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ABSTRACT

In this dissertation, we address the problem of understanding human activities in videos by

developing a two-pronged approach:coarselevel modeling of scene activities andfine level mod-

eling of individual activities. At the coarse level, where the resolution of the video is low, we rely

on person tracks. At the fine level, richer features are available to identify different parts of the

human body, therefore we rely on the body joint tracks. There are three main goals of this disser-

tation: identifying unusual activities at the coarse level, recognizing different activities at the fine

level, and predicting the behavior in order to synthesize activities at the fine level. The summary

of the three proposed solutions is presented in the following.

The first goal is addressed by modeling activities at the coarse level through two novel and

complementing approaches. For this purpose, we rely on the tracks of all the moving objects

in the scene observed by a static camera. First approach learns the behavior of individuals by

modeling the patterns of motion and size of objects in a compact model. The proposed method

provides a higher-level process to the traditional real-time surveillance pipeline for identifying

unusual activities and feeding back the learned scene model to improve object detection. Pixel

level probability density functions (pdfs) of appearance have been used for background modeling

in the past, however modeling pixel level pdfs of object speed and size from the tracks is novel.

Each pdf is modeled as a multivariate Gaussian Mixture Model (GMM) of the motion (destination
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location & transition time) and the size (width & height) parameters of the objects at that location.

Output of the tracking module is used to perform unsupervised EM-based learning of a GMM at

every pixel location. Second approach learns the interaction of object pairs concurrently present

in the scene. This can be useful in detecting more complicated activities that the first approach

cannot model. We use a higher dimensional Kernel Density Estimation (KDE) model in order to

create this model. Mean shift is used for sample refinement followed by Markov Chain during

testing stage. The proposed model is successfully used to detect abnormal activities like illegal

jaywalking, person drop-off and pickup, etc. Most object path modeling approaches first cluster

the tracks into major paths in the scene, which can be a source of error. We avoid this by building

local pdfs that capture a variety of tracks which are passing through them. We also show the

improvements in object detection through the feedback of the learned scene model.

The second and third goals of modeling human activities at the fine level are addressed by em-

ploying non-linear dynamical systems. We show that such a model can be useful in recognition

and prediction of the underlying dynamics of human activities. In the case of human activities, we

use the trajectories of human body joints as the time series data generated by the underlying dy-

namical system. For this work we have borrowed the relevant key concepts from chaos theory and

developed methods to utilize them to solve the problems at hand. Next, we explain the proposed

recognition and synthesis methodologies based on the chaotic modeling of human activities.

We introduce a recognition framework that uses concepts from the theory of chaotic systems to

model nonlinear dynamics of human activities. The observed time series data is used to reconstruct

a phase space of appropriate dimension by employing a delay-embedding scheme. The properties
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of the reconstructed phase space are captured in terms of dynamical and metric invariants, which

include the Lyapunov exponent, correlation integral, and correlation dimension. The underlying

dynamical system is eventually represented by a composite feature vector containing these invari-

ants. Our contributions in this work include: investigation of the appropriateness of the theory of

chaotic systems for human activity modeling and recognition, a new set of features to characterize

nonlinear dynamics of human activities, and experimental validation of the feasibility and potential

merits of carrying out activity recognition using methods from the theory of chaotic systems.

Finally, we also propose a framework for predicting the time series data observed in human

activities. We utilize concepts from chaos theory in order to predict the behavior of a nonlinear

dynamical system which exhibits deterministic behavior. Observed time series from such a sys-

tem can be embedded into a higher dimensional phase space without the knowledge of an exact

model of the underlying dynamics. Given an initial condition, the predictions in the phase space

are computed through kernel regression. This approach has the advantage of modeling dynamics

without making any assumptions about the exact form (linear, polynomial, radial basis, etc.) of

the mapping function. The predicted points are then warped back to the time series format. We

demonstrate the utility of these predictions for human activity synthesis and tracking. Our main

contributions are: multivariate phase space reconstruction for human activities, a deterministic ap-

proach in contrast to the popular noise-driven approaches, and activity prediction through kernel

regression in the phase space.
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CHAPTER 1: INTRODUCTION

1.1 Background and Motivation

The understanding of human activities in videos has attracted the attention of many in the computer

vision research community. This technology can be useful in a variety of applications including,

but not limited to, security & surveillance, human computer interaction, robotics, and multimedia.

All of these application domains will have a significant impact on various aspects of our everyday

lives. Security & surveillance systems can be important for the public safety at airports, train sta-

tions, and large parking lots. The safety of various resources at warehouses, power houses, military

installations, etc. is also of significant interest to security agencies. In the case of human computer

interaction and robotics, a key objective is to automatically recognize different gestures to which

the machine then responds to appropriately. For instance, in the recent years there has been an in-

creased interest in developing camera equipped gaming consoles where the goal is to create a more

realistic interactive experience. In the case of multimedia and information retrieval, there is sig-

nificant interest in retrieving videos containing specific types of activities (e.g. dancing, fighting,

kissing, etc.) from large databases of movies and broadcast television videos. This could prove to

be greatly beneficial for organizations and individuals with rapidly growing video archives.

In order to build a robust system, which identifies various types of human activities, one should

consider several factors that can affect the system design choices. In the following we discuss some
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of these important factors and explain how they affect the choices we have made in the proposed

approach.

1. Application Domain: The activities of interest and the significance of the fine details could

vary depending on the application domain. For instance, in the case of a surveillance system,

the primary interest is typically in the identification of unusual behavior (e.g. falling down,

jaywalking, jumping over a fence, etc.). On the other hand, in the case of human computer

interaction, the primary interest is typically in the details of specific activities (e.g. waving

with one hand, waving with two hands, kicking with right foot, etc.). Therefore, activity

models should be devised in order to accommodate the application domain of interest.

2. Video Quality: The quality of video is an important factor that should be considered while

devising a robust activity recognition system. The quality could depend on the resolution,

color contrast, frame rate, etc. of the source video. For instance, in higher resolution scenes,

it is possible to extract useful motion signatures of the individual parts of a human body. The

same features would be far less useful when the resolution is very low, like in the case of

video from a far-view surveillance camera. Figure1.1 shows one such example where the

foreground detections capture only a part of the bodies of the two individuals. Hence, the

quality of the source video should be considered when selecting the type of observed feature

(e.g. body joint trajectories, person trajectory, body shape representation, etc.).

3. Learning Paradigm: A learning based approach can be used to recognize different human

activities. It has the advantage of robustness to intra-class variations. The learning can be
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(a) Source image (b) Moving foreground detections 

Figure 1.1:The quality of moving foreground detections at the coarse level is low. Typically the

image of human body is comprised of only a few hundred pixels. Notice that only a part of the

human body is detected as the foreground.

supervised or unsupervised depending on the type of training data available. In the case of

supervised learning, we can learn a separate model for each type of activity and possibly

assign a semantic label to the class. On the other hand, in case of unsupervised learning, we

do not have the luxury of separating different activity classes and thus can only devise an

“outlier detector”. This can be useful in the case of surveillance system when the goal is to

detect unusual activities in the scene.

Considering the aforementioned factors, we approach the problem of recognizing human activ-

ities by adopting two different approaches for modeling activities at thecoarseand thefine level.

The coarse level comprises of activities defined by the global motion of the object (person tra-

jectory), low resolution, and unsupervised learning. The fine level comprises of activities defined

by the local motion of body parts (joint trajectories), higher resolution, and supervised learning.

Figures1.2 and1.3 present samples of activities at the coarse and fine levels respectively. In this
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(a) Walking on the sidewalk (b) Sitting on the sidewalk (c) Unusual path

Figure 1.2:Sample activities at the coarse level, typically observed from a stationary surveillance

camera.

dissertation, we contend that aone size fits allapproach is not most appropriate and we should

devise two different methods for the two levels.

We first show that we can model an activity well enough to recognize it, in addition, we can also

use the model to recreate orsynthesizethe activity. This has several uses for the underlying task of

understanding human activities. It can be useful for qualitative and quantitative validation of the

learned model being used for recognition. The activity synthesis has wide range of applications

in the area of computer graphics and animation. Predictions are computed in order to synthesize

an activity. These predictions can also prove to be vital for the task of accurately and efficiently

localizing and tracking different parts of the parts of the human body. We also demonstrate the

results of human body parts tracking on a set of periodic action from a standard action dataset.

Next, we highlight the main goals of this research along with the proposed solutions for each

one of these goals. In Section1.3, we present the descriptions of the proposed solutions and the

summary of our contributions.
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(a) Running (b) Diving (c) Jumping Jack

Figure 1.3:Sample activities at the fine level. Typically a human body is covered by a few thousand

pixels and the individual body parts have a few tens or even hundreds of pixels.

1.2 Goals

The goals of this work are to detect abnormal activities at the coarse level and to recognize and

synthesize activities at the fine level. We present following three solutions to address these goals.

1. Statistical scene modeling for unusual activity detection.

2. Chaotic invariants for human activity recognition.

3. Chaotic modeling for human activity prediction.

1.3 Outline of This Research

In this section we introduce the two different approaches for modeling coarse and fine level activ-

ities. Figure1.2 shows samples of a few activities that are being modeled at the coarse level. In

this case a scene model will be learned which is composed of all the observed activities. On the

other hand, Figure1.3 presents a few examples of the activities that can be modeled at the fine
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level. This involves modeling of individuals instead of the whole scene by capturing the details of

the body part motion.

1.3.1 Coarse Level Activity Modeling

We approach this problem by learning, in an unsupervised manner, all the activities in the scene.

Once theusualactivities have been learned, the goal is to identify anyunusualactivities in the

scene. This kind of approach is particularly useful for the security and surveillance application

domain. Such a model can learn the patterns of various types of activities that could otherwise

be too abstract to be distinguished by separate classes. For instance, such an approach is able to

distinguish between a person jaywalking in the middle of the road and a person using a crosswalk,

although both of them are walking. This proves to be useful in identifying semantically meaning-

ful activities because they are unusual considering what system has learned automatically. Other

interesting scenarios that motivated us included automatic detection of: one-way traffic violations,

speeding, illegal u-turns, collapsed individual on the sidewalk, restricted area violation, etc.

In order to learn patterns of object motion in a scene we propose two novel and complementing

models based on statistical learning. The first model is useful for learning behaviors of individual

objects only, while the second one has the benefit of learning the relationship of objects in pairs.

The goal is to learn a distribution that presents typical behavior during the training phase and can

be used to identify abnormal activities during the testing phase. We use a local GMM based pdf

at every pixel in the first model, and a global KDE based pdf for the whole scene in the second

model.
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The models presented here have following novel contributions:

• We propose a new and intuitive approach to model object parameters (motion and size) by

using a pdf at every pixel location. Stauffer and Grimson’s [99] approach has been used

for modeling appearance for several years, but the proposed model of motion and size at

pixel-level is novel.

• In addition, we present a second novel model that captures the relative relationship of objects

in pairs. Saleemiet al. [95] have presented a similar single object model recently, but the a

model for object pairs is novel.

• Unlike most of the previous approaches, our models do not require extraction of major paths

in the scene and is learnt directly from the individual tracking observations.

• The motion parameters are used to capture thelocal velocity of an object, as well as the

globalvelocity through the track. This helps in detecting the anomalous motion patterns that

cannot be captured by local analysis only.

• The presented models can be used to perform online learning of the evolving motion patterns

in the scene.

• We utilize this model to provide pixel-level parameter feedback to the background subtrac-

tion module in order to improve object detection. Instead of constraining the object detection

module by having fixed parameter values throughout the scene, we present a method to pro-

vide different pixel-level parameter values using the learnt scene model. Two parameters:
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Minimum size of the foreground objects and the background learning rate, have been used

to improve object detection by our approach.

1.3.2 Fine Level Activity Modeling

Our model for fine level is based on non-linear dynamical systems. We use key concepts from

chaos theory which enable us to create models of dynamics without actually having a parametric

form of the dynamical system. This is particularly useful when working with the experimental data

and the underlying model of the dynamical system is unknown.

Input to a dynamical system is a sequence of time series observations. In our model, the time

series data is received from trajectories of human body joints. Observed time series, in this case,

can be embedded into a higher dimensional phase space without the knowledge of an exact model

of the underlying dynamics. This embedding warps the observed data into astrange attractor

in the phase space, which provides precise information about the dynamics involved. After the

embedding, one can extract invariant features for recognition or perform regression for prediction.

1.3.2.1 Chaotic Invariants for Human Activity Recognition

The representative shape of the strange attractor is captured through a set of features that will be

useful to identify the underlying dynamics uniquely. The properties of the reconstructed phase

space are captured in terms of dynamical and metric invariants which include the Lyapunov expo-

nent, correlation, and correlation dimension. We use a composite feature vector of invariants for

classification.
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Our contributions in this work include:

• Investigation of the appropriateness of the theory of chaotic systems for human activity mod-

eling and recognition.

• A non-linear dynamical system based representation of an action that without assumptions

about the mathematical form. Previous models have assumed a linear model or assumed a

linear combination of non-linear basis functions.

• A new set of features to characterize nonlinear dynamics of human activities.

• Experimental validation of the feasibility and potential merits of carrying out activity recog-

nition using methods from the theory of chaotic systems.

1.3.2.2 Chaotic Modeling for Human Activity Prediction

Once the training time series data has been embedded into phase space, we extract the information

about the underlying from the strange attractor and utilize it to predict future observations. Given

an initial condition, the predictions in the phase space are computed through kernel regression.

The predicted points are then warped back to the observed time series.

Our main contributions in this work include:

• Predicting dynamics without making any assumptions about the exact form (linear, polyno-

mial, radial basis, etc.) of the mapping function.

• Multivariate phase space reconstruction for human activities.
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• A deterministic approach to model dynamics in contrast to the popular noise-driven ap-

proaches.

• Video synthesis and action tracking from kernel regression in the phase space.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. In Chapter2 we cover relevant research in the

related areas. We also explain how the proposed research contributes to the literature in perspective

of the previous work. Chapter3 presents our approach for learning object motion patterns in a

stationary camera. We present results of anomaly detection and scene model feedback to improve

object detection. We present two complementing models for learning object motion patterns of

single objects, as well as object pairs. Chapter4 presents the details of a novel chaos theory based

approach for human activity recognition. We provide the details of representing actions through

phase space embedding and chaotic invariants for recognition. Chapter5 presents our approach

for predicting dynamics through kernel regression in phase space also used for recognition. We

also provide the multivariate extension of phase space embedding for better predictions. We show

the application of these predictions for human action synthesis, human body parts tracking, and

dynamic texture synthesis. We present experimental results of the three approaches using the

published data sets. Finally, in Chapter6 we conclude this dissertation with discussion and review

of future directions.
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CHAPTER 2: LITERATURE REVIEW

In this chapter we cover the most relevant work in the research literature. We cover the topics of

scene modeling for anomaly detection, activity recognition, dynamical systems based models as

used in activity modeling, and activity synthesis. We present the merits and demerits of many of

these approaches while referring to other similar ones. We also explain the contributions of our

work in the context of the previous work.

2.1 Scene Modeling for Abnormal Behavior Detection

Scene modeling, in this dissertation, refers to the modeling of normal object motion in the scene.

Such a model is typically used to learn the typical behavior in the scene and differentiate this from

any unusual object behavior. The term “scene modeling” is not used here in context of scene

content matching in domain of video matching and retrieval [8].

Analysis and modeling of motion patterns for surveillance scenes has been studied by several

researchers. Buxton [16] provided a detailed review of the models that have been used for learn-

ing scene activity. Johnsonet al. [57] presented a vector quantization based approach for learning

typical trajectories of pedestrians in the scene, but they require entry/exit points to be marked man-

ually. Grimsonet al. [47] used location, velocity and size to classify activities. The activities are

classified using a B-tree based approach called Numeric Iterative Hierarchical Cluster method and
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the co-occurrence statistics in the quantized feature space. In [89], Remagninoet al.use velocity

and aspect ratio to classify different tracks into vehicle or person. They utilize a Bayesian classi-

fier for this task and an HMM model to capture common events in the scene. Makriset al. [73]

have presented a technique in which different regions of the scene are labelled as entry/exit zones,

junctions, paths and stop zones. This model provides a set of scene attributes but lacks the ob-

ject size-based anomaly detection. Saleemiet al. [95] proposed a single Kernel Density Estimate

(KDE) model for the whole scene, which requires to save all training data. Their approach does

not address anomalies due to object size and only focuses on the object velocity. In comparison,

we present a more compact GMM based model when modeling the motion of single objects. We

rely on KDE model only in the more complex case of object pair motion.

Hu et al. [53] present a recently published technique in which the tracks are spatially and

temporally clustered into different motion patterns. Each of these motion patterns is divided into

several segments; each segment is modeled by a Gaussian model of speed and size. Anomaly

detection and path prediction are the two applications of this approach. Wanget al. [106] have

presented another approach in which the tracks are clustered into vehicle and pedestrian paths.

