatial saliency map.

where fn is the frequency of pixel value an in the image. The
frequencies are expressed in the form of histograms, which
can be computed in O(N) time order. Since an ∈ [0, 255],
the color distance metric ‖ am − an ‖ is also bounded in
the range of [0, 255]. Since this is a fixed range, a distance
map D can be constructed in constant time prior to the
saliency map computation. In this map, element D(x, y) =‖
ax−ay ‖ is the color difference between ax and ay. One color
difference map is shown in Figure 4. Given the histogram
f(·) and the color distance map D(·, ·), the saliency value for
a pixel Ik is computed as,

SalS(Ik) = SalS(am) =

255∑
n=0

fnD(m, n), (10)

which executes in a constant time order. Thus, instead of
computing the saliency values of all the image pixels using
Eqn.7, only the saliency values of colors {ai, i = 0, · · · , 255}
are necessary for the generation of the final saliency map.
One example of the pixel-level spatial saliency computation
is shown in Figure 5.

Greatly inspired by the work presented in [15], we pro-
pose a hierarchical representation for the spatial attention
model based on the pixel-level saliency map computed pre-
viously. Two levels of attentions are achieved: attended
points and attended regions. Attended points are analogous
to the direct response of human perception system to exter-
nal signals. They are computed as the image pixels with the
locally maximum spatial saliency values. On the other hand,

s1

s3

s2

s4

s1’

s2’

s3’

s4’

Figure 6: An example of the attended region expansion

using the pixel-level saliency map. A seed region is cre-

ated on the left. Expanding potentials on all four sides

of the attended region are computed (shaded regions).

The lengths of the arrows represent the strengths of the

expansions on the sides. The final attended region is

shown on the right.

region-level attention representation provides attended ob-
jects in the scene. One simple way to achieve the attended
regions is to apply the connected-component algorithm to
find the bright regions. However, as shown in Figure 5,
pixels with low attention values are embedded in high-value
regions. Connected-component algorithm will fail to include
these pixels in the attended region. Furthermore, connected-
component method tends to generate over-detection of the
attended regions. In this paper, we present a region growing
technique for detecting the attended regions, which is able
to resolve the above mentioned problems. In our formula-
tion, the attended regions are firstly initialized based on the
attended points computed previously. Given an attended
point c, a rectangular box centered at c with the unit di-
mensions is created as the seed region Bc. The seed region
is then iteratively expanded by moving its sides outward by
analyzing the energy around its sides. The attended region
expansion algorithm is described as follows,

1. For each side i ∈ {1, 2, 3, 4} of region B with length
li, two energy terms E(si) and E(s′i) are computed for
both its inner and outer sides si and s′i, respectively,
as shown in Figure 6. The potential for expanding side
i outward is defined as follows,

EP (i) =
E(si)E(s′i)

l2i
, (11)

where l2i is for the purpose of normalization.

2. Expand the region by moving side i outward with a
unit length if EP (i) > Th, where Th is the stopping
criteria for the expansion. In the experiment, the unit
length is 1 pixel.

3. Repeat steps 1 and 2 until no more side of B can be
further expanded, i.e., all the corresponding expansion
potentials are below the defined threshold.

It should be noted that the expansion potential defined in
Eqn.11 is designed in such a way, that the attended region is
expanded if and only if both the inner and outer sides have
high attention values. The expansion stops at the boundary
between the high value regions representing the interesting
objects and the low value regions for the background. A
demonstration of the expanding process is shown in Figure 6.



(a) (b) (c) (d) (e)

Figure 7: The results of spatial attention detection on two testing images. Column (a) shows the input images; column

(b) shows the pixel-level spatial saliency maps; column (c) presents the detected attention points; column (d) shows

the expanding boxes from the attention points in (c); finally, column (e) shows the region-level saliency maps of the

images.

