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ABSTRACT 
 

 

 View Synthesis is the challenging problem of predicting a new view or pose of an 

object given an exemplar view or set of views.  This thesis presents a novel approach for 

the problem of view synthesis.  The proposed method uses global features rather than 

local geometry to achieve an effect similar to that of the well known view morphing 

method [1].  

 While previous approaches to the view synthesis problem have shown impressive 

results, they are highly dependent on being able to solve for epipolar geometry and 

therefore have a very precise correspondence between reference images.  In cases where 

this is not possible such as noisy data, low contrast data, or long wave infrared data an 

alternative approach is desirable. 

 Here two problems will be considered.  The proposed view synthesis method will 

be used to synthesis new views given a set of reference views.  Additionally the 

algorithm will be extended to synthesis new lighting conditions and thermal signatures.  

Finally the algorithm will be applied toward enhancing the ATR problem by creating 

additional training data to increase the likelihood of detection and classification. 
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CHAPTER ONE: INTRODUCTION 
 

Previous Work 
 
 In many pattern recognition applications, it becomes necessary to predict the 

shape or appearance of an object from several views.  It is imperative to estimate new 

views of an object under varying imaging conditions, such as when there are changes in 

lighting and thermal levels, or when the viewing geometry has shifted.  Specifically, the 

goal is to estimate a singular view of the object consistent with any imaging conditions 

present in the reference view.  For example, an object that has already been examined for 

training data in several ways could potentially yield new data in subsequent observations.  

In IR, the thermal condition of the new exemplar of an existing object could be 

drastically different from the training data, requiring views from the new condition to be 

estimated.  Similarly in visible images, conditions in illumination could alter the 

appearance of the object to such a degree that standard classification algorithms would 

have difficulty recognizing it.  In this case, the new illumination condition would also 

need to be estimated. 

Problem Statement 
 

 Of course many methods have been proposed in attempts to address these types of 

challenging problems before.  In the most general case where prior information about the 

object is unavailable, conventional approaches may extract edges and employ wire frame 
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models.  These tactics geometrically manipulate the data in a 3D sense.  Alternately 

epipolar geometry could be solved for by first solving precise correspondence between 

reference images.  Once the geometry is known, pre- and post-warping could be used to 

interpolate synthetic images of a view between the reference views.  This is known as 

view-morphing [1] and will be further discussed in CHAPTER TWO.  This thesis deals 

with a more bounded problem where is it assumed that the prior knowledge about the 

object (such as representative views) is available. 

 We are concerned with estimating or predicting new views of the same object.  

This concept is known in general as View Synthesis although specific implementations 

may take on other names.  Previously established methods can work well in many 

situations.  View-morphing for example can create very realistic synthesized views based 

off of reference images. 

 In order to use the traditional approaches, regardless of which implementation is 

chose, they all seem to require establishing precise correspondence between reference 

images an initial step.  At the time of this thesis the state of the art method of finding this 

type of accurate correspondence without human interaction was to first use feature point 

correspondence such as SIFT [11] followed by a refinement step to remove outlier 

matches keeping only the most likely correspondences using a method like RANSAC 

[13].   

 While this type of technique might be convenient in many types of images, there 

are several applications where this technique will fail.  Such applications would include 

applications with various amounts of noise present in the data, motion blur present in the 
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data, low contrast data, and most long wave infrared data.  Although manual 

correspondence could be used to get around this problem, it is not only tedious but in 

many cases unreliable due to the lack of precision accompanied by manual selection.  

CHAPTER THREE will examine data types in much detail and show how the ability to 

accurately discover correspondence in pairs of reference images deteriorates with 

different types of data. 

Overview 
 

 In this thesis we describe a novel approach to the view synthesis problem, one 

that does not depend at all on image correspondence or epipolar geometry.  The approach 

was motivated by two major considerations.  The first consideration is the need for multi-

view-morphing similar in concept to [18] for boosting a learning algorithm with the 

ability to generate high-quality synthesized views which are not stored in the training set.  

This concept was accomplished using a modified view-morphing technique known as tri-

view-morphing [7], however as mentioned prior, it depends on precise correspondence.  

The IR and noisy data are what is motivating a new approach to that problem.  The 

second consideration is the case where we have images spanning the set of needed views 

already in the training database.  The goal here is to predict views of that object from new 

thermal or illumination conditions.  Therefore looking at the two major considerations for 

the proposed view-synthesis method, it becomes clear that it would be better suited and 

more appropriate to restrict the use of this algorithm to applications that are limited by 

low contrast or damaged data. 
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 More specifically our approach is able to solve the problem without 

correspondence and epipolar geometry by treating the problem as a 2-D linear prediction 

process.  As previously mentioned, it is assumed that the representative training views of 

the desired object are available.  The first step is obtaining a basis set representing the 

training data, which is accomplished in this thesis by computing the Karhunen Loeve 

(KL) expansion of the data.  The training images are represented in terms of their 

principle components (although other basis representations could be used).  Purportedly, 

using the principle components will constitute a reasonable basis for the unknown views.  

This assumption implies that there is a certain amount of similarity between the predicted 

view and the training data.  The projections of the training images onto the basis set are 

treated as features that will be used for estimating the linear predictor.  It is well known 

that the number of principle components may be reduced while still well representing the 

data.  Using fewer principle components allows a predictor to be estimated with less 

training data.  Then given an arbitrary image of the object, its features can be the input 

for the linear predictor which will estimate the output features of the desired synthesized 

view.  The features can either be reconstructed into an image of this view, or left in 

feature-space to be classified if the actual image is not required.  In addition to creating 

and using a linear predictor to estimate the appearance of the object from new views, this 

approach can also effectively estimate new signatures.  These signatures can be 

illuminations or lighting conditions in visible data or could be thermal states in IR data.  

This effort may be accomplished simply by adding data from multiple signature types 

and using the new training data to create the basis set and estimate the predictor. 
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 While the main problem to be solved by this thesis is to synthesize new views and 

signature types, it is not the only focus.  Other literature such as Xiao et al [18] have used 

synthesized or morphed views to enhance the performance of Automatic Target 

Recognition.  Since one of the motivations of this thesis was to focus on data that is noisy 

or low contrast, it seemed natural to try to apply this to the ATR problem; a problem 

which commonly has IR data or long range-data with noise present.  This thesis will use 

the proposed method of synthesis to enhance completely independent approaches to the 

ATR problem and show promise. 

Organization of the Thesis 
 

 The remainder of the thesis is organized as follows.  CHAPTER TWO: will 

review previous approaches to view synthesis problem along with some intermediate 

results showing when it can be successfully used as well as when it will not be effective.  

This will demonstrate the motivation for the proposed method.  In addition to reviewing 

other approaches, it is necessary to review some prerequisite related works that were 

needed to develop the proposed solution and to run all subsequent experiments.   

