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ABSTRACT

Recognition of complex events in consumer uploaded Internet videos, captured under real-

world settings, has emerged as a challenging area of research across both computer vision and

multimedia community. In this dissertation, we present a systematic decomposition of com-plex

events into hierarchical components and make an in-depth analysis of how existing research are

being used to cater to various levels of this hierarchy and identify three key stages where we make

novel contributions, keeping complex events in focus. These are listed as follows: (a) Extraction of

novel semi-global features – firstly, we introduce a Lie-algebra based representation of dominant

camera motion present while capturing videos and show how this can be used as a complemen-

tary feature for video analysis. Secondly, we propose compact clip level descriptors of a video

based on covariance of appearance and motion features which we further use in a sparse coding

framework to recognize realistic actions and gestures. (b) Construction of intermediate represen-

tations – We propose an efficient probabilistic representation from low-level features computed

from videos, based on Maximum Likelihood Estimates which demonstrates state of the art per-

formance in large scale visual concept detection, and finally, (c) Modeling temporal interactions

between intermediate concepts – Using block Hankel matrices and harmonic analysis of slowly

evolving Linear Dynamical Systems, we propose two new discriminative feature spaces for com-

plex event recognition and demonstrate significantly improved recognition rates over previously

proposed approaches.
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CHAPTER 1: INTRODUCTION

The Internet has seen a sudden surge in consumer video traffic since last two decades, pri-

marily due to the increasing convenience of sharing of multimedia data coupled with the plummet-

ing cost of equipment required to capture them. According to statistics [4] released by YouTube

- the most popular video sharing portal, 103, 680 hours of multimedia content is uploaded ev-

eryday. Most of the videos uploaded in YouTube, are captured by amateur users with limited

cinematographic knowledge, and are subjected to camera motion, background clutter and frequent

illumination changes. Usually these videos depict high-level social events - such as a music con-

cert, birthday party or instructional events such as cooking a recipe or teaching a piano lesson.

Thus, sifting through such an enormous collection of videos for a specific event is a crucial task

and is often painstakingly frustrating given the technological maturity of current video browsing

algorithms. Most algorithms, rely heavily on the generosity of the uploader to provide meaning-

ful textual labels relevant to the uploaded video content. Since such textual labels are frequently

noisy [152, 177], automatic analysis of such videos are gradually attracting a lot of researchers

from computer vision and multimedia communities.

One task within the realm of automatic video content analysis is the recognition of complex

events contained in the videos. The goal of complex event recognition is to automatically detect

high-level events in a given video sequence. However, due to the fast growing popularity of such

videos, especially on the Web, solutions to this problem are in high demands. A feasible solution

can directly cater to the needs of several target applications. In addition to the obvious benefit of

making video search and retrieval more efficient and rewarding experience for the user some of the

other applications are enlisted as follows:

• Product Promotion: Tracking user interest based on the video content they watch - to

promote advertisement of certain products.
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• Video Virality Prediction: Helping broadcast agencies predict important statistics about a

video such as virality of views, geographical location of viewers etc. moments after a video

is uploaded – thereby optimizing broadcast channel bandwidth.

• Textual Summarization: Enabling human observers with meaningful textual recounting of

a video in a relatively short time without substantial human intervention.

In this dissertation, we introduce a bottom-up approach towards decomposing the problem

of complex event recognition into several intermediate steps, which can either be used indepen-

dently or in the proposed coherent framework to improve the overall performance of the recogni-

tion. The problem of recognizing “Complex events” or “High-level events” in videos, as explained

in [68], encloses a relatively more mature area of research – recognizing actions [32, 51, 66, 71,

73–75,78,84,119–121,141,143,190,191,194]. Although the terms – events, actions, interactions,

activities, and behaviors have been used interchangeably in the literature [5, 24], there is no agree-

ment on the precise definition of each term. We define high-level or complex events as long-term

spatially and temporally dynamic object interactions that happen under certain scene settings [68].

Thus, in order to propose a feasible solution that caters to recognition of complex events, a hierar-

chical decomposition of an event is the foremost important step. The following paragraph and the

accompanying Fig. 1.1, reiterates our views on this hierarchical structure of a complex event, on

which the subsequent contributions of this dissertation are based.

At the lowest end of the hierarchy, we have movement : “an entity (e.g. hand) is moved

with large displacement in right direction with slow speed”. Movements can also be referred

to as attributes which have been recently used in human action recognition [97] following their

successful use in face recognition in a single image. Next are activities or actions, which are

sequences of movements (e.g. “hand moving to right followed by hand moving to left”, which

is a “waving” action). An action has a more meaningful interpretation and is often performed by

entities (e.g., human, animal, and vehicle). An action can also be performed between two or more

2



entities, which is commonly referred to as an interaction (e.g. person lifts an object, person kisses

another person, car enters facility, etc.). Motion verbs can also be used to describe interactions.

Recently the Mind’s eye dataset is released under a DARPA program which contains many motion

verbs such as “approach”, “lift” etc [13]. In this hierarchy, concepts span across both actions and

interactions. In general, concept is a loaded word, which has been used to represent objects, scenes,

and events, such as those defined in LSCOM (Large-Scale Concept Ontology for Multimedia)

[112]. Finally, at the top level of the hierarchy, we have complex or high-level events that have

larger temporal durations and consist of a sequence of interactions or stand-alone actions, e.g., an

event “changing a vehicle tire” contains a sequence of interactions such as “person opening trunk”

and “person using wrench”, followed by actions such as “squatting” and so on. Similarly, another

complex event such as “birthday party” may involve actions like “person clapping” and “person

singing”, followed by interactions like “person blowing candle” and “person cutting cake”. Note

that although we have attempted to encapsulate most semantic components of complex events in a

single hierarchy, because of the polysemous nature of the words, adopting the same terminologies

in the research community is an impossible objective to achieve.
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Figure 1.1: A taxonomy of semantic categories in videos, with increased complexity from bottom to top. Attributes are
basic components (e.g., movements) of actions, while actions are key elements of interactions. High-level events (fo-
cus of this dissertation) lie on top of the hierarchy, which contain (normally multiple) complex actions and interactions
evolving over time.

1.1 Technical Challenges

Current approaches heavily rely on classifier-based method employing directly computable

low-level features from videos. Research strongly suggests the joint use of multiple features,

such as static frame-based features [37, 101, 123], spatio-temporal features [39, 77, 81, 145, 170],

and acoustic features [11, 85, 104, 127, 185]. However, with the popularity of handheld video

recording devices, a huge amount of videos are currently being captured by amateur users under

unconstrained conditions with limited quality control (in contrast to videos from broadcast news,

documentary, or controlled surveillance, for example). Since the low-level features proposed in
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earlier research are designed with more controlled conditions in mind [23, 144, 178], it is still not

clearly understood [24,34,67,113,115] if they are comprehensive enough to capture discriminative

information exhaustively from open-source videos.

Once features are computed, they are typically quantized into “video words” and each

video is reduced to a histogram of video words also known as the bag-of-video-words (BoVW)

representation. Once such a representation is obtained, classifiers are trained to establish a corre-

spondence between the quantized layer on the features, to the actual label of the event depicted

in the video. Although BoVW has shown promising retrieval results [36, 69], methods based on

this paradigm suffer from the usual disadvantages of quantization used in converting raw features

to discrete codewords as pointed out in [131, 162, 167]. Fig. 1.2 shows a generic framework for

Bag-of-visual-words representation using different audio-visual features, predominantly used in

various video analysis applications.

Another drawback of BoVW representations do not have any semantic understanding of

the hierarchical components, such as interactions or actions that constitute the complex event.

Needless to say, the sense of spatio-temporal localization of these components are lost in this

coarse representation. Thus, this representation is unable to bridge the semantic gap between

computable low-level features (e.g. visual, audio, and textual features) and semantic information

that they encode (e.g. the presence of meaningful classes such as “a person clapping”, “sound

of a crowd cheering”, etc.) [149]. This is why, with much progress made in the past decade in

this context, the computational approaches involved in complex event recognition are reliable only

under certain domain-specific constraints.
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Figure 1.2: Bag-of-features representations obtained from different feature modalities for high-level event detection.

In order to overcome the problems encountered by BoVW methods based on purely low-

level features, researchers have proposed the use of semantic concepts [34, 67, 113, 115], where

each model in the first layer detects a semantic concept, and a second-level model is used to recog-

nize event classes using a representation based on the first-layer outputs as feature. Such hierarchi-

cal intermediate representations facilitates the use of sophisticated probabilistic graphical models

[35,59,60,62,92,114,172,184,186] as final event classifiers, which can also handle temporal and

causal relationships between these intermediate concepts, thereby providing a more meaningful

structure to the event model. Fig. 1.3 illustrates a computational framework using simple graphical

models (discrete Hidden Markov Models [92, 114, 184, 187]) for complex event recognition. Al-

though these models are mathematically intuitive, they are computationally complex and require

extensive training coupled with substantial domain knowledge.
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Figure 1.3: A typical hierarchical classification computational approach using concepts and Hidden Markov
Models (HMM): An input video is divided into small overlapping clips on which, concept detectors are applied.
The concept detector confidence scores are then discretized into a symbol sequence where each symbol denotes the
presence of a concept detected with maximum confidence. The symbol sequence is input to different HMMs pretrained
using symbol sequences generated from training data. The model that generates the maximum likelihood, given the
input sequence identifies the true class of complex event depicted in the video.

1.2 Objectives

As elaborated in Section 1.1, recognition of complex events in unconstrained environments

is far from being a solved problem in computer vision and involves substantial understanding at

every level of the event hierarchy presented in Fig. 1.1. The goal of this dissertation is to explore

these levels in detail to come up with novel methodologies that can be exploited to address the

problem of complex event recognition in a computationally effective manner. Having said that, we

summarize the key objectives we contrive to achieve, as the following :
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• Design of features that capture relevant information from videos, and are robust to camera

motion, illuminance changes, background clutter etc.

• Engineer computationally efficient intermediate representations on top of already ex-

isting low-level features, that can be easily integrated into semantically meaningful spatio-

temporal concepts.

• Formulate complex event models based on temporal dynamics of the mid-level spatio-

temporal concepts.

Based on our observations, in this dissertation we broach forward a systematic decompo-

sition of complex events and make practically viable contributions at all levels of event represen-

tation hierarchy, to demonstrate promising improvement in final recognition performance.

The rest of this dissertation elucidates the claims made in the above statement starting with

a summary of our key technical contributions.

1.3 Contributions

In this dissertation, we have addressed the problem of complex event recognition from

unconstrained consumer videos and proposed solutions to different sub-problems at multiple tiers.

To this end, we make some solid contributions, catering to a different area under the broader

research area of complex event recognition. We align them to our objectives that are already listed

in Section 1.2 as follows:

• Design of features: Within the purview of this effort, we explore two complementary

sources of information to design features that are useful for content based video analysis

in realistic scenarios. The first one is semi-global in nature, computed from small segments

from the video, while the second one is based on ambient camera motion present during the

video capture process.
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For the semi-global clip-level descriptor [20], we compute kinematic features from optical

flow and first and second-order derivatives of intensities to represent motion and appearance

respectively. These low-level cues are then fused to construct covariance matrices which

capture joint statistics between the distribution of motion and appearance of constituent pix-

els. Using an over-complete dictionary of the covariance based descriptors built from labeled

training samples, we formulate human action recognition as a sparse linear approximation

problem. Within this, we pose the sparse decomposition of a covariance matrix, which

also conforms to the space of semi-positive definite matrices, as a determinant maximiza-

tion problem. Also since covariance matrices lie on non-linear Riemannian manifolds, we

compare our former approach with a sparse linear approximation alternative that is suitable

for equivalent vector spaces of covariance matrices. This is done by searching for the best

projection of the query data on a dictionary using an Orthogonal Matching pursuit algorithm.

For the camera motion based descriptor [19], we assume that a dominant homography ex-

ists between subsequent pairs of frames in a given video shot. Using purely image-based

methods, we compute homography parameters that serve as coarse indicators of the cam-

era motion. Next, using Lie algebra, we map the homography matrices to an intermediate

vector space that preserves the intrinsic geometric structure of the transformation. Multi-

ple time series are then constructed from these mappings. Features computed on these time

series are used for discriminative classification of video shots. In addition, we provide an

in-depth analysis of different features computed from time-series and their impact on the

classification of different shots.

Our empirical evaluations of the proposed features on several challenging datasets demon-

strate conclusive evidence towards their applicability in content based open-source video

analysis applications.

• Engineer computationally efficient intermediate representations: We present an efficient
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alternative [21] to the traditional vocabulary based on bag-of-visual words (BoVW) used

for visual classification tasks. Our representation is both conceptually and computationally

superior to the bag-of-visual words: (1) We iteratively generate a Maximum Likelihood es-

timate of an image given a set of characteristic features in contrast to the BoVW methods

where an image is represented as a histogram of visual words, (2) We randomly sample a set

of characteristic features called anchors instead of employing computation intensive clus-

tering algorithms used during the vocabulary generation step of BoVW methods. Our per-

formance compares favorably to the state-of-the-art on experiments over three challenging

human action and a scene categorization dataset, demonstrating the universal applicability of

our method. We also perform an extensive evaluation of the proposed method in context of

spatio-temporal concept detection in YouTube videos and show definite improvement over

traditional bag-of-feature based representations, popular in literature.

• Formulate complex event models: Here we represent each video depicting a complex

event, as an ordered vector time-series, where each time-step is a vector containing con-

fidences returned by a set of pre-trained spatio-temporal concept detectors. Using, foun-

dations from linear dynamical systems, we extract two complementary features, the first

is based on Block Hankel matrices, which captures dependencies between each observa-

tion vector, within the context of the entire time-series. The second exploits statistically

meaningful characteristics from multiple interacting time-series such as lag-independence,

harmonics, frequency proximity etc. Experiments conducted on NIST’s, TRECVID datasets

for Multimedia Event Detection (MED 2011 & MED 2012), demonstrate high-fidelity of

our method [18] in modeling temporal interactions. In addition, our representation built on

top of spatio-temporal concepts trained in a single feature modality, yield comparable results

with the published state of the art in complex event recognition.
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1.4 Organization

In order to make this dissertation comprehensive without compromising the legibility we

have organized it in the following manner. In Chapter 2 we provide a brief literature review on the

topics discussed in Sections 1.1- 1.2, explicitly indicating the pertinence of the previous work to

this context. The following chapters form the core technical discourse mentioned under contribu-

tions in Section 1.3. The design and implementation of good features for analysis of open-source

videos is covered inChapters 3- 4. This is followed by Chapter 5 where we present a computa-

tionally efficient intermediate representation for spatio-temporal classification tasks. At the end of

this chapter, we introduce a large collection of semantically interpretable spatio-temporal concepts

that can leverage the proposed intermediate representation. In Chapter 6, we introduce a novel

discriminative representation to model the temporal dynamics between spatio-temporal concepts,

and set the context for complex event recognition in consumer videos. Finally, we provide some

insights towards future work in Chapter 7, summarizing our observations in Chapter 8.
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CHAPTER 2: LITERATURE REVIEW

In order to set the context for complex event recognition in consumer videos as a research

problem, we first begin with the review of some of the prominent approaches. For brevity, we

segregate this chapter into several sections, each highlighting prior research work in different di-

rections that are relevant to several sub-problems which we have addressed within the purview of

this dissertation.

2.1 Complex Event Recognition In Open-Source Videos

There have been several related papers that review research of video content recognition.

Most of them focused on human action/activity analysis, e.g., [5] by Aggarwal and Ryoo, [132] by

Poppe and [161] by Turaga et al., where low-level features, representations, classification models,

and datasets were comprehensively surveyed. While most human activity research was done on

constrained videos with limited content (e.g., clean background and no camera motion), recent

works have also shifted focuses to the analysis of realistic videos such as user-uploaded videos on

the Internet, or broadcast and documentary videos.

In [151], Snoek and Worring surveyed approaches to multimodal video indexing, focus-

ing on methods for detecting various semantic concepts consisting of mainly objects and scenes.

They also discussed video retrieval techniques exploring concept-based indexing, where the main

application data domains were broadcast news and documentary videos. Brezeale and Cook [27]

surveyed text, video, and audio features for classifying videos into a predefined set of genres, e.g.,

“sports” or “comedy”. Morsillo et al. [109] presented a brief review that focused on efficient and

scalable methods for annotating Web videos at various levels including objects, scenes, actions

and high-level events. Lavee et al. [82] reviewed event modeling methods, mostly in the context of

simple human activity analysis. A review more related to this dissertation is the one by Ballan et
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al. [12], which discussed features and models for detecting both simple actions and complex events

in videos.

Making a cake

Attempting a board trick Feeding an animal Landing a fish Wedding ceremony Working on a 
woodworking project 

Birthday party Changing a vehicle tire Flash mob gathering Getting a vehicle unstuck Grooming an animal

Making a sandwich Parade Parkour Repairing an appliance Working on a sewing project 

Assembling a shelter Batting a run in

MED 
2010

MED 
2011

devel.
events

MED 
2011

testing
events

Figure 2.1: Examples of TRECVID MED 2010 and 2011 events. In 2011, in addition to 10 events used for official
evaluation, TRECVID also defined 5 events for system development (e.g, parameter tuning).

Motivated by the need of analyzing complex events in Internet videos, the annual NIST

TRECVID [148] activity defined a new task in 2010 called Multimedia Event Detection (MED).

Each year a new (or an extended) dataset is created for cross-site system comparison. Table 2.1

summarizes the 2010 - 2012 editions of TRECVID MED datasets. The MED data consists of

user-generated content from Internet video hosting sites, collected and annotated by the Linguistic
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Data Consortium (LDC1). Fig. 2.1 gives an example for each event class. In MED 2010, only three

events were defined, all of which are long-term procedures. The number of classes increased to 15

in the much larger MED 2011 dataset. Out of the 15 classes, 5 are only annotated on the training

set for system development (e.g., feature design and parameter tuning), and the remaining 10 are

used in the official evaluation. Besides several procedure events, there are also a few social activity

events included in 2011, e.g., “wedding ceremony” and “birthday party”. MED 2012, released in

early 2012, consists of 2000 training videos from 10 new event categories such as: Attempting a

bike trick, Cleaning an appliance, etc. The current editions of MED data only contain binary event

annotations on video-level, and the MED task is focused only on video-level event classification.

Table 2.1: Overview of TRECVID MED 2010-2012 [1] datasets. The TRECVID videos are available upon participa-
tion of the benchmark evaluation. For all the three datasets, the positive videos are evenly distributed in the training
and test sets.

Dataset # training/test videos # classes # +ve videos/class Avg. Length Size
MED 2010 1,746/1,741 3 89 119 s 38 GB
MED 2011 13,115/32,061 15 253 114 s 559 GB
MED 2012 9,145/50,715 10 241 124 s 664 GB

Most of the successful complex event recognition approaches proposed till date [34,67,113,

115] advocate fusion of classifiers trained on bag-of-feature based representations from different

information modalities. In [34,67], the authors introduced use of semantically interpretable spatial,

spatio-temporal, and audio concepts in addition to bag-of-feature representations to achieve high

event recognition accuracies. Recently, Inoue et al. [61] reported promising results in TRECVID

MED task by using HMMs to characterize sequence of audio concepts.

In order to improve the performance of future approaches that strive to address this prob-

lem, we need to pay significant attention at several stages of the event recognition work-flow. Re-

iterating what we have already learned in Section 1.2, these are: (1) Design of features that capture

1http://www.ldc.upenn.edu/
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relevant information from videos, and are robust to camera motion, illuminance changes, back-

ground clutter etc., (2) Engineering computationally efficient intermediate representations on top

of already existing low-level features, (3) Integrating intermediate representations into mid-level

spatio-temporal concepts that are semantically interpretable while modeling complex events, and

(4) Formulate complex event models based on temporal dynamics of the mid-level spatio-temporal

concepts.

Since feature extraction forms the first and foremost requirement in most video analysis

applications, we elaborate on some of the predominantly used techniques from computer vision

literature in the next section. In addition, we discuss how our proposed feature design addresses

some of the problems that are not addressed by the state of the art.

2.2 Extraction of Relevant Features

Feature extraction is unarguably very crucial for event recognition as introduction of noise

at the earliest stage of the recognition process can result in undesirable performance in the final

classification. Research in action or event recognition has addressed this problem in different ways.

Early efforts include [39, 81] where the authors introduce special detectors capable of capturing

salient change in pixel intensity or gradients in a space-time video volume and later describing

these special points or regions using statistics obtained from neighboring pixels. Direct extension

of interest point based approaches from images such as 3D-SIFT [145](a space time adaptation

of the SIFT [101] descriptor), HOG3D [77](a Spatio-Temporal Descriptor based on 3D Gradients

derived from the principles of the HOG [37] descriptor for Human detection), Hessian STIP [180]

(a Hessian extension of the SURF [15] key-point detector to incorporate temporal discriminativity);

are some of the proposed alternatives. Recently, Weng and colleagues introduced motion boundary

histograms [170] that exploits the motion information available from dense trajectories.

These interest point based approaches are incorporated into a traditional bag of video words
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framework [155] to obtain an intermediate representation of a video that can further be used in a

supervised [46] or un-supervised classification [58] algorithm for recognition purposes. While

these approaches have been proved to be successful in context of event recognition, since they rely

on highly localized statistics over a small spatio-temporal neighborhood e.g. 50×50×20 [39,170]

relative to the whole video, different physical motions within this small aperture, are indistinguish-

able.