Their model provides the source/sink information along with capability of abnormality detection.

Morris et al.[79] have recently presented a catalogue of various approaches for trajectory clus-

tering in the domain of scene modeling with the goal of activity detection. They cover six different

distance measures that have been used before for this task. They experiment with six different

clustering approaches including direct, divisive, agglomerative, hybrid, graph, and spectral. If one

chooses to follow the route of clustering the trajectories, this can serve as a good starting point.
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We present a model here that avoids the errors related to clustering of trajectories. Instead, we

approach this problem by using a pdf model that can either represented by GMM at every pixel or

one global pdf through KDE. The risk involved in the parameter selection of the former model is

avoided by using an automatic EM approach by Figueiredo and Jain [39].

In the past year or two there has been an increased interest in detection of unusual activities

in crowded situations[64, 75, 5, 65]. Kim et al.[64] proposed a space-time Markov Random Field

(MRF) model for detecting abnormal activities in the scene. They learn the distribution of local

optical flow using a mixture of probabilistic principal component analyzers. For testing the learnt

model and MRF graph is used to compute a maximum a posteriori estimate. They create models at

the local spatial neighborhood level. Mehranet al.[75] have presented an approach based on social

force model with particle flow field to model the motion of individual in crowded environment.

The model of the normal crowd behavior is extracted from the spatiotemporal volumes represent-

ing reasonable particle interaction. A bag of words representation is used for detecting abnormal

behavior in comparison to the scene model. Ali and Shah [5] had initially utilized flow fields as

advection of the optical flow computed at every frame and integrated through time. Their approach

was based on Lagrangian particle dynamics for crowd flow segmentation. The Finite Time Lya-

punov Exponent was used in order to determine coherence of particle dynamics through the flow.

Our use of Lyapunov Exponent as a part of chaotic invariants for human activity recognition is

relevant to this work. They have also shown the identification of new crowd segments as a way to

perform abnormal behavior detection in crowds. Lastly, Kratzet al.[65] presents aimed at address-

ing crowded situation and the goal is to identify regions with unusual activity in the scene. They
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use GMM based models of spatiotemporal gradient in video cubes. The cuboids are compared us-

ing the symmetric Kullback-Leibler divergence. Temporal relationship is finally captured through

Hidden Markov Models. The decision about the normal vs. abnormal behavior is taken based on

the likelihood of an observation sequence in an HMM, using the traditional forward-backward al-

gorithm. A common theme in these, and other, crowd analysis approaches is that they do not rely

on object tracking. The observed feature is typically optical flow or a derived flow field. The scene

modeling approach presented in this dissertation would not be directly applicable to such crowded

scenarios. However, the first proposed scene model based on GMM can be modified to learn the

distribution of local optical flow instead of the tracking data. The new model would then closely

follow the behavior of other statistical learning based approaches discussed above.

Scene modeling can also be used to feedback the scene knowledge into object detection mod-

ule. In [49], Harville proposed an approach with positive and negative feedback to background

subtraction for adjusting the learning rate and improving foreground detection. Tianet al. [111]

detected the static regions that were wrongly modeled as the background. In addition to learning

rate, there are other parameters that affect the background subtraction and could benefit from the

feedback. In this approach we use the same scene model to provide feedback in order to update

minimum object size and background learning rate parameters. The unique aspect of our approach

is the use of the same scene model for both anomaly detection and improving object detection.

One common factor in most of the related work is the estimation of main motion paths in

the scene. Techniques presented in [53, 59, 100, 106] use multiple features of observed tracks

for clustering tracks into the main paths of the scene. We argue that the explicit estimation of

14



these paths is not necessary for typical applications of a scene model including anomaly detection

and improving of object detection. In addition, these approaches only capture the instantaneous

velocity, however in the proposed approach we integrate larger transition times. This captures the

globalproperties of the track and therefore does not require the estimation of the main paths in the

scene.

2.2 Human Activity Recognition

Human action/activity recognition is an important area of research in the field of computer vision.

The pioneering research efforts [3, 50, 52, 68, 87, 92] in this area tried to address the problem in

early eighties by modeling the articulated body skeleton for human activity analysis. For instance,

Akita [3] compared the learned body model with the key-frames of the sequence to test the presence

or absence of the activity, whereas Leeet al. [68] employed a 3D configurations of the model and

tried to find the best matching with the 2D motion-based segmentation of the image. On the same

lines, Hogg [52] studied the motion of a walking figure using an articulated model. Since then

a huge body of literature that addresses different aspects of the activity recognition problem has

been published. Comprehensive reviews of this research has been presented in a number of survey

papers over the years [24, 2, 1, 44, 76, 17, 66]. Readers are referred to these survey papers for

the in depth coverage of the field. In this section, we will limit ourselves to some of the most

influential and relevant part of this literature.

In general, approaches for human activity analysis can be categorized on basis of the repre-

sentation used by the researcher. Some leading representations are learned geometrical models
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of human body parts, space-time pattern templates, appearance or region features, shape or form

features, interest point based representation and motion/optical flow patterns. In early years repre-

sentation based on appearance features was a popular approach. The general methodology was to

learn the appearance model of human body or hand etc., and match it explicitly to a target video

sequence for activity or gesture detection [14, 33, 98, 113, 42]. The temporal aspects of an activ-

ity were handled by either training hidden markov models (HMM) or its different variants. But

soon it was realized that this representation is limited in its ability to handle realistic situations as

it is prone to changes in the appearance of the actor. However, some recently published papers

[78, 77, 56] are still pursuing appearance based representation for activity recognition in images

by searching for static postures using the appearance of the whole human body or parts of the

body. An important short coming of these approaches is the localization of body part which itself

is a very hard problem. We believe that use of only appearance based information for activity

recognition is counter intuitive as activities are a temporal or dynamic entity.

Popular shape based representations include edges [22] and silhouettes of human body [28].

The idea behind shape based representation is that an activity consists of a series of poses which

are detectable from a single frame. Each pose can be encoded using the shape features and single

frame recognition in turn can be extended to more than one frame for robust activity recognition.

The silhouette based representation was recently extended to characterize actor’s body outline

through space and time [114, 11]. This is done by stacking the individual silhouettes detected in

each frame giving rise to a three dimensional volume. Yilmazet al. [114] used surface properties

of this volume for activity recognition. While Mosheet al. [11] used solution of poisson equation
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to extract space time features of the volumes. Note that these approaches can also be categorized

under a volume based representation. Although these approaches have demonstrated robust per-

formance on a number of activities, they lack the ability to incorporate the rich motion information

in their representation as they concentrate on the properties of the surface of the volume. That is

their emphasis is more on capturing theformof the human body.

The approaches based on volumetric analysis of video for activity recognition. Keet al. [61]

extended the two dimensional Haar features to three dimensions and learned a cascade of boosted

classifiers. In [62], they later addressed action detection in cluttered scenes by using partial match-

ing of action volumes. Shechtmanet al. [97] employed a three dimensional correlation to match

the actions in the space time volume. Mahmoodet al. [102] also used volume representation

for activity recognition. One benefit of the volume based approach is that there is no need to build

complex models of body configuration and kinematics, and recognition can be done directly on the

raw video. Another important direction of research that has gained much interest recently is the use

of space time interest points and their trajectories for activity analysis. Work by Laptevet al. [67],

Oikonomopoulousmet al.[82] and Dollaret al.[35] belongs to this category. The main strength of

this representation is its robustness to occlusion as one does not need to track or detect the whole

human body.

The features based on motion information and optical flow, which are more relevant to our

current work, have been used by a number of researchers [37, 70, 58, 112]. For instance, Bo-

bick et al. [12] introduced motion energy image (MEI) as way of describing cumulative spatial

distribution of motion energy in the given sequence. This description of motion is then matched
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against stored models of the known activities. The MEI descriptor was later augmented with mo-

tion history image (MHI) in [13], where each pixel intensity in MHI is described as a function of

of motion energy. Recently, Weinland et al. [108] extended this representation to handle different

viewpoints. In optical flow based approaches [70, 112, 10] the idea is to directly use the optical

flow as a basis for deriving a representation that can be used for recognition. Littleet al. [70] used

spatial distribution of the magnitude of the optical flow for deriving model free features, while

Ju et al. [58], Yacoobet al. [112] and Blacket al. [10] proposed PCA based analysis of optical

flow for facial motion and expression analysis.

Chaudhryet al.[26] have recently presented an approach where they model an action through

nonlinear dynamical system (NLDS). The are using a histogram of oriented optical flow (HOOF) as

the observation in each frame. The sequence of HOOFs is then used as the input time series of the

NLDS. They use generalization of Binet-Cauchy kernels to NLDS in order to compare two HOOF

time series. They claim to be the first ones to have used a complex descriptor, like HOOF, instead

of a set of trajectories of human body joints or a series of pose descriptors containing the joint

angles etc. This approach uses the kernel for projection to a higher non-Eucledian space in order

to compute distance between to HOOF time series. Such a model is useful for the computation of

action recognition but cannot be generalized to action representation for other tasks like prediction,

tracking, etc. The model presented in this dissertation provides a strong representation in the phase

space.

In addition, we would like to mention that a different paradigm for activity recognition has also

been advocated over the years where 3D information of human postures and dynamics is analyzed
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[34, 18]. The projection of these 3D models are used to test whether desired activity is present in

the given frame or not. Due to explicit construction of 3D models, these approaches are able to

handle view invariance but suffer from the difficulty of recovering 3D structure of the articulated

objects.

Our present work is more related to the approaches of learning dynamical models over the state

space that represent human motion ([9, 81, 15]). Specifically, the method by Bissaccoet al. [9]

used a parametric skeletal model of a moving person and learned a linear dynamical model, while

Bregler [15] proposed a mixed-state statistical model with a finite state automaton at the highest

level to switch between local linear models to cater for the nonlinear dynamics of human motion.

Later on [86, 66] attempted to integrate the nonlinear dynamics directly into the model, rather than

using an external mechanism to control the switching.

2.3 Dynamical Systems and Video Synthesis

Polana and Nelson [85] classified visual motion into three classes: motion events, activities, and

temporal textures. Motion events (e.g. sitting, opening window) don’t exhibit temporal or spatial

periodicity. Activities (e.g. walking, jumping) are formed by the motion patterns that are periodic

in time and localized in space. Temporal textures (e.g. waves on water surface, smoke) present

statistical regularity but have indeterminate spatial and temporal extent. We focus on the temporal

regularity of the last two classes. For this we rely on the powerful tools from chaos theory to model

deterministic dynamical systems [60].
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In computer vision, dynamical systems have been used in a variety of applications, including

human motion (activity) modeling [9, 15, 40] and dynamic textures [25, 36, 45, 71, 115, 107],

and tracking [109]. Most of these approaches model underlying system dynamics by using linear

systems, while others use nonlinear dynamical systems. In many cases, nonlinear approaches

provide a more accurate model but have to approximate the parametric form of the underlying

system. This parameter learning may be imprecise and that can be a source of error. Our approach

belongs to the category of the nonlinear dynamical systems that use nonparametric model, which

therefore does not require parameter learning.

Many of the previous approaches for dynamical systems rely on stochastic noise-driven linear

[36, 115] and nonlinear dynamical systems [25]. Instead, we show that the typical dynamic tex-

tures can be modeled accurately by deterministic dynamical systems. The detailed experimental

validation proves our argument. In [69] and [71], authors present approaches for learning nonlinear

manifold for the observed time series. We have compared our method with [71] and show that our

approach generates more realistic dynamic textures, because it does not suffer from the errors due

to imprecise learning.

Time series modeling and prediction has been an active area of research due to the wide variety

of applications in the financial market, weather, biology, etc. The initial approaches typically

relied on AR, MA, or ARMA univariate models. More sophisticated approaches rely on nonlinear

modeling [23] and state space projection of the time series [86]. Our approach has both of these

properties. Ralaivolaet al.[86] present an approach for time series prediction based on kernel trick

and support vector regression. In comparison, our approach is based on delay embedding [104]
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and kernel regression [80]. Delay embedding generates the uniquestrange attractorthat can be

used for system modeling and classification. [60].

Wanget al. [40] have presented another strong model for human motion. They propose a non-

parametric dynamical system based on Gaussian processes. This approach is only demonstrated

for human motion and not for the higher dimensional data, such as dynamic textures. The case of

dynamic textures is more challenging than human activity because of the higher dimensional ob-

servations and more irregular variations in the system state. Our approach is general enough to be

applicable to both human activities and dynamic textures. In addition, our method does not require

multiple exemplars for training in order to learn a particular activity, making it more practical.

Huanget al.[54] have recently presented a new approach of human action synthesis in 3D video

using surface motion graphs. Their goal is to allow a user to specify a set of key poses needed in the

output video. Their goal is to use the available poses and in the database and minimize the cost of

transition between the key poses. They construct the novel 3D video by finding the optimal path in

the surface motion graph among the key poses specified by the user along with location and timing.

They use integer linear programming for finding the optimal set of poses. This type of framework is

suitable for building composite activities (like walking and then running) that are based on different

combinations of individual activities (like running, walking, etc.). The activity synthesis approach

presented here focuses on the synthesis of individual activities instead of activity transitions.

A common theme of all these approaches is that they approximate the true motion dynamics

by putting constraints on the type of the dynamical model. In addition, they require very detailed

mathematical and statistical modeling which involves assumptions about the probability distribu-
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tions of stochastic variables of the model, development of inference methods, and algorithms for

learning parameters of the distribution using a large data set. To overcome some of these diffi-

culties, we are proposing a framework that captures the true non-linear dynamics of the human

motion, and generates a more richer set of features by directly working with the experimental data.

In addition, our method is not a statistical learning method therefore does not require large training

data, instead strong discriminative features can be derived just from one example activity.

2.4 Summary

We have presented an overview of the related research in the areas of anomaly behavior detection,

activity recognition, dynamical systems and activity synthesis. We discussed pros and cons of

various approaches in the literature. We also explained how the proposed work is aimed at filling

the void in the literature. Our approach for anomalous activity detection is based on unsupervised

learning, models motion of single objects as well as object pairs, avoids errors related to clustering

tracks, and reuses the same scene model for improving object detection. We have presented a

novel approach to model human activities as a dynamical system in the phase space. To the best of

our knowledge, we have used the relevant concepts from chaos theory and non-linear dynamical

systems for the first time to represent human activities and dynamic textures in computer vision

literature. We have used a new set of features (chaotic invariants) for recognizing activities and

proposed a new approach (kernel regression in phase space) for predicting human activities and

dynamic textures.
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In the next three chapters we present the details of our approaches for unusual activity detection,

activity recognition, and activity prediction. The following chapter presents the details of our

statistical learning approach to detect unusual activities at the coarse level in the scene.
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CHAPTER 3: SCENE MODELING FOR UNUSUAL ACTIVITY DETECTION

3.1 Introduction

Automated video surveillance is crucial for the security of various sites including airports, train

stations, military bases, and many other public facilities. There have been significant advances in

automated visual surveillance systems in the recent years [30, 74]. A modern surveillance system

is expected to not only perform basic object detection and tracking, but also to interpret object be-

haviors. This higher level interpretation can have several applications including abnormal behavior

detection, analysis of traffic trends, and improving object detection and tracking. In this chapter,

we focus on the problem of interpreting the output of the object detection and tracking module in

order to gather knowledge about the scene. This knowledge is used to build a scene model which

can be used to detect abnormal motion patterns and to enhance the surveillance performance by

improving object detection. We present two novel and complementing models here: Section3.2

describes first model that is suitable for modeling single object motion, and real-time applications

[6]. Section3.3 describes second model that is useful for learning relationship between concur-

rently moving object pairs in the scene. The former one is suitable for real-time applications,

while the latter is capable of detecting more complex activities. Both of these approaches produce

encouraging results on the published data set.
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Figure 3.1:Proposed scene analysis approach detects abnormal events and provides scene model

feedback. Traditional object detection is improved by using the pixel-level parameter feedback.

3.2 Modeling Single Object Activities

3.2.1 Learning the Scene Model

In this section, we present the details of the structure and learning of the proposed scene model.

The visual tracking information serves as the input for our framework. We have used the object

detection and tracking system presented in [55]. For a given surveillance video, the tracker pro-

duces a set ofm tracks{T1, . . . , Ti, . . . , Tm}, where every track is a set of observations of the same

object. For instance, anyith track is a set ofn observationsTi = {O1, . . . , Oj, . . . , On}, where

Oj = (t, x, y, w, h) contains the time stampt of observation, location(x, y), width w, and height

h of the object. We also use the size(w, h) feature, as it provides useful information for finding

anomalous behavior and improving object detection. For instance, this model assists in detecting

a pedestrian on the road or a bicyclist on the sidewalk, even when the motion is not very discrim-

inative. Using the set of observations, we want to generate a set of transition vectors that will be

used to train the statistical model and provide the details about the motion and size of the objects.
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τ

Figure 3.2: A set of observations with transition (blue) vectors connecting them are shown on a

synthetic track.Oj andOk represent two observations of the same object along the track.γk
j is the

transition vector betweenOj andOk.