It is possible that the attended regions initiated using differ-
ent attended points eventually cover the same image region.
In this case, a region merging technique is applied to merge
the attended regions that cover the same target image re-
gion by analyzing the overlapping ratio between the regions.
To be consistent with the temporal attention model, the fi-
nal spatial saliency map reveals the attended regions in the
rectangular shapes. Detailed results of the spatial attention
detection on two images are shown in Figure 7.

4. DYNAMIC MODEL FUSION
In the previous sections, we presented the temporal and

spatial attention models separately. These two models need
to collaborate in a meaningful way to produce the final spa-
tiotemporal video saliency maps. Psychological studies re-
veal that, human vision system is more sensitive to motion
contrast compared to other external signals. Consider a
video sequence, in which the camera is following a person
walking, while the background is moving in the opposite di-
rection of the camera’s movement. In general, humans are
more interested in the followed target, the walking person,
instead of the his surrounding regions, the background. In
this example, motion is the prominent cue for the attention
detection compared to other cues, such as color, texture and
intensity. On the other hand, if camera is being static or
only scanning the scene, in which motion is relatively uni-
form, then the human perception system is attracted more
by the contrasts caused by other visual stimuli, such as color
and shape. In summary, we propose the following criteria
for the fusion of temporal and spatial attention models,

1. If strong motion contrast is present in the sequence,
temporal attention model should be more dominant
over the spatial attention model.

2. On the other hand, if the motion contrast is low in the
sequence, the fused spatiotemporal attention model
should incorporate the spatial attention model more.

Based on these two criteria, simple linear combination
with fixed weights between two individual models is not
realistic and would produce unsatisfactory spatiotemporal
saliency maps. Rather, we propose a dynamic fusion tech-
nique, which satisfies the aforementioned criteria. It gives

PVarT
W

ei
gh

t 
V

al
ue

Const.=0.3

 κ κ κ κT

 κ κ κ κS

Figure 8: Plots of the dynamic weights, κT and κS ,

with respect to the pseudo-variance PV arT of the tem-

poral saliency map, where Const = 0.3. As it is clear in

the figure, the fusion weight of the temporal attention

model increases with the pseudo-variance of the tempo-

ral saliency values.

a higher weight to the temporal attention model, if high
contrast is present in the temporal saliency map. Similarly,
it gives a higher weight to the spatial model, if the motion
contrast is relatively low.

Finally, the spatiotemporal saliency map of an image I in
the video sequence is constructed as,

Sal(I) = κT × SalT (I) + κS × SalS(I), (12)

where κT and κS are the dynamic weights for the tempo-
ral and spatial attention models, respectively. These dy-
namic weights are determined in terms of the variance of
SalT (I). One special situation needs to be considered care-
fully. Consider one scene with a moving object whose size is
relatively small compared to the background. The variance
of the temporal saliency map in this case would be low by
the overwhelming background saliency values and does not
truly reflect the existence of the moving object. In this case,
we compute a variance-like measure, pseudo-variance, which
is defined as PV arT = max(SalT (I)) −median(SalT (I)).
The weights κT and κS are then defined as,

κT =
PV arT

PV arT + Const
, κS =

Const

PV arT + Const
, (13)

where Const is a constant number. From Eqn.13, if the
motion contrast is high in the temporal model, then the
value of PV arT increases. Consequently, fusion weight of
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Figure 9: An example of model fusion. This sequence

shows two people sitting and another person walking in

front of them. (a) is the key-frame of the input sequence.

(c) shows the temporal saliency map based on the pla-

nar transformations. (d) shows the region-level spatial

saliency map using color contrast. (e) is the combined

spatiotemporal saliency map. Obviously, the moving ob-

ject (the walking person) catches more attention than

the still regions (sitting persons). Thus, it is assigned

higher attention values. The region that corresponds to

the interesting action in the scene is shown in (b).

the temporal model, κT , is also increased, while the fusion
weight of the spatial model, κS , is decreased. The plots of
κT and κS with respect to PV arT are shown in Fig.8. One
example of the spatiotemporal attention detection is shown
in Fig.9, which shows a person is walking in front of the
two sitting people. The moving object (walking person) is
highlighted by the detected attention region.