2.2.1 Covariance Matrix as Spatio-temporal Feature Descriptor

Covariance matrices as feature descriptors, have been used by computer vision researchers

in the past in a wide variety of interesting areas such as: object detection [133,163,164,192], face

recognition [125, 146], object tracking [90, 134], etc. The authors of [163] introduced the idea

of capturing low-level appearance based features from an image region into a covariance matrix

which they used in a sophisticated template matching scheme to perform object detection. Inspired

by the encouraging results, a license plate recognition algorithm is proposed in [133] based on a

three-layer, 28-input feed-forward back propagation neural network. The idea of object detection

is further refined into human detection in still images [164] and videos [192]. In [164], Tuzel et al.

represented the space of d-dimensional nonsingular covariance matrices extracted from training

human patches, as connected Riemannian manifold. A priori information about the geometry of

manifold is integrated in a Logitboost algorithm to achieve impressive detection results on two

challenging pedestrian datasets. This was later extended in [192] to perform detection of humans

in videos, incorporating temporal information available from subsequent frames.

The authors of [125] used the idea of using region covariance matrices as descriptors for

human faces, where features were computed from responses of Gabor filters of 40 different con-

figurations. Later, Sivalingam et al. proposed an algorithm [146] based on sparse coding of

covariance matrices extracted from human faces, at their original space without performing any

exponential mapping as proposed in previous approaches [125, 133, 163, 164, 192]. In their ap-
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proach, the authors formulated the sparse decomposition of positive definite matrices as convex

optimization problems, which fall under the category of determinant maximization (MAXDET)

problems. Although we are inspired by the formulation proposed in [146], our work attempts to

solve a completely different problem.

In a different vein, Porikli and Tuzel [134] came up with another application of region

covariance matrices in context of tracking detected objects in a video. In their technique, the

authors capture the spatial and statistical properties as well as their correlation of different features

in a compact model (covariance matrix). Finally, a model update scheme is proposed using the

Lie group structure of the positive definite matrices which effectively adapts to the undergoing

object deformations and appearance changes. Recently, Li and Sun [90] extended the tracking

framework proposed in [134], by representing an object as a third order tensor, further generalizing

the covariance matrix, which in turn has better capability to capture the intrinsic structure of the

image data. This tensor is further flattened and transformed to a reduced dimension on which the

covariance matrix is computed. For adapting to the appearance changes of the object across time,

the authors present an efficient, incremental model update mechanism.

That said, in context of event recognition in constrained web videos, the exploitation of

covariance matrices as feature is relatively inchoate. Some earlier advances are discussed here in

this particular direction in order to set the pertinence of this work to the interested reader. Along

these lines, the authors of [57] proposed a methodology for detection of fire using covariance of

features extracted from intensities, spatial and temporal information obtained from flame regions.

A linear SVM was used to classify between a non-flame and a flame region in a video. Researchers

[55, 56] have also attempted to classify elementary human actions [144] using descriptors based

on covariance matrices. In contrast, our work addresses a more diverse and complex problem. To

summarize, we make the following contributions in this work: (1) We propose a novel descriptor

for video analysis which captures spatial and temporal variations coherently, (2) Our descriptor

is flexible to be used for different application domains (unconstrained event recognition, gesture
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recognition etc.), and (3) We propose two different classification strategies based on concepts from

sparse representation that can be used in the recognition pipeline independently.

2.2.2 Shot-level Camera Motion Descriptor based on Cinematographic Principles

Researchers have explored the direction of analyzing video content based on camera mo-

tion in the past [136, 137]. In one of the earliest efforts [153], the authors qualitatively estimate

camera pan, tilt, zoom, and roll from a sequence of images. [195] extends the idea to shots with

camera rotation, where mutual information between motion vectors is utilized. In [126], Park et

al. explored further using linear combination of motion vectors. While these techniques relied on

optical flow to obtain motion vectors, a few teams in TRECVID 2005 [148] used motion vectors

provided in MPEG stream for this purpose.

From a different perspective, Fablet et al. [44] make use of local spatio-temporal deriva-

tives to classify dynamic content of shots without motion segmentation. Wang and Cheong on the

other hand, explore the possibilities of using a Markov Random Field based motion foreground

vs background labeling framework [171] together with cinematographic principles to classify pan,

tilt, zoom, track and establishing shots. Approaches proposed in [2, 156, 173] focus on specific

semantic classes of videos. For example in [173] the authors employ structure tensor histograms

to determine motion characteristics in shots from action movies. Similarly, [2, 156] leveraged on

specific cinematographic techniques that only applied to sports videos to address the shot classifi-

cation problem.

In contrast to the previous approaches, our technique to represent camera motion has the

following contributions: (1) We obtain global camera motion by robustly estimating frame to frame

homographies unlike approaches [44,126,153,195] that rely on local optical flow based techniques,

which are often noisy or full structure from motion based approach [193],which is computationally

expensive (2) Compared to approaches [156] that use homographies directly for classification, our

lie-algebra based representation homographies is more accurate and computationally less expen-
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sive, (3) Our global features computed from a shot consider temporal continuity between frames,

are superior to orderless bag of words techniques used in [148], thereby eliminating any need for

explicit temporal alignment of shots of unequal lengths, (4) Our representation is capable of clas-

sifying a broader category of shots as compared to [118, 126, 153, 193, 195]. As part of this work,

we also introduce a dataset that consists of eight cinematographic shot classes [9] which is freely

available to the research community, (5) Our method is more versatile than approaches suggested

in [2, 156, 173] which apply to specific domains such as movies or sports. It also requires fewer

parameters to adjust as compared to [171], which require explicit motion segmentation, and (6)

Finally, this is the first work to show how camera motion alone could be used to detect high level

events in a video without any knowledge of the content.

Once meaningful features are extracted, it is often desired to transform the features to a

common space that is robust to outliers. This common space is formally known as the intermediate

representation which is usually achieved by vector quantization techniques. This yields the popular

bag-of-visual-words representation of an image or a video. There have been several innovations

in the traditional bag-of-words model that have been used for several visual classification tasks.

These advances could be categorized broadly into two levels: representation and classification. In

the next section, we briefly provide an overview of the techniques broadly used in literature and

propose an efficient alternative to the traditional bag-of-words approach.

2.3 Probabilistic Intermediate Representation

At the representation level, Jurie and Triggs [72] show that the clustering process (usu-

ally k-means) required during vocabulary generation, is only capable of encoding regions rich in

descriptor space. They introduce a radius-based clustering that is capable of generating better

codebooks for general scenes. The authors of [182] propose an algorithm for learning a compact

visual vocabulary through an iterative pair-wise merging approach, resulting in visual words de-
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scribed by Gaussian Mixture Models (GMMs). GMMs are also employed in the construction of

adaptive class-specific vocabularies by Perronnin et al. [130] and Farquahar et al. [47].

Using hidden topic learning models, Bosch et al. [26] introduce a novel vocabulary con-

struction technique that represents each image with a topic distribution vector. Inspired by the

success of generative techniques like pLSA in [26], Perronnin et al. apply Fisher kernels [129] to

image categorization. Furthermore in [98], the authors introduce a method based on maximization

of mutual information to group semantically similar visual words resulting in an efficient vocabu-

lary. Tuytelaars and Schmid [162] discretize the high-dimensional space of image features using

an optimal lattice structure to create a compact bag of visual words representation for images.

At the classification level, Grauman and Darrell [54] present a pyramid match kernel func-

tion that maps unordered feature sets into a higher-dimensional space of multi-resolution his-

tograms, projecting the classification problem into a weighted histogram intersection in that space.

This approach is further adapted by Lazebnik et al. [83] to spatial pyramid features that preserve

a rough spatial information within the codeword, which is beneficial for classification using a his-

togram intersection kernel.

Methods such as [96,108] are also popular, where the classification stage is not independent

on the representation stage. [108] uses an ensemble of randomized trees for codebook generation as

opposed to expensive clustering, followed by employing a tree-based classifier for the recognition

task.

One of the problems with the codebook approach, analyzed by [25, 167], is the hard as-

signment of cluster centers to the visual words in an image which is performed while generating

the vocabulary. To this extent Van Gemert et al. [167] propose a method to model ambiguity in

assigning codewords to images, thereby improving classification accuracy for natural images that

have large variation in appearance. In our approach, we circumvent this problem by creating a

representation that maximizes the likelihood of generating the visual words corresponding to an

image using a kernel density estimator. In fact, Van Gemert et al.’s soft-assignment representa-
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tion becomes a special case of our proposed method, where our representative visual words are

set to the cluster centers from a pre-defined codebook and the algorithm terminated after a single

iteration.

Our approach also bears some philosophical resemblance to [47], wherein the authors first

associate GMMs with each visual word, whose parameters are iteratively tuned using an expec-

tation maximization algorithm. However, their approach suffers from over-fitting, for which they

need to apply additional regularization techniques. Our approach (as we show in the following

sections) has fewer parameters, is guaranteed to converge to a global optimum, is not prone to

over-fitting and does not require explicit regularization. Secondly, in contrast to [72, 83, 98, 167],

our representation does not require an expensive clustering mechanism for codebook generation.

While our proposed method can certainly utilize any existing codebook, we show that the anchors

in our maximum likelihood representation can also be simply initialized on a randomly-sampled

unique set of visual words from a given dataset.

Although the above discussed technique eliminates the disadvantageous of traditional bag

of visual words based techniques, the intermediate representation that we achieve after it is applied,

is not semantically interpretable. Earlier research [34, 67, 115] show definite boost in event clas-

sification performance when naive intermediate representations are augmented with an additional

semantic layer. Furthermore, it is often desired to get a structured semantic understanding of the

visually observable content of the videos. This motivates us to explore the idea of atomic spatio-

temporal (action) concepts that can be reliably detected in videos, which provide the additional

semantic layer of information.

2.4 Spatio-Temporal Concepts For Complex Event Recognition

Action or Low-level event recognition has been an active field of research in computer

vision for the last few years. The interested reader is referred to [161] for a literature survey.
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There are several interesting works [48,102] demonstrating extremely high recognition accuracies

over respective benchmark datasets [23, 144]. While significant performance increase on these

benchmark datasets is an important direction that drives event recognition research, it is hard to

derive conclusive evidence about the viability of the methods tested on these datasets on realis-

tic recognition scenarios. Liu et al. [100] presented the YouTube-11 human action dataset which

partially addressed this issue, by introducing video samples from consumer uploaded videos that

contained cluttered background, jittery camera motion, realistic actions performed by non-actors.

This work was superseded by the Hollywood human actions and scenes dataset [106] which con-

tained 12 classes of edited, stabilized Hollywood movie clips depicting realistic human actions.

Both datasets presented in [100, 106] have relatively more complicated human actions and intra-

class variance compared to [23, 144]. In the same vein of [100, 106], recently, two more datasets

UCF50, and HMDB51 [80] are introduced that contain 50 and 51 human action categories. Both

UCF50 and [80] derive their video clip sources from YouTube (unedited) and movies/consumer

videos (edited/ unedited) respectively. However, in all these datasets, action or low-level event

recognition is treated in complete isolation without taking the spatio-temporal occurrence of dif-

ferent low-level events. Studies [67] indicate that this could often be a limiting factor for complex

event recognition tasks.

In view of the above, some recent datasets [122],TRECVIDMED11 have been introduced

to motivate research in complex event recognition. The authors of [122] broach a dataset on human

actions with 23 annotated categories captured from videos replicating surveillance scenarios with

very limited camera motion. TRECVID MED11 event corpus, on the other hand, is a relatively

more challenging dataset in this respect. It has a collection of 2, 062 high-quality consumer videos

depicting 15 complex audio-visual events such as “Feeding an animal” or “working on a sewing

project”, which have large amount of visual variance within same semantic class.

Event recognition in such complex videos is relatively a new field. Research in this di-

rection includes use of purely low-level features [69] in a bag of visual words framework to ap-
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proaches [43, 177] that involve a combination of low-level features and noisy human annotated

text tags that are usually available in YouTube videos. Recently, the authors of [67] introduced

the usage of low-level events (person walking, person running etc.) for complex event recognition

(batting a baseball run). The role of these low-level or atomic events is shown to be extremely

useful for semantic analysis of videos in [70, 112] using the Large Scale Concept Ontology in

Multimedia(LSCOM) dataset. The LSCOM dataset is constructed from still keyframes from News

and Broadcast videos and consists of slightly over 400 annotated concepts depicting the presence

of objects (aircraft carrier, helicopter hovering, etc.), natural scenes(desert, mountain etc.), calami-

ties (flood, tornado etc.), well-known people (George Bush, Yaseer Arafat etc.) and so on in video

frames under consideration. While these concepts are exhaustive, they are based on single images.

This limits the exploitation of information from temporal and audio modalities which are available

across subsequent frames in a video clip. This is found [67] to be detrimental to the performance

of detectors trained on these single image based concepts.

Person climbing Animal eating Person kissing Vehicle moving Person cutting Person falling Person hugging Person flipping 

Figure 2.2: Sample frames from the proposed low-level events dataset: 8 different low-level event categories are
shown here. Frames with human faces are intentionally pixellated to preserve privacy.

In this dissertation, we present a dataset consisting of a large number of generic low-level

events (not necessarily all performed by human subjects), containing over 10, 000 exemplars. Some
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sampled frames pertaining to a small subset of these 104 concepts are shown in Fig. 2.2 (actual

video samples are shown in the accompanying supplementary material). This is followed by an

in depth study of detectors trained using multiple information modalities. Finally, we demon-

strate a practical application of these concept detectors on complex event recognition using two

different approaches. In the first, we formulate event detection as an indexing problem in the high-

dimensional space of concept detector confidences using feature trees. Whereas, in the second, we

use hidden Markov models that exploit temporal relationship between low-level event detectors to

predict a complex event category. We disseminate interesting insights through a large number of

experiments which would be very useful for the research community.

Table 2.2: Comparison with similar existing datasets: Different high level characteristics of our low-level events
dataset as compared to similar existing datasets. Our dataset outnumbers the existing ones by a significant margin,
both in terms of number of examples (10, 000+) and number of classes (100+).In addition, each video clip in this
dataset is semantically related to a complex event from the original TRECVID MED 2011 event corpus, unlike clips
from other datasets.

Datasets
Properties HOHA [106] UCF50 VIRAT [122] HMDB51 [80] This Dataset

Year 2009 2011 2011 2011 2012
num. Classes 12 50 12 51 104
num. Samples 3669 6400+ 329 6766 10, 243
Avg. Samples/class 142 100 167 100 95
Resolution 540× 240 640× 480 1920× 1080 320× 240 640× 480
Action Type Human Human Human Human Human(84)+ Misc.
Camera Motion Smooth Jitter Aerial Jitter Compensated Jitter + Misc.

Our proposed low-level event dataset is designed after making careful consideration of the

issues presented in [23,80,100,106,122,144]. In contrast to the above, the low-level events in our

dataset are selected from complex events in a completely top-down manner that leverages the fact

that actions do not occur in isolation. In other words, we assume that atomic low-level events carry

representative information of underlying events, thereby attempting to narrow the semantic divide

between action and event recognition. We present some comparative statistics of our dataset with

other existing datasets in Table 2.2. Our contributions in this work can be summarized as follows
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: (1) We introduce a dataset of low-level events that is not only the largest in terms of number of

categories and size, it also reflects real-world complex events, (2) We make a comprehensive study

of existing approaches that can be leveraged to build reliable detectors trained on these low-level

events and present a baseline method which can be used by action recognition researchers, (3) We

elucidate some of the common practices that can be used to recognize complex events using the

responses of our pre-trained low-level event detectors. To the best of our knowledge, this is the

first work that motivates research in realistic low-level event recognition from the perspective of

complex events, which has an important philosophical standpoint.

With such a rich spatio-temporal concept based semantic representation of a video, one

can explore a multitude of research directions. Since, these concept detectors can applied on

a video at smaller temporal granularities, we can observe the distribution of concepts at every

measured temporal interval. This can in turn help obtain some useful statistics based on the various

temporal interactions concepts have with each other. The statistics can later be used to model

complex events. The next section closes the loop on complex event recognition by achieving a

novel discriminative model that exploits the temporal dynamics between concepts using theoretical

foundations from Linear Dynamical Systems.

2.5 Temporal Dynamics Of Spatio-Temporal Concepts

Temporal interactions between concepts have been represented using graphical models (di-

rected and undirected) in the past extensively by researchers using Hidden Markov Models [92,

184, 187], Bayesian Networks (BNs) [59, 62], Conditional Random Fields (CRF) [35, 172], Dy-

namic Bayesian Networks (DBNs) [60] etc.

Over the past two decades, several other works [92, 114, 154, 184] have used HMMs and

their variants in human action recognition. Starner and Pentland were among the early adopters

of HMMs in their research [154] on sign language recognition. Xie et al. [184] demonstrated
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how HMMs and hierarchical composition of multiple levels of HMMs could be efficiently used to

classify play and non-play segments of soccer videos. Motivated by the success of HMMs, Li et

al. [92] introduced an interesting methodology to model an action where hidden states in HMMs

were replaced by visualizable salient poses (which forms an action) estimated using Gaussian

mixture models. Since states in HMMs are not directly observable, mapping them to poses is

an interesting idea. In the work by Natarajan and Nevatia [114], an action is modeled by a top-

down approach, where the topmost level represents composite actions containing a single Markov

chain, and the middle level represents primitive actions modeled using a variable transition HMM,

followed by simple HMMs that form the bottommost layer representing human pose transitions.

Recently, Inoue et al. [61] reported promising results in TRECVID MED task [1] by using HMMs

to characterize audio which is often observed to be a useful cue in multimedia analysis.

There are other types of directed graphical models that have been studied in event recogni-

tion. Another disadvantage with the HMM formulation is its incapability to model causality. This

problem is alleviated by a different kind of directed graphical model called Bayesian Networks

(BN). BNs are capable of efficiently modeling causality using conditional independence between

states. This methodology facilitates semantically and computationally efficient factorization of

observation state space. In this vein, Intille and Bobick introduced an agent based probabilistic

framework that exploits the temporal structure of complex activities typically depicted in Ameri-

can football plays [62]. They used noisy trajectory data from soccer players collected from a static

overhead camera to obtain temporal (e.g., before or after) and logical (e.g., pass or no pass) rela-

tionships, which are then used to model interactions between multiple agents. Finally, the BNs are

applied to identify 10 types of strategic plays.

BNs cannot implicitly encapsulate temporal information between different nodes or states

in the finite state machine model. Dynamic Bayesian Networks (DBNs) can achieve this by ex-

ploiting the factorization principles available in Bayesian methods while preserving the temporal

structure. Research on event recognition using DBNs is relatively new as compared to other ap-
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proaches since it requires a certain amount of domain knowledge. In [60], Huang et al. presented a

framework for semantic analysis of soccer videos using DBNs, where they successfully recognized

events such as corner kicks, goals, penalty kicks, etc.

BNs, HMMs and their variants fall under the philosophy of generative classification, which

models the input, reducing variance of parameter estimation at the expense of possibly introducing

model bias. Because of the generative nature of the model, a distribution is learned over the possi-

ble observations given the state. However, during inference or classification, it is the observation

that is provided. Hence, it is more intuitive to condition on the observation, rather than the state.

This has motivated researchers to investigate alternative strategies for modeling complex

events using undirected graphical models, some of which are naturally suited for discriminative

modeling tasks. To this end, Vail et al. [165] made a strong contribution by introducing Condi-

tional Random Fields for activity recognition. In their work, the authors show that CRFs can be

discriminatingly trained based on conditioning on the entire observation sequence rather than indi-

vidually observed sample. A CRF can be perceived as a linear chain HMM without any directional

edges between the hidden states and observations. In case of HMMs, the model parameters (transi-

tion, emission probabilities) are learned by maximizing the joint probability distribution, whereas,

the parameters of a CRF (potentials) are learned by maximizing the conditional probability distri-

bution. As a consequence, while learning the parameters of a CRF, modeling the distribution of the

observations is not taken under consideration. The authors of [165] produced convincing evidence

in favor of CRFs against HMMs in context of activity recognition. Inspired by the success of [165],

Wang and Suter [172] introduced a variant of CRFs which can efficiently model the interactions

between temporal order of human silhouette observations for complex event recognition. Wang

and Mori [176] extended the idea of general CRFs to a max-margin hidden CRF for classification

of human actions, where they model a human action as a global root template and a constellation

of several “parts”. More recently, in [35], Conolly proposed modeling and recognition of complex

events using CRF, by taking observations obtained from multiple stereo systems under surveillance

27



domain.

Although undirected graphical models (CRFs) are far less complex than their directed

counterparts (DBNs), and avail all the benefits of discriminative classification techniques, they

are disadvantageous in situations where the dependency between an event/action and its prede-

cessors or successors (e.g., cause and effect) needs to be modeled. Although some variants of

CRFs can overcome this problem by incorporating additional constraints and complex parameter

learning techniques, they are computationally slow.

While these models are mathematically elegant, most of them need extensive domain spe-

cific knowledge in addition to a large number of training samples. Also, since these models present

an abstract layer over underlying intermediate representations (bag-of-features, concepts etc.), they

are unable to handle imperfections present in the lower level, which is predominant in uncon-

strained scenarios. This motivates us to explore a different direction which is popular in other

areas of computer vision [138, 160], yet has not received significant attention in context of com-

plex event recognition. Our work emphasizes on extracting joint temporal evolution of underlying

models which can be used in the recognition of complex events.

2.6 Summary

We reviewed some of the important topics necessary for understanding the problem of com-

plex event recognition in this chapter. We began with an introduction to various low-level feature

extraction techniques that are crucial for any high-level visual recognition tasks. We provided a

brief overview on how our proposed feature extraction techniques can alleviate the problems faced

by earlier research in this direction. Next, we provided an outline of methods that are used to con-

struct a compact intermediate representation on top of the underlying features. We indicated some

of the limitations of current approaches and introduced our alternative strategy which achieves

this object. Thereafter, we elucidated semantically interpretable spatio-temporal concepts which
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augment the capabilities of current intermediate representations in describing videos. Finally, we

offered a literary sketch of existing techniques that exploit relationships between spatio-temporal

concepts and argued how our novel representation can leverage this aspect to produce more dis-

criminative complex event models.