For every observation, we compute a set of transition vectors that capture the transition from the

given observation to future observations along the same track. Relative velocity is computed for

the next observation, as well as a set of subsequent observations. In order to keep the problem

computationally tractable, we limit the computation to a temporal window withτ observations.

Figure3.2shows a synthetic track with marked observations and transition vectors from a partic-

ular observationOj. This provides a means to detect abnormal tracks through theglobal analysis.

In many cases mere use oflocal analysis would not be sufficient. One such synthetic example is

illustrated in Figure3.4.

For any observationOj, relative velocity is computed against all{Oj+1, . . . , Oj+τ} to generate

a set of transition vectors{γj+1
j , . . . , γj+τ

j }, where transition vectorγj+τ
j = (xj+τ , yj+τ , τ, wj, hj).

The destination location(xj+τ , yj+τ ) is obtained from the observation vectorOj+τ , the duration

between the two observationsOj andOj+τ is τ . (wj, hj) represents detected size of the object in

26



Figure 3.3: A subset of tracks used in the training of the scene model. Multiple transition vectors

from each observation contribute towards learning the pdf at that location.

source observationOj. τ is the length of the temporal window along the track; in the experiments

we have usedτ = 20.

We model the motion patterns in the scene using the motion and size features, as described

above. We use a5-dimensional random variableΓl for every pixel locationl, whereγ = (x′, y′, δt, wl, hl)

represents one particular outcome ofΓl. Every transition vector generated from the observations

presents a five dimensional random variable. The probability density function (pdf) over this fea-

ture space is modeled as a multivariate Gaussian Mixture Model (GMM). This pdf is created for

every pixel location in the scene and it models the probability of that location being the source of

a transition. The pdf estimated at every location captures the probability of observing an object of

a given size which is moving to a specific location in a given duration. The pdf at an intersection

of multiple paths can capture the possible transitions in different directions, speeds and sizes of

objects.
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Learning of the model is performed after a sufficient amount of tracking data has been accu-

mulated. The appropriate duration depends on the amount of traffic in the scene and the required

accuracy of the model. For any given locationl in the scene, all the observations of the tracks

through that location contribute to the pdf at that location. The pdf for the random variableΓl is

created by utilizing the training instancesγ’s with l being the source location. The training method

described below is repeated for all pixel locations.

A multivariate GMM is used to model the pdf of the random variableΓl. The probability of an

observationγ belonging to the GMM is given by

P (Γl = γ|θl) =
n∑

i=1

αi
lp(γ|θi

l), (3.1)

wheren is the number of components detected in the mixture,θi
l is the set of parameters defining

the ith component with weightαi
l, andθl ≡ {θ1

l , . . . , θ
n
l , α1

l , . . . , α
n
l } defines the complete set

of parameters required to specify the mixture model. Each component is modeled as a Gaussian

distribution of the form

p(γ|θi
l) =

1

(2π)d/2|Σi
l|1/2

e−1/2(γ−µi
l)

T Σi −1
l (γ−µi

l), (3.2)

whered is the dimensionality of the model andθi
l = {µi

l, Σ
i
l} are the parameters of the model.

The computation of the GMM parameters is performed through an improved Expectation Max-

imization (EM) based algorithm, which was proposed by Figueiredo and Jain [39]. This particular

approach provides a solutions to three major limitations of the basic EM algorithm. First, the

number of components does not have to be fixed. This algorithm estimates the number of compo-

nents by removing the components that are not supported by the data. Second, this approach does
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not require careful initialization and starts with a large number of components which are spread

throughout the data. Third, this algorithm also avoids convergence towards a singular estimate

near the boundary of the parameter space. The details of the algorithm are available in [39], but

important points are included here for the sake of completion. The E-step is given by

ωi
l =

αi
l(t)p(γ|θi

l(t))∑k
j=1 αj

l (t)p(γ|θj
l (t))

, (3.3)

whereωi
l captures the conditional expectation of the missing data.αi

l(t) andθi
l(t) are the parameter

values at the iterationt of the EM algorithm. The M-step is given by

α̂i
l(t + 1) =

max{0, (∑S
m=1 ωi

l(m))− d
2
}∑k

j=1 max{0, (∑S
m=1 ωi

l(m))− d
2
} , (3.4)

for i = 1, . . . , n,

θ̂i
l(t + 1) = arg max

θi
l

Q(θl, θ̂l(t)), (3.5)

for m : α̂i
l(t + 1) > 0,

whered is the dimensionality of each mixture component, S is the number of training samplesγ

used in E-step, and theQ-function estimates the log-likelihood given the current model estimate.

After learning of the complete scene has been performed, the GMM parameters for every pixel

location are stored as the scene model. For a given observation, if we only update the pdf of

the pixel at the centroid of the bounding box, then the created models could be spatially sparse.

To achieve better spatial smoothing of the motion models in the neighboring pixels, we update

all the pixels in the bounding box. Note that unlike most of the previous approaches, learning

of the proposed scene model does not rely on merging track to estimate the main paths in the
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scene. This reduces possible sources of error due to incorrect path estimation or ambiguity of track

membership between two or more paths. Another strength of the proposed structure of the scene

model is the ability to perform online learning of motion patterns and adaptation to the changing

object behaviors in the scene.

3.2.2 Abnormal Behavior Detection

The training phase generates a scene modelΘ using the observed motion patterns. This model is a

set of GMM parametersΘ = {θl}, wherel is the location of all the pixels with sufficient training

observations. We use this scene model to detect abnormal motion patterns which conflict with the

trends observed in the training data. We propose an online approach for detecting anomalies in

the latest observationOt from the test trackT . This observation is analyzed as soon as it becomes

available after a set of previous observations in the trackT = {O1, . . . , Ot−1, Ot}. For the task of

anomaly detection,local andglobalanalysis of these observations is performed. Inlocal analysis,

we conduct the comparison of the current observationOt with the previous observationOt−1 only

(first order). This captures many typical anomalies based on instantaneous velocity and size of

the detected objects but, it has a limited capability for detecting more complicated anomalies. The

global analysis, however captures morecomplicatedcases by analyzing the current observation

Ot with respect to a series of previousτ observationsT ′ = {Ot−τ , . . . , Ot−1} (higher order). The

transition between any source observationOt−i ∈ T ′ and the current observationOt is defined

by the transition vectorγt
t−i = (xt, yt, i, wt−i, ht−i), which contains contains destination location,

transition time, and the object size at the source location. The pdfP (Γl(t−i)) of transition vectors at
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the source locationl(t−i) from Ot−i is used to determine how normal the current transitionγt
t−i is.

A very low probability value fromP (Γl(t−i) = γt
t−i) is interpreted as representative of an atypical

transition. Our goal is to determine if the current observationOt is abnormal or not by analyzing

the trail of observations in the track. Therefore, we use the minimum transition probability

βt = min
i
{P (Γl(t−i) = γt

t−i)}, (3.6)

for i = 1, . . . , τ and the observationOt is declared abnormal if following condition is true

βt < λ, (3.7)

where thresholdλ is applied to the least probable transition. This provides a means of detecting

atypical transitions that originated from any one of these higher order transitions. Hence, both

local and global anomalies can be detected through this framework. Our approach performs online

analysis of the motion patterns to detect anomalies as soon as they occur.

We use this framework to detect various types of anomalous behaviors. Figure3.5 presents

various types of detected anomalies in a real video. These include pedestrians on the road and

grass, skateboarder and bicyclist on the sidewalk, pedestrians sitting down, etc. In addition, we

can also catch anomalies like violations of one-way traffic, which is important on the road and

in some airport hallways. Figure3.4 presents a synthetic scene to illustrate the case of global

anomalies. Randomly generated tracks (Figure3.4(a)) were used for training completely follow

one of the four paths. Our goal is to detect the tracks whose behavior is normal locally but not

globally. This is important, for instance at the airport where pedestrians from one path are not

allowed to switch to another intersecting path. Another example could be of cars that are not
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Training Tracks (4 Paths) Normal Tracks

Fast Motion Stopping Incident Unusual Path

One-way Violation Unusual Object Size(a)

(e)

(c) (d)(b)

(f ) (g) (h) Unusual Path (by global analysis)

Figure 3.4: Global anomaly: when the tracks are not allowed to change paths, global analysis

detects the violations. Every observation is labelled either normal (blue diamond) or abnormal

(red circle). Gray background is the region without motion model. (a) Training set of random

unidirectional tracks (along four paths). (b) Local analysis fails to identify anomaly, while (c)

global analysis highlights the observation that take an unusual path.

allowed to turn on an intersection. Figure3.4(b) and (c) show the outcome of the local and the

global analysis respectively. Local analysis the first order transition between observations is not

sufficient to detect such anomalies. Instead we use higher order transitions to capture the global

structure of the track. This type of analysis can also be useful for detecting cyclic motion or

repeated U-turns which can be abnormal.

3.2.3 Improving Object Detection

An important application of the proposed scene modeling approach is to improve object detec-

tion utilizing the patterns in the observed tracks. The knowledge of object parameters (size and
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speed) at every pixel location is used for this purpose. There are certain components in traditional

background subtraction algorithms [99, 38] that could benefit from this scene knowledge. These

parameters are traditionally considered consistent throughout the scene, but this limits the perfor-

mance of object detection. The scene model provides the feedback information (see Figure3.1)

for every pixel to update the parameter values according to the scene information. The use of the

proposed scene model is presented in the following for two parameters, minimum object size and

background learning rate.

3.2.3.1 Minimum Object Size

The minimum size (s) of the detected objects is the first parameter which benefits from our scene

model. Sizes is defined as the area of the blob detected after background subtraction. If this value

is set too high, then detection of valid small objects in the far view camera fails. On the other

hand, if this value is too low, then some noisy segments and broken parts of larger object blobs

are reported as separate objects. Instead of a fixed global value for the parameters, we present a

method for automatically obtaining the appropriate value of thes parameter at different pixels.

In order to improve the accuracy of object detection, we use the proposed scene model to

estimate the probability of observing an object of a given size at the current location. In the learnt

scene model, the pdf at every pixel location captures the joint probability of motion and size. For

size-based analysis, we extract the marginal pdf for the size parameters

P (w, h) =
m∑

x=1

n∑
y=1

τ∑
t=1

P (x, y, t, w, h), (3.8)
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wheren rows & m columns is the size of the image and the maximum transition duration modeled

in the pdf isτ . As mentioned in [63], this marginal pdf forxwh = (w, h) can be represented as

P (xwh) =
n∑

i=1

αip(xwh|θwh
i ), (3.9)

whereθwh
i represents the parameters forith bivariate Gaussian with meanµwh

i and covarianceΣwh
i

p(xwh|θwh
i ) = C exp{−1

2
(xwh − µwh

i )T Σwh
i (xwh − µwh

i )}, (3.10)

where

C =
1

2π|Σ|Σwh
i

i |1/2
,

Σ
|Σwh

i
i is Schur’s decomposition ofΣi with respect toΣwh

i , andΣi is 5× 5 covariance matrix from

original joint pdf.

The marginal pdf is created at every pixel location and it captures the density of observed object

sizes at that location. For illustration purpose, we use this pdf to generate the size map shown in

Figure3.8. The mean value of width and height from the Gaussian component with highest weight

is used in the computation of the most probable size at a given pixel location. This value of size is

used as the intensity of the corresponding pixel location in the size map. Note that the size values

on the road region are much higher than those on the sidewalks. The size values can be observed

to be gradually reducing as the objects move away from the camera.

The parameters of the marginal pdf at every pixel are passed to the object detection module as

feedback. Figure3.1 shows the feedback flow of the pixel level parameters representing the size

pdf at each pixel. The background subtraction algorithm generates a set of foreground blobs of
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different sizes. For each of the foreground blob at location(i, j) with size(w, h), we compute the

probabilityP (w, h) using the marginal at(i, j). A very low value means that the current blob is

most likely a false observation. Suppressing valid objects at unexpected locations can be avoided

by defining thes parameter at the current location as

s = sminP (w, h) + smax(1− P (w, h)), (3.11)

where [smin, smax] specify the range fors value. This range does not greatly affect the sensitivity of

the detection module. In our experiments we used [50, 150] range for two different scenes. Pixels

locations with missing models or unexpected object size produce low probability values, which

generate a highs value for that pixel. This approach assures that very small noisy observations

are not approved as valid objects. High probability values result in smalls value which assures

that even small sized valid objects are not missed. This provides a means for the object detection

module to have differents values for different pixels based on the learnt scene model.

3.2.3.2 Background Learning Rate

The background learning rate (ρ) is used to update the learnt background model in order to adapt

to slow changes in the scene [99]. For instance, if a table is moved in the room, the new setting is

learnt as a part of the background. However this feature can cause a problem when the goal is to

consistently track an object that briefly becomes stationary. For instance, if a car stops briefly on a

traffic light, it can be quickly learnt as a part of the background ifρ is too large. On the other hand

if ρ is too small then the valid changes in the scene would not be incorporated in a suitable time.
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(a) Normal Track (b) Unusual Path    (c) Bicycle on sidewalk 

(abnormal size and speed)

(d) Sitting on sidewalk  (e) Skateboarder 

(abnormal speed)

    (f ) Pedestrian on road

(abnormal size and speed)

Figure 3.5:Scene 1. Detected abnormal observations are labelled red and normal observations are

blue. (a) All normal observations of a typical pedestrian (b) The pedestrian follows an unusual path.

(c) The observations of a bicyclist are also classified as abnormal, because of the abnormal speed

and size of the object. (d) A person stops in the middle of the sidewalk and sits down. Note that

the observations were correctly labelled normal before the person sat down. (e) A skateboarder,

whose observed size is the same as that of the pedestrian but the speed helps in distinguishing

them. Some of the observations are detected normal because of only a slight difference in speed.

(f) Unusual size and speed prove to be useful in case of a pedestrian walking on the road. All of

the above mentioned tracks are part of the testing video, which is different from the training video.

This dilemma suggests that we locally tweak the value ofρ depending on the behavior of objects

in the scene.
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The proposed scene model captures different speeds at a particular location. We identify the

regions in the scene where objects become stationary, including the exit zones. The learning rate

is lowered only for the pixels belonging to these regions. Similar to the approach for the minimum

object size, we extract the marginal pdf that captures the motion information. The marginal pdf

P (x, y, t) =
∑

w

∑

h

P (x, y, t, w, h), (3.12)

is extracted at every pixel. The GMM component parameters are updated in a manner similar

to the minimum size. The object detection could fail because of the highρ value, therefore we

identify the regions where objects stop and reduceρ. This is done by analyzing the smallest object

speed (̂v) captured at every pixel. The difference between pixel location and the GMM component

mean is used to compute this speed. The interpolated value ofρ can be computed using following

expression

ρ = ρminPv(v̂) + ρmax(1− Pv(v̂)), (3.13)

wherePv is a zero mean normal distribution used to signify reducing speed, and[ρmin, ρmax] are the

two extreme values of the learning rates to be used. The aim for this formulation is to automatically

choose a value ofρ for every pixel depending on the type of object behavior observed during the

training phase.

3.2.4 Experimental Results

The performance of the proposed framework was tested on real sequences captured from three dif-

ferent surveillance cameras. A typical scene observed from the first camera is shown in Figure3.5.
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Figure 3.6:Anomaly detection performance on the scene shown in Figure3.5. (a) ROC curve for

the 30 mins test video. (b) Table with ground truth number of tracks used in training and testing.

Realtime object detection and tracking was performed using the UCF KNIGHT system [55]. Initial

training is performed off-line and testing for anomalous behavior detection was performed using

the tracking results from a 30 minute test video. Figure3.6(b) shows the details of the training and

testing sets used for this experiment. Matlab implementation runs at approximately 26 fps for this

module on a 3GHz Pentium D PC machine. Figure3.5 presents the output of abnormal behavior

detection in the test sequence.

The proposed approach declares an observation abnormal as soon as it is received from the

tracker. Figure3.5shows a set of detected abnormal behaviors in addition to a normal track. The

first one is an unusual path, where a pedestrian is tracked through a region where not enough

training tracks were observed. Next, a bicycle is on the sidewalk, which was not present in the

training video. The unusual speed and size of the bounding box provides evidence of such anoma-
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lies. Another similar anomaly (e) shows a skateboarder going faster than pedestrians. Most of

the observations are labelled as abnormal even when the observed size is very similar to that of a

pedestrian. (d) shows a case where a pedestrian sits down on the sidewalk and (f) shows a case

where a pedestrian is detected on the road. This particular anomaly is captured by difference in

speed and size of the observed object and the scene model. The results show only a small number

of observations are misclassified. The majority decision for the complete track keeps the results

accurate. Figure3.6(a) presents the ROC curve depicting the accuracy of anomaly detection.