CHAPTER THREE will develop the view-synthesis problem as a prediction process in 

terms of predicting the principle component-based features.  This effect will be evident 

when a system of linear equations is established by relating the principle component 

features of different views.  A minimum mean square error (MMSE) model can be solved 

for using well-known regression techniques.  This portion will conclude with a 

demonstration of this model to estimating new views and new signature types.  
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CHAPTER FOUR contains all of the experiments performed in this thesis.  It will show 

examples of the proposed view-synthesis approach used on data to predict views as well 

as predict new signature conditions.  Additionally there will be an example using the 

predicted views in an ATR application.  Finally CHAPTER FIVE will summarize the 

thesis making conclusions that compare these experiments performed to other 

approaches.  This section will also discuss future directions and applications for our 

findings. 
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CHAPTER TWO: RELATED WORK 
 

 Several disciplines have approaches to solving the Image Based Rendering 

problem.   The two predominant ones are computer graphics and computer science.  Each 

of them has their own associated advantages and disadvantages.   It is important to 

understand the state-of-the-art approaches at some level to better appreciate the work and 

contribution in this thesis.  This chapter will begin by reviewing one of the more popular 

approaches to View Synthesis, showing some results, and demonstrating the motivation 

for an alternate solution such as the one proposed.  This will be followed by a review of 

ATR techniques that will be used in later chapters. 

 

View Morphing 
 

View Morphing [1], [20], [1] as described by Seitz, is the problem of synthesizing 

realistic images of a real scene from new virtual camera view points by warping a pair of 

basis images.  The algorithm should be able to produce convincing novel views as long as 

the constraints are satisfied while being versatile enough to handle change in lighting and 

non-static scenes.  The main constraints being that a reasonable correspondence can be 

solved for or manually provided such that the epipolar geometry can be recovered.  

Additionally, only a minimal amount of occlusion may be present or artifacts will be 

introduced making the synthesized results not very convincing.  Finally the object of 

interest should be rigid between each of the basis images. 
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The main issues resolved by this method, described in [21], are uniqueness, correctness, 

registration, uncalibrated cameras, and synthesis.  Uniqueness implies that the each novel 

viewpoint must be uniquely determined from the basis images.   Correctness is used to 

state that the resultant image should be reasonable and convincing as if a real, not virtual 

camera had seen the object from the new viewpoint.  Registration of the basis images 

should be possible as mentioned in the above constraint description.  This should be 

possible without prior knowledge of camera parameters such as position and focal length 

making them Uncalibrated Cameras.  Synthesis of images should not only be correct by 

the above definition of correctness, they should be general enough to work with any 

object satisfying the aforementioned constraints.  Seitz and Dyer describe a generalized 3 

step algorithm for solving these issues in [20].  Below, each of the steps will be described 

with some intermediate results shown. 

Pre-warping 
 

Pre-warping is a term used by Seitz and Dyer to describe the process of finding 

correspondence between the two basis images, using the correspondence to recover the 

epipolar geometry, and finally using the epipolar geometry to rectify the images into 

parallel images with aligned scan lines. 

Correspondence 

 
It is important to be able to establish correspondence between the two basis 

images.  Correspondence may either be user provided or automatically recovered.  It is  
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Figure 2-1:  The world coordinate P corresponds to image coordinate p and p’.  C and C’ represents 
the camera centers while e and e’ represent the epipoles where the epipolar line intersect the 
baseline. 

 

ideal to automatically recover the correspondence whenever possible.  At the time of this 

writing, it is widely believed that SIFT [11] provides the state of the art in rotation and 

illumination invariant feature point detection and description, although other methods 

such as correlation and Harris-Affine [10], [12], [23].  The number of accurate 

correspondences needed to solve for in order to recover the epipolar geometry can be as 

low as 4 points or higher depending on the algorithm used.  Examples of correspondences 

automatically recovered using SIFT can be seen under various conditions in Figure 3-5 

and Figure 3-6.   

Epipolar Geometry 

Epipolar geometry is the geometry of stereo vision.  When to different cameras 

observe the same point in a 3D scene, there are a number of geometric relations that can 
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be made between the 3D point and its projections onto the 2D images.  This can be 

observed in Figure 2-1.  Corresponding points in the two images can be related by (2-1) 

where and '  are corresponding points in the basis images, is the fundamental 

matrix 

p p F

[24] which can be computed by several algorithms such as Hartley’s 8 point 

algorithm [14].  The Fundamental matrix is a 3x3 matrix which represents intrinsic 

parameters as well as relative translation and rotation.  Using the Fundamental matrix, 

Seitz and Dyer can modify these two basis images such that they become parallel views 

meaning that their horizontal scan lines are aligned, this process is called rectification. 

 

0'=FppT  (2-1) 

  

Rectification 

Observing Figure 2-3 (a) you can see that middle image is not a realistic view 

between the outer reference images.  This incorrect trajectory exists because when 

linearly interpolating between two points, interpolation takes place along the most direct  
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Figure 2-2: The left image shows a view with the 4 corners of the book indicated with the cross.  
The right image shows the epipolar lines projected onto a second view from the fundamental matrix 
between these two images.  The points in the left image are mapped to lines in the right image that 
should intersect the corresponding points. 

 

points.  The solution to this problem is the aforementioned rectification process.  

Rectification was introduced by Seitz and Dyer [26], but has been since been used by  

Hartley et al [22], [27].  Using rectification, image interpolation can be made to follow 

gaze direction by aligning the epipolar lines of the two basis images.  The resultant 

rectified images will now have corresponding points located on the same scan lines. This 

can be observed in Figure 2-4. 

Morphing 
 
 

The effect of rectification is that pairs of conjugate epipolar lines become 

collinear and parallel to the horizontal axis.  This means that corresponding points in the 

rectified images will be located on the same scan line or some point  would have a 

corresponding point .  With the images rectified, linear interpolation along the scan 

)ˆ,ˆ( yx

)ˆ,'ˆ( yx
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Figure 2-3: The non-rectified image interpolation problem. (a) Image interpolation without 
rectification. (b) Image rectification after interpolation.  
 

lines will no produce valid in between views.  One possible interpolation method is:  

 

10
ˆˆ)1(ˆ Π+Π−=Π sss  , 10 << s  (2-2) 

where  are rectified basis images,  is a valid view in between rectified basis 

images , and  is an interpolation constant defining how far along the gaze path 

the interpolated image should lie. 

10
ˆ,ˆ ΠΠ sΠ̂

10
ˆ,ˆ ΠΠ s

Post-warping 
 

The final step of View Morphing is the post warp step.  In this step the morphed 

image is to be transformed back into the original image domain.  Sietz and Dyer provide 

a transform to do this similar the inverse transforms of the rectification transforms used in 

previous steps, [1], [20], [26].  There most likely will not be a point for point transform 

back to the original image domain leaving holes.  These holes can be filled automatically 

by smoothing and blending or with user interaction. 
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Figure 2-4: Clockwise starting with upper left image is view 1 with 4 points selected, view 2 with 
epipolar lines mapped, rectified view 1 showing the same corresponding points, rectified view 2 with 
horizontal epipolar lines. 
 