29



CHAPTER 3: COVARIANCE OF MOTION AND APPEARANCE

FEATURES FOR HUMAN ACTION AND GESTURE RECOGNITION

3.1 Introduction

Spatio-temporal feature extraction [39, 81, 170] is an extremely important stage in video

analysis applications. Most of the prominent research split this stage into two equally important

sub-stages namely, Detection and Description. The former refers to the search of interesting areas

in a video that high degrees of discriminativity in terms of spatio-temporal information content.

The latter refers to the quantification of the identified areas using common statistical tools. While

describing the statistics of these small neighborhoods, often the temporal and the spatial informa-

tion are treated independently. For e.g. the HOG-HOF descriptor used in [81] is generated by

concatenating two independent histograms : the HOG (Histogram of Oriented Gradients [37])-

contributing to the appearance (spatial) and the HOF (Histogram of Optical Flow) - contributing

to motion (temporal). Doing so, the joint statistics between appearance and motion is lost which

may be informative, particularly in case of action recognition in the practical scenarios where such

information can be very useful. For e.g. consider the example of “pizza-tossing event” from the

UCF50 [3] unconstrained actions dataset. Here, a circular white object undergoes a vertical mo-

tion which is discriminative for this event class. Precisely, the correlation between white object

as captured by appearance features and its associated vertical motion captured basic and kine-

matic features is well explained in the covariance matrix than a concatenated 1-D histogram of

the individual features. It is also important to note that contextual information available in the

form of color, gradients etc., is often discriminative for certain action categories. Descriptors that

are extensively gradient based such as HOG or HOF, need to be augmented with additional his-

tograms such as color histograms to capture this discriminative information. Fig. 3.1 emphasizes

how low-level features can be computed from different information modalities. Here, Figs. 3.1(a)
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and 3.1(b) visualize the appearance and motion features respectively for a sample frame from the

UCF50 dataset, where a person is exercising a “bench-press”.

1st Deriv. along x-axis 

1st Deriv. along y-axis 2nd Deriv. along y-axis 

2nd Deriv. along x-axis 

Red Channel 

Green Channel Blue Channel 

(a)

Temporal Gradient Optical Flow (U) Optical Flow (V) Temporal Derivative of U 

Temporal Derivative of V 2nd Inv. of Flow Rate Tensor 

2nd Inv. of Strain Rate Tensor 

Divergence Vorticity 

3rd Inv. of Flow Rate Tensor 3rd Inv. of Strain Rate Tensor 3rd Inv. of Rotation Rate Tensor 

(b)

Figure 3.1: Low-level feature extraction from video clips:(a) Appearance features,and (b) Motion features (basic
and kinematic). The kinematic features are derived from optical flow and capture interesting aspect of motion with
respect to a spatial neighborhood.

In view of the above, we propose a novel descriptor [20] for video event recognition which

has the following properties: (1) Our descriptor is a concise representation of a temporal win-

dow/clip of subsequent frames from a video rather than localized spatio-temporal patches, for this

reason, we do not need any specialized detectors as required by [39, 81, 180](2) It is based on an

effective fusion of motion features such as optical flow and their derivatives, vorticity, divergence

etc., and appearance feature such as first and second order derivatives of pixel intensities, which are

complementary to each other. For this reason, descriptor can also be augmented to capture other

complementary information available in videos e.g. audio, camera motion, (3) As the descriptor

is based on joint distribution of samples from a set of contiguous frames without any spatial sub-

sampling, it is implicitly robust to noise resulting due to slight changes in illumination, orientation

etc. (4) It is capable of capturing the correlation between appearance with respect to motion and
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vice-versa in contrast to concatenated 1-D histograms as proposed in [39, 77, 81, 145], also, since

our final descriptor is based on the eigenvectors of the covariance matrix, they automatically trans-

form our random vector of samples into statistically uncorrelated random variables, and (5) Finally

being compact, fewer descriptors are required to represent a video compared to local descriptors

and they need not be quantized.

It is the non-local and non-linear nature of our descriptor, that encourages us to explore

intermediate representation and classification strategies other than the traditional vector quantiza-

tion based bag-of-visual-words representation followed by SVM classification. In this context, we

propose two sparse representation based techniques to perform low-level event recognition using

these covariance matrices as atoms of an overcomplete dictionary. In the first one, we map the

covariance matrices to an equivalent vector space using concepts from Riemannian manifold be-

fore building the dictionary. The classification is performed using a modified implementation of

Orthogonal Matching Pursuit [159] which is specifically optimized for sparse-coding large sets of

signals over the same dictionary. We compare this approach with a tensor sparse coding frame-

work [146] formulated as a determinant maximization problem, which intrinsically maps these

matrices to an exponential family. Although, our work is largely inspired by [163] and [146] in

object recognition, to the best of our knowledge, ours is the first work that addresses low-level

event recognition using a sparse coding framework based on covariance of motion and appearance

features.

In order to make the chapter self contained, we briefly describe the theoretical details of all

the phases involved in our low-level event recognition computation pipeline, beginning with the

feature extraction step. Fig. 3.2 provides a schematic description of our approach [20] showing the

steps involved in training phase (dashed blue box) and the testing phase (dashed red box).
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Figure 3.2: An Overview of our approach [20]: We begin with dividing training videos into multiple non-overlapping
clips. Each clip is represented by a single covariance matrix computed from appearance and motion features as
explained in Sections 3.2 and 3.3. A dictionary is created by stacking up the covariance matrices. Given, a test
covariance matrix, its corresponding label is determined by solving a matrix determinant maximization problem as
shown in Section 3.4.2. The final label for a video is obtained by aggregating the class labels predicted for individual
clips.

3.2 Computation of Low-level Appeance and Motion Cues

Since our primary focus is on low-level event recognition in unconstrained scenarios, we

attempt to exploit features from both appearance and motion modalities which provide vital cues

about the nature of the event. Also since this chapter attempts to study how the appearance and

motion change with respect to each other, it is important to extract features that are discriminative

within a modality. Given a video, we split it into an ensemble of non-overlapping clips of N

frames. For every pixel in each frame, we extract the normalized intensities in each channel, first

and second order derivatives along the x and y axes. Thus every pixel at (x, y, t) can be expressed

in the following vector form with fi, fg denoting the intensity and its gradient components along

the horizontal and vertical axes respectively, as:

fi = [R G B]T ,

fg =

[
∂I

∂x

∂I

∂y

∂2I

∂x2

∂2I

∂y2

]T
, (3.1)

where R,G,B are the red, green, blue intensity channels and I being the gray scale equiv-

alent of a particular frame. Fig. 3.1(a) visualizes the different low-level features that contribute to

appearance description from a sample action frame from UCF50. Fig. 3.3 provides a 3-dimensional
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visual illustration of covariance descriptors constructed using only the aforementioned appearance

cues on 8 different action classes in UCF50 and their equivalent vector space representations.
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Figure 3.3: Vector Space Mapping of Covariance Matrices from Appearance Cues. The above two figures show
covariance matrices (each matrix is a point) from video samples and their respective mapping in log-matrix space.
In both the cases, representative video samples from 8 arbitrary classes in UCF50 are chosen and their respective
covariance matrices are determined. Different classes are colored in differently. (a) shows original covariance matrices
based on appearance features before mapping, and (b) shows the same after mapping.Note how some classes show
more separability than others after the mapping.

As motion in a video can be characterized using simple temporal gradient (frame differ-

ence), horizontal (u) and vertical (v) components of optical flow vector, we use the following as

our basic motion features:

fm =

[
∂I

∂t
u v

∂u

∂t

∂v

∂t

]T
, (3.2)

where ∂
∂t

represents the finite differential operator along the temporal axis. In addition

to these basic flow features, we extract high-level motion features [7] derived from concepts of

fluid dynamics, since these are observed to provide a holistic notion of pixel-level motion within

a certain spatial neighborhood. For e.g. features such as divergence ∇ and vorticity Γ quantify
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the amount of local expansion occuring within flow elements and the tendency of flow elements to

“spin”, respectively. Thus

∇ =
∂u

∂x
+
∂v

∂y
,

Γ =
∂v

∂x
− ∂u

∂y
. (3.3)

Local geometric structures present in flow fields can be well captured by tensors of optical

flow gradients [7], which is mathematically defined as:

G =

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 . (3.4)

With this intuition, we compute the principal invariants of the gradient tensor of optical

flow. These invariants are scalar quantities and they remain unchanged under any transformation

of the original co-ordinate system. We determine the second, τ2(G) and third τ3(G) invariants of

G as:

τ2(G) =
1

2

[
tr(G)2 + tr(G2)

]
,

τ3(G) = −det(G). (3.5)

Based on the flow gradient tensor, we determine the rate of strain, S and rate of rotation, R

tensors which signify deviations from the rigid body motion, frequently seen in articulated human

body movements. These are scalar quantities computed as :
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S =
1

2
(G+GT ),

R =
1

2
(G−GT ). (3.6)

Using the equations in( 3.5), principle invariants can be computed for these tensors. The in-

terested reader is requested to read [7] for further insights on the selection of invariants. However,

unlike the authors of [7], we do not compute the symmetric and asymmetric kinematic features

as these assume human motion is centralized which is not valid for events occuring in an uncon-

strained manner (typically seen in YouTube videos). For the sake of legibility, we arrange the

kinematic features computed from optical flow vectors in the following way,

fk = [∇ Γ τ2(G) τ3(G) τ2(S) τ3(S) τ3(R)]T . (3.7)

Finally we obtain the following representation for each pixel after concatenating all the

above features to form a 19 element vector as:

F = [fi fg fm fk]
T . (3.8)

Fig. 3.1(b) visualizes the different low-level features that contribute to motion description

from a sample action frame from UCF50. Fig. 3.4 provides a 3-dimensional visual illustration

of covariance descriptors constructed using only the aforementioned motion cues on 8 different

action classes in UCF50 and their equivalent vector space representations.
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Figure 3.4: Vector Space Mapping of Covariance Matrices from Motion Cues. The above two figures show
covariance matrices (each matrix is a point) from video samples and their respective mapping in log-matrix space.
In both the cases, representative video samples from 8 arbitrary classes in UCF50 are chosen and their respective
covariance matrices are determined. Different classes are colored in differently. (a) shows original covariance matrices
based on motion features before mapping, and (b) shows the same after mapping.Note how some classes show more
separability than others after the mapping.

3.3 Feature Fusion using Covariance Matrix

Covariance based features introduced by Tuzel and colleagues for object recognition [163]

have found application in various other related areas such as: face recognition [125, 146], shape

modeling [174], and object tracking [134]. Based on an integral image formulation as proposed

in [163], we can efficiently compute the covariance matrix for a video clip where each pixel is a

sample. The covariance matrix in this context is therefore computed as :

C =
1

n− 1

n∑
i=1

(f
(k)
i − µ)(f

(k)
i − µ)T , (3.9)

where f (k) is a single feature set and µ is its corresponding mean, n being the number of
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samples (here pixels). Since the covariance matrix is symmetric, it contains (d2 + d)/2 (d being

the total types of features) unique entries forming the upper or lower triangular part of the matrix,

that capture cross feature set variance.

Baseball  Pitch Basketball Bench Press Biking Billiards  Breast Stroke Clean And Jerk Diving 

Figure 3.5: Normalized Covariance matrices from 8 class of actions from UCF50: Each column shows a different
class, and each row is a sample covariance matrix constructed from clips belonging to one of the 8 classes. We can
notice the subtle differences between two samples of different classes and some structural similarity of elements of the
same class. This aspect is more pronounced in Fig. 3.6.

Covariance matrices have some interesting properties which naturally suits our problem.

Since these matrices do not have any notion of the order in which samples are collected, they

are computationally more favorable compared to trajectory based descriptors [170] that require

explicit feature tracking. Secondly, covariance based descriptors provide a better way of analyz-

ing relationship across feature sets compared to mere concatenation of histograms of different

features [81]. Furthermore, the covariance matrices provide more concise representation of the un-

derlying feature distribution due to symmetry compared to long descriptors generated by methods

proposed in [39, 145] which need additional dimensionality reduction.

That said, addition and scalar multiplication on covariance matrices are not defined as

these matrices conform to non-linear connected Riemannian manifolds of positive definite matrices

(S+
n ). Hence, these matrices cannot be used as they are for classification using regular machine

learning approaches that make assumptions on the data belonging to a linear subspace (unless

special considerations are undertaken to understand the underlying feature space). One possible

approach to address this issue is to map these matrices to an equivalent vector space closed under
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addition or scalar multiplication, in order to facilitate classification tasks. However, in doing so,

the structure of the covariance matrix which conforms to Riemannian geometry, is not exploited

in the classification purpose. In view of this, we employ a sparse representation technique suited

for covariance matrices, called tensor sparse coding [146]. In the next few sections we provide

a brief theoretical background on our sparse representation framework for classification based on

covariance matrices with empirical evaluations of the two methods we presented in this chapter.
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Figure 3.6: Vector space mapping of covariance matrices based on appearance and motion features. See Figs. 3.3-
3.4 for detailed interpretation. Sample covariance matrices (as in Fig.3.5) are shown as insets.
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3.4 Classification using Sparse Representation

Recently, sparse linear representation techniques have shown promising results in solving

key computer vision problems including face recognition [183], object classification [105] and

action recognition [55]. The basic objective of these approaches is to project the classification

problem into a sparse linear approximation problem. Formally, given a set of K training samples

consisting of k classes, A1,A2, . . . ,AK and a test sample y, an overcomplete dictionary A is

constructed by stacking the training samples. Then the approximation problem:

min ||x||1 s.t. y = Ax (3.10)

where x is a sparse vector of coefficients corresponding to each element inA, can be solved

using linear programming techniques. For each coefficient in x, the residuals :

ri = ||y − Axi||2 (3.11)

are computed, where xi is a zero vector with ith entry set to the ith coefficient in x. The smallest

residual identifies the true label of y.

This classification strategy, although computationally attractive, cannot be directly applied

to our problem as it expects the samples to span vector spaces (linear manifolds inR2). Fortunately,

such an equivalent vector space for positive definite matrices exists, where these matrices can be

mapped to the tangent space of the Riemannian manifolds [10]. There are a couple of advantages

of using this transformation, besides of the utility of being used in linear classification algorithms.

The distance metric defined in this transformed subspace, is affine invariant and satisfies triangle

inequality. The interested reader is requested to refer to [50] to get theoretical proofs. These

properties make our descriptor robust to a certain degree of noise in the data. Having said that, we
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perform this transformation of a covariance matrix C to its log L using :

L = log(C) = RT D̂R, (3.12)

where RT , R are rotation matrices obtained after singular value decomposition of C and

D̂ is the diagonal matrix containing the log of eigenvalues obtained after SVD. The mapping is a

symmetric matrix whose upper or lower triangular components form our final feature descriptor

for a given video clip.

3.4.1 Sparse Coding of Matrix Log Descriptors

Given a set of clips from training videos, we construct our overcomplete dictionary (A)

consisting of their p corresponding matrix log descriptors. For a query video of m clips, there are

m matrix log descriptors. Since p >> m, the original sparse linear approximation needs to be

modified, to obtain a computationally tractable solution. We use an efficient implementation 1 of

the Orthogonal Matching Pursuit [159] algorithm to achieve this. The algorithm solves the sparse

approximation problem where coefficients are constrained to be the orthogonal projection of the

query sample yj on the dictionary A. In this context, the problem can be stated as :

min || {yj}mj=1 − Ax||
2
2 s.t. ||x||0 ≤ P, (3.13)

with ||x||0 the L0 pseudo-norm equal to the number of nonzero coefficients in x, P being

an empirically determined threshold ensuring the degree of sparsity. The solution to this problem

provides a set of m labels corresponding to each clip from the query video. The final label of the

video can be obtained using a simple majority voting.

The technique discussed above can be viewed as a simple straight-forward solution to our

problem as there have been limited research to extend this idea towards matrices or tensors. This

1http://www.cs.technion.ac.il/∼ronrubin/Software/ompbox10.zip
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motivates us to explore further on the recent advances of Sivalingam and colleagues [146] in sparse

coding of covariance matrices which is discussed as follows.

3.4.2 Tensor Sparse Coding of Covariance Matrices

In order to address the problem of sparse linear approximation of covariance matrices, we

begin with the following formulation: Consider our query video consists of a single clip whose

motion-appearance covariance matrix Q, constructed using Eqn. 3.9, can be expressed as a linear

combination of covariance matrices forming an overcomplete dictionary D:

Q = x1D1 + x2D2 + . . .+ xpDp =

p∑
i=1

xiDi, (3.14)

where xi’s are coefficients of the elements Di from dictionary D of covariance matrices of la-

beled training videos. As Q belongs to the connected Riemannian manifold of symmetric positive

definite matrices, the following constraint is implied:

Q̂ � 0,⇒ x1D1 + x2D2 + . . .+ xpDp � 0, (3.15)

where Q̂ is the closest approximation of Q, introduced to handle noise in real-world data. This

closest approximation can be achieved by solving an optimization problem. However, in order to

perform this task, we first need to define a measure of proximity between our query matrix Q and

the approximated solution Q̂. Such a proximity measure is often measured in terms of penalty

function called LogDET or Burg matrix Divergence [64] which is defined as:

Φ∇(Q̂, Q) = tr(Q̂Q−1)− log det(Q̂Q−1)− d, (3.16)
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Using Eqn.(3.14), the above equation can be further expanded as:

Φ∇(Q, Q̂) = tr(

p∑
i=1

xiDiQ
−1)− log det(

p∑
i=1

xiDiQ
−1)− d, (3.17)

Since, D̂i = Q−1/2DiQ
−1/2, we can substitute Eqn.(3.17) appropriately, achieving:

Φ∇(Q, Q̂) = tr(

p∑
i=1

xiD̂i)− log det(

p∑
i=1

xiD̂i)− d,

=

p∑
i=1

xitr(D̂i)− log det(

p∑
i=1

xiD̂i)− d,

(3.18)

where the log det(.) function can be expressed as Burg Entropy of eigenvalues of a matrix Z

as log det(Z) =
∑

i log λi. Therefore, our optimization problem can be formulated using the

objective function in Eqn.( 3.18) as:

minx

p∑
i=1

xitr(D̂i)− log det(

p∑
i=1

xiD̂i) + δ||x||1

subject to x ≥ 0,

p∑
i=1

xiD̂i � 0, and,
p∑
i=1

xiD̂i � In

(3.19)

with, δ||x||1 being a relaxation term that incorporates sparsity. The above problem can be mapped

to a determinant maximization problem which can be efficiently solved by semi-definite program-

ming techniques. We use the sparse approximation toolbox2. Multiple covariance matrices per

video are handled in a similar way as mentioned in the case of sparse coding with matrix logs. In

the next sections, we provide our experimental details comparing the approaches presented here

on two different application domains.

2http://cvxr.com/cvx/
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3.5 Action Recognition using Covariance Descriptors

This is an extremely challenging problem, especially because videos depicting events are

captured in diverse settings. There are two newly introduced, challenging datasets (UCF50 [3],

HMDB51 [80]) containing videos that reflect such settings (multiple and natural subjects, back-

ground clutter, jittery camera motion, varying luminance). To systematically study the behavior

of our proposed descriptor and the associated classification methods, we conduct preliminary ex-

periments on a relatively simple, well recognized, human actions dataset [144] to validate our

hypothesis and then proceed towards the unconstrained case.

3.5.1 Datasets

KTH Human Actions: This dataset [144] consists of 6 classes namely: Boxing, Clapping, Jog-

ging, Running, Walking, and Waving. The dataset is carefully constructed in a restricted environ-

ment – clutter-free background, exaggerated articulation of body parts not seen in real-life, mostly

stable camera except for controlled zooming with single human actors. The videos in this dataset

are in gray scale and not much cue is useful from background.

UCF50: The UCF50, low-level event dataset [3] consists of video clips that are sourced from

YouTube videos (unedited) respectively. It consists of over 6, 500 RGB video clips (unlike KTH)

distributed over 50 complex human actions such as horse-riding, trampoline jumping. baseball

pitching, rowing etc. This dataset has some salient characteristics which makes recognition ex-

tremely challenging as they depict random camera motion, poor lighting conditions, huge fore-

ground and background clutter, in addition to frequent variations in scale, appearance, and view

points. To add to the above challenges, since most videos are shot by amateurs with poor cinemato-

graphic knowledge, often it is observed that the focus of attention deviates from the foreground.
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HMDB51: The Human Motion DataBase [80], introduced in 2011, has approximately 7, 000 clips

distributed over 51 human motion classes such as : brush hair, push ups, somersault etc. The

videos have approximately 640 × 480 spatial resolution, and are mostly sourced from TV shows

and movies. The videos in the dataset are characterized by significant background clutter, camera

jitter and to some extent the other challenges observed in the UCF50 dataset.

3.5.2 Experimental Setup

We make some adjustments to the original covariance descriptor by eliminating appearance

based features in Eqn.(3.8) to perform evaluations on the KTH dataset, as not much contextual

information is available in this case. Thus each pixel is represented by a 12 dimensional feature

vector (last 12 features from F in 3.8) resulting in a (122 + 12)/2 = 78 dimensional vector. Each

video is divided into uniformly sampled non-overlapping clips of size w × h × t, w, h being the

original resolution of the video and t is the temporal window. Throughout all experiments, we

maintain t = 20. Optical flow which forms the basis of our motion features, is computed using an

efficient GPU implementation [31].

For all classification experiments we use a split-type cross-validation strategy suggested

by the authors in [144]. We ensure that the actors that appear in the validation set do not appear

in the training set to construct a dictionary for fair evaluation. Similar split strategy is employed

for experiments on UCF50. For HMDB51 we follow the authors validation strategy that has three

independent splits. The average performance across all splits is recorded in Tables 3.1 and 3.2.