Figure3.8(a) presents the object size map extracted from the learnt scene model scene 1 shown

in Figure3.5. The high intensity values along the road are generated by the vehicles. As the objects

move away from the camera the observed sizes reduce, which reflects here as reducing intensities

along the sidewalk. Similarly, Figure3.8(b) shows the size map for scene 2 shown in Figure3.7.

The experiments of improving object detection are performed on video from two other surveil-

lance cameras. Results of the improvement in the object detection using the size parameter feed-

back are presented in Figure3.7. Two real scenarios are shown here that support the claim that

the proposed size map outperforms the case with fixeds value. In the case of (b), the lowest value

of s = 50 is chosen and in both scenarios, false positive objects are detected. In the first scene, a

small broken part of the pedestrian’s shadow is detected as a valid object and in the second case, a

noisy observation on the lamp post is declared as a valid object. In the case of (c), a comparatively

higher value ofs = 150 is chosen and it clearly misses the pedestrians that are farther away from

the camera. Finally, (d) presents the improved object detection using the proposed size map which

provides a differents value at each pixel location. All the actual objects are detected without any
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(a) Ground Truth (b) s = 50 (c) s = 150 (d) Using the size probability

Figure 3.7: Scene 2. Improvement in object detection by the proposed size model. Each row

presents an instance in the same video. Column (a) shows the manually extracted patches of the

objects currently present in the scene. Column (b) is the output when a uniform global value of

s = 50 is used. Noisy foreground blobs are also detected as valid objects (red ellipses). (c) presents

output whens = 150 is used throughout the scene. Individuals are not detected (red ellipses) when

the object size is small. (d) presents results of the proposed size model. In both scenarios the valid

objects are detected and the noisy observations are avoided.

noisy detections. The automatically learnt size map proves to be very useful in accurately capturing

the perspective distortions in the scene.

Figure 3.9 presents results of automatic feedback for pixel-wise update of the background

learning rate. This camera covers an intersection with traffic lights where cars may stop up to

approximately 40 seconds. The scenario shown in this figure contains a black car arriving, stopping

for a red light, and then driving away. Figure3.9(a) shows the output using a typical value of
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Figure 3.8: The object size maps are computed for scene 1 (Figure3.5) and scene 2 (Figure3.7).

Intensity at every pixel location is the most probable size of the object observed at that location.

The highest intensity is observed for the vehicles along the road. Note the gradually reducing sizes

due to perspective effect.

learning rate (ρ = 0.01). The target of continuously tracking the stationary car could be achieved

by increasingρ, but this can induce spurious detections where the background changes rather

quickly. Using the proposed parameter feedback approach, we can isolate this increase ofρ to

only the regions where it is required (i.e. where traffic stops). In the experiments, we have used

[ρmin, ρmax] = [0.005, 0.1] as the extreme values of the learning rate. Figure3.9(b) shows the

detection output by using the proposed feedback approach for learning rate. The new detection

through this approach have been highlighted.

3.3 Modeling Object Pair Activities

The approach presented above models the motion patterns of each object independently. The

scene model accumulates observations from multiple tracks but each sample in the pdf represents
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(a) Regular learning rate

(b) Proposed learning rate using feedback
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Figure 3.9: Scene 3. Improvement in object detection using the proposed feedback approach

for updating learning rate. Video sequence progresses from left to right. (a) Using the uniform

background learning rate (ρ = 0.01) for the whole scene. (b) Detection results using the proposed

approach for updating background learning rate. Red ellipses highlight the car that was not de-

tected by the regular approach but was later detected by our approach.

motion of a single object independent of others. This type of model lacks the ability to capture

interactions between two or more objects. For instance, when a car drops off a person, there is

useful information in the two tracks about the mutual interaction of these objects. We are interested

in exploring the possibility of creating a statistical model of pairs of objects that are concurrently

observed in the scene. This would complement the approach proposed above by adding the ability

to model object interactions. Such a model will be able to capture the functionality of the current

single object model, as well as the new functionality of modeling object pairs. This could prove

to be useful in detecting more complex abnormal behaviors, such as illegal drop-off/pickup, traffic

light violations, etc. In this section, we present a new composite model that captures the interaction
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of object pairs in the scene to detect such behaviors. We show that the novel model presented here

is useful for identifying abnormal object interactions, as well as single object anomalies.

3.3.1 Learning the Scene Model

The observation vector(x, y, w, h, τ) of each object consists of bounding box centroid(x, y), width

(w), and height(h) along with the time of observation(τ). For a pair of objectsa andb tracked

concurrently in the scene, we can build a composite transition vector

γa,b = (γa, γb), (3.14)

γa = (xa, ya, x
′
a, y

′
a, wa, ha, τa), (3.15)

γb = (xb, yb, x
′
b, y

′
b, wb, hb, τb), (3.16)

whereγa represents the transition of an objecta from a source location(xa, ya) to a destination

location(x′a, y
′
a) in time τa. Similarly, γb represents the transition of objectb. Note thatτa and

τb could be different if considering two transitions of different degrees. If one of the objects is

occluded for a few frames, two different transition times can be used. This scenario is handled

seamlessly by the model. Figure3.10illustrates several transition between three objects,a, b and

c, concurrently present in the scene.

The composite transition vector holds the semantically holds the commutative property, (i.e.

γa,b = γb,a). In order to reduce the complexity of the KDE, we only use one of the two possibilities

(γa,b or γb,a). Let Γ be a14-dimensional random variable whose observations areγa,b. We use

KDE to learn the probability density of this random variable. A multivariate distributionp(Γ) is
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Figure 3.10:Modeling track interaction between the objects tracked concurrently.

formed through the set of joint object transitionsγ1
a,b, γ

2
a,b, γ

3
a,b, · · · observed during the training

period. The estimated probability density is computed as

p̂(Γ = γ) =
1

n
√

H

N∑
i=1

K(
γ − γi

√
H

), (3.17)

whereH is a symmetric positive definitedxd bandwidth matrix, andK is a14-dimensional kernel

function. In our experiments we use a Gaussian kernel. The bandwidth of the kernel is one of the

parameters that can affect the accuracy of the model. It is estimated through the minimization of

the mean-squared error between the estimated and the real density[p̂H(γ) − pH(γ)]2. We use a

likelihood-based search for bandwidth selection, see [105] for more details.

The proposed model represents the joint transition of an object-pair concurrently observed in

the scene. We can also obtain a derived model to test a single object transition (sayγ) in the scene.

This is done through obtaining marginal distributions of the two parts of the learnt pdf, given by

p̂(Γa) =

∫

b

p̂(Γa,b)db, (3.18)

p̂(Γb) =

∫

a

p̂(Γa,b)da, (3.19)
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Table 3.1:Algorithm of mean shift based local refinement to estimate best joint transition vector.

Objective: Given the initial joint transition vectorγa,b, use mean shift to compute a refined

transition vector̂γa,b. Algorithm:

1. Let γt
a,b = γa,b.

for t = 1 to T do

(a) Generate a set ofN samples by usingN (γt
a,b, Σ

t
a,b) and compute mean stateγm

by Equations3.22and3.23.

(b) If ‖γt
a,b − γm‖ ≤ threshold

then break for

otherwise letγt
a,b = γm.

end for

2. Refined estimate of the transition vectorγ̂a,b = γt
a,b.

whereΓa,b is the full14-dimensional random variable with the transition vectors of both objectsa

andb, Γa is the random variable with first 7-dimensions of the original composite transition vector

Γa,b andΓb is the random variable with last 7-dimensions of the original composite transition vector

Γa,b. The representative model for the single object transitionγ is then selected by choosing the

best candidate:max(p̂(Γa = γ), p̂(Γb = γ)). Such a representation for the single object transitions

holds when the goal is to identify the outliers from the learnt model.
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3.3.2 Abnormal Behavior Detection

We define the behavior of an object as a set of transition vectors generated from the track. Each of

the transition vectors can be tested against the learnt pdf individually, as well as a part of the joint

transition vector with other objects being observed. For a comprehensive test of a given object, we

perform both individual and joint test for a transition using the learnt pdf. In principal, we could

identify the outlier by applying a threshold on the computed probability density against the object

transition under consideration. However, in practice, the higher dimensionality of the pdf makes it

sensitive to noise and sparsity. To address this problem, we propose a local sample refinement step

based on the principal of mean shift [31]. For a given joint transition vectorγa,b between objects

a andb, a refined transition vector̂γa,b is estimated through an iterative approach summarized in

Table3.1. We start with generating a set ofN samples from a normal distributionN (γt
a,b, Σ

t
a,b)

aroundγt
a,b with covarianceΣt

a,b = diag(εt
a,b), whereεt

a,b is the joint transition error. This error

can be computed through the mean of the absolute error∆γt
a,b at every iterationt of the refinement

algorithm as follows:

∆γt
a,b = |γt

a,b − γ̂t
a,b|, (3.20)

εt
a,b =

∆γt
a,b + ∆γt−1

a,b

2
. (3.21)

Similar to the mean shift algorithm [31], we useN weighted samplesγi in the neighborhood

of the original sampleγ. The refined mean at every iteration is computed as

γm =

∑N
i=1 G(γ − γi)w(γi)γi∑N
i=1 G(γ − γi)w(γi)

, (3.22)
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Table 3.2:Algorithm for abnormal behavior detection in object pairs.

Objective: GivenN objects in the scene, identify set abnormal object behaviors (setA).

Algorithm:

1. Initialize VN×N voting matrix to 0.

2. Populate voting matrix for all combinations of objects

for i = 1 to N do

for j = i to N do

(a) if p̂(γi,j) > threshold (using Equation3.25)

thenVi,j = Vi,j + 1

otherwiseVi,j = Vi,j − 1

end for

end for

3. Identify abnormal behavior

A = ø

for i = 1 to N do

(a) positive counts : count(Vi,N > 0) + count(VN,i > 0)

(b) negative count : count(Vi,N < 0) + count(VN,i < 0)

(c) if negative count > postive count

thenA = A ∪ i

where we use normal distribution as the kernel around each sample. In addition, weightw com-

puted from the density is used in order to include the likelihood of each sampleγi based on the

training data, and is defined as

w(γ) = p̂(Γ = γ). (3.23)
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The refined joint transition vector̂γa,b can now be used to detect abnormal behavior of the

single object transitionŝγa and γ̂b, by utilizing the marginal densities as explained in the last

section. However, in order to effectively utilize learnt scene model for anomaly detection among

object pairs, we have to evaluate both density using the combinations of object pairs:

p̂(Γ = γ̂a,b) ≡ max(p̂(Γ = γ̂a,b), p̂(Γ = γ̂b,a)). (3.24)

This may increase the computational complexity of the anomaly detection step. Another option

is to build a more complex model by using both formsγa,b andγb,a as a part of the training data.

This implies increasing the amount of training data in the KDE model by a factor of two, which

would also significantly increase the complexity of density computation as given in Equation3.17.

In order to decide whether a particular object is presenting a normal or abnormal behavior, we

can use the history of the object to handle noise and consolidate the decision over the life of the

track. This is done by fusing the computed probability densities through a Markov Chain. In the

case of the track pairs, the duration considered would be the duration of frames during which both

of the objects are observed. Letγf
a,b be the joint transition vector at framef

p̂(Γ = γF2
a,b ) ≡

F2∏

f=F1

p̂(Γ = γf
a,b, (3.25)

where[F1, F2] is temporal interval where the two tracks co-exist. In the case of evaluating a single

track anomaly, this interval can be the full or partial duration of the track.

The final stage involved in deciding the abnormal behavior in the presence of multiple objects

is the consolidation of decisions from several object pairs into a final decision. The main purpose

is to declare an object presenting abnormal behavior when most of the objects in the scene support
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Figure 3.11:Synthetic scene with three pairs of interacting paths (group of tracks) generated to

train the scene model. The small arrows show the direction of motion along the path.

the decision. Such an approach is useful in making a robust decision that could otherwise be

misleading due to measurement noise or lack of training data. We propose to use a simple majority

voting scheme for this purpose, where all the combinations of object pairs are evaluated to make a

decision about object behavior.

3.3.3 Experimental Results

In this section we present the results of the experiments performed on the toy example using syn-

thetic data, as well as two real scene with various abnormal behaviors.

The synthetic data used to create a KDE model is shown in Figure3.11. The tracks generated

for this experiment were randomly generated from a normal distribution with pre-specified param-

eters for the respective path. The KDE model is generated from these training tracks using the

approach mentioned in Section3.3.1. The test data used to demonstrate the results contains one

normal event and four abnormal events, which include unusual path, unusual direction of motion,
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(a) (b) (c) (d) (e)

Figure 3.12:The sample output of testing pairs of synthetic object tracks is shown here in case of:

(a) normal pair of tracks, (b) one track with unusual path, (c) unusual tracks in opposite direction

to the training tracks, (d) a track with unusual size, and (e) a track with unusually high speed.

unusual object size, and unusually high speed. Figure3.12presents the output of the test phase

where the objects pairs are used for testing. The observations of the tracks labeled as normal are

shown in blue, while the observations labeled as abnormal are in red. The objective here is to

analyze the test tracks in light of the training tracks and identify the parts of the tracks that deviate

from the normalcy model. Note that in Figure3.12(b) both the tracks have been labeled abnormal

after one of the object takes the unusual path. This shows that by using the object pairs we can

identify the relationship between objects. The independent decision based on single object will be

eventually used to identify the only object which is abnormal out of the two.

In case of the real scene, we recorded videos from two different sites. Video from scene1 is 4

hours and30 minutes long while that from scene2 is2 hours30 minutes long. Each video is divided

into training and testing portions. There were1616 tracks in scene1 that were used for training,

while 193 tracks were used for testing, with11.94% testing to training set ratio. Similarly,925

tracks in scene2 were used for training, while77 tracks were used for testing, with8.32% training
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(a) Unusual person pickup event

(b) Unusual person drop off

(c) Close proximity of moving person and vehicle

Figure 3.13:Sample results of anomalous behavior detection. Normal and abnormal detections are

shown in blue and red, respectively.

to testing set ratio. Training was performed using the approach presented in Section3.3.1. The

KDE model was created using the likelihood-based bandwidth selection approach.

The events used for testing in scene1 include person drop off by vehicle, person pickup by

a vehicle, and close proximity of moving person and vehicle. The results of scene1 are shown

in Figure3.13. The portions of the tracks highlighted in red are labeled as abnormal, while the

portions in blue are labeled as normal. We are detecting the vehicle drop off and pick up events as

abnormal because there were not many examples of this in the training data in those regions. The

third case of close proximity is particularly interesting because it re-emphsizes the importance of
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(a) (b) (c)

Figure 3.14:Examples of correctly detecting normal events. (a) Person on a crosswalk, (b) vehicles

driving straight, and (c) vehicle turning.

using the proposed model to detect dangerous situations on the road. Another interesting aspect

of this event is that it was detected as normal when using only the single track model. There were

quite a few examples of pedestrians jaywalking in that region and it was learnt as normal behavior.

If the vehicle and the person are analyzed in isolation, they are detected as normal, however we are

able to identify unusually close proximity by using the object pair model.

Similarly, there are some interesting events in scene 2 that have been identified by the proposed

approach as abnormal. We first present some of the normal events in the scene, as shown in

Figure3.14. The person crossing the road on the crosswalk, while the vehicles are stationary, is

correctly detected as normal. Similarly, vehicle following the usual traffic pattern learnt in the

scene are also labeled as normal. Figure3.15, however shows examples of the abnormal behavior

detected in this scene. The first event is the violation of the red traffic light. One can notice

other vehicles still parked while the red and black cars go through the traffic light. It is possible

that the stationary cars would have moved late. If that happens while the violating car is still in

the field of view, then the decision has a chance to be changed provided there is sufficient time
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(a) Red light violation by black and red cars.

(b) Two individuals jaywalking.

(c) Two individuals jaywalking.

(d) Golf-cart crossing the road while vehicles are moving.

(e) Two individuals jaywalking.

Figure 3.15:Examples of anomalous behavior detection
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Figure 3.16:Runtime comparison of anomaly detection when using three variants of the KDE

model: the original14-dimensioal KDE, reduced to7-dimensions after PCA, and reduced to

5-dimensions after PCA.

available. Other than this, there are examples of people jaywalking either on the crosswalk or

away from it. The case of walking on the crosswalk when it is not allowed is quite interesting and

shows the effectiveness of the proposed object pair model. When only single object model is being

used, such subtle anomalies are missed because the relationship between objects’ behavior is not

captured. Notice that a golf-cart is also detected crossing the road illegally. There are two reasons

for this event being detected as abnormal. First, the other vehicles on the road are still moving

when the golf-cart crosses the road. Second, the size of the golf-cart is unusual for this part of the

scene because we only typically observe humans crossing the road in that region.