5. PERFORMANCE EVALUATION
To demonstrate the effectiveness of the propose spatiotem-

poral attention model, we have extensively applied the method
on two types of video sequences, labelled Testing Set 1 and
Testing Set 2. The testing sequences are obtained from fea-
ture films and television programs. Testing Set 1 contains
nine video sequences, each of which has one object moving
in the scene, such as moving cars and flying airplanes. The
detailed results of Testing Set 1 are shown in Figure 10. The
following information is presented: the representative frames
of the testing videos (Figure 10(a)), the temporal saliency
maps of the representative frames (Figure 10(b)), the spatial
saliency maps of the representative frames (Figure 10(c)),
the final spatiotemporal saliency maps (Figure 10(d)) and
the detected regions that correspond to the prominent ac-
tions in the videos (Figure 10(e)). It should be noted that,
for those videos that have very rich texture, the spatial at-
tention model generates meaningless saliency maps. How-
ever, with the help of the proposed dynamic model fusion
technique, the temporal attention model becomes dominant
and is able to detect the regions where interesting actions
happen (as shown in Figure 10(e)). This exactly fits hu-
man perceptual reactions to motion contrast in these types
of situations regardless of visual texture in the scene.

The second testing set, Testing Set 2, contains video se-
quences without prominent motions. The videos are mainly
focusing on the static scene settings or with uniform global
motions, i.e., there is no motion contrast in the scene. In this

(a) (b) (c) (d) (e)

Figure 10: Spatiotemporal attention detection results

for the testing videos in Testing Set 1. Column (a)

shows the representative frames of the videos; column

(b) shows the temporal saliency maps; column (c) shows

the spatial saliency maps; column (d) shows the fused

spatiotemporal saliency maps; and column (e) shows the

regions that correspond to potential interesting actions

in clips. It should be noted that when rich texture exists

in the scene, temporal attention model is able to detect

the attended regions using motion information, while the

spatial model fails.

case, the spatial attention model should be dominant over
the temporal model. Some results on the testing sequences
in Testing Set 2 are shown in Figure 11. The presented re-
sults include the following: the representative key-frames of
videos (Figure 11(a)), the pixel-level spatial saliency maps
(Figure 11(b)), the expanding regions (Figure 11(c)), the
attended points in the representative frames (Figure 11(d))
and the attended regions in the representative frames (Fig-
ure 11(e)). Temporal saliency maps are not shown since
they are uniform and carry less information.

Assessing the effectiveness of a visual attention detection
method is a very subjective task. Therefore, manual evalua-
tion by humans is an important and inevitable element in the
performance analysis. In our experiments, we have invited
five assessors with both computer science and non-computer
science backgrounds to evaluate the performance of the pro-
posed spatiotemporal attention detection framework. Bor-
rowing the evaluation ideas from [15], each assessor is asked
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Figure 11: Spatiotemporal attention detection results for the testing videos in Testing Set 2. Only the spatial saliency

maps are shown, since there is no motion contrast in the scene. Column (a) shows the representative frames of the

videos; column (b) shows the pixel-level spatial saliency maps; column (c) shows the extended bounding boxes using

the expansion method proposed in Section 3; column (d) shows the detected attended points in the representative

frames; and column (e) shows the detected attended regions in the images. Corresponding evaluation results are shown

in Figure 12. Note that column (e) shows different information from column (c). If the extended bounding boxes

overlaps (second example in the first row), they are merged to produce a single attended region in the scene. Also,

small bounding boxes are removed in the attended region generation.

to give a vote on how satisfactory he or she thinks the de-
tected attended region is for each testing sequence. There
are three types of satisfactions, good, acceptable and failed.
Good represents the situations where the detected attended
regions/actions exactly match what the assessor thinks. As
pointed out by [15], it is somehow difficult to define the ac-
ceptable cases. The reason is that different assessors have
different views even for the same video sequence. One at-
tended region considered inappropriate by one assessor may
be considered perfect to another. In our experimental setup,
if the detected attended regions in a video sequence do not
cover the most attractive regions, but instead cover less in-
teresting regions, the results are considered acceptable. As
described by this definition, being acceptable is subjective
to individual assessors. For instance, in the last example
in Figure 10, one assessor considers the walking person is
more interesting than the other two sitting people. Then,
the current results shown is considered good to this assessor.
However, another assessor may be attracted by the sitting
people the most, then by the walking person. In this case,
the current result is considered acceptable to the second as-
sessor.