Limitations of View Morphing 
 

View Morphing can produce realistic synthetic images from novel view points 

given a set of basis images as long as the constraints are met.  The main limitation of this 

is that its performance is heavily dependant on a precise epipolar geometry being 

recovered.  The fundamental matrix computation as seen above requires several point 

correspondence between basis images.  When the given basis images have some motion 

blur or are from a low contrast sensor such as IR, correspondence might be unreliable or  
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Figure 2-5: Clockwise starting with upper left image is view 1 with 4 points selected, view 2 with 
epipolar lines mapped, rectified view 1 showing the same corresponding points, rectified view 2 with 
horizontal epipolar lines. 

 

inaccurate, even with manual correspondence as observed in Figure 3-5 and Figure 3-6.  

With inaccurate correspondence either no solution exists for the fundamental matrix or an 

unreliable one does.  An experiment was run to demonstrate this.  Figure 2-4 show the 

projection of point correspondences in one view to epipolar lines in a second view in both 

the image domain and the rectified domain.  Take notice that the epipolar lines intersect 

where the point correspondences are in the second view.  Additionally in the rectified 

domain, you can observe that corresponding points lie on the same scan line.  In Figure 

2-5, some noise and blur was added to the same images from Figure 2-4.  A 

 14



correspondence procedure was used iteratively with SIFT with RANSAC [13] to ensure 

only inlier correspondences were used to solve for the Fundamental matrix.  It can be 

observed that the epipolar lines do not intersect all of the points they were mapped from, 

and in the rectified domain, not all of the corresponding points occur on the same scan 

line.  This will lead to an incorrect morph since morphing takes place along the scan line 

in the rectified domain.  Due to the impact of blur and noise on the epipolar geometry it 

should be apparent that an alternate method of creating new views that does not depend 

on geometry for this type of data.  Below Table 2-1 shows the impact of deformities on 

the accuracy of the fundamental matrix.  The Samson distance is used to measure 

accuracy as Gaussian noise and blur are introduced. 

 

Table 2-1: Affect of image deformity on accuracy of epipolar geometry 
 

Deformity Sampson Distance 

None 0.2735194725 

5x5 Gaussian Blur 0.4055758822 

10x10 Gaussian Blur 0.6384753291 

15x15 Gaussian Blur 2.0534070628 

.025 Variance Noise 0.5182768764 

.050 Variance Noise 0.8883337633 

.075 Variance Noise 1.1168403824 

5x5 Blur + .025 Noise 1.2433494125 

5x5 Blur + .050 Noise 7.2159075410 

5x5 Blur + .075 Noise 10.1189762729 
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Detection and Classification 
 

 

While the main focus of this thesis is the proposed View Synthesis algorithm, it is 

a hope that using this algorithm to create novel observations of an object will improve 

results from well known ATR frameworks.  Two such frameworks were chosen, MACH 

correlation filters [8] and Support Vector Machines [28].  These frameworks will be 

reviewed and demonstrated below. 

Correlation using MACH 
 

The correlation based approach requires no image segmentation as compared to a 

machine learning classifier due to the fact that it compares the entire image to a template 

or filter.  In general correlation based approached can suffer from the filter deviating even 

slightly from the target.  The maximum average correlation height (MACH) filter used by 

Mahalanobis et al [8] is a good choice because it can incorporate a set of images into the 

filter to allow more variance while maintaining high and sharp peaks.  This will give the 

MACH filter some view and illumination invariance in correlation assuming the right set 

of images was used in the creation of the filter. 

 Given a set of training images, the MACH filter is given by: 

 
mCSh 1)( −+=  (2-3) 
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where represents the average training image, represents the spectral variance of the 

data, and C is the power spectrum of the background.  Performance for the MACH filter 

is measured in terms of peak to side lobe ratio (PSR) which is defined by: 

m S

σ
μ−

=
pPSR  

(2-4) 

where represents the maximum value returned from cross correlation between the filter 

and the test image, and

p

μ and σ represent the mean and standard deviation of the cross 

correlation respectively.  One of the appealing characteristics of the MACH filter was 

that accounting for some variation between the filter and the test image, cross correlation 

should still return high sharp peaks.  That being the case it is expected that the PSR 

should be high when an image has qualities similar to the filter and should be low 

otherwise.   

 To demonstrate this, we present an experiment where we will use correlation to 

detect and classify an alphanumeric character.  We will run the experiment twice, once 

with one exemplar character as the correlation template and a second time using many 

characters to train a MACH filter.  Finally we will compare the resulting correlation maps 

as well as detection based on the PSR threshold.  Figure 2-1 shows the input for the 

experiment.  Both experiments will share the left image as a test image to try to find all 

instances of the character ‘X”.  In the first experiment we will use all of the ‘X’s on the 

right side to generate a MACH filter, while in the second we will use the single ‘X” at the 

bottom for standard template based correlation. 
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Figure 2-6: The left side shows a test image. The right hand side is the set of characters to train a 
MACH filter.  The single character will be used for standard template based correlation. 
 
To create the MACH filter the first step was to interpolate all training images to the same 

size.  After that we simply apply the equation seen in (2-4).  This gives us the MACH 

filter represented by Figure 2-7.  Once we have this filter we can simply use  

 

 

Figure 2-7: Resultant MACH filter 
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Figure 2-8: Results for first experiment using MACH filter.  The Right shows the correlation map, 
while the left thresholds PSR to show detection results. 
 

normalized cross correlation as in equation (2-5), where I is the test image and is the  h

∑ −−
− yx hI

hyxhIyxI
n ,

)),()(),((
1

1
σσ

 
(2-5) 

MACH filter.  Figure 2-8 shows the resulting correlation map on the right.  Using 

equation (2-4) on the correlation map we can computer the PSR for every pixel in the 

correlation map and use this value to threshold detections.  The left side shows the 

detections after applying a threshold.  All ‘X’s were detected.  The darker red bounding 

boxes means that the MACH filter had adjacent pixels with a PSR higher then the 

threshold.  The second part of this experiment was to repeat the process using normalized 

cross correlation using a single ‘X’ as the template and compare results.  The results for 

this can be seen in Figure 2-9.  As expected the filter response was dull compared to the 
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sharp response in the prior experiment.  The same PSR threshold was only able to detect 

2 of the ‘X’s. 

 

Figure 2-9: Results for second experiment using a single ‘X’ as a correlation template.  The Right 
shows the correlation map, while the left thrsholds PSR to show detection results. 
 

Support Vector Machines 
 
 

In the field of computer vision and machine learning, classification is a 

challenging and on going problem.  In general, classification can be separated into two 

components, feature extraction and classification.  Feature extraction will be taking 

representative features of an object or class, and using this as an input pattern for a 

classifier.  This overview will focus on just the classifier using raw data as features.  At 

the time of this thesis, one of the most widely used approaches to the classification 

problem is SVM [28].  Conceptually SVM can be looked like as a black box that takes in 

training patterns and outputs a decision surface or model.  This process is known as 
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training.  Following training unknown patterns can be presented and compared to this 

model and assigned a class and confidence based of how it compared to the model.  This 

process is known as testing or classifying. 