We compare the proposed sparse representation framework against a linear SVM [46] clas-

sifier that uses the matrix-log descriptors from a video as feature vectors. Descriptors from each

clip is treated independently to obtain initial class labels and latter using a simple majority voting

mechanism, the respective votes are fused to determine the true class label. This voting strategy is
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kept same for both the proposed sparse representation based classification schemes as well.

3.5.3 Results

In this section, we take the opportunity to summarize our observations under different ex-

perimental setups. To investigate the contribution of different feature modalities towards the recog-

nition performance, we computed 3 different sets of covariance matrices for videos in UCF50.

Firstly, descriptors computed using only appearance features (resulting in a 7×7 matrix). Next, we

use only motion based features. Thus the covariance matrix in this case is 12×12. Finally, both ap-

pearance and motion features are used together to compute the covariance matrices. We also eval-

uated how each classification strategy behaves with these different descriptors. For each of these

descriptors, the classification framework was varied between a linear SVM (LC/SVM), Sparse

OMP (LC/OMP), and finally the Tensor Sparse Coding (TSC) algorithm that uses MAXDET opti-

mization. For the first two methods, the descriptors are thus 28 (appearance), 78 (motion) and 190

(all).

Individual Feature Contributions: We observed that the appearance features are less informative

as compared to the motion features in videos where RGB information is available. However, all

classification techniques get a boost in performance when both the features are used together.

Tensor Sparse Coding based classification performs better than other two methods. Among

classifiers, linear SVM and OMP, we observe OMP perform better than the former which shows

that there is an inherent sparsity in the data which is favored by sparse representation based classi-

fication techniques. Table 3.1 summarizes the results of the experiments involving the contribution

of different feature modalities and methods. The different columns in the table show the feature

modalities used for computing the covariance matrices (AF = Appearance Features, MF = Motion

Features, AMF = Appearance and Motion Features).
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Figure 3.7: F-measures for 8 classes from UCF50 dataset with different features: The features experimented with
are as follows : Fi (RGB Intensities), Fg (Intensity gradients), Fm (Basic Motion Features i.e. temporal derivatives,
optical flow etc.), Fk (Kinematic Features), A combination of basic motion and kinematic features and finally all
features are used together in the covariance descriptor.

In order to provide a more detailed insight on the individual feature contribution towards

the overall classification performance, we experiment with different features in a finer granular-

ity. The Fig.3.7 indicates F-measures derived from precision and recall for 8 different classes of

unconstrained actions from UCF50 dataset. It is interesting to notice two distinct trends from this

experiment: RGB intensities contribute the most towards the discriminativity of the covariance de-

scriptor for “Baseball-pitch class while the “CleanAndJerk” is best described by motion features.

This can be explained by the sudden vertical motion captured by the basic motion and kinematic

features in “CleanAndJerk” samples, and the mostly greener texture of background captured by

intensity features in “Baseball-pitch samples. The ROC curves for detection of these classes are

provided in Fig. 3.8, emphasize the contribution of the features in further finer granularity.

48



False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random

Intensity

Gradient of Intensities

Basic Motion

Basic Motion + Kinematic

Combined

(a)

False positive rate

Tr
ue

 p
os

it
iv

e 
ra

te

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Random

Intensity

Gradient of Intensities

Basic Motion

Basic Motion + Kinematic

Combined

(b)

Figure 3.8: ROC curves for detection of (a) “CleanAndJerk” and (b) “Baseball-pitch” samples from UCF50. Of the
8 classes analyzed in Fig. 3.7, these are the two classes which have clear separation because of their distinctive motion
features.

In Table 3.2, we present a comparative analysis of the various classification methods on

these datasets. We compare our methods [20] with the state of the art performance obtained by

other competitive approaches. Although our proposed method does not show any improvement

over the state of the art on the KTH dataset, we observe definite increase in performance over the

two other complex event recognition datasets. We also observe that there is a steady increase in

performance across the datasets as we change our classification strategies from a linear SVM to

the more complex tensor sparse coding (TSC) based classification scheme. Note that the perfor-

mance reflected in case of UCF50 and HMDB51 datasets are significantly high as compared to

other approaches. However, it is to be noted that the MAXDET optimization is a computationally

intensive operation which forms the basis of TSC.
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Table 3.1: Contribution of feature sets and methods: This table summarizes the impact of different feature sets
and different methods on our experiments in UCF50. The rows indicate different methods: LC/SVM (Matrix Log
descriptors from covariances with linear SVM classifier), LC/OMP (Same descriptor, sparse OMP classifier), and
TSC (Tensor Sparse Coding of Covariance Matrices) columns show the feature modalities used for computing the
covariance matrices (AF = Appearance Features, MF = Motion Features, AMF = Appearance and Motion Features).

Experiments on UCF50
Method AF MF AMF
LC/SVM 31.4% 43.4% 47.4%
LC/OMP 34.2% 42.5% 51.5%
TSC 34.5% 46.8% 53.8%

Table 3.2: Comparison with the state-of-the-art methods: This table summarizes the performance of two of our
proposed methods [20] with respect to already published state-of-the-art approaches. The first row is used as a base-
line (BL) where we use our implementation of a bag-of-visual-words based representation on a good local feature
descriptor (HOG-HOF proposed by Laptev and colleagues [81]. The second row i.e, LC/SVM uses a linear SVM as
a classifier on top the matrix log descriptors while the bottom two rows use the OMP and MAXDET based sparse
coding for classification.

Datasets
Method KTH UCF50 HMDB51
BL [81] 92.0% 48% 20.2%
LC/SVM 86.2% 47.4% 21.03%
LC/OMP 88.2% 51.5% 22.09%
TSC 91.4% 53.8% 26.16%
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Finally, in Fig. 3.9 and Fig. 3.10, we present the confusion matrices obtained after clas-

sification using the tensor sparse coding which performs the best in case of both the datasets. In

UCF50, the highest accuracies are obtained for classes that have discriminative motion (e.g. Tram-

poline jumping is characterized by vertical motion as opposed to other categories). The following

section provides a brief discussion on the algorithmic complexities involved in the various steps of

the entire recognition pipeline.

Figure 3.9: Confusion matrix obtained after performing classification using the proposed classification technique on
the UCF50.
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Figure 3.10: Confusion matrix obtained after performing classification using the proposed classification technique
on HMDB51 dataset.

3.5.4 Complexity Analysis

The entire computation pipeline can be summarized in three major steps, namely low-

level feature extraction, feature fusion using covariance matrices, followed by classification. Off

these, the feature extraction and covariance computation step for each clip of a video can be done

in parallel for any dataset. Among feature extraction, optical flow computation [31] is the most

expensive step, which is based on a variational model. For a consecutive pair of frames, with a
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resolution of 512 × 384, a GPU implementation of the above algorithm, takes approximately 5

seconds on a standard desktop computer hosting a 2.2Ghz CPU with 4GB of physical memory.

Depending on the types of low-level features computed, the complexity of the covariance matrix

computation is O(WHdC) where d is the total types of low-level features, W and H are the

respective width and height of a typical clip, and C being the total number of frames per clip.

The complexity of classification using the Orthogonal Matching Pursuit [159] scheme is

optimized using an efficient batch implementation provided in [140]. Since this method involves

precomputation of an in-memory dictionary of fixed number of elements (TD), the overall com-

plexity can be approximated asO(TD+K2d+3Kd+K3), whereK is the target sparsity for sparse

coding. For details, please refer [140]. Classification using MAXDET optimization, on the other

hand, is relatively more expensive as it attempts to find a subset of dictionary atoms representing a

query sample using a convex optimization. In closed form, this is O(d2L2), L being the number of

dictionary atoms. Although, this technique is more reliable in terms of accuracy, it requires a larger

computation overhead as the process needs to be repeated for every query sample. Assuming the

number of samples are far larger than L batch-OMP is observed to offer a respectable trade-off

between accuracy and speed.

3.6 One-shot Learning of Human Gestures

In addition, to demonstrate the applicability of our video descriptor, we report our pre-

liminary experimental results on different application domain: human gesture recognition using a

single training example.

3.6.1 ChaLearn Gesture Data (CGD) 2011

This dataset is compiled from human gestures sampled from different lexicons e.g. body

language gestures (scratching head, crossing arms etc.), gesticulations performed to accompany
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speech, sign languages for deaf, signals (referee signals, diving signals, or marshaling signals to

guide machinery or vehicle) and so on. Within each lexicon category, there are approximately, 50

video samples organized in different batches, captured using depth and RGB sensors provided by

the Kinect 3 platform. Each video is recorded at 30 Hz at a spatial resolution of 640 × 480. Each

batch is further divided into training and testing splits and only a single example is provided per

gesture class in the training set. The objective is to predict the labels for the testing splits for a

given batch.

Although the videos are recorded using a fixed camera under homogeneous lighting and

background conditions, with a single person performing all gestures within a batch, there are some

interesting challenges in this dataset. These are listed as follows: (1) Only one labeled example of

each unique gestures, (2) Some gestures include subtle movement of body parts (numeric gestures),

(3) Some part of the body may be occluded, and, (4) Same class of gesture can have varying

temporal length across training and testing splits.

3http://en.wikipedia.org/wiki/Kinect
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Figure 3.11: Sample frames from representative batches from the CGD 2011 dataset.

3.6.2 Experimental Setup

We obtain a subset of 10 batches from the entire development set to perform our experi-

ments. For a given batch, the position of the person performing the gesture remains constant, so we

adjust our feature vector in Eqn.(3.8) to incorporate the positional information of the pixels x, y, t

in the final descriptor. Furthermore, since the intensities of the pixels remain constant throughout

a given batch, the RGB values at the corresponding pixel locations could also be eliminated. Also,

the higher order kinematic features such as τ2(S), τ3(S), and τ3(R) can be removed as they do not

provide any meaningful information in this context. Thus each pixel is represented in terms of a 16

dimesional feature vector, resulting in a 16 × 16 covariance matrix with only 136 unique entries.

The upper triangular part of the log of this matrix forms our feature descriptor for a clip extracted

from a video. In order to perform classification, we use a nearest neighbor based classifier with

the same clip-level voting strategy as discussed in the earlier experiments. A regular SVM based

classifier is not applicable to this problem as there is only one training example from each gesture

class.
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Table 3.3: Comparison with other methods: This table summarizes the performance of our descriptor in one-shot ges-
ture recognition against other methods. The leftmost column contains the batches on which the methods are tested. The
next two columns contain indicate the avg. accuracy obtained using two local feature based approaches: MBH [170]
and STIP [81] using a Nearest Neighbor (NN) classifier, the next column uses template matching based method and
the last column records the performance of our descriptor (LC) when used with a nearest neighbor classifier.

Method Acc. Avg. (%)
Batch ID MBH/NN STIP/NN TPM LC/NN
Devel01 66.7 25.0 58.3 83.3
Devel02 33.4 8.3 25.0 75.0
Devel03 7.2 28.6 14.3 28.6
Devel04 33.4 16.7 58.4 75.0
Devel05 28.6 14.3 64.3 100.0
Devel06 50.0 16.7 25.0 91.7
Devel07 23.1 7.7 15.4 84.6
Devel08 36.4 9.09 9.1 81.8
Devel09 30.7 23.1 53.8 69.2
Devel10 15.4 15.4 23.1 53.6
Avg. 32.4 16.4 34.7 74.3

Since depth information is available along with the RGB videos, we exploit it to remove

noisy optical flow patterns generated by pixels in the background, mainly due to shadows.

3.6.3 Results

Similar to the previous experiments on low-level event recognition in section 3.5.3, we

perform a detailed analysis, with more emphasis on the descriptor. To this end, we use different

versions of the descriptor with only motion features (M:9 × 9 covariance matrix), a combination

of motion and intensity gradients (MG:13 × 13 covariance matrix), a combination of motion and

positional information (MP:12×12 covariance matrix) and finally all features combined (16×16).

The results are reported in Table 3.4. We observe that again motion in itself is not the strongest

cue. However, when fused with appearance gradients and positional information, the overall per-

formance of the descriptor increases by 11%, which is a significant improvement considering the

nature of the problem.
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Table 3.4: Contribution of different low level features towards the one-shot gesture learning problem: Each
column shows a different set of low-level features used to compute the final descriptor. The order of low-level feature
sets are as follows: Basic Motion (M), Basic Motion and Intensity gradients (MG), Subset of Basic motion and
positional informations (MP), and finally all features combined. Refer to Section 3.6.2 for more details .

Descriptor Performance(%)
Batch ID M MG MP All
Devel01 66.7 66.7 88.3 83.3
Devel02 53.3 66.7 53.3 75.0
Devel03 28.6 42.9 21.4 28.6
Devel04 53.3 58.3 75.0 75.0
Devel05 92.8 100 92.8 100.0
Devel06 83.3 91.7 83.3 91.7
Devel07 61.5 76.9 61.5 84.6
Devel08 72.7 72.7 81.8 81.8
Devel09 69.2 61.5 69.2 69.2
Devel10 38.5 61.5 53.6 53.6
Avg. 62.9 69.9 68.0 74.3

In order to make a fair evaluation of our descriptor with the state-of-the-art descriptors

from action recognition literature [81, 170], we keep the classifier constant (Nearest Neighbor).

We also compared our approach with a simple template matching based recognition which is more

appropriate for this type of problem. The average accuracies for each batch tested using all the

compared methods are reported in Table 3.3. It is pleasing to note that our descriptor performs

significantly better than all other methods which gives us promising leads towards the applicability

of this descriptor for this class of problems. Finally, in Fig. 3.12, we show the respective confusion

matrices obtained after applying the proposed method on first 10 of the development batches from

the CGD 2011 dataset.

3.7 Summary

In this chapter, we presented an end-to-end framework [20] for action and gesture recog-

nition. As part of this effort, we introduced a novel descriptor for general purpose video analysis
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that can be considered as an intermediate representation between local interest point based fea-

ture descriptors and global descriptors. We described how simple appearance and motion cues

can be efficiently integrated to form covariance descriptors, that efficiently encodes meaningful

second order statistics of the data. We also proposed two sparse representation based classification

approaches that can be applied to our descriptor.

Devel 01 Devel 02 Devel 03 Devel 04 Devel 05 

Devel 06 Devel 07 Devel 08 Devel 09 Devel 10 

Figure 3.12: Confusion matrices obtained after applying the proposed method on first 10 of the development batches
from the CGD 2011 dataset. Note for certain batches (devel01–02, devel04–05, devel06–08), our method is able to
predict gesture labels with respectable accuracies using just one training sample.
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CHAPTER 4: CINEMATOGRAPHIC SHOT CLASSIFICATION AND ITS

APPLICATION TO COMPLEX EVENT RECOGNITION

4.1 Introduction

Research in computer vision and multimedia is constantly exploring novel information

modalities to facilitate extraction of meaningful yet discriminative features. One such possible

exploit is the inherent camera motion that is often prevalent during capture process. In this chapter,

we introduce a novel stack of methodologies [19], that can be used to recover this motion and used

in an effective way to perform some visual recognition tasks. Our technique derives its inspiration

from cinematographic principles.

In cinematographic terminology [9], an authored video consists of several hierarchical

components. An authored video can be divided into a collection of disjoint components called

scenes. Each scene consists of a set of shots that are a collection of frames, which are at the low-

est level of the hierarchy. Most video analysis algorithms take shots as input as they provide an

intermediate yet rich representation of a video both in terms of its content and the motion of the

camera during the shooting process, which usually adhere to certain production grammars. Shot

level classification of videos has been an interesting field in computer vision research, especially

due to its applicability to diverse domains. These include content based video search [148], film

genre classification [137, 139] and video quality analysis. With Internet users becoming more

and more selective about the results returned by today’s video search websites, there is a pressing

need to pursue classification of videos from different perspectives. There has been a cornucopia

of research [40, 45, 111, 116, 117, 137, 139, 177] that address shot classification exploiting various

low-level features such as textures, intensity etc. While these features are meaningful at content

level, they are unable to capture the ambient camera motion which replicates the narrative human

eye and hence are far more semantically challenging.
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Camera motion in authored videos (commonly pan, tilt or zoom), are directly correlated

with high-level semantic concepts described in the shot. For e.g, a tracking shot in which a camera

undergoes translation on a moving platform indicates the presence of a following concept. Detec-

tion of such useful concepts can be used by current video search engines at a later stage to perform

high-level content analysis such as detection of events from videos. This motivates us to explore

the possibilities of using pure camera motion to solve the shot classification problem. Camera mo-

tion parameters, also known as telemetry, are very difficult to obtain directly as few video cameras

are equipped with sophisticated sensors that can provide such accurate measurements. Further-

more, telemetry data is not generally available and is certainly not present in Internet or broadcast

video. Hence, we resort to a purely image based technique to robustly estimate homographies

which are coarse indicators of the camera motion incurred during capture. However, homogra-

phies are not meaningful features for discriminative classification of shots as different parameters

in a homography matrix quantify different planar relationship (scale, rotation, etc.) and cannot

be treated in separation. Also, since homographies belong to projective group (not closed under

vector subtraction or scalar multiplication), they are not suitable for classifiers (linear kernel SVMs

or Nearest Neighbors etc.) Therefore representing the ambient motion in a principled manner is

extremely important, in order classify a shot.

While there exist methods [150, 181] to estimate camera motion using full 3D reconstruc-

tion of a scene, we argue that our method achieves a reasonable trade-off between high-accuracy

and prohibitive computational cost. This enables us to contribute a global feature based on camera

motion which can be used for large scale video analysis.
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Figure 4.1: A schematic diagram showing the various processes involved in our proposed approach [19] towards
classification of a typical shot. We build our complex event recognition computational pipeline (discussed in Section
4.7 based on the above methodology. Please refer to text for a detailed explanation.

To this end, we propose the following methodology (Fig. 4.1) to represent the camera

motion extracted from a video: (1) Given a shot, pairwise homographies are computed between

the consecutive frames, (2)Next we map them to a linear space using Lie algebra defined under

Projective Group (3) Coefficients of this linear space are used to construct multiple time series (4)

Representative features are computed from these time series for discriminative classification. A

schematic diagram of our computational pipeline is shown in Fig. 4.1.

4.2 A Cinematography Primer

A complete list of cinematographic techniques can be found in [9]. In this chapter we

focus on the following cinematographic shot classes:aerial, bird-eye, crane, dolly, establishing,

pan, tilt and zoom. The Fig. 4.2 shows the ambient camera motion in each shot class except for

establishing shots where the camera remains stationary. Both aerial and bird-eye shots are captured

from a high flying platform. The former class of shots have a strong perspective distortion, while

the latter being taken from a camera ortho-normal to the ground plane, show affine transformation

properties between consecutive frames. Crane or boom shots involve vertical motion of camera
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which may include simultaneous movement along x or y axes A dolly shot, on the other hand, is

taken by placing the camera on a platform that moves smoothly on ground without any movement

along z-axis. Pan and tilt shots are associated with camera rotation along z and y-axes respectively.

A zoom shot, does not involve any physical camera motion. It is characterized by the change

in focal length, which is an internal camera parameter. All of these motions can be efficiently

captured by the projective transformation model.

y 

x 

z 

t 

Aerial (Parallax) 

y 

x 

z 

z 

t 

Bird Eye (Camera Orthonormal to Scene) 

y 

x 

z 

z 

Crane (Translation  along z-axis) 

                   Zoom  
(Change of Focal Length) 

y 

x 

z 
y  

Tilt (Rotation along y-axis) 

y 

x 

z 
z 

Pan (Rotation along z-axis) 

y 

x 

z 

z 

                             Dolly 
(Translation along ground plane) 

Figure 4.2: Schematic diagram showing different types of shots –Top Row: The first two figures show aerial and
bird-eye shots. In both shots the camera is attached to a high flying platform and has its characteristic motion in 3D.
In case of aerial shot, there is a strong perspective which is absent in case of bird-eye shots. The third figure shows
a crane shot where the crane moves along z-axis with no simultaneous motion along x or y axis. Red lines show the
field of views of each camera in a particular shot setting. Bottom Row: The first figure shows a dolly shot where the
camera is on a platform that undergoes smooth translation along the ground plane. The next three figures show pan,
tilt and a zoom shot. Pan and tilt shots are associated with camera rotation along z-axis and y-axis respectively. A
zoom shot as shown, does not involve any physical camera motion. The change of focal length in this case is indicated
using dotted lines with different sized lenses.
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4.3 Motion Parameter Extraction

We employ a feature based method to estimate homography between consecutive frames of

a given shot. In our technique, SURF features [15] are detected on each pair of frames on a dense

sampling basis. Correspondence between features are established using a nearest neighbor search.

Given two sets of corresponding points {(x1, y1), . . . (xn, yn)}, and {(x′1, y′1), . . . (x′n, y
′
n)}

a homography H = {hij}, is a 3 × 3, 8 degrees of freedom projective transformation that models

the relationship between two points (x, y) and (x′, y′) in the following way:

x′ =
h11x+ h12y + h13

h31x+ h32y + 1
, y′ =

h21x+ h22y + h23

h31x+ h32y + 1
. (4.1)

Using a set of N corresponding points, we can form the following linear system of equations:
[ax1

T , ay1
T , ax2

T , ay2
T , . . . , axN

T , ayN
T ]TH = 0, (4.2)

where H, ax, ay are the following vectors:

H = [h11, h12, h13, h21, h22, h23, h31, h32, h33]T ,

ax = [−xi,−yi,−1, 0, 0, 0, x′ixi, x
′
iyi, x

′
i]
T
,

ay = [0, 0, 0,−xi,−yi,−1, y′ixi, y
′
iyi, y

′
i]
T
. (4.3)

Eqn.( 4.2) is solved using random sampling consensus technique [49] that iteratively mini-

mizes the back-projection error, defined as:

∑
i

(x′i − x′′i )2 + (y′i − y′′i )2 (4.4)

where,

x′′i =

(
h11xi + h12yi + h13

h31xi + h32yi + h33

)
, (4.5)
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and,

y′′i =

(
h21xi + h22yi + h23

h31xi + h32yi + h33

)
(4.6)

For practical purposes, the last element of the matrix h33 is normalized to 1 which gives 8

transformation parameters between each frame-pair. Except for h13 and h23, which indicate trans-

lational motion along x and y axes respectively, these parameters are not individually meaningful

(this is experimentally validated in Section 4.6). However, since they represent a transformation,

they can be mapped efficiently to some subspace that preserves the internal structure of the trans-

formation. We resort to Lie algebra for projective group to establish this mapping.