We performed an experiment to study the issue of the high dimensionality of the model. The

originally proposed KDE is14-dimensional and there are hundreds of thousands of samples that

are stored in the model. This results in a high computation cost when this model is used for

54



computing kernel bandwidth, as well as the probability density for a test samples. To address this

problem, we present the use of reduced dimensionality through the use of principal component

analysis (PCA). This is done at the training stage when the training data is used to evaluate the

principal components. We have experimented by reducing the dimensionality to first7 and then

5 dimensions. The14-dimensional test samples are then projected into the reduced feature space

using the principal components obtained during training. We noticed a significant speedup in the

performance of both the bandwidth selection and the testing stage. Figure3.16shows the reduction

in the runtime when using5 and7 dimensions, as compared to the original14-dimensional feature

space. In the5-dimensional case the speed is almost double. This speedup is achieved without the

loss of performance accuracy, as shown in Figure3.17. The three abnormal events shown earlier

are still correctly identified when using the reduced7 or even5 dimensions.

3.4 Summary

In this chapter we have presented two novel approaches for coarse level activity modeling in a

scene. The first approach models and learns the motion patterns of individual objects in the scene,

while the second one also models the interactions between objects pairs. While the first approach is

more suitable for lightweight real-time applications, the second one is more powerful for detecting

relatively more complicated and useful behavior in a scene.

In the first approach, we adopt an unsupervised learning based approach, which models object

motion and size at every pixel location. The proposed framework provides a means of performing

higher level analysis to augment the traditional surveillance pipeline. The pdf of motion patterns at
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(a) (b) (c)

Figure 3.17:Anomaly detection performance comparison between different model dimensions.

The results are presented with KDE models with (a) original 14-dimensions, (b) reduced 7-dimen-

sions after PCA, and (c) reduced 5-dimensions after PCA.

every pixel is modeled as a GMM, which is learned through EM based approach. Experiments on

real videos have proven the effectiveness of the proposed approach for local and global anomaly

detection. Furthermore, by using the scene knowledge, we also show the improvements in object

detection by using the feedback for the minimum object size and the background learning rate.

This framework does not require explicit extraction of the main paths in the scene. This approach

can easily benefit from online learning and can also be used for conventional applications like
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predicting object path and scene exit points. In summary, the proposed framework is novel, robust,

and can be generalized to more features than just motion and size.

In the second approach, we extend the first approach by modeling the distribution of motion

patterns of object pairs. This is done through defining a composite random variable that combines

transition vectors of two object concurrently present in the scene. The14-dimensional probability

density is learnt through KDE. The sparseness in higher dimensionality is handled through mean

shift based sample refinement. Finally, Markov Chain is used to integrate the evidence over time.

We present further improvement in the runtime by dimension reduction through PCA. We present

encouraging performance on two different real scenes where we detect abnormal behavior like red

light violation, illegal jaywalking, unusual person pickup, etc.

In the next two chapters we present our proposed models for human activities at the finer level

in contrast to the models for coarse level presented here. The forthcoming chapters focus on the

articulation of human body parts and utilize the trajectories of the body joints to model an activity.

Chapter4 describes the approach for recognizing activities of individuals and Chapter5 presents

the approach for predicting behavior of an individual.
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CHAPTER 4: CHAOTIC INVARIANTS FOR HUMAN ACTIVITY
RECOGNITION

We present a novel approach for classification of human activities in videos by using representa-

tive chaotic invariant features for each activity [4] . Human activities are modeled as nonlinear

dynamical systems that are responsible to generate the observed time series data in videos. We

utilize the trajectories of human body landmarks/joints (two hands, two feet, head and belly point)

as the time series data. The observed data is then transformed to its respective higher dimensional

state (phase) space through delay embedding. Dynamic and metric properties of the reconstructed

phase space are used to determine thechaotic invariantsincluding Lyapunov exponent, correla-

tion integral, and correlation dimension. This set of features is then used to represent the original

time series observed in the video. We prove the feasibility of our approach by recognizing human

activities in standard video and motion capture data sets.

4.1 Introduction

Human activities consist of spatio-temporal patterns that are generated by a complex and time

varying non-linear dynamical system. A complete description of this system will require enumer-

ation of all independent variables, their interdependencies, differential equations controlling their

evolution and a set of boundary conditions to be satisfied by the system. Ideally, one would like to

have this complete description so that it can be used to control, predict, and extract features of the

58



dynamical system in a deterministic fashion. However, in practical scenarios obtaining a complete

analytic description is extremely hard.

In computer vision literature, the problem of obtaining the description of a dynamical system is

often overcome by selecting a set of variables defining the state space, and a function that maps the

previous state to the next state. The type of the mapping function determines whether it is a linear,

non-linear or stochastic dynamical system. For instance, human activities can be represented in

terms of state variables defined as the image locations of body joints, followed by assuming that a

linear [9], non-linear [86] or stochastic dynamical model [81] is controlling the evolution of these

state variables. The unknown parameters of the dynamical model are learnt using a training data

of human activities.

Our contention in this work is that by constraining the dynamical system to be of a particular

type, one onlyapproximatesthe true non-linear physics of human activities. In other words, by

making assumptions about the type of the dynamical model, one tries to fit the experimental data

to the model by finding values of the parameters that best explains the data. Rather than letting

the data speak for itself about the type of the dynamical system, number of independent variables,

degrees of freedom of the system, and values of unknown parameters. An analogous example of

this type of approach from the field of probability theory is to assume the type of the probability

distribution generating the data, say Gaussian, and then computing the mean and variance of the

Gaussian. Rather than allowing the data to determine the actual shape of the probability distribution

using kernel density estimation.
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The aim of this approach is to derive a representation of the dynamical system generating the

human activities directly from the experimental data. This is achieved by proposing a computa-

tional framework that uses concepts from theory of chaotic systems to model and analyze nonlinear

dynamics of human activities, by using trajectories of body joints. There are few important points

to note here: First, by proposing dynamical system generating human activities as a chaotic system,

we are making the statement that there is adeterminismpresent in the seemingly stochastic dy-

namics of human activities. Thisdeterminism, if exploited, can be used to derive richer features for

activity recognition. Second, the proposed approach of modeling human activities directly from

experimental data is superior to approximate modeling, since no assumptions have to be made

about the type or form of the dynamical model.

Next, we present some of the relevant concepts from chaos theory that can be useful in under-

standing the forthcoming contents in this dissertation.

4.2 Chaos Theory Preliminaries

In this section we present the background material related to the theory of nonlinear dynamics

and chaos. We believe that this quick overview will be helpful in understanding the rest of this

dissertation. A dynamical system can be represented as a set of functions which describes how

variables change in time. A dynamical system is termed nonlinear if the function defining the

change in the system is nonlinear. A dynamical system may be stochastic or deterministic. In a

stochastic dynamical system, new values are generated from a probability distribution, while in a

deterministic dynamical system a single new value is associated with any current value.
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Dynamical systems can be represented by state-space models, where state variablesX(t) =

[x1(t), x2(t), ...., xn(t)] ∈ Rn define the status of the system at a given timet. The state variables

are often considered to be in subspaces of Euclidian spaces, but they more generally are inn-

dimensional manifolds. The space of the state variables is often called thephase space. The state

of the system evolves in accordance with a deterministic evolution function and the path traced by

the systems states as they evolve over time is referred to as atrajectoryor orbit. The collection of

all trajectories from all possible starting points in the phase space of the dynamical system is called

aphase portrait. An attractor is defined as the region of the phase space to which all the trajectories

settle down to as time limit approaches infinity. If the attractor is not stable it is termedstrange. The

invariantsof system’s attractor are measures that quantify the properties that are invariant under

smooth transformations of the phase space or control parameters. Invariants fall into three classes:

1) Metric 2) Dynamical and 3) Topological. Metric invariants include dimensions of different

kind and multi-fractal scaling functions, while dynamical invariants include Lyapunov exponent.

Topological invariants generally depend on the periodic orbits that exist in the strange attractor.

Embeddingis defined as a process of mapping one-dimensional signal to ad-dimensional signal.

Chaos theory is one of the ways to study nonlinear phenomena. The name ‘Chaos Theory’

comes from the fact that the systems the theory describes are apparently disordered, but theory

is really about finding the underlying order in apparently random data. In other words, a chaotic

system is a deterministic system which is globally stable, exhibit clear boundaries and displays

sensitivity to the initial conditions. When applying chaos theory to a given a problem, the goal

often is to extract information required to identify and classify strange attractors of the dynamical
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system from the experimental data. The procedure can be broken down into a few relatively easy

steps. These are: find a suitable embedding of the data, verify the existence of deterministic

structure, compute dynamical, topological and metric invariants of the periodic orbits, and finally

use the invariants for the identification purposes. The proposed framework for activity recognition

is built around these basic steps. Intuitively speaking, for a computer vision practitioner chaos

theory provides a way of determining the description of a dynamical system from a time series

data. As long as one has the time series data, analysis steps described above can be applied. Few

examples of the time series data that we come across in the field of computer vision would be

trajectories, pixel intensity over time, flow vectors etc.

4.3 Framework

This section describes the algorithmic steps of the proposed activity recognition framework (see

Figure4.1). The main steps include:

1. Given a video of an exemplar activity, obtain trajectories of reference body joints, and break

each trajectory into a time series by considering each data dimension separately.

2. Obtain chaotic structure of each time series by embedding it in a phase space of an appropri-

ate dimension using the mutual information [41], and false nearest neighborhood algorithms

[91].

3. Apply determinism test to verify the existence of deterministic structure in the reconstructed

phase space.
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Figure 4.1:Overview of the chaotic invariant features extraction framework starting from an input

video with tracked body joints (two feet, two hands, and the head).

4. Represent dynamical and metric structure of the reconstructed phase space in terms of the

phase space invariants.

5. Generate global feature vector of exemplar activity by pooling invariants from all time series,

and use it in a classification algorithm.

Next, these steps are explained in detail in the following subsections.
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Figure 4.2:A sample set of3-dimensional trajectories generated by head (blue), two hands (red &

green) , and two feet (red & green) are shown for the running activity from the motion capture data

set. The stick figure with green landmarks depict the first frame, and the one with blue landmarks

represents the last frame.

4.3.1 Activity Representation

A trajectory corresponding to a body joint represents a deterministic nonlinear dynamical system.

In our framework six body joints corresponding to two hands, two feet, head and belly are taken as

the reference joints. To make the representation scale and translation invariant, trajectories of the

first five joints are normalized with respect to the belly point. Hence, for any given activity we use

five trajectories to represent the activity. We choose these reference joints as they provide sufficient

information about most of the activities. Another consideration is that these joints are relatively

easy to automatically detect and track in real videos, as opposed to the inner body joints which are

more difficult to track. Figure4.8 shows examples of set of trajectories for different activities in

the case of real videos (2D trajectories), while Figure4.2shows trajectories for a running activity
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from the motion capture data (3D trajectories). Note that, we are not solving the tracking problem

in this section, therefore, we assume that the tracks are available to us. Formally, we represent

the normalized trajectory corresponding to a jointb as a sequence of locationsZb = [zb
1, zb

2, ..., zb
t ],

wherez ∈ Rk with k = 2 for image based measurement, andk = 3 for the motion capture data.

Finally, we havek ×NB scalar time series for each exemplar activity, whereNB is the number of

the reference joints.

4.3.2 Embedding

Embedding, as defined earlier, is a mapping from one dimensional space to ad-dimensional space.

It is an important part of study of chaotic systems, as it allows us to study the systems for which the

state space variables and the governing differential equations are unknown. The underlying idea of

embedding is that all the variables of a dynamical system influence one another. Thus, every subse-

quent point,zb
i , of a given one dimensional time series results from an intricate combination of the

influences of all other system variables. Therefore,zb
i+τ can be considered as a second substitute

system variable which carries information about the influence of all other variables during time

interval τ . Using this reasoning one can introduce a series of substitute variableszi+2τ , ..., zi+dτ ,

and thus obtain the wholem-dimensional phase space, where substitute variables carry the same

information as the original variables of the system [84].

Formally, the embedding is achieved by using theorem of Takens [104], which states thata

map exists between the original state space and a reconstructed state space. The theorem assures

that one does not have to measure all the true state space variables of the system, as in fact almost
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Figure 4.3:Depicts the embeddings of the time series corresponding to the right foot of the actor

shown in Figure4.2. The first column shows the time series corresponding to thex andy dimen-

sions of the right-foot trajectory. The second column shows the plot of mutual information which

is used to determineτ . The first minima value, marked by the green bar, reflects the optimal values

of τ . The third column shows the plot of a measureE1(d) [19], which can be derived from the

false nearest neighbor algorithm, against different values ofd. The value ofd, after which the plot

converges to a stable value, is chosen as the optimal embedding dimension. This happens to be at

m = 5 in the current case. The fourth column shows the3-dimensional projection of the recon-

structed phase space for the chosen values ofτ andd. This embedding is used to extract invariant

features.

any one of the variables will be sufficient to reconstruct the dynamics. It also states that the

dynamical properties of the system in the true state space are preserved under the embedding

transformation. Thus, for a large enough embedding dimensiond, the delay vectorsYb(i) =

[zb
i , z

b
i+τ , z

b
i+2τ , ..., z

b
i+(d−1)τ ], generate a phase space that has exactly the same properties as that
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formed by the original variables of the system. Over here,zb
i , z

b
i+τ , z

b
i+2τ , ..., z

b
i+(d−1)τ represent

scalar time series, belonging to one dimension of the trajectory, of the body jointb at timest = idt

to t = (i + (d − 1)τ)dt. Here,τ is known as the embedding delay. However, the embedding

theorem does not provide a method to find the optimal values ofτ andd. For estimating these

values, we use the mutual information [41] and the false nearest neighbor algorithms [72]. In order

to make this dissertation self-contained and readable, we are re-stating these algorithms from [84].

4.3.2.1 Estimating Embedding Delay

The estimation of delay parameter is based on the idea, that the mutual information betweenzb
i and

zb
i+τ can be used to estimate a proper embedding delayτ . The algorithm considers two criterion:

First, the value ofτ should be large enough so that value ofzb at timei+τ is measuring something

significantly different from the value ofzb at timei, and thus providing us with a new information

which we do not have up till now. Second, the value ofτ should not be larger than the time in

which system loses memory of its initial state. The algorithmic steps are:

1. From the given time serieszb
1, z

b
2, . . . , z

b
t , computezmin andzmax.

2. Compute absolute value of their difference,d = |zmin− zmax|, and partitiond into j equally

sized intervals.

3. Compute:

I(τ) = −∑j
h=1

∑j
k=1 Ph,k(τ)ln Ph,k(τ)

Ph(τ)Pk(τ)
, wherePh andPk denote the probabilities that the
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variable assumes a value inside thehth andkth bin, andPh,k is the joint probability thatzb
i

is in binh andzb
i+τ is in bink.

4. Chose thatτ as the embedding delay parameter for whichI(τ) gives the first minima (Figure

4.3).

4.3.2.2 Estimating Embedding Dimension

For finding the optimal embedding dimensiond we used the false nearest neighbor method pro-

posed in [72]. The idea of the algorithm is to unfold the observed orbits from self overlap arising

from the projection of an attractor of a dynamical system on a lower dimensional space. The algo-

rithm makes use of the assumption that the phase space of a dynamical system folds and unfolds

smoothly, and there are no sudden irregularities. This translates to the observation that if points are

sufficiently close in a reconstructed phase space, then they should remain close during a forward

iteration. If a phase space point has a neighbor that does not full fill this criteria then that point is

said to have a false neighbor [84]. The steps for finding optimald are:

1. Pick a pointp(i) in ad-dimensional space from the time seriesZb.

2. Find a neighborp(j) so that‖p(i)− p(j)‖ < ξ.

3. Compute a normalized distanceRi =
|zb

i+dτ−zb
j+dτ |

‖p(i)−p(j)‖ , between(d+1)th coordinates ofp(i) and

p(j).

4. If Ri is larger then thresholdRth, thenp(i) is marked a having a false nearest neighbor.
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5. Apply the equation in step 3 to entire time series form = 1, 2, . . ., until the fraction of points

for whichRi > Rthis negligible.

Figure4.3pictorially shows the process of finding optimalτ andd for two time series. It also

displays3-dimensional mapping of the reconstructed phase spaces. Once the values ofτ andd are

known, we slide a window of lengthd through the time series, and stack thed dimensional vectors

row-wise into a matrix

Xb =




zb
0 zb

τ . . zb
(d−1)τ

zb
1 zb

1+τ . . zb
1+(d−1)τ

zb
2 zb

2+τ . . zb
2+(d−1)τ

. . . . .




. (4.1)

Note that each component of thed-dimensional vector is separated by an intervalτ . Each row

of the above matrix is now a point in thed-dimensional reconstructed phase space. We repeat the

process for each time series, thus obtainingk ×NB reconstructed phase spaces for each activity.