Theoretically, inside of the black box, SVM is hyperplane classifier which will try 

to learn a hyperplane that can best separate the input patterns.  In the most general case, 

consider a two class problem that is linearly separable such as in Figure 2-10.  In this case 

an optimal linear boundary can be solved using, for example, the perceptron learning 

algorithm [31]. 
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Figure 2-10: Linearly separable two class classification problem. 
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Figure 2-11: The above figure shows a two class non linearly separable problem in its input space 
with a decision boundary as an ellipse.  The below figure shows the same two class problem mapped 
two a higher dimensional space where the ellipse decision boundary is now a line. 
 

A kernel, (2-6), (2-7), is a mapping that will map data into a higher dimensional space or 

feature space.  The lower portion of Figure 2-11 demonstrates linear separability in 

feature space. 

FN ⎯→⎯ℜΦ :  (2-6) 

))()((),( yxyxk Φ⋅Φ=  
(2-7) 

The specific kernel that is used is application dependent and in some cases must be 

empirically solved for. Some popular kernels can be seen below 
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Table 2-2: Types of kernels used in SVM 
 
Polynomial dyxyxk )(),( ⋅=  (2-8) 

Radial Basis Function 
2

2

2),( σ

yx

eyxk
−−

=  
(2-9) 

Sigmoid ))(tanh(),( Θ+⋅= yxyxk κ  (2-10) 

. 

Setting up the decision boundary is very similar to the form of the linear boundary and 

can be observed in (2-11). 

∑
=

+⋅=
l

1
)),(()(

i
i bykkvsignxf  

(2-11) 

 

For a practical example, we will use SVM to classify handwritten characters 0-9.  

NIST provides an alphanumeric handwritten database [30] which contains 7291 16x16 

pixel images of characters for benchmarking.  A sample of this dataset can be seen in 

Figure 2-12.  For this experiment, the total data was divided the data into 2000 characters 

for training and 5291 characters for testing, with a character histogram as in Figure 2-13.  

The problem was treated as 10 two class problems each with a character as class 1 and 

the remaining characters as class 2.  This results in 10 separate models, one for each 

character.  To run the experiment LibSVM [19] was chosen due to its being freely 

available with a well supported Matlab interface.  A second degree polynomial kernel 

was chosen empirically using the grey scale intensity values as features.  The results can 

be observed in Table 2-3 and are very reasonable.  This well demonstrates the ease and 
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power of SVM.  Features such as PCA could yield better results gray scale were chosen 

for ease of explanation. 

 

 

Figure 2-12: A sample of the characters from the NIST handwriting database [30]. 
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Figure 2-13: Histogram of characters from training and testing dataset 
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Table 2-3: Results for SVM character classification 
 

 Precision Recall Accuracy 
0 0.955828 0.967702 0.995086 
1 0.978229 0.988270 0.998488 
2 0.819521 0.870841 0.987526 
3 0.856287 0.842829 0.984880 
4 0.850211 0.791749 0.979966 
5 0.876993 0.848018 0.986959 
6 0.949580 0.907631 0.991306 
7 0.929019 0.961123 0.996598 
8 0.723150 0.789063 0.984691 
9 0.792233 0.857143 0.987148 
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CHAPTER THREE: PROSPOSED VIEW SYNTHESIS METHOD 
 

 One of the main focuses of this thesis is the proposed algorithm for view-

synthesis.  This section formulates the algorithm and describes several applications for 

this method.  Since there are other approaches for estimating an object’s view from 

different poses, lighting conditions, or thermal states, we will also discuss when and 

where it is most appropriate to use the proposed algorithm.  Variables such as noise, blur, 

and the characteristics of imaging sensors will be taken into consideration in the process, 

and the effect of those variables on the data and resulting prediction will be discussed in 

detail. 

  

Mathematical Formulation 
 
 It is well known that techniques such as the Karhunen Loeve (KL) decomposition 

(also known as Principle Component Analysis) can be used to represent data as a linear 

combination of a set of orthonormal basis functions.  The coefficients of linear 

combinations are readily obtained by projecting the data onto the basis set.  We develop a 

statistical model to characterize the relationship between the coefficients (or features)1 

associated with different views so that given a new view, the model can estimate the 

features of other views.  We now describe a mathematical formulation for this approach.  

Basic notation for this section will consist of the following, vectors will have an arrow 

                                                 
1  The coefficients used for reconstructing the image can be treated as features, as we shall use the 
term “features” interchangeably with the term “coefficients” in this paper. 
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above them, for example, vectorb
r

.  On the other hand, scalars will be italicized but not 

bold, for example, scalar s.  Finally, a matrix will be expressed as a capital letter, with an 

arrow it above such as M
r

.  

 In the following discussion, we treat images as vectors.  Thus, a two dimensional 

image  of dimensions),( nmX
r

21 dd ×  is represented by a data vector  of 

dimensions .  We express the vector 

xr

21 ddd ⋅= xr  as a linear combination of a set of 

orthonormal basis vectors diqi ≤≤1,r , i.e, 

 

∑
=

==
d

i
ii aQqax

1

rrrr  
(3-1) 

where Q [ ]
r

dqqqr r r...21= ddis a ×  matrix with basis vectors as its columns.  

Additionally, the vector [ ]Tdaaaa ...21=
r  is the coefficient (or feature) vector that 

satisfies: 

 

xQa T rrr
=  (3-2) 
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It should be noted that we have used the identity stated in (3-3), where I is the identity 

matrix, in order to rearrange (3-1) as 

 

 

IQQQQ TT ==
rrrr

 (3-3) 

 The KL basis set and other compact representations of the data allow us to 

approximate using fewer basis sets, i.e, M ≤ d columns can be included in the definition 

of 

xr

Q
r

.  It is well known that the KL expansion provides a useful ordering of the basis 

vectors which minimizes the mean square error for any given choice of M. 

 Let us now consider an image vector yr  that represents another view of the object 

that differs from the view in xv .  Furthermore, let us assume: 

 

∑
=

==
M

i
ii bQqby

1

rrrr  
(3-4) 

where the vector b
r

is a vector of length M that contains the weights as its elements.  

The question now becomes, if we are given an image vector 

ib

xr (and therefore given 

from ar (3-2)), can we estimate b
r

and hence recover yr by using (3-4)?  One simple 

approach to achieving this would be to postulate that a linear relation exists between 

andbar
r

, and that there exists a matrix A
r

 such that: 
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aAb rrr
=  (3-5) 

 

Creating a Predictor 
 
 The previous section described a mathematical formulation for estimating the 

features of one image given the features of another, then recovering the predicted image.  

It suggested that this is possible by using a linear model or predictor matrix as in (3-5).  

We now describe a method for constructing such a linear model that may be used for 

relating the images from different viewing angles. 