4.4 Lie Algebra Mapping of Projective Group

Recently, Lie algebra is made popular by the authors of [91, 93, 94] to solve a wide range

of tasks in computer vision. The algebraic representation of affine and projective transforms fa-

cilitates the use of learning methods by providing an equivalent vector space that preserves the

geometric transformation structure under linear operations.

Homographies belong to the projective group which has multiplicative structure. This

group is neither closed under vector addition nor scalar multiplication, and therefore treating it

as a linear space for classification results in undesirable effects. This is because nearest neigh-

bor or SVM based classification do not consider geometric constraints which apply to projective

groups since they belong to a nonlinear manifold. The Lie algebra mapping of the projective group

is a 3 × 3 matrix in homogeneous space which relates to the homography matrix H through an

exponential function as:

H = exp(M) = I +
∞∑
k=1

1

k!
Mk, (4.7)
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Figure 4.3: Lie Algebraic representation of homographies of typical shots: (a) shows the pure accumulative homo-
graphies before mapping in Lie algebra for aerial, bird-eye, crane, and dolly shots. Each shot is shown in trajectories
of different colors. (b) signifies the effect of mapping (For visualization purposes, we reduce the 8-dimensional vec-
tors into 3 dimensions). In (a), we observe a large overlap between the cumulative homographies from different shot
classes. Due to the Lie algebra mapping, the trajectories from each shot class show fair amount of separation (less
overlap). Similarly, (c) and its corresponding mapping in (d) show a similar trend for the remaining categories of
shots:establishing, pan, tilt, and zoom. In this space when two points are close, it means they are similar in original
space. We expect the trajectory of each shot starting from a point near the origin (0, 0, 0) and diverging from the other
classes as the accumulative homographies of different shot categories are different.

Alternatively,

M = log(H) =
∞∑
k=1

−1k+1

k
(H − I)k. (4.8)

Due to linearity in the Lie algebraic representation, M can be written as the linear combi-

nation of orthogonal bases as:

M =
8∑
i=1

αiGi (4.9)

where, Gi are also called generators of the Lie group [41]. It is shown in [41] that for infinitesimal
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transformations near identity, the higher order terms in (4.8) can be ignored. Thus, αi can be

computed by projecting the first order approximation of M i.e. H − I on Gi. In principle, as

long as the bases are orthogonal, Eqn. 4.9 is valid. We select the following generators since they

are already established in literature [41] and have injective mapping with the projective group of

transformations:

G1 =


0 0 1

0 0 0

0 0 0

 G2 =


0 0 0

0 0 1

0 0 0

 G3 =


0 −1 0

1 0 0

0 0 0

 G4 =


1 0 0

0 1 0

0 0 0



G5 =


1 0 0

0 −1 0

0 0 0

 G6 =


0 1 0

1 0 0

0 0 0

 G7 =


0 0 0

0 0 0

1 0 0

 G8 =


0 0 0

0 0 0

0 1 0


. (4.10)

Using the above, the frame by frame homography matrix can be represented by {αi} in an

equivalent vector space. This can be easily illustrated with the help of the Fig. 4.3 and Fig. 4.4.
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Figure 4.4: Intra class similarity in Lie Space: four instances of aerial and pan shot classes are shown in different
shades of red and cyan respectively. (a) shows accumulative homographies in the original 8-dimensional projective
space. All the eight shots are intermingled and hence the similarity between the same category of shots is not visibly
prominent. (b) shows clear separability between shot of the two classes and similarity between shots of same classes
after the Lie Group mapping (For visualization purposes, we reduce the 8-dimensional vectors into 3 dimensions).
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Fig. 4.3 visualizes various shots in their original space and their corresponding Lie algebra

representations. In the mapped space, it can be observed that the trajectories representing different

shots are clearly separable as compared to their original space. Fig. 4.4 demonstrates another

important aspect of the mapping where we observe clear separation between shots of same classes

which was not so obvious in the original projective space. Thus a shot can be represented by a

sequence of these mappings, as 8 different time series.

4.5 Feature Extraction from Time Series

The different time series obtained after sequential arrangement of the Lie-group coefficients

could be imagined as trajectories emanated from a nonlinear dynamical system (camera movement

in 3-D space). It may be tempting to fit these trajectories into splines or simple models by finding

the parameters that best explains the data, however classification using these models is complex

and can be badly distorted by outliers as they usually do not have any structural interpretation. We

perform extensive evaluations on the feature selection process that is necessary to describe our data.

The remaining of this section gives some theoretical details on the feature computation. In our first

method, we compute statistically invariant features from trajectories, not making any assumption

of the nonlinear dynamical system that generates it. The second methods is inspired by the work [6]

of Ali et al. wherein they introduced chaotic invariants of NLDS (3D trajectories of human body

joints) for classification of human actions. Finally, motivated by the success of Hankel or Topelitz

Matrices in detection of sequential signals [38, 87], we compute invariant features which can be

used in the context of classification.

4.5.1 Statistically Invariant Features

We compute the following statistics from each dimension of the 8-dimensional trajectory

separately. Let X be a single dimension from the trajectory. The separate statistical features
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computed from X are as follows: mean(µ), variance(σ), first and last order statistics (X(1), X(n)),

range (|X(1) − X(n)|), average crossing rate (n(d(X−µ)
dt

)/n(X), dt being temporal interval, n(.) is

the cardinality function), average root mean square, mean and variance of skew ( (X−µ)3

σ3 ), signal

entropy, mean and variance of kurtosis ( (X−µ)4

σ4 ). In addition, we compute 28 pairwise correlations

between each of the eight dimensions of the trajectory. Finally the sum and the squared sum of all

the dimensions is computed. This results in a total of 8× 12 + 28 + 2 = 126 features.

4.5.2 Chaotic Invariant Features

Since, the above features are based on pure statistics, they do not exploit any characteristics

of the underlying nonlinear dynamics of the system generating these trajectories. This motivates

us to investigate analysis of these trajectories using dynamics of chaotic systems. Any such system

is characterized by a set of metric, dynamical and topological organization of orbits that can be

quantified using invariants of the system. These invariant features can be considered as signature

of a particular system and hence can be used as features for final representation of a given shot.

Consider the multivariate time series αn
i=0 = [α1, α2, . . . αn] (α ∈ R8), constructed

from the Lie algebra sequential mapping of homography coefficients from a shot. In order to

extract meaningful information from this chaotic system, we first need to embed it to a phase space.

This is achieved by Takens theorem [157] which involves computation of delay parameter (τ ) and

optimal embedding dimension (m). Given the embedding dimensions and the delay parameters,
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the phase space embedding can be defined as:

Y =



α
(1)
0 α

(1)
τ . . . α

(1)
(m−1)τ

α
(2)
0 α

(2)
τ . . . α

(2)
(m−1)τ

α
(3)
0 α

(3)
τ . . . α

(3)
(m−1)τ

α
(4)
0 α

(4)
τ . . . α

(4)
(m−1)τ

α
(5)
0 α

(5)
τ . . . α

(5)
(m−1)τ

α
(6)
0 α

(6)
τ . . . α

(6)
(m−1)τ

α
(7)
0 α

(7)
τ . . . α

(7)
(m−1)τ

α
(8)
0 α

(8)
τ . . . α

(8)
(m−1)τ



(4.11)

where the numbers in parentheses represent each dimension of the 8-dimensional α.

Any chaotic system is characterized by a set of metric, dynamical and topological organiza-

tion of orbits that can be quantified using invariants of the system. These invariant features can be

considered as signature of a particular system and hence can be used as features for classification

task. We use the same technique applied in [6] to determine the following chaotic invariants:

Maximal Lyapunov Exponent is a quantity that characterizes the rate of divergence of infinitesi-

mally close trajectories in phase space. Assume an arbitrary point p(i) in phase space surrounded

by a set of points p(k) within distance ε. The average distance between a reference trajectory em-

anating from p(i) to all trajectories emanating from p(k) can thus be computed as a function of

relative time ∆n using:

Di(∆n) =
1

r

r∑
s=1

|αk+(m−1)τ+∆n − αi+(m−1)τ+∆n| (4.12)

where r is the total number of points. From Eqn.( 4.12), we compute S(∆n) = 1
c

∑c
i=1 log(Di(∆n)),

c being the typical number of sampled points for which the above process is repeated. The Maxi-

mal Lyapunov Exponent is calculated as the largest value of the slope of S(∆n) against different
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values of ∆n.

Correlation Integral quantifies the density of points in phase space by performing a normalized

count of pairs of points lying within a radius ε. Mathematically it is defined as:

C(ε) =
2

N(N − 1)

N∑
t=1

N∑
s=t+1

φ(ε− ||p(t)− p(s)||) (4.13)

where φ(.) is a Heaviside function.

Correlation Dimension characterizes the dimensionality of the phase space occupied by a set of

random points. It measures the rate of change in the density of phase space with respect to a

neighborhood (ε) and is calculated as:

Dc = lim
ε,ε′→0+

log
(
C(ε)
C(ε′)

)
log(ε)
log(ε′)

(4.14)

These chaotic invariants can be used as input feature vector to any classifier. We explored

two different types of classification strategies in our experiments which is covered in section 4.6.

4.5.3 Hankel Matrix based features

Given a finite sequence of coefficient vectors length n (α(0) . . .αn) the Hankel matrix can

be can be constructed as follows, whose entries are the same along the anti-diagonals:

Ki =



α
(0)
i α

(1)
i α

(2)
i . . . α

(n−r+1)
i

α
(1)
i α

(2)
i α

(3)
i . . . α

(n−r+2)
i

α
(2)
i α

(3)
i α

(4)
i . . . α

(n−r+3)
i

. . . . . . . . . . . . . . .

α
(r−1)
i α

(r)
i α

(r+1)
i . . . α

(n)
i


, (4.15)
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where r is an integral estimate on the number of entries of the j-th column vector that are sufficient

to express the subsequent (j + 1)-th column in Ki. It is previously shown in [38, 87] that matrices

of the above form capture the dynamical structure of a system in a meaningful manner, which can

be characterized by the orthogonal basis of the above matrix. The orthogonal basis is obtained

after performing Singular Value Decomposition on KiK
T
i as follows:

[U Σ UT ] = SVD(KiK
T
i ), (4.16)

where U is the orthogonal matrix containing the eigen vectors and Σ contains the corresponding

eigen values in a diagonal matrix. All Hankel matrices are normalized using the Frobenius norm

for matrices using the following equation:

K̂i =
Ki

trace(KiKT
i )

1
2

, (4.17)

In order to compute a uniform length descriptor for final classification using a linear SVM,

we reproject KiK
T
i on to its largest eigen vector as follows:

vi = u1
T (KiK

T
i ), (4.18)

u1
T , being the largest eigen vector. This results in a r dimensional descriptor for a shot which

in all our experiments are fixed to 8 to maintain sufficient overlap between column vectors of the

matrix.

All the above features can be used separately for classification. In the next sections we share

some details on the experimental protocol we follow. At first, we discuss our dataset of 8 distinct

category of shot classes based on cinematographic guidelines. The following section provides

implementation specific details on the various stages involved in our computational workflow. This

is followed by results and discussion. On a separate note, we describe how this shot classification
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technique can be integrated into large scale complex event recognition, backing our claim with

results.

4.6 Experiments on Cinematographic Shot Dataset

4.6.1 Dataset of Cinematographic Shots

Most of the earlier chapters [44, 126, 153, 195] on this topic evaluate their respective ap-

proaches on their own private collections, which are not made available. In order to contribute

to the research community, we make an attempt to build the first dataset of this kind which is

reusable, expandable and publicly available. Our dataset consists a clean and an unconstrained

part. The clean part has videos downloaded from high resolution, professional stock video 1 while

the unconstrained part contains videos from amateur consumer uploaded videos found in YouTube.

The unconstrained part contains videos uploaded by amateur users that typically have fair amount

jitters caused due to unstable mounts. These two separate sources were used for two different ex-

periments to validate the efficiency of our shot representation. Each videos in the dataset conforms

to either one of eight categories, namely: (1) Aerial, (2) Bird eye, (3) Crane, (4) Dolly, (5) Estab-

lishing, (6) Pan, (7) Tilt, and (8) Zoom. Each video is carefully screened by 3 human observers

with good cinematographic knowledge to ensure there is no mixing up of camera motions in a par-

ticular video. Note that this is a difficult task since most shots do not occur in isolation as pointed

out in [148]. Finally all videos are resized to an approximate resolution of 480× 360 keeping the

aspect ratio locked. Some sample frames from the clean part of our dataset are shown in Fig. 4.5.

Table 4.1 contains some statistics of our dataset.

1http://www.gettyimages.com
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Figure 4.5: Cinematographic shot dataset: Each column in the figure represents a typical shot category. The top row
shows the trajectory against x and y axes of the image plane (obtained by tracking points). For establishing and zoom
shots we can observe that there is very limited motion. The second row contains the initial frame from the shot.
Subsequent rows show samples 50 frames apart. Images from top to bottom provide an idea of the camera motion as
the shot progresses.

Table 4.1: Some statistics from our cinematographic shot dataset (Unc. stands for the unconstrained part of the
dataset).

Shot Category Examples Total # of Frames
Clean Unc. Clean Unc.

Aerial 30 10 18122 3622
Bird-eye 30 7 18644 1578

Crane 43 8 20304 1226
Dolly 32 8 22241 1185

Establishing 36 9 20454 1256
Pan 30 7 22954 1806
Tilt 31 7 12718 3998

Zoom 31 8 14876 2320
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4.6.2 Experimental Setup

We use an OpenCV based implementation of the SURF extraction [15] and use an ap-

proximate nearest neighbor search algorithm [110] to obtain point correspondences which is later

required for homography estimation. The normalized homographies and their corresponding Lie-

algebra mappings are used in a bag of words framework [148] under different codebook config-

urations in the range : 128, 256, . . . , 2048 and these help us investigate the efficacy of our shot

representation incrementally. These two are abbreviated as BoHM (Bag of Homographies) and

BoLC (Bag of Lie Algebra representations of homographies) in Table 4.2. In this setting, SVMs

with histogram intersection kernel is used for classification using a 10 fold cross validation scheme.

For the time series constructed after stacking corresponding Lie grooup coefficients, we

independently evaluate three sets of features: STAT (Statistically Invariant), CI (Chaotic Invariant),

and HNK (Descriptors from Hankel Matrix). In order to evaluate how our method performs against

a more accurate camera trajectory estimation technique (using full structure from motion [150]),

we compute statistically invariant features on top of 3-D camera trajectories (abberviated as TFT).

Trajectories are obtained after connecting 3-D camera locations in space, temporally based on their

frame indices. Although features extracted using this method are very discriminative, the trajectory

computation in itself a computationally prohibitive task as the 3D reconstruction algorithm needs

an exhaustive set of points datapoints from all frames in a video to solve a complex optimization

problem. This makes this technique a misfit for large-scale internet videos.

Finally, we compare our proposed method with our implementation of two relevant algo-

rithms: MSL (Motion Slices [118]) and HF (Threshold selection on fundamental matrices [193]).

The former represents a shot using tensor histogram of spatio-temporal slices while the latter uses

a combination of homography and fundamental matrix to represent a shot.
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4.6.3 Results and Discussions

In this section, we provide detailed experimental evaluation of our proposed method on

our shot dataset. In Fig. 4.6 we show the effect of temporal sampling rates for homography esti-

mation on the overall classification performance. As discussed previously, the sampling rates can

be perceived as the number of frames that are skipped between any given pair of frames before

computing the homography between that pair. Typically, the larger the gap between two sampled

frames, the more the homographies deviate from identity as the relative inter-frame motion in-

creases. The average accuracy reaches its peak when the sampling interval is 4, i.e. homography is

computed between pairs separated by four frames. This can be explained with the help of evidence

from homography computation which is primarily noisy for smaller temporal intervals. At inter-

val lengths larger than 4, the homography violates the primary assumption for Lie group mapping

which states that the transformation should be approximately equal to identity.
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Figure 4.6: The above Figure shows effect of different temporal sampling intervals on homography computation. Red:
pure homographies, Blue: Lie-coefficients of homography elements, Black: Time series based features.The average
classification performance reaches its peak when the sampling interval is 4, i.e. homography is computed between
pairs separated by four frames.

In order to show how the time series based features affect the final classification, we con-

ducted a bag-of-features based experiments on different codebook sizes. The maximum avg. ac-
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curacy is observed with a codebook size of 1024 and the results are reported in the second and

third columns of Table 4.2. This is in accordance with our hypothesis that temporal information

captured from time series is more discriminative than an orderless bag-of-features representation,

as seen in the forth and fifth columns. The statistical features perform slightly worse as compared

to the chaotic invariant features which capture the nonlinear dynamics of the trajectories. The last

two columns show accuracies of our implementation of two state-of-the-art methods.
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Table 4.2: Quantitative comparison of our proposed shot representation method against other methods (SVM is used as
classifier for all cases with 10-fold cross validation): Rows show the average accuracy on individual classes, Column
2: Naive Bag-of-feature representation on Homographies (BoHM) Column 3,4: MSL [118] and HF [193] are our
implementations of two state-of-the-art methods. It should be noted that these two approaches do not apply to all
the kind of shots in the dataset. Column 5: Bag of words representations on Lie group mappings of homographies
with a codebook size of 1024 (BoHM, BoLC). Column 6–8: Proposed shot representation with Statistically invariant
(STAT), Chaotic invariant (LCI) and Hankel Matrix (HKL) based invariant features computed from time-series of Lie
coefficients. Column 7: Statistically invariant features computed on 3D trajectories (TFT) estimated from the shots
using [150], this is analogous to ground truth.

Category BoHM HF [193] MSL [118] BoLC STAT LCI HKL TFT

Aerial 21.4± 1.2 – – 30.0± 1.1 86.2± 0.4 88.2± 0.4 90.1± 0.8 91.4± 0.7

Bird-eye 54.8± 0.9 – 20.1 54.8± 1.0 89.3± 0.6 89.4± 0.2 89.4± 0.5 92.1± 0.5

Crane 44.2± 0.6 – – 60.5± 0.9 73.3± 0.3 71.5± 0.7 74.2± 0.6 75.1± 0.6

Dolly 43.8± 0.8 – – 65.6± 0.8 62.0± 0.5 65.9± 0.8 65.4± 0.9 65.6± 0.4

Establishing 86.1± 0.9 100.0 – 94.4± 0.4 99.1± 0.4 96.8± 0.6 97.0± 0.1 96.7± 0.4

Pan 83.3± 1.1 65.3 3.3 93.3± 0.2 63.5± 0.6 66.1± 0.8 68.1± 0.4 69.1± 0.6

Tilt 66.7± 1.2 55.2 26.6 70.0± 0.4 76.7± 0.5 79.2± 0.5 81.0± 1.1 81.1± 0.9

Zoom 51.6± 1.6 22.7 45.1 51.6± 0.7 57.1± 0.8 59.2± 0.9 58.2± 1.0 61.1± 1.2

Avg. 56.5± 0.5 60.8 23.7 65.0± 0.7 75.9± 0.5 77.0± 0.6 77.9± 0.7 79.0± 0.6

Finally, we show how a good shot classification model learned on the clean portion of our

shot dataset could be applied to perform shot classification on unconstrained videos from YouTube.

Fig. 4.7 shows the confusion in classification across shots from the clean dataset. Some confusion

is evident between aerial and bird-eye classes because of their obvious similarity. Fig. 4.8 shows

the confusion across different classes when we use the classification model learned on the clean

portion of the dataset. There is a significant drop in performance, however we conjecture that this

is mainly due to the large variation between training and testing data.
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Figure 4.7: The above figure shows confusion across different examples from the clean part of the dataset.
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Figure 4.8: This figure shows the confusion matrix from unconstrained shots. In this case we do not perform any
training, we directly use the learned model from the clean portion to predict shot labels in the unconstrained data.

Table 4.3 shows the typical computational aspect of different computational steps involved

in the entire computational workflow. An asymptotic analysis of all the algorithms discussed here

is out of scope of this chapter.

With this, we conclude our experiments on the cinematographic shot dataset and move

on to a more challenging task: Classifying events captured in unconstrained YouTube-like videos

based on their respective ambient camera motion.
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Table 4.3: Computational Aspects: Each row indicates a computational step, implemented in C++/OpenCV. From
top to bottom: Feature Extraction (FE), Homography Estimation (HE), Vector Space Mapping (VSM), Time Series
Feature Computation (TSFC). The speed is recorded for a 320 × 240 video containing 300 frames on a standard
desktop hosting a 2.4 Ghz CPU.

Step Speed (in ms) Size Dependence Parallelizable
FE 5300 Yes Yes
HE 75 Yes No

VSM 8 N/A No
TSFC-STAT 3 N/A No

TSFC-LCI 12 N/A No
TSFC-HKL 4 N/A No

4.7 Recognition of Complex Events using Camera Motion

Recently, NIST has released the Multimedia event detection competition 2 dataset which

consists of videos from 15 event categories namely (1) Attempting a board trick, (2) Feeding an

animal, (3) Landing a fish, (4) Wedding ceremony, (5) Working on a woodworking project, (6)

Birthday party, (7) Changing a vehicle tire (8) Flash mob gathering, (9) Getting a vehicle unstuck,

(10) Grooming an animal, (11) Making a sandwich, (12) Parade, (13) Parkour, (14) Repairing an

appliance, and (15) Working on a sewing project. We use a subset of this dataset that has 2062

videos from all these 15 event categories for our experiments. Events like “Attempting a board

trick” and “Parkour” usually have a lot of jittery camera motion coupled with pan and tilt motions.