4.3.3 Determinism Test

The purpose of this test is to get the evidence in support of our assertion, that there is a structure

present in the trajectory data that can be exploited to obtain the representation of the underlying

dynamics of human activities. It is performed on each of reconstructed phase space to distinguish

irregular behavior resulting from deterministic chaos and the one appearing due to the noise. For

this purpose, we employ a determinism test proposed in [110], where the idea is that neighbor-

ing trajectories in a small portion of the reconstructed phase space should all point in the same
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Figure 4.4: The determinism test is performed by checking the convergence of the correlation

dimension for the embedding dimension larger thanm. In the case of a stochastic system, the

value of correlation dimension (y-axis) increases monotonically with the increasing embedding

dimension (x-axis). We show that the data under consideration indeed converges to the value of

correlation dimension at the computed values ofd (the green line) for the two time series shown in

Figure4.3.

direction, thus assure the uniqueness of solutions in the phase space which is a property of de-

terminism. The outcome of this test (as shown in Figure4.4) on our data validates the existence

of determinism. That is, it reveals that the trajectories of the body joints indeed are generated

by a deterministic process, and this justifies further analysis of the data by using the phase space

invariants.

4.3.4 Invariant Features

Metric, dynamical and topological organization of orbits associated with a strange attractor of

the reconstructed phase space can be used to distinguish different strange attractors representing
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Figure 4.5:The computation of maximal Lyapunov exponent (for the right foot trajectory shown

in Figure4.2) from the plot ofS(∆n) against∆n. The slope of the line fitted to the curve provides

a robust estimate of the maximal Lyapunov exponent. The estimated values here are0.0104 for (a)

and0.0109 for (b).

different human activities. This organization is quantified in terms of phase space invariants. In

this dissertation, we limit ourselves only to metric and dynamical invariants that include Maximal

Lyapunov Exponent, Correlation Integral, and Correlation Dimension.

4.3.4.1 Maximal Lyapunov Exponent

Lyapunov exponent is a dynamical invariant of the attractor, and measures the exponential diver-

gence of the nearby trajectories in the phase space. If the value of maximum Lyapunov exponent

is greater than zero, that means the dynamics of underlying system are chaotic. In order to com-

pute maximum Lyapunov exponent of reconstructed phase space, we employ algorithm given in

[84]. The algorithm tests the exponential divergence of trajectories directly from the phase space

trajectories.
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To estimate the maximum divergence around a reference pointp(i) in the phase space, we

start by finding all the neighborsp(k) which are within distanceε. Herep(i) is the ith row of

the reconstructed phase space matrixXb. The neighboring points are used as the starting point of

nearby trajectories. The average distance of all the trajectories to the reference trajectory can be

computed as a function of relative time∆n as follows:

Di(∆n) =
1

r

r∑
s=1

| zb
k+(d−1)τ+∆n − zb

i+(d−1)τ+∆n |, (4.2)

wheres counts the different pointsp(k), and there are total ofr such points. Finally, the average of

the logarithm ofDi(∆n) is obtained for several reference points to get the effective expansion rate.

That is we computeS(∆n) = 1
c

∑c
i=1 ln(Di(∆n)), wherec is the number of reference points over

which the process is repeated. Values ofS(∆n), computed for different∆n, and the maximum

Lyapunov exponent is taken as the slope of the line fitted to the graph ofS(∆n) against∆n. Figure

4.5shows this graph for the two time series shown in Figure4.3.

4.3.4.2 Correlation Integral

The correlation integral is a metric invariant, which characterizes the metric structure of the attrac-

tor by quantifying the density of points in the phase space. It achieves this through a normalized

count of pair of points lying within a radiusε. Formally, correlation integralC(ε) is defined as:

C(ε) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ(ε− ‖ xi − xj ‖), (4.3)

whereΘ is the Heaviside function. Note that,xi in this case refers to a point in the phase space i.e.

it corresponds toith row vector ofXb. In our experiments, we computedC(ε) for a fixed values of
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Figure 4.6: Computation of correlation dimension for the two time series shown in Figure4.3.

With increasing values of neighborhood radiusε (the horizontal axes), the values of the correlation

integral (vertical axes) also increases. The slope of the line fitted to the curve provides an estimate

of the correlation dimension.

ε and used it as a feature vector. Figure4.6shows the plot of the correlation integral for increasing

values ofε.

4.3.4.3 Correlation Dimension

The correlation dimension also characterizes the metric structure of the attractor. It measures the

change in the density of phase space with respect to the neighborhood radiusε. The correlation

dimension can be computed from the correlation integral by exploiting the power law relationship

C(ε) ≈ εd, whered is the correlation dimension. The computation of the correlation dimension

proceeds by plottingC(ε) and ε on a log-log graph. Again, the slope of the linen fitted to this

graph provides a robust estimate of correlation dimension ,because the region in which power law
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is obeyed appears as a straight line in the graph. Figure4.6 shows this graph, along with the

estimated values of the correlation dimensions for the two time series shown in Figure4.3. The

region whose slope is an estimate of the correlation dimension.

Another useful information about the activity can be obtained from the variance of the time

series data, which we employ as a part of the feature vector in addition to the phase space invariants.

4.4 Experiments

Experimental analysis is carried out on three data sets for human activity recognition. FutureLights

data set [43] (see Figure4.7), Weizmann data set [11] (see Figure4.8), and UCF Sports Actions

data set [101] (see Figure4.10) are used to demonstrate the accuracy of the proposed approach.

4.4.1 FutureLights Motion Capture Data Set

The first set of experiments was performed on the data set containing3-dimensional motion capture

sequences provided by FutureLight [43]. Figure4.7shows some typical sequences from this data

set. In total, it contains155 sequences of5 activity classes, namelydance, jump, run, sit, and

walk with 30, 14, 30, 33, and48 instances, respectively. All five classes have significant intra-class

variations. For example, therun class has variations in terms of speed (jog, run), stride length

(short, long), bounce (low, high), and arm swing (low, high). The sequences in the run class,

therefore, are created by several combinations of these parameters, and also include stopping and

turning events. Similarly, thewalk class contains these variations, in addition to a parameter for

the pelvic swing (high, low). There are other variations like walking in a circle, turning around,
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(a)Dance(30 sequences): includes a large variety of ballet sequences. A subset of these is very
similar to thewalk class.

(b) Run(30 sequences): includes variation in speed, swing, and global motion pattern.

(c) Walk (48 sequences): represents the largest class with many variations of speed, swing, and
events like stopping and turning around during the walk.

(d) Jump (14 sequences): mostly hopping
while walking

(e)Sit (33 sequences): contains variations in
sitting postures & directions

Figure 4.7:Sample sequences of few activity classes from the motion capture data set. The stick

figures with green joints depicts the first frame of the sequence, while the stick figure with blue

joints represent the last frame.
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Table 4.1:Confusion table for the motion capture data set. We achieved mean classification accu-

racy of 89.7%.

4323Walk

33Sit

412212Run

113Jump

228Dance

WalkSitRunJumpDance

4323Walk

33Sit

412212Run

113Jump

228Dance

WalkSitRunJumpDance

stopping etc. Thedanceclass contains stationary and moving ballet sequences, and some cat-

walk sequence, which in fact resembles closely to thewalk sequences. Thejump class contains

jumping in place as well as jumping/hopping on one foot while walking. Finally, thesit class

contains variations in the execution styles. In summary, all the activity classes contains significant

intra-class variations. and therefore, this is a very challenging data set.

The initial input is in the form of trajectories of13 body joints of the stick figure shown in

Figure4.2, but we only use5 reference joints. We extract scalar time series from all five reference

joints, resulting in 3 time series (x,y, & z) per reference joint and15 time series per activity.

Each time series is embedded separately using the procedure described in Section4.3.2.2. A

four dimensional feature vector is then constructed for each time series by computing Lyapunov

exponent, correlation integral, correlation dimension and variance. After concatenation, for a given

activity sequence this results in a60-dimensional feature vector. For testing, we use the leave-one-

out cross validation approach using theK-nearest neighbor classifier withK = 5.
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The classification results achieved by this approach are shown in the Table4.1. We achieved

mean accuracy of89.7% on the entire data set. Fourrun sequences were misclassified as thewalk,

which is understandable considering the similarity between these activities. Another main source

of error was the confusion between the walking ballet sequences from thedanceclass and thewalk

class.

4.4.2 Weizmann Action Data Set

The second set of experiments was performed on Weizmann action data set [11], which depicts real

actors performing different activities. Figure4.8shows examples of these activities. Specifically,

the data set contains81 videos with9 different activities performed by9 different actors. Given

the data, the first step in the algorithm is the extraction of joint tracks for the six landmarks on

the human body (two hands, two feet, the head, & the belly point). We used a semi-supervised

joint detection and tracking approach for this experiment. That is, for computing trajectories for

the reference joints, we extracted body skeletons and their endpoints using by using morphological

operations on foreground silhouettes of the actor. Then an initial set of trajectories is generated by

joining extracted joint locations using the spatial and motion similarity constraint. The broken tra-

jectories and wrong associations were corrected manually. Note that the quality of the phase space

embedding is dependent on the length of a time series, which implies that we need to observe the

target activity for sufficiently long period of time (approximately200 frames). However, the length

of the videos in the data set varies from27 to 80 frames. We overcame the problem by up-sampling

and concatenating the original trajectories and thereby increasing the number of observations. Our
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Run

BendJumping Jack Jump Forward

Jump in PlaceSide Gallop

WalkWave1 Wave2

Figure 4.8:Nine different activities are used from the dataset provided by [11]. Trajectories from

six landmarks (two hands, two feet, the head, and the body center) on human body are used as

input to our method. These trajectories are used to extract invariant features of the reconstructed

phase space that represent the underlying dynamical system.

experimental results have shown we are able to capture variations present in different activities by

employing this approximation. Once the trajectories of five body joints relative to the centroid of

foreground blob are recovered, we decomposed each of them into their two spatial components (x
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Table 4.2:Confusion table for the Weizmann data set [11], where our algorithm has achieved mean

accuracy of92.6%.
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& y). This resulted in ten time series in total, which are then used to compute the invariants. After

concatenating, for a given activity this resulted in a40-dimensional feature vector.

The testing was performed performed by using leave-one-out cross validation. When using

K-nearest neighbor, one sequence is kept as a test sequence while all the remaining sequences

were used as training samples. We obtained a mean classification accuracy of92.6% for all nine

activities. The confusion table is shown in Table4.2. It can be observed that only6 out of a

total of 81 videos were misclassified in these experiments. Two of the misclassified videos were

from theJump Forwardactivity, which were incorrectly labelled asRunactivity. While two other

videos were misclassified asJumping in Place. The Run and Side Gallopactivities have one

misclassification each. The observation we would like to make over here is that these are isolated
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Figure 4.9:Comparison of classification accuracy is shown in several cases of missing joint trajec-

tories. Head, right hand, and left hand are dropped one at a time from the Weizmann dataset.

errors, mostly for those activities which have quite a bit of similarity with each other, as is the case

with confusing running with walking, or jumping forward with running.

In order to test the robustness of our method with respect to the number of available joint tracks,

we performed a second set of experiments by selecting only a subset of the five reference joints.

First, the head trajectory was removed from the set of joint trajectories used, and we achieved

a mean recognition accuracy of81.2%. In this experiment most of the errors were observed in

bending and jumping activities. In the second experiment, we removed the left hand joint instead,

which produced a mean recognition accuracy of86.1%. Similar performance is achieved when

only right hand trajectory is removed. The classification rates under these different scenarios have

been summarized in Figure4.9. We consider this as a satisfactory performance, as we were able
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Diving Golf-Swing_Back Golf-Swing_Side

Kicking Riding-Horse Running

Skateboarding Swing-Bench Swing-Side

Figure 4.10:UCF data set was contains a set of actual sports activities captured from a moving

camera. There are a total of115 video sequences that were obtained from online video archives.

to maintain the activity recognition accuracy up to a reasonable degree even if one of the reference

time series is missing. This shows that the proposed approach is not very sensitive to occlusion of

individual body joints. At the same time, we observed that the classification accuracy for activities

that are heavily dependent on the removed body joint (e.g. head in the case of bending) suffers

more. But for activities like walking and running that involve multiple joints (two feet & two

hands), removing one of these joints does not severely affect the overall classification accuracy.
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Diving

Golf-Swing_Front

Golf-Swing_Side

Running

Kicking

Figure 4.11:A small set of16 sample videos is shown here for intra-class variations. The6 joint

trajectories used by our approach have been superimposed on each joint (highlighted by red point).

4.4.3 UCF Sports Actions Data Set

We have also experimented with a more challenging data set containing sports activities [101]. It

contains a set of natural videos from actual sporting events. This includes activities like diving, golf

swing, kicking, running, gymnastic swings, etc. Snapshot of activities in this data set are shown

in Figure4.10. The green trajectories overlaid in every frame show the six (head, left hand, right

hand, belly point, left foot and right foot) input trajectories to our system. The sequences in this

data set are captured from a moving camera and extracting the traditional foreground silhouettes
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Table 4.3: Confusion table is shown for the UCF sports actions data set. Mean classification

accuracy is 85.2%. The biggest confusion is between running and skateboarding actions, which

can exhibit similar dynamics.
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was not feasible. In addition, the typical activities in this data set had exhibited self body occlusion.

To concentrate on the analysis of the proposed approach, we manually obtained the input joint

trajectories.

There are a total of115 video sequences in this data set that were collected from several online

video archives. These contain14 diving, 5 golf swing (back),8 golf swing (front),5 golf swing

(side),20 kicking, 12 riding horse,13 running,9 skateboarding,16 swing (bench), and13 swing

(side) sequences. Similar to the first two data sets the classification was performed usingK-nearest

neighbor classifier along with leave-one-out strategy. The mean classification accuracy on this data
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set was found to be85.2%. The confusion table is shown in Table4.3. This classification rate is

encouraging considering the complexity of the data set.

4.5 Summary

In this chapter we have presented a new approach for recognizing human activities when the finer

level details of different body parts is available. The main contributions of this work include: a

novel framework that characterizes the dynamics of human activities by using the theory of chaotic

systems, a set of dynamical and metric invariant features of the strange attractor for classification,

and a non-linear dynamical system based representation of human activities. An important re-

sult here is that we can represent an activity as a dynamical system for which we do not have an

exact mathematical form. We have shown that the data-driven embedding and invariant features

computed from it can be powerful for recognizing different dynamics. The mean classification

accuracy on published data sets is comparable to the state of the art in this research area. Exper-

imental validation of the feasibility and potential merits of carrying out activity recognition using

this framework is demonstrated on various different scenarios. One limitation of the approach is

the dependance on the joint trajectories of the human body. Tracking human body joints is outside

the scope of this work. However, for this work, we adopt a a semi-supervised approach as ex-

plained previously. In the next chapter we present a new approach for tracking body parts in case

of quasi-periodic actions.

In this chapter we have used the chaotic modeling of human activities for solving the recogni-

tion problem, however in the following chapter we address the problem of prediction. We propose
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a multivariate extension of phase space embedding and show that a novel prediction approach is

useful for human action synthesis and tracking.
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CHAPTER 5: CHAOTIC MODELING FOR HUMAN ACTIVITY
PREDICTION

We propose a new approach to model and predict time series data observed in different types

of videos [7]. Such data would comprise of a sequence of observations over time, for instance,

joint location or angle of a particular human body joint, pixel intensity at a particular location, etc.

These time series would typically be generated by a deterministic nonlinear dynamical system with

known initial condition. A good model of the underlying dynamics is important for predictions that

are used in applications like video synthesis. When synthesizing longer sequences from a short

sample video, it is desirable to generate realistic and smooth transitions. A trivial approach would

be to concatenate the sample video multiple times, but this results in non-realistic transitions.

Figure5.1shows an example of a scalar time series signal from running activity. This data is from

one of the three dimensions corresponding to the 3D location of the human foot. The predicted

signal (broken red) generated by the proposed approach creates a smooth transition and continues

to depict the same dynamics as earlier. Such a mechanism could be useful in synthesizing repetitive

human activities for long durations. This can have a variety of applications in computer vision and

graphics including: human motion animation, occlusion handling, prediction for tracking, noise

handling from motion capture data, dynamic texture synthesis, etc.
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Figure 5.1:Abrupt vs. smooth transition: Original time series signal (solid blue) is repeated at the

1600 mark where it shows an abrupt transition. The predicted signal (broken red) shows a smooth

transition and synthesizes the signal persistently.

5.1 Introduction

The observed scalar time series signals are transformed into a higher dimensional phase space

through delay reconstruction (see Section5.2.1). This results in astrange attractorwhich is char-

acteristic of the underlying chaotic system. Note that a chaotic signal can be irregular and less

predictable in the observed time series space, while in phase space it has a regular structure due to

its deterministic nature. For prediction in phase space, several regression techniques can be used

to compute the temporal mapping function. Many of these techniques often assume a particular

underlying form of the mapping function (linear, polynomial, radial basis function etc.). However,

in case of human activities we are not aware of the exact forms of the mapping functions respon-

sible for generating the dynamics. Hence, instead of approximating a the functional form from the

observed data, we rely on a more general approach. We use a nonparametric data driven model,

based on kernel regression [80], to predict the future points along the strange attractor. These pre-

dictions are then transformed back into time series of longer duration with continuous motion. In
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order to generate more realistic and synchronized multiple time series signals, we investigate the

use of multivariate vs. univariate reconstruction for prediction. The use of multivariate time series

embedding for human activities is novel. The predicted time series signals of body-pose parame-

ters are used to synthesize and track human motion. In addition, the predicted pixel intensities are

used to synthesize dynamic texture sequences.