 We begin by assuming that a set of N images of the object is available, as in 

Figure 3-1, that can be used to estimate a linear relation between the views that are 

separated by a fixed increment of oΔ .  Let vector θxr denote the object at a pose of with 

respect to the imaging sensor.  This image vector would have a corresponding feature 

vector

oθ

θθ xQa T rrr
= .  Furthermore, let Δ+θxr  represent another view of the object separated 

by from  whose feature vector is given byoΔ θxr Δ+Δ+ = θθ xQa T rrr . 

 We now seek a matrix ΔA
r

 that maps the features of one view to the features of a 

second view offset from the first view by oΔ , i.e, 

Δ+Δ = θθ aaA rrr
 (3-6) 
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Figure 3-1: Virtual cameras representing multiple views of an object. 
 

Assuming that M  basis vectors are used to represent the data, it is implied that the linear 

model  is a ΔA MM ×  matrix.  It should be observed that by using the features instead of 

the intensity values of the pixels, the linear model can be represented with 

dimensions MM ×  as opposed to PP × , where P  is the total number of pixels in the 

image.  In most cases this results is the linear model being of exponentially lower 

dimension while still adequately representing the original data.  This property will be 

exploited later in our discussion. 

 For  pairs of images, of which have the same offset by , we can obtain a 

system of linear equations given by: 

1−N oΔ

[ ] [ ]Δ+Δ+Δ+Δ−+Δ+Δ = NN aaaaaaA θθθθθθ
rrrrrrr

...... 2)1(  
(3-7) 
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To simplify the math, each set of feature vectors can be represented in matrix form as 

shown below: 

 

[ ]Δ−Δ+= )1(... Nx aaaF rrrr
θθ  

(3-8) 

[ ]ΔΔ+Δ+Δ+ = Nx aaaF rrrr
...2θθ   

Using the matrix representations in (3-8), a simplified version of (3-7) can be rewritten as 

seen below: 

 

Δ+Δ = xx FFA
rrr

 (3-9) 

Looking at the above equation in matrix form, remember that the dimensionality of the 

linear model ΔA
r

is MM × while the feature matrices xF
r

 and Δ+xF
r

are of size where NM ×

M is the number of features and  is the number of unique views.  For a unique solution 

to exist for 

N

(3-9), the condition must be true implying that the number of unique 

views must be larger than the number of features used to represent each individual image.  

That being the case, it should be apparent and obvious that attempting to solve this 

system with the intensity values instead of the features obtained from the basis set would 

be intractable requiring the number of views to be larger than the number of pixels.  

MN ≥
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 Therefore, by using the features to represent the image, we anticipate that 

is satisfied so that the system may be solved.  The minimum mean square error 

solution for the linear model 

MN ≥

ΔA
r

is given by: 

1)( −
Δ+Δ =

T
xx

T
xx FFFFA

rrrrr
 (3-10) 

 

Novel Views Prediction 
 

 Given a limited amount of two dimensional data from views of an object, consider 

the problem of estimating new views of the object while maintaining rigidness in a three 

dimensional space.  Figure 3-2 helps visualize the problem showing both the set of data 

as well as predicting a novel view.  Although this problem has been previously solved by 

Seitz et al. [1] as mentioned earlier, in certain situations (covered more thoroughly in the 

following sections) the view morphing algorithm will either be impractical to use or will 

not work.  One of the goals of the proposed view synthesis algorithm is to work under 

such conditions where conventional view morphing is unlikely to succeed. 

 In order to predict views using this procedure there are two major steps required, 

where the first is to construct a linear model.  This is fairly straight forward using the 

technique described in the previous section.  Specifically, the data should be arranged as 

in 
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Figure 3-2: Estimating a view from an arbitrary image. (a) Displays the set of images used to create a 
linear model.  (b) Displays arbitrary input θxr used to predict output view o

r
Δ+θ

x  

 
 

Figure 3-2 with each view approximately oΔ apart from each other.  This data will be used 

for training to construct the linear model.  KL decomposition should be used to construct 

a basis set representing this data in a significantly lower dimensionality.  When choosing 

dimensionality, it is important to assure that not only the dimensionality be less than or 

equal to the number of views, but that a sufficient quality of the original image can be 

recovered from a reduction of that magnitude.  Table 3-1 shows the type of reduction that 

can typically be achieved through the described process. 
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Table 3-1: Comparison of model with principle component reduction vs. no reduction 

Image Resolution Number of Pixels Required Views  
(no reduction) 

≈Required Views2 
(with reduction) 

80 x  60 4800 4800 6
160 x 120 19200 19200 9
320 x 240 76800 76800 13
640 x 480 307200 307200 18

 

 

 With the basis set solved for and the features extracted, a system of equations can 

be established as in the mathematical formulation which can be used to solve for the 

linear model.  Once the linear model is created it is very simple to estimate a view 

apart from any arbitrary view which is the second step.  This is observed in oΔ Figure 3-3 

which shows a block diagram that takes an input and yields an estimate of that input 

rotated by .  Additionally, in the figure we observe that that the prediction can be fed 

back into the input to generate an estimate of the input rotated by

oΔ

oΔ2 . 

                                                 
2 The amount of required views were solved for experimentally by compressing an arbitrary number of 
images of the given resolutions using PCA, and observing the average minimum principle components 
needed to retain an acceptable representation of the original image. 
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Figure 3-3: Block diagram of linear prediction with feedback 

 
 
It should be noted that the prediction process is operated in the feature space.  Finally, to 

get the image back into its original space, the final step is recovery.  Recovery is simple 

and is accomplished by the following: Δ+Δ+ = θθ aQx T rrr . 

 Novel Signature Prediction 
 

 In the previous section, it was discussed how to predict new views.  This was 

possible by arranging the data into a set of linear equations where each image maps to an 

image offset by an angle of approximately the same amount.  Karhunen Loeve 

decomposition was then used to develop a basis set and restrict the number of principal 

components such that the number of equations could be reduced and the system could be 

constrained or over constrained.  

 This section extends our concept to estimate not only new views but new 

signatures as well.  We will define signatures as different illumination conditions or the 

same view in EO sensor data as well as different thermal signatures of the same view in 

IR sensor data.   
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Figure 3-4 shows an example of what different signatures of the same object at the same 

view can look like.  From these examples it is not difficult to visualize that even if 

training data exists in a specific object at a specific view, different signatures can make 

object recognition a challenge.  This being the case, it is an interesting problem to predict 

different views of an object, given a new signature. 

 The process for predicting a new signature is very similar to that of predicting a 

new view with the only difference existing in the creation of the linear model.  In order to 

adequately describe this process a new convention must be established that accounts for 

signatures.  Let the number of apostrophes indicate a signature identifier with a total of 

signatures in the example.   All other notations used will be as described previously.  

Below we will modify the system described in 

3

(3-9) to be a more generalized form 

allowing for a linear model that supports multiple signatures. 
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Figure 3-4: Comparison of thermal signatures.  The columns show 3 different views while the rows 
represent different thermal states.  This figure is intended to illustrate how different the same object 
at the same view can look from different thermal states. 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΔΔ+Δ+

ΔΔ+Δ+

ΔΔ+Δ+

ΔΔ+Δ+

ΔΔ+Δ+

ΔΔ+Δ+

P
M

PPPP

M

M

P
M

PPPP

M

M

bbbbb

bbbbb
bbbbb

aaaaa

aaaaa
aaaaa

A

'''.''''''
...
....
....
'''''''''
'''.''.''''