We have performed the evaluation on both testing sets
with three categories: (1) Testing Set 1 with moving ob-
jects in the scene; (2) Testing Set 2 with detected attended
points; and (3) Testing Set 2 with detected attended re-
gions in the scene. Figure 12 shows the assessment of all

three categories. In this result table, element in row M and
column N represents the proportion of the votes on cate-
gory M with satisfactory level N . The assessment shown
in the table demonstrates that the proposed spatiotemporal
attention detection framework is able to discover the inter-
esting objects and actions with more than 90% satisfaction
rates. The results of attended point detection have a lower
satisfaction rate than the other two region-level attention
representations. The reason for this is that, the attended
regions possess contextual information among image pix-
els, and therefore, have richer contents in terms of semantic
meanings than image pixels. On the other hand, attended
points are isolated from each other, and human perception
system responds to them very differently for different per-
sons. Due to the lack of semantic meanings, more disagree-
ments between assessors emerged for the detected attended
points, and therefore, has lowered the satisfactory score.

Another interesting observation from the experiments is
that, as the texture content in the imagery becomes richer,
the attention detection performs with lower satisfactory rate.
This is clearly shown in the results (Figure 11). For videos
that have prominent objects with relatively plain background
settings, the proposed attention detection method performs
well and produces very satisfied attended regions. On the
other hand, if the background settings are much richer, some
false detections are generated. This is actually a good sim-
ulation to the human vision system. As pointed by the psy-



Data Set Good Acceptable Failed

Testing Set 1 
(Moving Objects)

0.82 0.16 0.02

Testing Set 2 
(Attended Points)

0.70 0.12 0.18

Testing Set 2 
(Attended Regions)

0.80 0.12 0.08

System Performance Evaluation

Figure 12: System performance evaluation for three cat-

egories, Testing Set 1 with moving objects, Testing Set 2:

attended point detection and Testing Set 2: attended region

detection.

chological studies in [6], human vision system is sensitive to
the difference or contrast between the target region and its
neighborhood. In the situations where the background set-
tings are relatively uniform, the contrast between the object
and the background is larger. Thus, human vision system is
able to pick up the target region very easily. On the other
hand, if rich background settings are present in the scene,
the contrast between the object and the background is less
comparing to the former cases, human vision system is dis-
tracted by other regions in the scene and less capable to find
the target object.

6. CONCLUSIONS
In this paper, we have presented a spatiotemporal at-

tention detection framework for detecting both attention
regions and interesting actions in video sequences. The
saliency maps are computed separately for the temporal and
spatial information of the videos. In the temporal attention
model, interest-point correspondences and geometric trans-
formations between images are used to compute the motion
contrast in the scene. The areas of the spanning regions of
the motion groups are incorporated in the motion contrast
computation. In the spatial attention model, we have pre-
sented a fast algorithm for computing the pixel-level saliency
map using the color histograms. A hierarchical attention
representation is established. Rectangular attended regions
are initialized based on the attended points. They are fur-
ther iteratively expanded by analyzing the expansion po-
tentials along their sides. To achieve the spatiotemporal
attention model, a dynamic fusion technique is applied to
combine the temporal and spatial models. The dynamic
weights of the two individual models are controlled by the
pseudo-variance of the temporal saliency values. Extensive
testing has been performed on numerous video sequences
to demonstrate the effectiveness of the proposed framework,
and very satisfactory results have been obtained.
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