Similarly, videos depicting events such as “Wedding Ceremony” and “Birthday Party” are mostly

captured by stationary cameras with limited pan and some amount of zoom. The goal of this

experiment is to find out if we can leverage our proposed representation to capture these meaningful

statistics from these amateur videos and perform crude event detection without resorting to any

content extraction techniques.

Most of the videos in the TRECVID MED 2011 corpus are observed to have shots of the

following kinds: pan, tilt, zoom, establishing. We divide each video into non-overlapping, fixed

2http://www.nist.gov/itl/iad/mig/med11.cfm
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length shots of 100 frames and extract Hankel matrix based features from time-series constructed

using the method suggested in Section 4.5. We perform shot detection using the classifiers trained

on cinematographic shots dataset. The maximum detection probability subjected to a threshold

(0.6), returned by any classifier is chosen as the shot label. For detections under the desired thresh-

old, the shot is labeled unidentified. Thus for a given video, a sequence of detected shots is con-

structed with labels E (Establishing), P (Pan), T (Tilt), Z (Zoom) and U (Unidentified). Shot

sequences from all 2062 videos are computed using the above methodology.

… … E 

E 

E E 

E E 

Event 015 :  Working on a Sewing Project 

… … P 

P P P 

P T 

Event 013:  Parkour 

Figure 4.9: Camera Motion based Representation of Events: Top two rows represents two different videos each from
an event class. Each video is divided into fixed length shots of 100 frames. Outputs from 4 shot classifiers: Establishing
(E), Pan (P), Tilt (T), and Zoom (Z) shots are indicated under each shot..

Next, we train discrete Hidden Markov Models corresponding to each of the 15 different

events with 50 − 50 split of the data from each event class. For all HMMs, a first-order left-right

topology is assumed with 10 states. Validation is performed against the remaining half of the

videos from each event class. Figure 4.9 discusses this step where every row represents 3 shots

from a video and their corresponding labels as detected by the classifiers. The labels are temporally

concatenated and used as inputs for training event specific HMMs.

81



We show the performance of HMM based event detectors using Detection-Error Trade-

off curves for top 5 events detected using the above methodology in Fig. 4.10. In Fig. 4.11, we

compare this performance achieved after using classifiers trained on content based features (Bag-

of-SIFT features + SVM). The DET curves give a better understanding of miss-detection against

false alarm rates and is usually recommended for detection problems which was the primary focus

of this experiment. We fix an reasonable operating region (6% false alarm with 75% mis detection)

and measure the area under each curve intersecting this operating region. This is our single statistic

(PAUC: Partial Area Under Curve) to compare the performance across all events. It is evident that

our representation is highly favorable for events with discriminative camera motion (Attempting

a Board trick, Changing a Vehicle tire, Birthday Party, Parade and Working on a Sewing project).

It is interesting to note that for all these 5 events, our representation is as powerful as a content

based representation. We confirmed that our representation of a video is complementary to existing

content-based bag-of-feature representation. Our shot representation when used alongwith Bag-

of-SIFT features in an early fusion framework, the overall event detection accuracy increases by

7%.
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Figure 4.10: Detection-Error Trade off (DET) curves for 5 event classes best represented using our camera motion
based features. .
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Figure 4.11: Detection-Error Trade off (DET) curves for corresponding event classes obtained using a content based
feature representation (Bag-of-SIFT-features). .
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4.8 Summary

We presented a novel set of methodologies [19] to perform robust shot classification based

on camera motion adhering to cinematographic principles. In our approach, we first extracted

camera motion from shots by computing frame to frame homographies. In order to represent ho-

mographies in a manageable space, we proposed the use of Lie algebra to obtain one to one linear

mappings of the homographies. In order to exploit the temporal order these mappings, we compute

features from time series constructed from these mappings. Our approach performs significantly

better than the state of the art methods. As part of this work, we also introduced a cinematographic

shot dataset that can be used by the research community to explore different avenues in this di-

rection. Finally, we demonstrated the applicability of our proposed method to represent ambient

camera motion in videos to develop insights towards solving a more challenging event detection

problem. As part of future work, we intend to augment our complex event recognition framework

with proper camera motion boundary detection [116,117], instead of these fixed length segments.
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CHAPTER 5: PROBABILISTIC REPRESENTATION FOR EFFICIENT

LARGE SCALE VISUAL RECOGNITION TASKS

5.1 Introduction

Automatic visual classification for content-based semantic interpretation of images and

video remains an active area of research in computer vision. Canonical examples of such tasks in-

clude distinguishing an image of an urban scene containing buildings and street lights from that of

a natural scene containing mountains, or detecting a particular type of human action (like running)

observed in a video. Earlier approaches [36, 86, 147] have demonstrated the utility of constructing

representations based on local features in images [101] and video [39, 81], analogous to words in

text documents, enabling researchers to apply algorithms from text retrieval and classification to

computer vision. These methods, popularly termed as “bag-of-words” (BoW) algorithms, advo-

cate the creation of a vocabulary based on a clustering of visual words extracted from a corpus of

images. A new image can then be expressed as a histogram (bag) of words using the designated

vocabulary, thereby rendering it suitable for categorization using a classifier such as an SVM.

Our primary aim in this chapter is to propose a universal representation for images and

videos that is based on sound statistical principles (maximum likelihood estimate of observed

visual words in the given image). It inherits the benefits of soft-assignment [167] and is made

computationally efficient through the use of bounded-support kernels and sampling-based (rather

than clustering-based) anchor generation. Importantly, our representation [21] is completely com-

patible with existing classifier machinery used in bag-of-visual words approaches, enabling it to be

easily integrated into existing real-world image and video recognition systems. Our experiments

show the broad applicability of our representation to both image and video domains; wherever pos-

sible, we follow existing experimental methodology and avoid the temptation of tuning parameters

to maximize performance on the dataset. Thus, our contribution is that of a novel representation
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rather than the development of a complete system for either scene or action recognition.

(a) (b)

(c)

Figure 5.1: An illustration of the proposed representation [21] using the KTH human action dataset as an example.
(a) Low-level feature extraction: Spatio-temporal features are extracted from input video sequences. (b) N anchors
(shown as red triangular markers) are selected from the set of all video words (shown as blue triangular markers).
Each feature contributes to nearby anchors (shown as green spheres), but in a manner that maximizes likelihood over
the entire video.(c) A horizontally truncated sparse matrix 20 × 100 (originally 20 × 5000) corresponding to each of
20 training instances from each of the 6 classes is shown.
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5.2 Approach

Let Di be the set of visual features extracted from the i-th image Ii in a large collection

of M labeled images I ≡ {I1, I2, . . . , Ii, . . . , IM}. Thus, each Di could be interepreted as a set

of m-dimensional feature vectors whose cardinality may vary from image to image depending on

the number of features extracted per image. Let us also denote by D the collection of all features

extracted from all labeled training samples (I).

Consider a universal vocabulary of N representative visual features ({Cj}Nj=1), termed an-

chors. These anchors could be generated using traditional clustering or (as we suggest) sampled

directly from D. Our proposed model assumes that visual features are generated i.i.d. from some

distribution specified by a set of image-level parameters. Thus, we can express the probability of

observing a particular feature d given an image Ii as:

p(d|Ii) =
N∑
j=1

wjK(d,Cj), (5.1)

where w = (w1, . . . ,wN ) are the image-level parameters (weights) that control a kernel density

function with kernel K(., .). In the proposed formulation, these weights w serve as the image

representation and estimating them from the observed features is the primary task.

We propose determining w using a maximum likelihood estimator:

ŵ = arg max
w∈∆

L(Ii,w), (5.2)

where ∆ denotes all possible probability distributions for w and

L(Ii,w) =
k∑
p=1

log
N∑
j=1

wjK(dp,Cj).

k is the number of features extracted from image Ii. Eqn. (5.2) being a convex optimization
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problem, has solutions that are globally optimal.

We propose the following computationally efficient iterative approach based on bound op-

timization that converges to the maximum likelihood representation. Let w′ be the solution to

Eqn. (5.2) at the current step and w be the solution at the next step, then L(Ii,w) − L(Ii,w
′) is

bounded as:

L(Ii,w)− L(Ii,w
′) =

k∑
p=1

log

[∑N
j=1 wpK(dp,Cj)∑N
j=1 w

′
pK(dp,Cj)

]

≥
k∑
p=1

N∑
j=1

w′jK(dp,Cj)∑N
l=1 w

′
lK(dp,Cl)

log
wj
w′j
. (5.3)

The above bound can be easily verified by using Jensen’s inequality for convex functions. w can

be updated in each iteration using:

wj =
1

Z

k∑
p=1

w′jK(dp,Cj)∑N
l=1 w

′
lK(dp,Cl)

, (5.4)

where Z is a normalization term that guarantees
∑N

j=1wj = 1. Note that an approximation to

Eqn. (5.4) can be obtained by initializing each of the elements of w to 1/N , leading to a good

solution even after just a single iteration, as:

wj =
1

k

k∑
p=1

K(dp,Cj)∑N
l=1K(dp,Cl)

. (5.5)

Given a codebook, Eqn. (5.5) is thus equivalent to the familiar soft-assignment representation

proposed by [167].
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Figure 5.2: A toy example contrasting the proposed representation against traditional BoW and soft-assignment BoW
(Codebook Uncertainty [167]). Note that the proposed representation is initially identical to soft BoW but diverges
since it maximizes an image-level likelihood score.

5.2.1 A Simulated Example

To contrast the proposed representation against traditional BoW and soft-assignment vari-

ants of BoW (such as Codebook Uncertainty [167]), we present a toy example with an “image”

containing two features in a 1-D space, a vocabulary with three anchors and a uniform ball kernel

(see Fig. 5.2). Traditional BoW simply increments the two bins corresponding to the closest an-

chors, failing to express the fact that the image contains two similar features. Soft BoW captures

this since bin 2 accumulates weight from both features. The proposed maximum likelihood repre-

sentation seeks anchor weights that optimize the likelihood at an image level (rather than simply

accumulating weights). As a result, bin 2 continues to accumulate a greater fraction of weight,

resulting in a stronger peak for the shared feature. Algo. 1 summarizes the entire procedure. In

practice, even on real data, the algorithm converges in just 3–5 iterations.

90



5.2.2 Choice of Kernel Function for Kernel Density Estimate

For brevity, let us drop the indices from the data-point dp and the anchor Cj , to understand

the kernel function (K) in detail. A natural choice for a kernel K(., .) is the Gaussian:

K(d,C) =
1√
2πr

e−
||d−C||2

r2 . (5.6)

However, such soft-assignment representations can be unwieldy for large image and video col-

lections because the unbounded support of the Gaussian kernel implies that each visual feature

in the image affects the weight corresponding to every anchor. For this computational reason,

we advocate the use of bounded support kernels such as a truncated Gaussian or even the simple

hyper-ball kernel, which corresponds to a uniform probability of observing a feature in a fixed

radius neighborhood of an anchor:

K(d,C) =

 1 if |d−C| ≤ r,

0 otherwise.
(5.7)

Such a kernel function can be efficiently computed on a large set of anchors, particularly when

paired with an approximate nearest neighbor algorithm [8, 110].

Fig. 5.3 illustrates the factors that affect the computation of the weights for any given

image using Algo. 1. The anchors that are input to the algorithm can either be taken from a

standard clustering-based vocabulary or selected from the ensemble of visual words using random

sampling, with a uniqueness constraint to ensure better initialization.
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Figure 5.3: A schematic diagram of the proposed procedure. Blue triangular markers indicate all data points (S).
Yellow markers denote the anchors (C). Purple circles centered at the anchors signify the m-sphere (βj) that is
constructed using the simple kernel function in Eqn. (5.7). Datapoints within these spheres, which have anchors in
their r-neighborhood (represented by a green sphere), are indicated as red markers. These datapoints can be viewed
as contributors to the representation of the datapoint dp through the denominator of Eqn. (5.5).

92



Procedure ComputeWeights (C, dp, r)1

Input: Set of N anchors (C), Set of M Interest Points (dp) from p-th instance Ip, Radius of influence
(r)

Output: Set of weights w
w′ ← 0;2
while not converged do3

for j = 1 . . . N do4
n← 0 i← 1 w[j]← 0;5
for each dp[i] ∈ {||C[j]− dp|| ≤ r} do6

Sl ← 0 l← 0;7
for each C[l] ∈ {||dp[l]− C|| ≤ r} do8

Sl = Sl + w′[l]K(dp[i], C[l]);9

n← n+ 1;10

w[j]← w[j] +
w′[j]K(dp[i],C[j])

Sl
;11

Normalize (w);12
w′ ← w13

Algorithm 1: Algorithm to compute w for a set of data-points extracted from a single image
or a video.

5.3 Experiments

We conducted several independent sets of experiments on a standard scene dataset and

two widely popular video datasets, namely Scene-15 dataset [83], KTH Human Actions [144]

and UCF [100] action datasets. In addition, we used an aerial video dataset that has recently been

released by the DARPA VIRAT program. For all these datasets, anchors are generated by sampling

1.2%, 2.5%, 5%, 10%, 20%, 40%, and 80% of the total number of features in their individual feature

ensembles (S).

These anchors are input to our maximum likelihood representation, which depends upon

the range search technique we employ in Algo. 1, in particular the search radius which corresponds

to the radius (r) of m-spheres ({βj}Nj=1). We use a composite tree indexing scheme (combination of

kd-tree and hierarchical k-means) with different search radii to perform the range search required

to identify neighbors within the radius of influence of each m-sphere in question. The initial search
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radius is obtained by computing the average Euclidean distance between a randomly sampled tenth

from S. This measure is further refined by increasing it until a situation is reached where all

anchors have quantized at least one feature from S.

Classification is performed using a multi-class SVM with a histogram intersection kernel.

This kernel has been shown to perform well in conjunction with bag-of-visual words representa-

tions on a variety of datasets, including Scene-15 and Youtube in [83, 100, 167].

5.3.1 Scene-15 Dataset

This dataset consists of a collection of 4,485 images spanning 15 categories, including both

natural and man-made scenes. We closely follow Lazebnik et al.’s experimental methodology,

where we select 100 random images of each category for training and employ the remaining 2,985

images for testing. For all scenes, visual words are extracted using three popular approaches,

(a) SIFT [101] on grayscale images, (b) Color SIFT [166], and (c) Gray-SIFT Spatial Pyramid

Features [83]. As in Lazebnik et al., we densely sample these descriptors over the image with an

8-pixel stride rather than using an interest-point detector. We use the first two levels of a pyramid

with codebook size of 400 while extracting the features, as this was reported to work best.

Fig. 5.5(a) shows a performance comparison of these three features for different sets of

anchors. Consistent with earlier work, visual words based on spatial pyramid features perform

better than gray SIFT or color SIFT features alone. Our method achieves 75.5 ± 0.63% accuracy

with only 20% of the total number of visual words. We directly compare the proposed repre-

sentation with our implementations of: (a) standard codebook model with hard clustering, (b) a

soft-assignment model (Codeword Uncertainty [167]) using densely-sampled gray SIFT features.

In this setting, the anchors input to Algorithm 1 are replaced by cluster centers returned by k-means

clustering algorithm. Our results are shown in Fig. 5.5(b). For codebook sizes greater than 1600,

our method performs better than the hard and soft assigned codebook models. The main computa-

tionally intensive step in our method involves determining the memberships of each anchor, which
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we perform using FLANN [110]. The computation of weights using Algorithm 1 is very efficient.

A MATLAB implementation of the alogrithm takes less than 5 secs on a standard laptop.
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Figure 5.4: Confusion matrix for the Scene-15 dataset: The results shown here are based on Gray-SIFT Spatial
Pyramid features. These results (mean accuracy per class: 78.8 ± 0.45%) correspond to the maximum likelihood
representation generated by using 80% of visual words as anchors. With only 20% of anchors we achieve a mean
accuracy of 75.5± 0.63% per class.
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(a)

(b)

Figure 5.5: Quantitative analysis of performance of our method in the Scene-15 dataset: 5.5(a) across different feature
modalities, namely gray SIFT, color SIFT and spatial pyramid on top of Gray SIFT on vocabularies created using
1.2%, 2.5%, 5%, 10%, 20%, 40%,and 80% of the total number of datapoints from the dataset. Spatial Pyramid features
outperform both gray SIFT and color SIFT features. 5.5(b) against different vocabulary construction strategies. The
sampling of anchors is replaced by k-means clustering. The x-axis indicates the number of clusters chosen starting
from 500 to 6500. The yellow curve shows the performance of standard bag-of-visual-words where the representation
is a histogram. The green curve corresponds to bag-of-visual-words with soft assignment proposed in [167]. Our
method outperforms both methods at codebook sizes greater than 1600.
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5.3.2 KTH Action Dataset

The KTH action dataset [144] is a human action dataset that remains popular in the com-

puter vision community. KTH consists of six sets of actions performed by 25 different human

actors under four different illumination scenarios. We handpick a set consisting of 598 action clips

from all scenarios for our experiments.

Our low-level features are identical to those employed by recent action recognition meth-

ods. Each video clip is represented using a collection of datapoints that are extracted in the follow-

ing manner: (1) Spatio-temporal cuboids are extracted around regions where the detector proposed

by Dollar et al. [39] produces maximal responses, only a maximum of 200 cuboids are retained

per video, (2) Each cuboid is represented by using normalized gradients descriptors, (3) PCA is

applied to reduce the feature vector dimension to 100. Thus each video is represented in terms of

about 200 visual words, each described by a 100-dimensional vector.

For classification, we build a training set from 10 randomly-selected actors, actions per-

formed by the remaining 15 actors are used as test set. This is repeated 5 times using a multi-class

SVM. Since the feature vectors are extremely sparse (as seen in Fig. 5.1(c)), the classification is

computationally efficient.

The best average classification accuracies for this dataset are achieved with 10,730 anchors,

which is 10% of the total number of visual features. Table 5.1 presents the performance reported

by our method and some of the popularly-cited methods in action recognition literature. The

accuracy scores are directly imported from the respective authors’ papers. A direct comparison is

unwise since the experimental methodologies are not identical. However, these results do support

our claim that the proposed representation can achieve state-of-the-art performance on standard

vision datasets without any explicit tuning. A quantitative confusion matrix is presented in Fig. 5.6

showing the average classification accuracies of each action category using the same set of 10,730

anchors.
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Figure 5.6: Classification results on KTH action dataset with anchors selected from 10% of the total number of video
words (avg. accuracy: 95.06 ± 0.44%). The actions Running and Jogging are most confused because of their visual
similarities.

Table 5.1: Comparison of the proposed method with published results in action recognition on KTH dataset. We also
compare our results with a standard hard-clustering Bag-of-video-words technique that uses k-means clustering to
construct its vocabulary followed by SVM for classification.

Method Mean Accuracy (%)
Proposed method 95.06± 0.44
Lin et al. [96] 95.77
Liu and Shah [99] 94.15
K-means clustering + SVM 88.34
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5.3.3 YouTube Action Dataset

Motivated by the success of our technique on action recognition in KTH, we investi-

gate how our method performs on a newer and more challenging dataset, the YouTube Action

Dataset.1 This dataset is a categorized collection of amateur video clips downloaded from YouTube

organized in 11 different categories corresponding to real-world actions such as riding a bicy-

cle/horse/swing, swinging a golf club/tennis racquet, shooting basketball, jumping on a trampo-

line, juggling a football, diving into a pool, spiking a volleyball and walking with a dog. There are

about 100 clips per action. Most of the clips are of poor resolution compared to the KTH data and

have noisy and cluttered backgrounds. These clips also exhibit a lot of variation in object scale and

viewpoint coupled with significant camera motion. We performed our experiments on the first 10

action instances, distributed over 1051 videos.

Similar to the KTH setup, we extract 400 spatio-temporal volumes from each video, and

describe them using gradient features which are further PCA reduced to 200 dimensions. In this

case, our ensemble contains a total of 350,693 visual features. Anchors are selected at different

granularities (1.2%, . . . , 80%). For each action category, 40 examples are chosen randomly for

training, limiting the number of actors to 10. The remaining videos serve as test examples. This

process is repeated 10 times. Classification is performed in a similar fashion as covered in the

earlier section. As observed in Fig. 5.7, we achieve 76.5% average classification accuracy when

20% of the visual words serve as anchors, beyond which increasing anchors is not beneficial. This

shows that the selected anchors are sufficiently representative to express the important aspects of

the videos. The confusion matrix (Fig. 5.8) confirms that the proposed approach is effective at

classifying actions in unscripted real-world video.

1www.cs.ucf.edu/˜liujg/action_youtube_naudio.rar
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Figure 5.7: Classification results on KTH and YouTube action datasets as the number of anchors is varied. Our
accuracy on YouTube (76.5 ± 0.8%) with ten classes compares favorably with the state-of-the-art results of [100],
who report 76.1% on eight classes.

Figure 5.8: Classification results on YouTube action dataset. The mean classification accuracy as determined from the
above reaches 76.5%.
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5.3.4 VIRAT Aerial Video Dataset

This is a recently released challenging dataset collected under the DARPA VIRAT program

consisting of several human and vehicle activities, captured from a moving aerial platform. In this

chapter we focus on a subset of the dataset consisting of six human actions. These videos have the

following properties that make the action recognition problem in this context more challenging:

(1) ego-motion of the camera typically characterized by frequent jitter, (2) extreme low resolution

of human actors (50× 50 pixels), and (3) large amount of similarity across actions observed from

high altitude. For example, the actions standing, gesturing and digging appear similar to each other

when viewed from a shaky platform mounted about forty feet above the ground. Similarly, actions

such as walking, carrying a box and running can be confused with each other. Each action in the

dataset has 200 instances except for gesturing which only has 42 instances.