'''.''''''
...
....
....
'''''''''
'''.''.''''

*

1111

22
1

2
1

2
1

2
1

11
1

1
1

1
1

1
1

1111

22
1

2
1

2
1

2
1

11
1

1
1

1
1

1
1

r
 

(3-11) 

 

 
 The process for creating the general linear predictor that simultaneously handles 

multiple signatures and views is very similar to the approach described.  Once the linear 

predictor has been solved for which supports multiple signature prediction, it can be used 

in the same way that the single signature prediction was employed.  Figure 3-2 shows the 

views used to create the linear model, and how an arbitrary view is used to predict a new 

view.  Including both signatures and aspect in the estimation process improves (reduces) 

the condition number of the matrix and leads to a more numerically stable solution. 
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Sources of Data Degradation 
 

 Previous methods in one way or another are heavily dependent on geometric 

transformations and perspective principles.  In order to adequately achieve this one of the 

most basic steps is to establish precise correspondence between training images.  This is 

typically done by using a feature point extraction method such as Harris corners [12] or 

SIFT interest points [11].  Following initial correspondence RANSAC [13] is typically 

used to remove any outliers and leave the most likely points corresponding in the training 

images.  This correspondence can then be used to solve the fundamental matrix from 

which geometric transformation will depend on.   

 This potentially creates a problem because in order to make convincing geometric 

transformations, the correspondence must be very precise.  This can be difficult 

depending on that sensor that captured the data, noise present, and several other concerns.  

The remainder of this chapter will discuss these concerns describing when it would be 

useful to use an approach to view synthesis that does not depend on establishing 

correspondence. 
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Figure 3-5: An example of problem images for automatically finding and refining correspondences.  
(a) IR image of a truck using SIFT to match correspondences. (b)  EO grayscale image of a car using 
SIFT to match correspondences.  (c) IR image with refined correspondences.  (d) EO image with 
refined correspondence. 
 

 

Sensor Type 
 

 One of the major factors that cause problems for the geometric transform based 

morphing methods is the sensor type that is used.  The two sensor types that are discussed 

in this thesis are Electro-optic sensors and Infrared sensors.  Although there are several 

types of infrared sensors, we will focus on long wave IR captured at 7-14 microns.  Using 

either of the sensor types can cause registration problems although the difficulty is more 

likely to occur in IR sensors. 
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SNR: Its Affect on Synthesis 
 

 In this section, we will focus on noisy data and low contrast data.  It is important 

to understand the limitations of the data to use the best algorithm for the job.  Figure 3-5 

shows an example of two problem images which have difficulty finding correspondences.  

There are less than 8 correspondences found which is essential for most standard 

algorithms such as Hartley et al [14] to compute the fundamental matrix.  In order to 

achieve good geometric transformations, no false positives can be introduced in 

correspondences, and it is difficult to precisely select additional points by manual 

techniques. 

Noisy Data 

 While there are many ways to reduce noise in the data, it is not always convenient 

to do so.  There are several factors that could leave data obtained from both visible and 

infrared sensors susceptible to noise.  One of the most likely candidates for causing noise 

is having a high exposure index, or simply a legacy digital camera shot without the 

proper lighting.  Of course any digital camera could have noise due to electrical 

interference. 
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Figure 3-6: Effects of noise and blur on feature point correspondence.  (a) Varying amounts of 
normally distributed noise and its effect on correspondence.  (b)  Varying amounts of blur and its 
effects on correspondence. 
 

Analog imaging sensors are generally less susceptible to noise.  The most common 

source of noise in analog domain is film, whether it is granularity, an accidental 

exposure, or flaws in the development process.  Uncooled long wave IR is particularly 

susceptible to noise.  In Figure 3-6 (a), varying amounts of noise is introduced in to two 

images to show the effect that it can have on finding. 
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Low Contrast or Blurred Data 

 Aside from noise, the blur effect (or low contrast) can also be a problem for image 

processing.  It can have an effect similar to low pass filtering an image, which makes it 

more difficult to precisely identify edges and other high frequency characteristics in 

images.  There are many factors that introduce blur in images.  In electro-optic sensors, 

factors such as poor focus, camera shake, and motion blur can all create this type of effect  

In infrared sensors most accept for upper end sensors cannot come close to matching the 

contrast offered in electro-optic sensors.  Similarly to noise present in images, Figure 3-6 

(b) illustrates the difficulty in finding correspondence with varying amount of blur in the 

images. 
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CHAPTER FOUR: EXPERIMENTS & RESULTS 
 

 In order to demonstrate the benefits and affects of the proposed algorithm, several 

experiments were carried out using multiple datasets.  Standard datasets as well as 

controlled datasets collected in the lab are represented.  Experiments were designed to 

test the functionality of the algorithm on normal data as well as data corrupted by noise 

and blur.  It was also desired to see how varying parameters of the algorithm would affect 

the learning of the predictor as well as the output of the algorithm.  In addition to analysis 

that test prediction quality, we will attempt to show that synthesis can be used to improve 

the performance of ATR algorithms.  The following section will describe the datasets 

used throughout this thesis. 

 

Datasets 
 

 Two main datasets were used for the majority of the experiments discussed in this 

thesis.  You can see a subset of the data used for the experiments in Figure 4-1.  It was 

important to have a controlled dataset which could show an object of interest from every 

possible view for 360 degrees, and hence one of the datasets was collected in the lab.  

One of the benefits of a controlled dataset is that ground truth is available for every 

possible experiment, and multiple illumination conditions are available which would not 

be otherwise. 
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Figure 4-1: Subsets of the major datasets used in this thesis.  (a) Sample of the dataset which was 
collected in lab.  (b) Sample of the well known COIL – 100 dataset. (c) Sample of IR data collected 
 

 Additionally, it is important to show results from a standard database that is 

publicly available.  The COIL – 100 dataset [6] was chosen for this purpose.  It is 

convenient to use for synthesis because it is comprised of 100 objects divided into 

categories where each object is shown from 72 different views each having 5 degrees of 

separation between the views.  The only characteristic about the COIL-100 dataset that 

makes it less than ideal is that the scale of the object varies as the view changes.  

Unfortunately, this limits the amount of images suitable for our experiments.  

Additionally, this dataset was used because other view synthesis and morphing 

publications have used the dataset such as Xiao et al [18]. 
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Experiments 
 

Varying the Number of Basis Vectors Used to Create the Predictor 
 

 The purpose of this experiment is to show the affect on prediction quality as a 

function of the number of basis vectors used to estimate the predictor.  The measure of 

prediction quality is observed by minimizing the mean squared error and maximizing the 

correlation between the predicted output and the ground truth.  Consider equation (3-10), 

where the predictor matrix A is a set of coefficients that will predict the principle 

component features corresponding to the appearance of the input rotated by a constant 

offset .  The number of coefficients in the predictor matrix that need to be estimated is 

dependent on the number of principle component features chosen to represent the images.  