The aim of this work is to investigate the relevant concepts from chaos theory and propose a

novel and robust model for video synthesis. The novelty of this work lies in:

• The formulation of phase space reconstruction from the multivariate time series data of hu-

man activities. Previously (Chaptor4), only univariate phase space models of human activi-

ties have been studied for activity recognition.

• A new deterministic dynamical model in contrast to previously popular stochastic noise-

driven dynamical systems [36, 115].

• A new nonparametric model based on kernel regression in phase space.

We also provide experimental validation of viability of chaotic modeling approach for action syn-

thesis as well as action tracking (see Section5.3). This involves creating longer synthesized se-

quences of human activities using short sequences as a model. We have used standard motion

capture data sets for this purpose. The comparison with few other synthesis approaches is also

presented.
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5.2 Proposed Approach

We investigate dynamical systems that define the time evolution of underlying dynamics in a

phase (or state) space. First task is to find a way for phase space reconstruction from times se-

ries. The time series observations{x0, x1, . . . , xt, . . .} are transformed to the phase space vectors

{z0, z1, . . . , zt, . . .} through delay embedding, which is explained in Section5.2.1. In the case of

deterministic nonlinear dynamical (chaotic) systems, specifying a point in the phase space iden-

tifies the state of the system and vice versa. This implies that we can model the dynamics of a

system by modeling the dynamics of the corresponding points in the phase space [60]. This idea

forms the foundation of modeling the underlying chaotic system of unknown form and predicting

future states. A system state is defined by a vectorzt ∈ Rn. The dynamics of these states are

defined either by ann-dimensional mapping function

zt+1 = F(zt), (5.1)

or byn first order differential equations. The latter approach is typically used for studying theoreti-

cal systems because the exact equations are rarely known for the experimental systems. The former

approach, which is based on the mapping function, is more popular for the experimental systems.

Section5.2.2describes a kernel regression based mapping function that we adopt for predicting

future system states. These new states are transformed back to output time series as explained in

Section5.2.3. Figure5.2presents an overview of the steps involved in producing synthesized time

series, starting with the model (training) time series that is the input to the process.
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Figure 5.2:Main steps of the proposed approach for time series synthesis.

5.2.1 Phase Space Reconstruction

Phase space reconstruction is performed by the delay embedding of the observed data into phase

space vectors. The details of the univariate delay embedding for human activities are provided in

Section4.3.2, however, we include relevant information for completion. Takens’ delay embedding

theorem forms the basis of this approach [104]. It states thata map exists between the original state

space and a reconstructed state space. The theorem shows that the dynamical properties of the

system from the true state space are preserved through the embedding transformation. Therefore,

the delay vectorszt = [xt, xt+τ , . . . , xt+(d−1)τ ] ∈ Rd, generate the phase space. The two

parameters to be computed are lagτ and embedding dimensiond.
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Figure 5.3: Steps for phase space reconstruction. (a) The observed univariate time series. (b)

Mutual information plot to determine minimum delay (first local minimum,τ = 9). (c) The em-

bedding dimension is computed by finding the smallest value that gives a small number of false

nearest neighbors (converging to 1,d = 5).

The most popular approach for computing lagτ is based on the amount of mutual information

betweenxi andxi+τ pair of observed values. The basic idea here is to look for the minimumτ

for which the mutual information between observations is lowest. The details of the algorithm are

available in [41]. Figure5.3(a) shows a univariate time series generated by one dimension from

the 3D location of the foot of a running person. Figure5.3(b) shows the plot of possibleτ values

vs. amount of mutual information. The point of the first local minima of this plot is chosen as the

lag τ . The optimal embedding dimensiond can be computed by using the false nearest neighbors

method proposed in [20]. The basic idea of this method is to find the smallestd, while minimizing

the number of false nearest neighbors due to dimension reduction. Figure5.3(c) shows the plot

of possible values ofd vs. fraction [0,1] of the points that do not have false nearest neighbors.

Note that the fraction converges to 1 (100%) atd = 5, so choosingd > 5 would not be an optimal

choice.
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The values ofτ andd are used to transform the univariate time series into the phase space (or

delay) vectorszt stacked as

Zu =




z0

z1

z2

...




=




x0 xτ · · · x(d−1)τ

x1 x1+τ · · · x1+(d−1)τ

x2 x2+τ · · · x2+(d−1)τ

...




. (5.2)

Note that each observed scalar value is repeated several time in this matrix. The sequence of the

rows in this embedding matrix is important as it generates a trajectory in the phase space. Fig-

ure5.4(a) shows the 3D projection of 5D phase space for the time series presented in Figure5.3.

This blue trajectory forms thestrange attractorin the phase space. The metric, dynamical, and

topological properties of this strange attractor are characteristic of the underlying nonlinear dy-

namical system [60]. We will be relying on modeling the evolution (flow) of the observed points

along this strange attractor to predict the future locations.

This form of the embeddingZu is feasible for prediction in the case of univariate time se-

ries. However, in computer vision we frequently observe time series generated by a dynamical

system that involves multiple variables (dimensions) simultaneously. For instance, during human

motion directly connected body joints impose certain constraints on the motion of each other. The

trivial solution would be to proceed with performing univariate prediction separately for each di-

mension of the time series. We demonstrate through experiments that this approach breaks down

due to the dependence between joint locations. Hence, a phase space reconstruction is desirable

where prediction is performed for all the dimensions of a multivariate time series simultaneously.
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Caoet al.[21] have shown that a simple yet powerful extension of the univariate embedding can be

useful for the multivariate time series prediction. For a multivariate time series, with observations

xt = [x1,t, x2,t, . . . , xD,t]
T ∈ RD, an appropriate phase spaceZm = [z0, z1, z2, . . .]

T would be

created by a set of delay vectors redefined as

zt = [x1,t, x1,t+τ1 , . . . , x1,t+(d1−1)τ1 ,

x2,t, x2,t+τ1 , . . . , x2,t+(d2−1)τ2 ,

. . . ,

xD,t, xD,t+τ1 , . . . , xD,t+(dD−1)τD
] ∈ R

PD
i=1 di . (5.3)

Here τi anddi are respectively the delay and the embedding dimension for each one of theD

dimension of time series.zt maps to a point in the higher dimensional phase space and is linked to

the next pointzt+1 by the order inZm matrix. Figure5.4(b) shows such points highlighted by dots

and connected through arrows showing the direction of evolution.

5.2.2 Prediction in Phase Space

In order to perform prediction we need to compute the mapping functionF (Equation5.1). The

exact form ofF is unknown in case of general human motions. The “appropriate” selection of the

model poses a challenge when one is not aware of the exact physics of the underlying dynamics.

One popular form of the model is given by

zt+1 = F(zt) =
M∑

m=1

c(m, t)φm(zt), (5.4)
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Figure 5.4:Predicting dynamics of a time series. Original time series is transformed into a strange

attractor in the phase space. Kernel regression is used to estimate predicted values following

behavior of neighbors. The predicted points in the phase space are transformed into a synthesized

time series.

which is a linear combination ofM possibly nonlinear functionsφm with c(m, t) providing the

coefficients.φm are usually chosen to be polynomials, radial basis functions, or logarithmic func-

tions while the coefficient valuesc(m, t) are computed during functional approximation (e.g. least

squares).

We avoid guessing a particular model by using a nonparametric model based on kernel regres-

sion [80]. The main idea is to estimate the mapping function using a weighted average of dynamics

of neighboring points in the phase space. Hence, the mapping is given by

zt+1 = F(zt) =

Nn(zt)∑

k=1

(yk+1 − yk + zt)wk(zt,yk), (5.5)

94



whereyk is one of theNn(zt) nearest neighbors ofzt. Each of these neighbors has a corresponding

next pointyk+1 in the phase space. As shown in Figure5.4(b), the vectors between the consec-

utive points are used in the neighborhood. The weights are computed from the kernel which is

a decreasing function of distance from the reference point. Nadaraya-Watson [80] defined these

weights as

wk(zt,yk) =
Kh(||zt − yk||)∑Nn(zt)

k=1 Kh(||zt − yk||)
, (5.6)

Kh(b) =
1

h
K

(
b

h

)
, (5.7)

whereK is the kernel function which can be Guassian, Epanechnikov, etc,h is the bandwidth of

the kernel and can be used for over smoothing. In our experiments we useN (0, 1) kernel and

bandwidthh = 0.5. Such a chaotic modeling approach is generally: quite robust to noisy data,

more accurate in experimental systems, and good for prediction while preserving important invari-

ants of the dynamics [60]. Such an approach has the advantage of capturing a desirable balance

between local and global parametric regression approaches. Local models are known to have the

problem of large computational and memory requirements. On the other hand, the global models

over generalize while computing one functional representation that models the whole attractor in

the phase space.

Figure5.4 shows the phase space reconstruction and predictions from the time series shown

in Figure5.3(a). The predictions are shown by red trajectories along with their directions of flow.

Figure5.4(b) shows the starting point (initial condition) of the prediction with closest neighboring

points that contribute the most (through symmetric kernel) to the first prediction. Note that the
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Figure 5.5:Comparison on synthetic data. (a) Sine, triangle, and ramp input time series. (b) and

(c) show the synthesized output by Dorettoet al.’s [36] and Chanet al.’s Kernel Dynamic Textures

[25] respectively. (d) Synthesized output of our method provides more accurate reconstruction for

all three signals.

first resultant arrow follows the immediate neighbors very closely. The predicted trajectory keeps

evolving along the strange attractor following the system dynamics.

5.2.3 Time Series Reconstruction

To recover a time series from the predictions in the phase space we have to extract the time series

from univariateZu or multivariateZm matrices. For the univariate caseZu (see Equation5.2) it is
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Figure 5.6:Visualization of the phase-space embeddings of the original signals (blue) as shown in

Figure5.5and the corresponding predicted signal (red).

simply extracting the first column followed by lastτ rows from the rest of the columns. For aTxd

matrixZu this generatesT + (d− 1)τ time series observations

xi ∈ {Zu(1, i), Zu(k, T − j)},

where0 ≤ i < T, τ ≥ j > 0, 1 ≤ k < d . In the multivariate case,Zm matrix (see Equation5.3)

contains a row ofD individualZu matrices. The multivariate time series is constructed by extract-

ing D univariate time series from the correspondingZu as described above. Figure5.4(c) shows

an example of a univariate time series extracted from the predictions in the phase space shown in

Figure5.4(a). Figure5.5shows the output of time series synthesis on three synthetic signals where

D = 2. The embedding parameters (τ , d) are calculated to be (4, 5), (3, 4) and (5, 7) for each

dimension in sine, triangle and ramp signals respectively. It shows that the output of our approach

is very similar to the source signal and is better than the two recent approaches used for dynamic

texture modeling [36, 25].
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5.3 Applications

The proposed approach for predicting time series is applied to human activity synthesis and track-

ing. In addition, we also show that the presented model can be generalized to other types of

motion, like dynamic texture. Several experiments were performed to evaluate the performance of

our approach on published data sets and to compare the output with that of some of the well known

methods in the literature.

5.3.1 Human Activity Synthesis

We use motion capture data to acquire source time series representing the position of the body

landmarks during the activity. We use the motion capture data from FutureLight [43] and CMU

[29] data sets for the human activity synthesis. Every frame in CMU and FutureLight sequences

provides a62 and39-dimensional body-pose descriptors respectively. CMU’s descriptor is com-

posed of bone length and joint angles, while FutureLight is composed of the absolute 3D locations

of the 13 body joints. A part of the sample sequence of the human activity is used to generate

the observed time seriesxt ∈ RP , whereP is the dimensionality of the body-pose descriptor.

The multivariate phase space reconstruction producesZm embedding matrix for the sample activ-

ity. For a given starting pointxt, the predictions and time series reconstruction is performed as

explained before. This creates a sequence{xt,xt+1, . . .} of body-pose descriptors used for final

video synthesis.
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Figure 5.7: Univariate vs. multivariate predictions for human motion. Univariate approach (a)

shows irregular poses and its global transformations while multivariate approach (b) generates a

smooth sequence with all valid poses. (c) Univariate predictions also result in a higher error than

the multivariate predictions.

We have experimented with both univariate and multivariate predictions for this task. In the

univariate case, each dimension of the pose descriptor is used independently to determine the

phase space reconstruction followed by prediction. In the second case, multivariate prediction

approach is used to evolve the predictions in an even higher dimensional phase space (order ofP -

dimensional). This provides the combined evolution of different dimensions of the pose descriptor.
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Figure 5.8: Human motion synthesis on CMU data set. Note that the difference between the

walking and running body-poses is maintained after synthesis. (a) Every 100th frames is shown

, (b) Every 50th frame is shown. (c) Quality of our predictions are compared against the ones

generated by the GPDM based approach [40]. The ground truth between frame50 and137 is used

to compute prediction error.

Figure5.7shows the keyframes from the same running sequence synthesized using the univariate

(see Figure5.7(a)) and the multivariate (see Figure5.7(b)) predictions. These300 frame long

sequences have been synthesized from a130 frames long model sequence. The keyframes in

the multivariate case show normal body poses, however in the univariate case, strange poses are
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Figure 5.9: FutureLight data set. Synthesized sequences from each of the four different types

of activities is shown. Here right hand & foot have red trajectories, left foot & hand have blue

trajectories, while head has green trajectory. Faster speed in the running sequence (as compared to

walking) can be noticed by the sparse stick figures that are drawn every40 frames.

synthesized. Towards the end there is an unrealistic global rotation of the whole body. Figure5.7(c)

shows a graph of mean absolute error in the first130 frames from both sequences that overlap with

the model sequence. This clearly shows that the proposed multivariate formulation is critical for

human activity synthesis.

Using the CMU data set, we show results on walking and running activities as shown in the

Figure5.8. The model sequences used in our experiments are typically100 to 500 frames long. We

synthesize sequences with up to three times the original length. The highest individual embedding

dimensiondi observed during experiments was7. We also compare the accuracy of predictions
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with the output of GPDM based approach [40]. Figure5.8 (c) shows a graph of mean absolute

error in predictions by our approach (solid blue) and by Wanget al. [40]. The sequence (CMU

id : 09 04) shown in Figure5.8 (b) is used for this experiment, where frame1 − 100 are used for

creating the model and frame50− 137 are used to compute the error in predictions.

Using the FutureLight data set, we synthesize walking, running, jumping, and ballet activities,

as shown in Figure5.9. We compute the relative locations of all other landmarks with respect to

the belly (reference) point. This provides us with a39-dimensional time series signal that will be

predicted. The phase space embedding and predictions are computed through the aforementioned

approach. During our experiments, the individual embedding dimensiondi would typically fall

between3 and6 for these activities. The length of a typical model sequences used is between220

and500.

5.3.2 Human Activity Tracking

Prediction in a dynamical system has been shown to be useful for synthesis of periodic and de-

terministic motion. For the same kind of motion, predictions can also be useful for tracking the

corresponding time series. In the case of human activity, the time series data corresponds to the

location of body joints. Prediction of this time series can be useful for minimizing the search space

in the tracking stage. We have proposed A similar, prediction based body parts tracking, approach

has been previously [48]. In that case, geometric constraints were used to transform trajectories

from a model video onto predictions in the test video. We show that the proposed tracking ap-

proach can be feasible in case of periodic activities. One limitation is that it requires the position
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(a) (b) (c) (h) (d) (e) (f ) (g) 

Figure 5.10:Steps involved in detection and tracking of human body parts through prediction: (a)

Current source image, (b) output of background subtraction, (c) current state of the card-board

body model for detecting right arm, (d) difference between images in (b) and (c), (e) set of predic-

tions used, and (f) best match for right arm. Rest of the body parts are detected similarly, as shown

on the foreground image (g) and source image (h).

of body joints to be known during the training phase. In some cases it can be obtained through a

semi-supervised manner as explained in Chapter4.

Figure 5.10 shows various stages of the detection and tracking approach adopted here and

is similar to the one used in [48]. The main idea here is to utilize the predicted locations of a

joints in a temporal window in order to find the best location in the current frame. This helps

in significantly reducing the search space in the current frame. We start with the background

subtraction assuming a stationary camera. A cardboard model is used to model the current pose

of the body and is updated at every frame. As shown in the Figure5.10(d), the part belonging to

the left arm is isolated by subtracted the current pose estimate and the the background subtraction

result. The exact location of the left arm is detected guided by a set of predicted locations/poses of

the left arm. The best match if found by maximizing the overlapping are between the subtracted
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RunWalk Jump

(a) 13 body joints: predicted trajectories (red) and model trajectories (green) 

(b) Human body parts are tracked, utilizing the predicted trajectories 

Figure 5.11:Predictions of body joint locations can be useful for tracking body parts in case of

repetitive human actions.

foreground pixels and the predicted arm location. This process continues for the rest of the body

parts and a complete body pose is generated.