We extracted two different types of features using two widely popular spatio-temporal fea-

ture extraction implementations. In the first setting we used the methodology similar to the previ-

ous two experiments on action datasets. In the second, we used Laptev’s STIP [81] implementa-

tion, which uses a 3-D Harris corner as a space-time interest point detector, with a 144-dimensional

concatenation of Histogram of Gradient and Histogram of Optical Flow descriptors. We represent

both sets of datapoints using two techniques —the standard bag of video words and the proposed

representation. The classification is performed by an SVM with a histogram intersectionkernel

using a 10-fold cross validation, similar to the previous experimentalframework. The best perfor-

mance in this dataset was observed with 388,322 anchors, which is 40% of the datapoints. In this

setting, we achieved the maximum mean accuracy of 37.7% per class. Fig. 5.9 shows the confusion

matrix. On this challenging dataset, we see from the confusion matrix that the ambulatory actions

(walking, running and carrying) can be distinguished from the stationary ones (gesturing, digging

and standing). However, there is significant misclassification within these broad categories. We

also compare our results with two different types of feature extraction schemes and their respective
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bag of words representations in Tab. 5.2. The maximum performance for both the representations

are empirically recorded to be at the point where the number of anchors (for the proposed method)

or codewords (for BoW) versus mean accuracy becomes asymptotic.

Figure 5.9: Classification results on VIRAT Aerial Video Dataset. Ambulatory actions can be distinguished from
stationary actions, but there is still significant confusion within these broad categories.

Table 5.2: Comparative results with two different types of spatio temporal feature extraction/ description techniques,
namely HoG-HoF [81] and PCA-G [39] on two representation schemes: standard bag of words and our proposed
method.

BoW Proposed
Action HOGHOF PCA-G HOG-HOF PCA-G
Standing 41.1 39.2 43.3 42.2
Gesturing 40.5 41.5 45.3 44.9
Digging 34.9 34.6 31.2 34.2
Walking 32.9 32.6 30.2 31.7
Carrying 35.5 33.7 36.4 36.1
Running 34.5 39.3 37.4 38.2
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5.3.5 Spatio-temporal Concepts Dataset

In order to evaluate the efficacy of our method in detecting a large number of spatio-

temporal concepts, the results of which can later be used for complex event recognition, we per-

formed extensive experiments on an in-house dataset constructed from short video clips, approx-

imately 5 − 10s in duration. These clips are obtained from 2, 062 high definition videos released

under TRECVID MED 2011 complex event collection [1]. Details of the events are provided in

Chapter 4 and Chapter 6. The following spatio-temporal concepts are annotated from these videos

with parentheses including the number of samples obtained for each concept category:

(a) Single person – face visible[84]: Person bending(141), Person blowing candles (94), Person

carving(201), Person casting(52), Person cheering(44),Person clapping(147), Person cleaning(22),

Person climbing(56), Person closing trunk (14), Person crying (12), Person cutting cake (31), Per-

son cutting fabric(56), Person cutting (195), Person dancing(173), Person dragging(12), Person

drilling (97), Person drinking (31), Person eating (155), Person erasing(22), Person falling (98),

Person fitting bolt(189), Person flipping (272), Person gluing (14), Person hammering (154), Per-

son hitting (19), Person holding sword (23), Person hugging (115), Person jacking car (46), Person

jumping (402), Person kicking (21), Person kissing (143), Person laughing (88), Person lifting

(28), Person lighting candle (21), Person lighting (22), Person marching (12), Person measuring

(13), Person opening door (21), Person opening trunk (25), Person packaging (21), Person paint-

ing (23), Person petting (53), Person picking (21), Person planing(433), Person playing instrument

(27), Person pointing (113), Person polishing (39), Person pouring (42), Person pulling out can-

dles (22), Person pushing (58), Person reeling (125), Person riding (11), Person rolling (26), Person

running(91), Person sawing (180), Person sewing(177), Person shaking hands (13), Person singing

(117), Person sketching (11), Person sliding (189), Person spraying (19), Person squatting (108),

Person standing up (19), Person steering (21), Person surfing (62), Person taking pictures (131),

Person throwing (74), Person turning wrench (215), Person twist (19), Person twisting wood (16)
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, Person using knife (130), Person using tire tube (290), Person walking (421), Person washing

(107), Person waving (94), Person welding (23), Person wetting wood (21), Person whistling (12),

Person wiping (44), Person writing (98);

(b) Single person – partial body visible[11]: Hands visible(1243), Spreading cream (146), Ve-

hicle moving (547), Wheel rotating (60), Open door (25), Stir (46), Shake (24), Open box (44),

Close door(17), Blowdrying(15), Taking pictures (13);

(c) Multiple persons[3] : People marching (337), People dancing (151), People cheering (12);

(d) Non-human[6]: Animal eating (354), Animal approaching (59), Flash photography(17), Ma-

chine carving (19), Machine planing (23), Machine sawing(20).

For each video, we investigated three different modalities namely appearance, motion and

audio, to extract features to train detectors. In our approach, appearance features are extracted

both on a local (SIFT [101]) and a global (GIST [123]) basis. We uniformly sample every 25-th

frame from an annotated clip and extracted SIFT (128 Dim.) and GIST (960 Dim.) descriptors

from the candidate frames. In order to extract motion information from a video, we employ Dol-

lars [39] cuboid, and Laptev’s [81] space-time interest point detectors. The former collects 3-D

cuboids around locations where a predefined space-time filter response is significantly high, while

the latter uses a 3D Harris corner detector and returns a combination of histograms of oriented

gradients and optical flow as a descriptor. Cuboids are later described using optical flow and their

dimensionalities are reduced to 250 using PCA. In addition to interest point based methods, we

use motion boundary histograms that are trajectory based descriptors and are proven to be more

effecttive in action recognition et al. [170]. For, audio we extract Mel Frequency Cepstrum coeffi-

cients (MFCC) features which represent the short-term power spectrum of an audio signal, based

on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. MFCC

and its first, and second order derivatives are extracted from overlapping segments of 25ms from

raw PCM channel obtained after down sampling the source audio signal to 16khz. This results in

a 3× 21 = 63 dimensional descriptor for each segment of audio.
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All features are independently subjected to quantization in a bag-of-features based rep-

resentation scheme to produce a final feature for a baseline detector. Finally a one-against-all

approach is ensued to train n binary SVM classifiers using a histogram intersection kernel, n being

the number of low-level event detectors we intend to train. Thus for a given vocabulary size, we

obtain 6 × n different SVM classifiers. This methodology is repeated for the proposed anchors

based method [21] yielding 6 × n different SVM classifiers. We quantitatively analyze the per-

formance of our low-level spatio temporal concept detectors using two metrics: (a) Area under

Detection Error Trade-off (DET) curves [107], and (b) Average precision. In the former, a given

classifier’s success is measured in terms of miss-detection and false alarm probabilities, while the

latter is more meaningful in terms of true detection and false alarm rates. DET is considered to be

more effective when the proportion of negative samples to positive samples in the test data is large

and is a standard evaluation metric used by NIST.

Fig. 5.10 visualizes the mechanism of typical low-level event detectors over any arbitrary

video. Each video is automatically divided into fixed length clips, on which low-level event detec-

tors are applied. In the above figure, a typical video depicting the event “Changing a tire” is used

as an example. The responses these detectors using motion (red), static (green) and audio (blue)

modalities on relevant temporal segments of the video are shown qualitatively. A simple weight-

ing scheme is applied on the detector confidences to achieve the final decision on the presence of

a concept. In the following sections, we discuss our experiments in detail and show quantitative

results.

It is interesting to observe that for all feature modalities, our proposed representation out-

performs the popular bag-of-words based representation by 2 − 4%. This gain is significant as

the number of concept categories detected are sufficiently larger than standard datasets and hence

makes a strong case in favor of the proposed representation for large scale visual recognition tasks.

A detailed AP measure for 62 different concept detectors using different features, ultimately trans-

formed to the MLE based representation is provided in Fig. 5.11.
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Figure 5.10: Low-level event detectors “in action”: The figure shows the responses of low-level event detectors in
an arbitrary video depicting the complex event: changing a tire. The top row shows sampled frames from a given
video. The blue horizontal bar gives a sense of the temporal sampling window (in this case it is 10s with 2 seconds
overlap) on which pretrained low-level event detectors are applied. The smaller green bars correspond to the actual
granularity of the low-level event (obtained from annotation). The bottom 3 rows show the detector responses from
different feature modalities. After combining the responses of all the detectors from different modalities, we observe
that the low-level event: “person open trunk” is detected with maximum confidence in the shown window. This is very
close to the ground truth. Similar trend is observed for different low-level events like : “person fitting bolts”, “person
squatting” and “person turning wrench”, which are all very relevant to the event “changing a tire”.

5.4 Summary

We presented a novel, principled representation [21] for both images and videos that is

based on maximizing the likelihood of generating the observed visual words using a vocabulary.

We introduced a computationally efficient iterative algorithm that identifies the globally optimal

parameters. Recent approaches that employ soft assignments are shown to be special cases of

our approach, and our method is completely compatible with recognition systems that operate

with standard bags-of-visual words representations. Furthermore, we show how the expensive

step of clustering visual words to generate a vocabulary can be replaced (for our representation)

with a sampling-based approach over visual words without significantly impacting classification

accuracy, and in some case performing better than bag-of-features based approaches.
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Table 5.3: Spatio temporal concept detector performance evaluation summary: This table summarizes the perfor-
mance of detectors constructed from BoW (Baseline) and our proposed anchors based method, across different feature
modalities using two different metrics – average area under DET curve (Avg. AUC), and average precision (AP). Both
the metrics provide a coarse idea of the performance of the detectors trained on 62 spatio-temporal concepts. The
lower the AUC measure (on a scale of 0 − 1) the more reliable the detector is. This is in contrast to the AP measure,
for which the greater the score the better the performance. A more detailed comparison is provided in Fig. 5.11.

Representation
Bag-of-Features Anchors

Modality Avg. PAUC AP(%) Avg. PAUC AP(%)
Static [SIFT] 0.2203 22.01 0.1949 23.52
Static [GIST] 0.2718 18.21 0.2223 18.15
Motion [Dollar] 0.1948 16.22 0.1735 19.24
Motion [STIP] 0.1869 17.31 0.1878 19.42
Motion [MBH] 0.1721 19.21 0.1639 20.21
Audio [MFCC] 0.3121 11.13 0.2936 11.12
Fusion [SIFT+MBH] 0.1615 19.41 0.1524 21.02
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Figure 5.11: Spatio temporal concept detector evaluation: The average precision for different concept detectors
using our anchors based representation on top of appearance (SIFT, GIST), motion (STIP, Dollar, MBH) and audio
modalities (MFCC) are shown.
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CHAPTER 6: UNDERSTANDING TEMPORAL DYNAMICS OF ACTION

CONCEPTS FOR COMPLEX EVENT RECOGNITION

6.1 Introduction

Temporal interactions between concepts have been represented using graphical models (di-

rected and undirected) in the past extensively by researchers using Hidden Markov Models [92,184,

187], Bayesian Networks (BNs) [59, 62], Conditional Random Fields (CRF) [35, 165, 172, 176],

Dynamic Bayesian Networks (DBNs) [60] etc. While these models are mathematically elegant,

most of them need extensive domain specific knowledge in addition to a large number of training

samples, apart from being sensitive to underlying representations, which may incorporate noise.

In this chapter, we propose an alternative technique to model such temporal interactions between

spatio-temporal concepts from the perspective of linear dynamical systems, which generalize some

of the popular graphical model based approaches.

Our work emphasizes on extracting joint temporal evolution of underlying models which

can be used in the recognition of complex events. In our approach, a video is decomposed into a se-

quence of fixed-length temporal clips, on which low-level feature detectors are applied. Each clip

is then represented as a histogram (bag-of-visual-words) which is used as a clip level feature and

tested against a set of pre-trained action concept detectors. Real valued confidence scores, pertain-

ing to the presence of each concept is recorded for each clip, reducing the video into a vector-time

series. Two sets of novel features are computed on the vector time-series which capture tempo-

ral relationships between different concepts using Linear Dynamical System (LDS) theoretic ap-

proaches. The first being principal projections of a block Hankel Matrix constructed directly from

the vector time series. The second corresponds to joint characteristics of time-series such as lag-

invariance, frequency proximity, periodicities etc. Together they form a global feature (Fig. 6.1),

which is plugged into a discriminative classification algorithm for recognition of complex events.
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Figure 6.1: A schematic diagram showing the various stages involved in our proposed temporal feature extraction
from a typical video.We build our complex event recognition computational pipeline (discussed in Sect. 6.3)based on
the above methodology. Please refer to text for a detailed explanation.

Although our formulation of a complex event is fundamentally based on LDS represented

by first order Markov chains, we circumvent the problems encountered by methods that enact sim-

ilar principles (HMMs and their variants) by computing features from LDS that do not perform

direct estimation of the parameters (priors, observation matrices, and, transition matrices). Specif-

ically, we make the following contributions in this chapter: (1) We introduce two different sets

of algorithms to the multimedia community, that can be used to extract features from any vector

time-seres data, (2) We demonstrate the superiority of our algorithms over others [92, 184, 187]

that have been predominantly used in recognizing sequential multimedia data through exhaustive

experimental evaluation, (3) We compare our proposed technique with current state of the art tech-

niques that do not incorporate temporal information, and show respectable improvements.

Our proposed method is also conceptually more intuitive than earlier approaches that rely

on intermediate concept-based representation schemes [67, 113] to model complex events. As
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explained in Fig. 6.2, our intermediate representation is constructed from joint statistics of in-

dividual concepts and hence is more robust in dealing with errors introduced by the individual

detectors. Our experiments provide conclusive evidence in favor of extracting joint evolutionary

statistics over simple statistical max-pooling or average-pooling over sequential data. In addition

to the computational benefit we achieve in extracting these features, our time-series based feature

extraction scheme requires very limited domain knowledge – to the extent of the intermediate con-

cept representation level, thereby reducing the input parameter space (in terms of explicit domain

knowledge) as required by DBN [60] and CRF based methods [35, 172]. Finally, our technique is

flexible enough to be integrated into any intermediate representation as long as it is sequential.

Birthday party Changing a vehicle tire Getting a vehicle unstuck Parkour Working on a sewing project 

Figure 6.2: Temporal evolution of concepts in complex events: Cumulative density distributions of concept detector
confidences for 2 different video samples (rows) from 5 event categories (columns) in TRECVID MED 2011 dataset.
Each color corresponds to a different concept, while the evolution of each concept is shown as a cumulative distribution
of its confidence (z-axis) over different time-steps. This figure shows how a concept slowly evolves along the duration
of a video and how evolutions show some discriminative pattern across videos of same event categories. More samples
are shown in an alternative representation in Fig. 6.3.

For the sake of legibility, we organize this chapter into the following sections: In Sect. 6.2,

we provide an overview of our approach, discussing the computation of Hankel matrix based

features in Sect. 6.2.1 and temporal signatures in Sect. 6.2.2, respectively. This is followed by

Sect. 6.3, where we provide the experimental details. Next, in Sect. 6.4, we produce our results

which is followed by a detailed discussion in Sect. 6.5. Finally, we summarize this chapter in Sect.
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6.6 with some insights towards future work.
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Figure 6.3: LDS representation for video samples pertaining to 5 event categories: Each trajectory in a figure
depicts an LDS generated for a particular event from a videos. Each figure has 80 trajectories color-coded to show
separation. Each video, originally a p-dimensional vector-time series of p concept detector responses, is reduced to a
sequence of 2-dimensional points for visualization purpose with (a) showing the event “Birthday party” (E006), (b)
“Changing a vehicle tire” (E007), (c) “Getting a vehicle unstuck” (E009), (d) Parkour (E013), and finally,(e) Working
on a sewing project (E015). It is to be noted that each trajectory is mostly smooth even with the dimensionally reduced
representation which argues in favor of our choice of LDS for modeling them. However, the shapes of the trajectories
are not discriminative for an event class, so clustering them in this space is not meaningful. This motivates us to chose
our temporal features (shown in Fig. 6.4, 6.5).
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6.2 Approach

In our formulation, we represent a video V as a sequence of fixed-length clips S0, S1, . . . , Sn−1,

with a certain number of overlapping frames, n being the total number of clips in the given video.

On each clip, a fixed set of concept detectors are applied and their respective responses denoting the

probability of presence of the corresponding concepts, are recorded. Thus V ≡ {c0, c1, . . . , cn−1},

where each ct ∈ Rp, is a vector containing concept detector responses p being the number of con-

cepts. Therefore, each corresponding observation can be independently considered as a temporal

sequence ∀ct ∈ V , depicting the evolution of a particular concept throughout the video. A natural

choice is to treat each of these time-series independently, for either fitting in an appropriate statis-

tical model [175] or extracting statistical features. However, these techniques are too simple to

capture the interactions between individual time-series of concepts.

Assuming each vector of concept detector responses is directly observed to be emanating

from a slowly evolving process (refer to Fig. 6.2 and Fig. 6.3 for ease of understanding), using

foundations from Linear Dynamical Systems, we can describe it with the following set of equa-

tions:

ct = Kxt + εt, (6.1)

xt = φxt−1; x0 given, (6.2)

where, K is the observation matrix ∈ Rp×θ that maps each observed time-step to a relatively

lower dimensional hidden state vector xt ∈ Rθ, εt ∼ N (0, 1) (noise), and φ is the dynamics or

transition matrix ∈ Rθ×θ which relates the current hidden state with the previous hidden state.

Analogously, the dynamics matrix φ predicts the hidden states for the next time-step, while the

observation matrix K provides us with the information on how the hidden variables are mapped to

the observed concept detector responses at each time step, with each row of K corresponding to a
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concept sequence.

Thus, a system defined using Eqn. (6.2) can be identified efficiently if one can directly

estimate the parameters K, φ and x0. However, this is an ill-posed problem [88] as K and φ are

not unique for a given set of sequences, and are usually subject to permutation, rotation and linear

combinations. Thus each row in K cannot uniquely identify the characteristics of the correspond-

ing concept sequence. We investigate two independent techniques, discussed next, which can be

used to obtain a discriminative feature for our dynamical system in Eqn. (6.2) without directly

estimating K,φ.

6.2.1 Block Hankel Matrix Descriptors

Subspace state space system identification techniques [124] attempt to estimate the param-

eters K, φ and x0 by determining the hidden state sequences through the projection of input and

output data. In [124], the authors propose an algorithm to identify the subspace of the hidden

states using Hankel matrices, which we extend in the following way to obtain compact features

characterizing video specific dynamical systems.

Given a vector time-series V , we can construct the corresponding block Hankel matrix H ,

as follows:

H =



c0 c1 c2 . . . cn−r

c1 c2 c3 . . . cn−r+1

c2 c3 c4 . . . cn−r+2

. . . . . . . . . . . . . . .

cr−1 cr cr+1 . . . cn−1


, (6.3)

where r is an integral estimate on the number of entries of the j-th column vector that are sufficient

to express the subsequent (j+1)-th column ofH . Under the same assumptions that our observation

vectors are measured from a slowly evolving process (refer to Fig. 6.2), the matrix in Eqn. (6.3) is

of rank s ≤ r, n− 1− r. This hypothesis enables us to describe any given observation vector ct in
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Eqn. (6.2) as an autoregressive model of order s such as:

ct = k1ct−1 + k2ct−2 + . . .+ ksct−s. (6.4)

The set of coefficients from all auto-regressors of the form in Eqn. (6.4) conforming to our LDS

in Eqn. (6.2) can be obtained by taking projections of HHT on the m largest eigenvectors after

performing singular value decomposition (SVD) on HHT . In practice, all Hankel matrices are

normalized using the Frobenius norm i.e.

Ĥ = H/Tr(HHT )
1
2 , (6.5)

in order to make the estimation more robust to noise. The projections are concatenated to create

the block Hankel matrix based descriptor from the vector time series.
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Figure 6.4: Discriminative representation of LDS in Hankel Matrix feature space: Hankel matrix based features
of samples from the same 5 event categories in Fig. 6.3 are shown in two alternative visualizations. Each row in (a) is
feature extracted from a video, grouped into 5 event categories using overlaid dashed yellow lines, while each column
is a feature. Note some columns are discriminative to particular events. (b) shows features corresponding to each
sample as a circle, similar in color to trajectories shown in 6.3. Note, even in this low dimensional visualization how
well samples belonging to same event categories naturally cluster together .
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The obtained descriptor captures the interaction between concept sequences nicely, which

enables us to obtain a discriminative representation in the proposed feature space. This is shown

in Figs. 6.4(a), 6.4(b). Note how some columns similar values within the same event class, and

videos belonging to same events cluster naturally. With that said, it is often useful to obtain features

that quantify meaningful relationships between temporal sequences, e.g. lag-independence (two

time-shifted sequences should be grouped together), frequency proximity (sequences with similar

frequencies should be grouped together), harmonic clusters (sequences with similar periodicities

should be grouped together). In order to obtain such meaningful relationships between vector-time

series, we employ a similar technique proposed in [89], which the authors use to cluster data from

one dimensional, fixed length temporal sequences. Our motivation to use [89] for modeling the

interactions between evolving spatio-temporal concepts is strongly because: (1) it is proven to

have more discriminative power over DCT coefficients obtained from wavelet analysis, and (2) is

computationally more efficient than dynamic time warping based methods which have quadratic

complexity on sequence length. We hereafter refer to these features as temporal signatures and

discuss how they are extracted, in the next section.