This relationship between the number of principle components chosen and the number of 

coefficients in the predictor is exponential such that if principle components were 

chosen, the predictor would be of size .  Intuitively this should imply that since the 

number of coefficients grow exponentially with the number of principle components 

chosen, the error in each predicted coefficient should also grow exponentially.  This 

would imply that while choosing too few principle component features might not 

adequately retain enough of the image to represent it (resulting in poor prediction and 

appearing heavily smoothed), choosing too many principle component features could 

cause the error grow exponentially with each coefficient resulting in a noisy prediction. 

Δ

n

2n
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Figure 4-2: Results from experiment 1. (a) Input image.  (b) Ideal output image.  (c) Predicted output 
image using the amount of basis vectors that produced the lowest mean squared error.  (d)  Predicted 
output image using the amount of basis vectors producing the highest mean squared error.  (g) Plot 
of the mean squared error as a function of the percentage of available basis vectors used. 
  

 

 To test this intuition we have chosen an experiment that learns multiple views as 

well as several illumination conditions.  This experiment will vary the number of 

principle component features used to estimate the predictor.  Due to the constraints 

established in CHAPTER THREE the upper limit for the number of potential principle 

component features is restricted to the number of views multiplied by the number of 

signature types or in this case, illumination conditions.  Figure 4-2 shows the results of 

this experiment described in this section.  Observing the results clearly substantiates the 

hypothesis that using too few or too many features both result in poor predictions. 
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Figure 4-3: Results from experiment 2.  Column 1 is the input, column 2 is the ideal output, and 
column 3 is the predicted output.  (a) Experiment performed with no corruption.  (b) Experiment 
performed with zero mean and standard deviation of 15 white noise corrupting data.  (c) Experiment 
performed with zero mean and standard deviation of 30 white noise corrupting data.  (d) Experiment 
performed with Gaussian blur with radius of 3 corrupting data.  (e) Experiment performed with 
Gaussian blur with radius of 6 corrupting data. 
 

Prediction Quality as a Function of Added Noise and Blur 
 

 As suggested in previous chapters, one of the primary benefits of using this 

approach to view-synthesis as compared to previous approaches is in the case of blurry 

data, noisy data, or data with poor contrast.  For this reason it was believed prudent to 

have an example that could show prediction quality as a function of data corrupted by 

motion and blur.  It should be kept in mind that images with large amounts of this type of 

corruption cannot have correspondence found by standard methods, making it very 
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difficult or in some cases impossible to use traditional morphing and synthesis 

approaches.  In this experiment, 4 different synthesis’ were performed which included an 

experiment on data with no corruption, corruption by noise, corruption by blur, and 

corruption by both noise and blur.  The results of this experiment can be seen below in 

Figure 4-3. 

 

Predicting Views from a New Signature Type 
 

 Many computer vision applications use object recognition to compare a new 

object to some sort of training data in order to classify it for some purpose.  In these types 

of applications, even when a substantial training database exists, it is difficult to 

adequately capture all possible variations of the object. Changes in signature type for 

example could alter the appearance of the object in such a way to make it difficult to 

compare to training data.  Of course by signature types this is referring to changes in 

illumination in visible and changes in thermal state in infrared. 

 This experiment is designed to test that the proposed algorithm could effectively 

learn a model for an object representing its appearance from multiple signatures.  

Furthermore we will demonstrate that using this learned model, we can predict the 

appearance of this object from a new signature not present in training data from multiple 

views. 

 For this experiment we use data of the same object from many separate thermal 

states and used them as training data.  We then introduce a new thermal state no in 
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training and try to predict views from this new thermal state.  The setup of the experiment 

was fairly simple using the training data to construct a basis set.  Then, by following 

equations described in previous chapters such as (3-11) an estimate of the predictor is 

made.  With the predictor solved for, any view of the object from the new thermal state 

can be used as input to estimate views from this new illumination condition.  Figure 4-4 

shows the results for predicting 2 different views.  You can see in the predicted outputs 

that hot spots match for same location as in the ideal output. 

 

 

Figure 4-4: Results from experiment 3.  In each of the two results a view is predicted from a new 
thermal state.  The left column is the input image, the center column is the ideal image, and the right 
column is the predicted image.  (a) Example 1 input is 80 degrees with a predicted output of 20 
degrees.  (b) Example 2 input is 135 degrees with a predicted output of 75 degrees. 
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CHAPTER FIVE:  CONCLUSION 
 

Summary 
 

 This thesis has introduced a novel approach to view synthesis using linear 

prediction techniques to estimate the features that represent a synthesized view.  We have 

shown how to use this algorithm to estimate the appearance of new views for an object.  

Additionally, we have shown how to estimate views of an object in new illumination 

conditions for visible data and new thermal states for infrared data.  All of the constraints 

are well described indicating when it would be appropriate to use this algorithm for view 

synthesis and when it a more traditional approach may be better suited. 

 In addition to introducing this novel approach and showing results for its 

synthesis, this thesis also demonstrates how a linear prediction technique can be used to 

improve the performance of ATR applications.  A correlation based approach as well as a 

machine learning based approach both realized a boost in performance using the 

proposed algorithm to synthesize images that were not adequately represented by training 

data. 

 While the proposed method for view synthesis is not the only method available, 

there are several cases where it makes sense to use this approach.  It has been well 

documented that most previous approaches require a solution for the epipolar geometry 

between the reference images which in turn requires an accurate correspondence between 

the reference images before it can synthesize new views.  We have demonstrated that 

 50



when noise, blur, and other corruptions are introduced into data, it is difficult to find 

accurate correspondences.  Additionally, we have shown the difficulties in finding 

accurate correspondences in the case of most long wave infrared data.  Most algorithms 

use a modified version of the 8-point algorithm to obtain the fundamental matrix required 

to solve for the epipolar geometry.  When the data is corrupted as previously described, it 

is difficult to find even a few accurate correspondences let alone the eight accurate 

correspondences can be found.  In these cases, the proposed algorithm has demonstrated 

the ability to synthesize new views and does not depend on correspondences or geometry.  

Additionally, new signature types can be estimated.  Given that this approach works well 

with noisy blurred data and can estimate new signatures, it seems appropriate for use in 

the infrared domain where images are commonly low in contrast with some noise present.  

In these types of images, a change in the thermal condition can drastically change their 

appearance. 

 

Future Work 
 

 While the results shown in this thesis are promising, further tests need to assess 

the robustness of this approach and its impact on other ATR algorithms.  While using 

principle components to represent the images in lower dimensions was convenient and 

worked well, there may exist a different basis set that could offer better predictions.  For 

the case where results are to be inputted directly into a machine learning classifier, basis 

spaces (that cannot be recovered into their original space or are inconvenient to do so) 
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may be used alternatively.  It is also desired to further show improvements in ATR using 

the proposed method of View Synthesis.  To accomplish this, more time should be spent 

collecting appropriatedatasets and setting up scenarios for these experiments. 