We use Weizmann action data set for this task, where we demonstrate the results on three

sample actions (walk, jump, & run) as shown in the Figure5.11. We use the first half of these

videos (44, 36, &28 frames respectively) as the model, where the 2D joint locations of the13 body

landmarks are available. The predictions for the26-dimensional pose-descriptor are obtained in

the same way as those for the synthesis task. As shown in the Figure5.11, the predictions are very

accurate when the motion is repeated regularly. To demonstrate the utility of these predictions for

tracking body parts, similar to [48] , we use a card board body model along with the foreground

silhouette feature. The overlap between the candidate locations (around predictions) of the body
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Figure 5.12:Mean-squared error (MSE) is computed against the ground truth of the 13 joints in

jumping and running videos. The tracking error is generally lower than the prediction error, as the

initial estimates by predictions are refined after tracking.

part is maximized with the foreground silhouette to find the best estimate. We found that even with

a simple tracking approach like this, we obtained encouraging tracking results. We observed some

tracking artifacts in case of deviation from the style of action in the model video. We feel that our

approach of generating predictions can provide useful prior for more involved tracking approaches.

Figure5.12shows the quantitative comparisons of the mean-squared error in case of jumping

and running actions. The error plot is computed at the predicted locations of the body joints and

then at the final tracked locations of the body joints. Notice that the error reduces after tracking,

when the predictions guide the search for local best matches for body parts. This shows that the

proposed approach can be useful for tracking body joints in case of repetitive motion.
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(a) Synthesis by univariate predictions

(b) Synthesis by multivariate predictions 

Figure 5.13:Dynamic texture synthesis from Stripes video. (a) Predictions of many pixels quickly

become unsynchronized from the neighbors causing the noisy pixels. (b) Multivariate predictions

create more realistic and smoother videos.

(b) Running water (a) Boiling bubbles

(d) Swaying plants 1 (f ) Swaying plants 2(e) Candle

(c) Fire

Figure 5.14:Dynamic texture synthesis from UCLA data set.75 frame long model videos are used

to generate225 synthesized frames.

5.3.3 Dynamic Texture Synthesis

We also demonstrate the synthesis of dynamic textures through the proposed approach of chaotic

modeling. The dynamic textures have stochastic regularity in the spatial and temporal extent [85].

We investigate the determinism in the structure of dynamic textures through the proposed approach.

The sequence of intensity values at each pixel is treated as a univariate time series, which is gener-

ated possibly by a chaotic system. We investigate the feasibility of both univariate and multivariate
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(a) PCA based approach (baseline used by Liu et al.)

(b) PPCA based approach by Liu et al’s 

(c) Our approach

Figure 5.15: Dynamic texture synthesis from Flags video. We compare our method with the

approach by Liuet al. [71] and the baseline method they used. Results obtained from our method

are crisp and don’t show ghost-like effects, as highlighted by the red box in the last column. Table

5.1shows the prediction errors of these videos.

predictions in this case as well. The multivariate case is applied in small neighborhoods of25× 25

which creates625-dimensional multivariate time series for each neighborhood. The actual dimen-

sionality of the phase space would then be a sum of the individual625 embedding dimensionsdi’s.

Figure5.13(a) shows the synthesized video in the case of univariate predictions. Noisy pixels be-

come more obvious as the video progresses because predictions diverge farther from ground truth.

The multivariate case Figure5.13(b) applies better spatial constraint and results in a synthesized

video of better quality.

We first present synthesis results using the UCLA data set [94]. It contains 50 classes of dif-

ferent types of dynamic textures, including flames, trees, fountains, water etc. Each video contains
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(a) PCA based approach (baseline used by Liu et al.)

(b) PPCA based approach by Liu et al’s 

(c) Our approach

Figure 5.16:Dynamic texture synthesis from the Stripes video. We compare our method with the

approach by Liuet al. [71] and the baseline method they used. Results obtained from our method

are crisp and do not exhibit ghost-like effects, as highlighted by the red box in the last column.

75 frames of a cropped48 × 48 textured area. Each pixel provides a scalar time series, whose

embedding parameters are computed individually. This is followed by multivariate phase space re-

construction and prediction. The individual embedding dimensiondi for a pixel has been observed

to lie between4 and9 for typical dynamics of the textures used here. Figure5.14shows a few of

the synthesized frames from various types of videos in this data set.

A series of experiments have been performed to compare our approach to some of the pop-

ular approaches for dynamic texture synthesis. These include approaches by Chanet al. [25],

Liu et al. [71], and Yuanet al. [115]. All of them provide means for quantitative and qualita-

tive comparison with their approach, as well as the baseline PCA based linear dynamical system

approaches and an improved version by Dorettoet al. [36]. We performed experiments on the
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Table 5.1:Mean squared error between the original and synthesized frames

Sequence name Stripes Flags River

(Figure5.16)

PCA based approach 1119.8 1445.2 1198.0

(baseline in [71])

PPCA based approach [71] 2117.9 579.5 551.4

Our approach 12.2 17.8 8.6

MIT dynamic textures data set [103], in order to present qualitative and quantitative comparison

with these approaches. This data set contains videos that are typically114× 170 with 120 frames.

These model videos were used to produce synthesized videos three times their length. The time

series with pixel intensities is embedded into a higher dimensional phase space where prediction

is performed. Figure5.16presents the output of our method, along with the corresponding output

of the two approaches presented in [71]. The first is a baseline approach they used which relies on

simple PCA with AR model. The second is their approach based on probabilistic PCA (PPCA).

In Figure5.16 we also highlight interesting area of the image with the red box. Note that both

approaches in first two rows generate a ghost-like effect due to imperfect projection onto a few

components, however, our approach preserves the quality. Table5.1presents quantitative compar-

ison through mean squared error. This error is computed by the mean squared difference between

the pixel values of the original and the predicted frames. We analyze the three videos (stripes,

flags, and river) used in [71] and determine that our approach indeed outperforms both of these

methods.
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Table 5.2:Mean squared error between the original and synthesized frames

Sequence name Fire Smoke-far Smoke-near

(Figure5.17)

Basic LDS 55264 230.7 402.6

(baseline in [115])

Improved LDS [36] 55421 250.0 428.2

Closed-loop LDS [115] 1170 21.4 34.4

Our approach 109 16.1 1.9

Similarly, we perform another comparison with the closed-loop LDS by Yuanet al. [115],

their baseline version LDS, and improved LDS by Dorettoet al. [36]. Due to limited space, we

only include the Fire sequence, which is the more challenging than the other two. The difference

between the outputs of our approach and that from the first two approaches (basic and improved

LDS) is obvious when looking at the figure. Table5.2 clearly shows that our results are closer to

the original video as compared to the out put of Yuanet al.

5.4 Summary

We have presented a new approach for time series prediction that can be used for fine level human

activity modeling. We have presented application of these predictions for human activity synthe-

sis, human body parts tracking and dynamic texture synthesis. In this chapter we have proposed a

novel approach for modeling multivariate time series and performing prediction through a kernel

regression based approach. We observed that multivariate phase space reconstruction is more suit-
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(a) Basic linear dynamical system  by Soatto et al.

(d) Our approach

(c) Closed-loop dynamical system by Yuan et al.

(b) Improved open-loop linear dynamical system by Doretto et al.

Figure 5.17:Dynamic texture synthesis from the Fire video. We compare our method with the that

of Yuanet al. [115] and the baseline they used by Dorettoet al. [36].

able for the task of prediction, as opposed to the univariate reconstruction used for recognition (see

Chapter4). We also show that the human activities can be modeled very well by a deterministic

model that is inherently different from many noise-driven models. Noise dirven linear dynamical

system has been a popular choice of various approaches in the past. We show the application of the

proposed prediction approach to solve synthesis and tracking of human actions. Viability, robust-

ness, and generalization of this model has been demonstrated empirically on standard data sets.

Comparison with other approaches shows encouraging performance in terms of the quality of the

synthesis.
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We demonstrate the utilization of human body-pose predictions to address the problem of hu-

man body parts tracking. It is possible to use the proposed approach in case of repetitive human

actions like walking, running, etc. Once the body joints have been tracked reliably throughout the

test video, we can then apply the recognition approach (presented in Chapter4) automatically. One

limitation of the proposed tracking application is the requirement of the detected joint location in

the training sequence. The use of semi-supervised method (as the one used in Chapter4) can be

one possibility to satisfy this requirement.

We conclude this dissertation in the next chapter with discussion and future directions.
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CHAPTER 6: CONCLUSION

In this dissertation we have addressed modeling and recognition of human activities in videos. We

have proposed a two pronged approach that provides different models for activities at the coarse

and the fine levels. We also explained how the proposed work is aimed at filling the void in the

literature. Our approach for anomalous activity detection is based on unsupervised learning, mod-

els motion of single objects as well as object pairs, avoids errors related to clustering tracks, and

reuses the same scene model for improving object detection. For the activities at the fine level we

proposed a strong model for modeling activities of individuals for recognition and prediction. We

have presented a novel approach to model human activities as a dynamical system in the phase

space. To the best of our knowledge, we have used the relevant concepts from chaos theory and

non-linear dynamical systems for the first time to represent human activities and dynamic textures

in computer vision literature. We have used a new set of features (chaotic invariants) for recog-

nizing activities and proposed a new approach (kernel regression in phase space) for predicting

human activities and dynamic textures.

Further discussion and future directions are discussed in Section6.2. We briefly summarize the

key contributions of this dissertation in the next section.
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6.1 Summary of Contributions

The main contributions of this research to the literature include:

1. Scene modeling for unusual activity detection

(a) Statistical scene model of single object parameters (motion and size) by using GMM

pdf at every pixel location. Useful for real-time applications.

(b) Statistical scene model of object pair parameters (concurrent motion and size) by using

a global KDE pdf. Useful for detecting more complex anomalies.

(c) Unsupervised learning and avoiding the errors related to clustering tracks into major

paths in the scene.

(d) The use of higher than first order velocities in modeling dynamics is useful to identify

globalanomalies in addition to the simplerlocal anomalies.

(e) The proposed scene model is suitable to perform online learning of the evolving motion

patterns in the scene.

(f) Feedback of learnt scene model to the background subtraction module in order to im-

prove object detection.

2. Chaotic invariants for human activity recognition

(a) Investigation of the appropriateness of the theory of chaotic systems for human activity

modeling and recognition.
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(b) A non-linear dynamical system based representation of an action that without assump-

tions about the mathematical form.

(c) A new set of features to characterize nonlinear dynamics of human activities.

(d) Experimental validation of the feasibility and potential merits of carrying out activity

recognition using methods from the theory of chaotic systems.

3. Chaotic modeling for human activity prediction

(a) Predicting dynamics without making any assumptions about the exact form (linear,

polynomial, radial basis, etc.) of the mapping function.

(b) Multivariate phase space reconstruction for modeling human activities for prediction.

(c) A deterministic approach to model dynamics in contrast to the popular noise-driven

approaches.

(d) Video synthesis and action tracking through kernel regression in the phase space.

6.2 Discussion and Future Directions

In this section we present our final comments and discussion on the three goals of this dissertation.

In addition, we also present some possibilities for future directions to further this research.

6.2.1 Scene modeling for unusual activity detection

In order to address the first goal of modeling scenes and understanding activities at the coarse level,

we have presented two novel approaches. The first approach models and learns the motion patterns

115



of individual objects in the scene, while the second one also models the interactions between

objects pairs. While the first approach is more suitable for lightweight real-time applications, the

second one is more powerful for detecting relatively more complicated behaviors in the scene.

In the first approach, we adopt an unsupervised learning approach that models object motion

and size at every pixel location. The use of size feature in addition to velocity is merely for proof

of concept. It provides means to classify objects based on their size. A more sophisticated feature

for object classification can most certainly be used instead. The pdf of motion patterns at every

pixel is modeled as a GMM, which is learnt through EM based learning approach. If the goal is

real-time performance, one can reduce the spatial resolution and create a pdf for a local (e.g.5× 5

pixels) neighborhood instead of every pixel. Another benefit of using GMM is the convenience

of making the model adaptable to the changing situation in the scene. We have not presented

results in this dissertation with the adaptability but it can be incorporated in the future if required.

The GMM parameters will be updated in an online fashion when the new observations become

available, similar to background modeling [99].

In the second approach, we extend the statistical model by modeling the distribution of motion

patterns of object pairs. This is done through defining a composite random variable that combines

transition vectors of two object concurrently present in the scene. The14-dimensional probability

density is learnt through KDE. The sparseness in higher dimensionality is handled through mean

shift based sample refinement. Finally, Markov Chain is used to integrate the evidence over time.

We present further improvement in the runtime by dimension reduction through PCA.
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We have shown improvements in object detection by using learnt scene model feedback for the

minimum object size and the background learning rate. In addition to the object detection module,

one can also improve the performance of the multi-object tracking module by incorporating the

scene knowledge. For instance, if a Kalman filter [109] based model is being used, one can make

measurement-noise and process-noise dependent on the most probable velocity in each region. The

idea would be to use larger measurement noise, for instance, in case of faster motion of vehicles

and vice versa. Other useful applications of the learnt scene model can include prediction of object

path, occlusion handling while tracking, and finding source/sink (i.e. entry/exit) points in the scene.

6.2.2 Chaotic invariants for human activity recognition

We have presented a new approach for recognizing human activities when the finer level details

of different body parts is available. Previously we have seen the use of dynamical systems as a

way to model human actions. The approach presented here avoids the assumption of the linear

model or specific form (polynomial, radial basis function, etc.) of non-linearity. An important

result here is that we can represent an activity as a dynamical system for which we do not have an

exact mathematical form. We have shown that the data-driven embedding and invariant features

computed from it can be powerful for recognizing different dynamics.

We have used only three types of features from metric and dynamical groups of invariants.

There are other features/measures that also fall into the same groups and could be evaluated. In

addition, there is another group of invariant features that contains topological invariants. These

features capture the physical topology of the embedded strange attractor and could be used to
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for discrimination purpose. We experimented with two topological features: linking numbers and

relative rotation rate. The limitation of these features was their validity only in low (less than three)

dimensional phase spaces [46]. In our experiments with human activities, the dimensionality of

the phase space was typically higher than three which made the utility of topological features very

limited.

One limitation of the approach is the dependence on the joint trajectories of the human body.

For this work, we adopted a semi-supervised approach as explained previously. There are several

other approaches that can be useful for estimating human body pose, especially when the camera

is stationary. In case of quasi-periodic actions we were able to obtain good results for body parts

tracking through the proposed prediction based approach presented in Section5.3.2. In order to

avoid the dependence on these body joint trajectories, one possible direction of future work is to

explore other types of features that can be extracted from images. Such a feature can be a shape

descriptor of the body, so that a series of these features (used as a multivariate time series) can

be used to express different types of actions. Possible candidates could be shape context [77] or

histograms of gradient direction [32].

6.2.3 Chaotic modeling for human activity prediction

We extend the chaotic modeling of human activities for solving the prediction of moving body

parts. We have presented application of these predictions for human activity synthesis in motion

capture data and human body parts tracking in videos. In addition, we also show that the proposed

model can be generalized to other types of dynamics, i.e. dynamic textures. In this chapter we have
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proposed a novel approach for modeling multivariate time series and performing prediction through

a kernel regression based approach. We observed that the multivariate phase space reconstruction

is more suitable for the task of prediction, as opposed to the univariate reconstruction used for

recognition (see Chapter4). The multivariate reconstruction results in high dimensionality of the

phase space, which is not a significant problem when the goal is to perform kernel regression. On

the other hand, the high dimensionality could be a problem in other applications depending on

the kind of features to be computed from the embedded strange attractor. The metric invariants,

for instance, depend on the density of the points in the phase space and the quality of features

is expected to deteriorate as the dimensionality increases. Another type of chaotic features is

topological, that have been shown to hold only up to three-dimensional phase spaces [46]. Hence,

the choice of multivariate phase space reconstruction should be made depending on the type of

information or features to be derived from the strange attractor.

We demonstrate the utilization of human body-pose predictions to address the problem of hu-

man body parts tracking. It is possible to use the proposed approach in case of quasi-periodic hu-

man actions like walking, running, etc. Once the body joints have been tracked reliably throughout

the test video, we can then apply the recognition approach (presented in Chapter4) automatically.

One limitation of the proposed tracking application is the requirement of the detected joint location

in the training sequence. The use of semi-supervised method (as the one used in Chapter4) can be

used for this purpose.
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