 

 52



LIST OF REFERENCES 
 

[1] S. Seitz and C. Dyer “View Morphing”, Proceedings of ACM SIGGRAPH 11996, 

21-30, 1996 

[2] S.E. Chen and L. Wiliams, “View Interpolation for. Image Synthesis,” Proc. 

Siggraph 93, ACM Press,. New York, 1993, pp. 279-288 

[3] C. Buehler, M. Bosse, L. McMillan, S. Gortler M. Cohen “Unstructured lumigraph 

rendering”. in: Proc. ACM SIGGRAPH 2001, 2001, pp. 425–432 

[4] McMillan, L., and G. Bishop “Plenoptic Modeling: An Image-Based Rendering 

System”, Proceedings of SIGGRAPH 95, (Los Angeles, CA August 6-11, 1995), 

pp. 39-46 

[5] S. Laveau and O. Faugeras “3-D scene representation as a collection of images” In 

Proc. International Conference on Pattern Recognition (1994), 689-691, 1994 

[6] S. A. Nene, S. K. Nayar and H. Murase, "Columbia Object Image Library (COIL-

100)," Technical Report CUCS-006-96, February 1996 

[7] J. Xiao and M. Shah “Tri-view Morphing”, Special issue of "Computer Vision and 

Image Understanding" on Model-based and Image-based 3D Scene Representation 

for Interactive Visualization Vol. 96, issue 3 (2004), .345-366, 2004 

[8] A. Mahalanobis, B.V.K. Vijaya Kumar, S.R.F. Sims, and J. Epperson, 

"Unconstrained Correlation Filters, " Applied Optics , Vol. 33, pp. 3751-3759, 

1994 

[9] J. Xiao and M. Shah “Two-Frame Wide Baseline Matching”, The Ninth IEEE 

International Conference on Computer Vision, Nice, France, 2003 

 53



[10] K. Mikolajczyk, C. Schmid “An Affine Invariant interest point detector”, Proc. 

ECCV, 2002 

[11] D. Lowe “Distinctive Image Features from Scale-Invariant Keypoints”, Proc. IJCV 

2004 

[12] C. Harris and M. Stephens. “A combined corner and edge detector.”, In Alvey 

Vision Conference, pages 147-151,1988 

[13] M. A. Fischler, R. C. Bolles. “Random Sample Consensus: A Paradigm for Model 

Fitting with Applications to Image Analysis and Automated Cartography.”, Comm. 

of the ACM, Vol 24, pp 381-395, 1981 

[14] R. Hartley, “In Defense of the 8-Point Algorithm”, IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 19(2), 133-137, 1997 

[15] R. A. Calvo, M. G. Partridge, and M. A. Jabri “A comparative study of principal 

component analysis techniques”. In Proc. Ninth Australian Conf. on Neural 

Networks, Brisbane, QLD, Feb. 1998 

[16] Omar Javed, Khurram Shafique, and Mubarak Shah, "A Hierarchical Approach to 

Robust Background Subtraction using Color and Gradient Information", IEEE 

Workshop on Motion and Video Computing, Orlando, Dec 5-6 2002. 

[17] Omar Javed, Zeeshan Rasheed, Orkun Alatas, and Mubarak Shah, "M-Knight: A 

Real Time Surveillance System for Multiple Overlapping and Non-Overlapping 

Cameras", Invited paper in IEEE conference on Multimedia and Expo, Special 

Session on Multi-Camera Surveillance Systems, Baltimore, July 6-9, 2003. 

 54



[18] J. Xiao and M. Shah “Automatic Target Recognition Using Multi-View 

Morphing”, Conferences of SPIE Automatic Target Recognition XIV, Orlando, 

USA, April 13-15, 2004. 

[19] Chih-Chung Chang and Chih-Jen Lin “LIBSVM : a library for support vector 

machines”, 2001. 

[20] S Seitz and C Dyer “Physically-valid view synthesis by image interpolation”, 

Workshop on Representations of Visual Scenes, 1995. 

[21] S. Seitz, “Image-Based Transformation of viewpoint and scene appearance”, 

Dissertation, Computer Science, University of Wisconsin, 1997. 

[22] R.I. Hartley, “Theory and practice of projective rectification”, International Journal 

of Computer Vision 35 (1999)(2), pp. 115–127 

[23] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors”, 

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 

Madison, Wisconsin, USA, 2003. 

[24] Q. T. Luong, "Fundamental matrix and self-calibration", PhD Thesis, University of 

Paris, Orsay 

[25] R. I. Hartley, A. Zisserman, “Multiple View Geometry in Computer Vision”, 2nd 

Edition, Cambridge University Press, 2003. 

[26] S. M. Seitz, C. R. Dyer, “Complete structure from four point correspondences”,  in 

Proc. Intl. Conf. on Computer Vision, 1995. 

 55



[27] John Mallon, Paul F. Whelan, "Projective Rectification from the Fundamental 

Matrix", Image and Vision Computing, Volume 23, Issue 7, July 2005, Pages 643-

650 

[28] C. Cortes and V. Vapnik, "Support vector networks_ Machine Learning", 20:273-

297, 1995. 

[29] Marti A. Hearst, "Support Vector Machines," IEEE Intelligent Systems, vol. 13, 

no. 4, pp. 18-28, July/Aug. 1998 

[30] P.J. Grother, "Handprinted Forms and Character Database, NIST Special Database 

19", NISTIR March 1995 

[31] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and 

Organization in the Brain”, Cornell Aeronautical Laboratory, Psychological 

Review, v65, No. 6, pp. 386-408 

 

 56


	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES 
	LIST OF TABLES 
	LIST OF ACRONYMS 
	CHAPTER One: INTRODUCTION 
	Previous Work 
	Problem Statement 
	Overview 
	Organization of the Thesis 

	CHAPTER TWO:  RELATED WORK 
	View Morphing 
	Pre-warping 
	Correspondence 
	Epipolar Geometry 
	Rectification 

	Morphing 
	Post-warping 

	Limitations of View Morphing 
	Detection and Classification 
	Correlation using MACH 
	Support Vector Machines 


	CHAPTER THREE:  PROSPOSED VIEW SYNTHESIS METHOD 
	Mathematical Formulation 
	Creating a Predictor 
	Novel Views Prediction 
	 Novel Signature Prediction 
	Sources of Data Degradation 
	Sensor Type 
	SNR: Its Affect on Synthesis 
	Noisy Data 
	Low Contrast or Blurred Data 



	CHAPTER FOUR:  EXPERIMENTS & RESULTS 
	Datasets 
	Experiments 
	Varying the Number of Basis Vectors Used to Create the Predictor 
	Prediction Quality as a Function of Added Noise and Blur 
	Predicting Views from a New Signature Type 


	CHAPTER FIVE:  CONCLUSION 
	Summary 
	Future Work 

	 LIST OF REFERENCES 