6.2.2 Temporal Signatures

Recall Eqn. (6.2) representing the dynamics of a vector time-series. The hidden state vector,

xt can have limited degrees of freedom depending on the nature of the eigenvalues ({λ}Li=1) of the

dynamics matrix φ, e.g. exponential growth (|λi| > 1,∀λi ∈ R) or decay (|λi| < 1, λi ∈ R),

stationary sinusoidal periodicity (λi ∈ C), and mixtures of all [63]. Since, these eigenvalues

encapsulate the signal structure (frequencies, amplitudes, phase) of xt, they can be obtained by

SVD (valid ∀λi ∈ C). Thus without any loss of generality, we can write:

φ = UΛUT , (6.6)
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where Λ is the diagonal matrix of eigenvalues, grouped into their conjugate pairs and ordered

according to their phases, U contains the corresponding eigenvectors. Thus the SVD of φ enables

us to canonicalize the hidden state variables as:

x̂0 = UTx0, (6.7)

x̂t−1 = UTxt−1; (6.8)

and compensate the observation matrix (K) to obtain observation vectors pertaining to the dynam-

ics matrix as : Kh = KU , where, Kh is the harmonics mixing matrix. Thus, using the above

relation in Eqn. (6.8) the hidden state variables and the observation vector can be expressed as:

x̂t = Λt−1x̂0, (6.9)

ct = KhΛ
t−1x̂0 + εt. (6.10)

Similar to [89], we use an Expectation-Maximization based algorithm initialized with Eqn. (6.10)

to determine the final harmonic mixing matrix (Kh) for each vector time series. After a finite

number of iterations, we obtain K̂h which in practice, is of lower rank than Kh, the rank directly

corresponds to the number of data-dependent frequency groups conforming to either of growing,

decaying or stationary sinusoids.

Since entries in the harmonic mixing matrix (K̂h) are complex, the magnitude of this ma-

trix, Km yields features that are lag independent. These features can be easily computed by per-

forming SVD on Km yielding matrix of eigenvectors (Um) and diagonal matrix (Dm). Finally

features can be computed by concatenating the rows of the projection matrix (P = UmDm), each

row of which can be interpreted as encodings of frequencies discovered for a particular concept

detector response sequence.

The matrices shown in Figs. 6.4(a) and 6.5(a) show how effectively only a few columns
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capture discriminative information specific to different event classes. This is also reflected in

Figs. 6.4(b), and 6.5(b) which show how even a naive dimensionality reduction technique when

applied to the features from LDS, can lead to near-optimal clustering.
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Figure 6.5: Discriminative representation of LDS in Temporal Signature feature space: Temporal signatures of
samples from the same 5 event categories in Fig. 6.3 are shown in two alternative visualizations. Please refer to Fig. 6.4
for detailed interpretation..
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6.3 Experiments

In order to obtain a meaningful intermediate representation of a video, we first decompose

it into a sequence of clips containing spatio-temporal concepts. As discussed in Sect. 6.1, these

concepts can be interpreted as unit actions that may or may not be repetitive, typically spanning

across 100 − 200 frames. A set of 93 unique concepts are identified by parsing the textual def-

inition of events provided within NIST’s TRECVID MED 2011 database (available to MED11

participants). As an example, the following concepts: Person clapping, Person blowing candles,

etc. are identified for the event Birthday Party. A complete list of concepts is attached in the

supplementary material.

Using human annotators, we obtain approximately equal number of training examples

which are clipped from a portion of original TRECVID MED 2011 dataset, per concept category.

Dense trajectory based spatio-temporal features, which report state-of-the-art in action recogni-

tion [170] are extracted from each annotated clip, which are further reduced to a bag-of-visual-

words (BoVW) representation. A vocabulary size of 2048 is observed to deliver best performance,

and hence chosen as default vocabulary for successive experiments. Binary SVM1 classifiers with

histogram intersection kernels are used as our concept detectors. These concept detectors are

applied on BoVW representations of each fixed-length clips (300 frames with an overlap of 60

frames) from every video. Next, 93 normalized confidences are collected from each clip leading to

a vector time series for every video.

6.3.1 Datasets

A number of datasets have been released by NIST as part of TRECVID MED competition

organized since 2010 2. We have selected two datasets for our evaluation. The first one released in

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/

2http://www.nist.gov/itl/iad/mig/med.cfm
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2011, here in referred as MED11 Event Collection (MED11EC), consists of 2062 videos from 15

different complex event categories. These are: (E001) Attempting a board trick, (E002) Feeding

an animal, (E003) Landing a fish, (E004) Wedding ceremony, (E005) Working on a woodworking

project, (E006) Birthday party, (E007) Changing a vehicle tire, (E008) Flash mob gathering,

(E009) Getting a vehicle unstuck,(E010) Grooming an animal, (E011) Making a sandwich, (E012)

Parade, (E013) Parkour, (E014) Repairing an appliance, and, (E015) Working on a sewing project.

Similar to MED11EC, in 2012, NIST released a second dataset containing 2, 000 videos

pertaining to 10 different events. These are listed as follows: (E021) Attempting a bike trick,

(E022) Cleaning an appliance, (E023) Dog show, (E024) Giving directions to a location, (E025)

Marriage proposal, (E026) Renovating a home, (E027) Rock climbing, (E028) Town hall meeting,

(E029) Winning a race without a vehicle,and (E030) Working on a metal crafts project.

All videos in the two datasets are approximately uniformly distributed over the 25 event

classes, and are typically recorded by amateur consumers approximately at 30 fps with no specific

resolution, under unconstrained scenarios. Also videos from these events have large degree of

intra-class visual variance (e.g. attempting a board trick refers to both snow boarding and skate

boarding), and in many cases demonstrate subtle inter-class visual variance (e.g. cleaning an ap-

pliance and repairing an appliance).

We performed our experiments on two broader dataset settings. The first one involved only

the videos in MED11EC, while the second one involved videos in both MED11EC and the 2, 000

videos released in 2012. We refer to this combination as MED12EC which consisted of 25 events

distributed across 4, 062 videos.

6.3.2 Baseline Methods

Since, the datasets are relatively new and efforts have only began to be made using con-

cepts, it is very difficult to compare our methods with other TRECVID MED 11 submissions

[30, 113, 158, 189], that involve fusion of multiple low-level feature representations. Also, to our
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knowledge, none of the published methods have studied temporal interactions between interme-

diate feature representations. In all our experiments, we report average precision (AP) which is

widely accepted in similar recognition tasks [30, 189]. We chose binary linear SVM classifiers to

report the performance on event recognition. In all cases, we perform 5-fold cross validation while

reporting the average precision.

In order to compare our proposed temporal representation with methods that efficiently

model temporal interaction, we implemented 3 independent baseline methods which have been

used extensively in event recognition literature [92, 187]. These methods can be used model tem-

poral interactions between spatio-temporal mid-level representations – specifically, vector time

series of spatio-temporal concepts. The first one involves computation of a number of Discrete

Cosine Transform (DCT) coefficients on each concept detector response sequence. DCT coeffi-

cients capture useful frequencies from a waveform (which in our case, is a single concept detector

response sequence) in Fourier domain, and coefficients from all sequences from a video can be

concatenated to form a vector which forms the final temporal descriptor for classification using a

linear SVM. We experimented with 5 sets of DCT coefficients ranging from 8, 16, . . . , 128. The

best performance was achieved for 64 coefficients per time-series, which required a 93 × 64 di-

mensional feature per video. A detailed comparative analysis is provided in Tab. 6.1.

In the next settings, we experiment with two different recognition strategies using first

order hidden Markov models which reflect our LDS formulation in section 6.2. The first strategy

includes a discrete HMM as a classifier, while the second one includes a continuous HMM 3.

In both cases we perform experiments with 6 different number of hidden state variables (θ) from

2, 4, 8, 16, 32, 64. Initial parameters for both experimental settings (refer Eqn. (6.2)), the prior (x0),

transmission (φ) and observation probabilities (K) are determined from a stochastic process input

withN (0, 1). For discrete HMMs, we obtain the maximum confidence at each time step from every

observation ( ct) in a given vector time series, and associate the corresponding concept label to

3 http://www.cs.ubc.ca/˜murphyk/Software/HMM/hmm.html
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generate the input symbol sequence. This discretization step is not required in a continuous HMM

framework, as each state variable in this case is modeled using the distribution of confidences at

each time step. In both cases, event specific models are generated, and given a testing sequence,

the maximum likelihood of generating the input sequence given an event model is computed using

a forward Viterbi algorithm, which identifies the true class of the given sequence.

Fig. 6.6 draws a comparison of our proposed temporal signatures extracted from the 93−D

vector time-series representations of videos in MED11EC dataset, against two other baseline meth-

ods that also involve formulation of LDS, similar to our method. The mean Average Precision

scores are shown against number of hidden states (θ = 2, 4, 8, 16, 32, 64) for learning LDS pa-

rameters using three similar approaches, with green – Temporal Signatures (TS), purple – discrete

HMMs (dHMM) and black – continuous HMMs (cHMM). It is evident from Fig. 6.6 that our

proposed representation has significantly higher mAP as compared to dHMMs and cHMMs while

being consistent over the number of hidden states.
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Figure 6.6: Effect of hidden states on our LDS formulation: mean Average Precision (mAP) scores of event de-
tection in MED11EC is shown against number of hidden states (θ = 2, 4, 8, 16, 32, 64) for learning LDS parameters
using three similar approaches, with green – Temporal Signatures (TS), purple – discrete HMMs (dHMM) and black –
continuous HMMs (cHMM). TS has significantly higher mAP scores compared to dHMMs and cHMMs while being
consistent over the number of hidden states.
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6.3.3 Parameter Selection for Temporal Features

In this section, we analyze the effect of different parameters involved in computation of the

block Hankel matrix based descriptors and the temporal signatures. Fig. 6.7 empirically illustrates

how different combination of parameters affect recognition performance over both MED11EC and

MED12EC datasets. While constructing the block Hankel matrix based descriptors, we experi-

ment with 3 different overlap settings, i.e. r = 4, 8, 16. Within each overlap setting, we use 4

different sets of largest eigenvectors (m = 1, 2, 4, 8) for the re-projection operation as described in

Sect. 6.2.1, for computing the final descriptor. This gives an idea on the optimal number of auto-

regressor coefficients in Eqn. (6.4) required to build an efficient representation. From Fig. 6.7, it

is evident that selecting the optimal number of r and m does not significantly affect the perfor-

mance of the proposed algorithm. This argues in favor of the robustness of the Hankel Matrix

based descriptor. We observe that with an overlap setting of 16, and 8 largest eigenvectors yield

slightly better than other settings, and hence use the same to report all our results. However, a

lower overlap setting with fewer eigenvectors is advised, for additional computational benefits.
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Figure 6.7: Mean average precision on MED11EC and MED12EC using Hankel features with different overlap
settings (r) and number of largest eigenvectors (m).
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Similar to the Hankel matrix based descriptors, we empirically determine the optimal

length of the temporal signatures, required for effective recognition. The outcome of this experi-

ment is presented in Fig. 6.8, where we vary the length of the temporal signature descriptors by

altering the number of canonical coefficients in Eqn. (6.8). Similar to the experiments conducted on

different Hankel Matrix based descriptor settings, we observe negligible change in mean average

precision for both MED11EC and MED12EC datasets.
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Figure 6.8: Mean average precision on MED11EC and MED12EC using temporal signatures with different
descriptor sizes.

Furthermore, to show the benefits of combining both the proposed temporal representa-

tions, we fuse both the descriptors in a relatively simple early fusion framework. The fusion is

performed using pure concatenation of the individually normalized descriptors. We report the per-

formance in Fig. 6.9, Fig. 6.10 and Tab. 6.1. As evident in case of certain events e.g. Getting a

vehicle unstuck, Making a Sandwich, Winning a Race without a vehicle, Working on a Metal Crafts

project, Attempting a Board Trick, Landing a Fish, and Renovating a Home fusion increases the
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mAP. To confirm, we perform a simple Fisher Discriminant analysis, for all fused descriptors of

samples belonging to these classes, which depicts relatively larger ratios for inter-class distance

versus intra-class scatter, when compared to other classes. In other words, the temporal features

capture complementary temporal dynamics from the vector time series for the aforementioned

event classes.
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Figure 6.9: mAP over different mixtures of query samples.

Fig. 6.9 also provides an insight on the classifier’s performance over different mixtures of

query samples. Under this setting, we report the mAPs for both datasets, varying the number of

positive samples and negative samples in the testing data. We begin with equal number of positive

and negative samples, gradually increasing the number of negative samples keeping the number of

positive samples fixed, until we exhausted all negative samples. Even with all the negative samples

in the query set, we demonstrate respectable performance.

Although our approach is not directly comparable with purely flat-histogram based repre-
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sentations, since these approaches ignore the additional temporal information, we provide com-

parative results on two different histogram based approaches. The first one is based on a bag-of-

MBH-features representation computed on the videos with a visual vocabulary size of 2, 048 to

make fair comparison with the concept representation vocabulary. A histogram intersection kernel

is used in a binary SVM classifier to report the final event recognition performance This is listed

as BoVW in Fig. 6.9. In the next setting, the vector time series flattened into a one-dimensional

vector by averaging each vectors along time and is referred to BoC in 6.9. Interestingly, the bag-

of-MBH-features based representation outperforms the naive concept based representation, which

is also in accordance with previously reported results [67, 113]. However, it is worthwhile to ob-

serve that our temporal representation yields results comparable to the BoVW method, providing

promising insights towards improving the overall event recognition performance when used in a

hybrid fashion as suggested by [67]. Towards the end of Sect. 6.4, we confirm this hypothesis with

conclusive experiments.

6.4 Results

In this section, we take the opportunity to report key results of our experiments. Tab. 6.1

reports the respective average precisions for individual event categories in MED11EC dataset. All

the results reported here are on a query set consisting with a small number of positive samples

for a given event category and all possible negative samples. Typically such a mixture consists

of 20 − 50 positive and 1, 900 negative samples. Hence the results reported here, can be easily

generalized to results on the MED11 DEVT release by NIST, which contains a large number of

videos not belonging to any of the pre-specified 15 event categories.

We begin comparing our proposed methods with the three different baseline methods men-

tioned previously, that also capture temporal information. It can be observed that features com-

puted using DCT coefficients poorly represent our vector time series data. One reason for this
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is the complex nature of our signals, which are not captured by the limited number of bases we

use while computing the DCT based features. This reinforces the need for data-driven frequency

grouping as proposed in Sect. 6.2.2.

Table 6.1: Average Precision scores (MED11EC) Performance of our proposed temporal features with contemporary
methods that model temporal interactions on all 15 events in the MED11EC dataset.

Avg. Prec. from Method
Event DCT DHMM CHMM HNK TS CMB
E001 0.46 0.66 0.72 0.85 0.87 0.89
E002 0.44 0.64 0.71 0.89 0.91 0.91
E003 0.43 0.32 0.52 0.68 0.71 0.73
E004 0.39 0.39 0.39 0.61 0.59 0.59
E005 0.36 0.38 0.37 0.58 0.55 0.59
E006 0.34 0.38 0.51 0.87 0.87 0.85
E007 0.43 0.41 0.48 0.77 0.74 0.76
E008 0.67 0.69 0.71 0.88 0.89 0.87
E009 0.44 0.48 0.49 0.83 0.86 0.86
E010 0.38 0.48 0.51 0.74 0.75 0.75
E011 0.51 0.62 0.63 0.79 0.71 0.74
E012 0.37 0.73 0.68 0.78 0.76 0.78
E013 0.31 0.35 0.41 0.84 0.88 0.86
E014 0.34 0.46 0.48 0.68 0.68 0.67
E015 0.32 0.31 0.38 0.58 0.57 0.59
mAP 0.41 0.48 0.53 0.75 0.76 0.76

The next two columns in Tab. 6.1 reflect the results obtained after applying discrete and

continuous HMM based classifiers to the discrete and continuous versions of the vector time-

series data, respectively. Please refer to Sect. 6.3.2 on the discretization procedure. As there is

no principled way to determine the optimal number of hidden states required by both the HMM

based strategies, we resort to empirical techniques (Fig. 6.6), experimenting with different number

of hidden states with corresponding Gaussian stochastic prior matrices. The discrete HMM based

strategy is observed to perform best with 64 hidden states while the continuous HMM based strat-

egy yields best mAP with merely 8 states. We conjecture that the nature of the distribution input to
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both methods plays a major role in restricting the degrees of freedom of state transitions, thereby

efficiently modeling the temporal structure with fewer parameters in case of continuous HMMs.

Conclusively, the continuous HMM based strategy outperforms the discrete version con-

sistently in case of both MED11EC and MED12EC (Fig. 6.10). However, estimating the mixture

parameters is a computationally intensive problem and a significant fraction of the videos in our

datasets, the training does not converge, leading to fewer samples in training.

The last three columns in Tab. 6.1 report the respective mAP scores for the proposed rep-

resentations starting with Hankel matrix based descriptors (HNK), followed by the Temporal Sig-

natures (TS) and finally the combined feature obtained by early fusion of HNK and TS (CMB).

Both of our proposed LDS based features perform better than the baseline methods by a significant

margin (22−35%), with temporal signatures (TS) slightly better than Hankel matrix based features

(HNK). A broader comparison with all 25 events from MED12EC is provided in Fig. 6.10.
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Figure 6.10: Average Precision scores (MED12EC) Performance of our proposed temporal features with contemporary methods that model temporal
interactions for all 25 events in MED12EC.
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We observe a significant reduction (∼ 24%) in mAP when as we move to MED12EC from

MED11EC (as seen in Fig. 6.9). This reduction can be attributed primarily due to the following

reasons: firstly, the concepts defined in MED11EC do not have a significant overlap with the

additional 10 events in MED12EC, as our concept vocabulary is constructed without keeping the

new events under consideration. Consequently, there number of detectors required to model the

whole MED12EC is not exhaustive. Secondly, there is a considerable change in the testing mixture

when we move to MED12EC (from 20− 50+ve/1, 900-ve to 20− 50+ve/3, 800-ve). This results in

some expected loss of performance for the same event categories in MED11EC and MED12EC.

Finally, in Tab. 6.2, we report additional experimental results to show how our improved

representation of concepts, can be augmented with an existing low-level bag-of-features based

representation to improve the overall mAP. We followed a late fusion based strategy to combine

our classifier confidences with the one obtained from classifiers that operate on representation

generated on top of purely low-level features. We use the same feature modality (MBH) to maintain

consistency with results reported in Fig. 6.9.

For the sake of legibility, we list the mAPs obtained on MED11EC, and MED12EC using

averaging concepts (BoC) over time, Bag of visual words (BoVW), and our early fusion of tempo-

ral features (CMB) in the first three columns of Tab. 6.2. The next two columns report late fusion

of classifier confidences using BoC (Naive) and CMB (Final) with that from classifiers trained

BoVW representations, respectively. As hypothesized, fusion of our combined temporal repre-

sentation with BoVW yields superior performance as compared to regular averaging of concepts

which has no notion of cross-concept temporal dependence. Although, the fusion results achieve

only about 4 − 8% performance gain over BoVW, it succeeds in making a stronger argument

towards efficiently extracting temporal information from an intermediate representation without

sacrificing the overall detection performance.
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Table 6.2: Fusion with BoVW BoC, BoVW and CMB report the mAPs returned by classifiers training on represen-
tations constructed by averaging concepts over time, accumulating vector quantization and fusing proposed temporal
descriptors, respectively. Naive and Final denote the results after employing late fusion of BoVW over BoC and
BoVW over CMB, respectively.

Fusion Methods
Datasets BoC BoVW CMB Naive Final

MED11EC 0.72 0.75 0.76 0.77 0.79
MED12EC 0.46 0.48 0.53 0.50 0.56

6.5 Discussions

In this section, we share some technical insights developed during the course of several

experiments. It may occur to the interested reader that of all concepts we had enlisted and used for

our experiments, how many are relevant towards the actual detection task? In order to answer this

interesting question, we experiment with some of the state of the art automatic feature selection

techniques [14, 28, 76, 95, 128, 188], well studied in machine learning literature. We integrate a

subset of these techniques in our computational pipeline, just after the vector time series construc-

tion stage, with the goal of eliminating redundant concepts, thereby reducing feature computation

overhead. Specifically, experiments are carried out using the Max-Relevance Min Redundancy

(MRMR) [128] and RELIEF [76] feature selection algorithms. For both the algorithms, averaged

1-D versions of the vector time-series from different event categories are used as inputs. The al-

gorithms return indices of relevant features based on mutual information content or other higher

order statistics. This is followed by the regular temporal feature computation stage, which is per-

formed over a dimensionally reduced vector series of only top 10 relevant concepts. Although

this reduces the temporal feature computation complexity dramatically, it degrades the recognition

performance by a significant extent.
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Figure 6.11: Confusion matrices obtained after using the optimal combinations of temporal features for EC1 (Left) and EC2 (right).
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A detailed analysis of confusion encountered by classifiers can often be useful to design

an optimal representation. This motivates us to perform a closed set multi-class classification

within 15 events in MED11EC and 10 new events in MED12EC. Fig. 6.11, reports the respec-

tive confusion matrices for both event sets. The matrices provide an idea of the events that have

similar temporal features owing to confusion in the recognition experiments. For example, the

event “Attempting a board trick (E001)” is confused with “Parkour (E013)” as concept detectors

for “jumping”, “falling” etc. show similar temporal evolution. We also observe that “Renovating a

home (E026)” is highly confused with “Working on a metal crafts project (E030)”. This is because

∼ 60% of their most confidently detected concepts share common evolutionary traits. This is a

common trend across all new events in MED12EC.

6.6 Summary

Modeling temporal dynamics of spatio-temporal concepts occuring in a video can provide

useful cue towards understanding the semantic structure of a video. We introduced two differ-

ent techniques to model the temporal relationships between spatio-temporal concepts within the

purview of a video using foundations from Linear dynamical systems. Through several in depth

experiments, we demonstrated the efficacy of our proposed method over contemporary methods,

that are used extensively by computer vision and multimedia researchers, to analyze temporal

structure of videos. Although, our method does not significantly outperform bag-of-words based

approaches, we believe, it can be used effectively for other relevant tasks such as multimedia event

recounting which require better understanding of temporal structure present in multimedia data.

As part of future work, we intend to extend this idea to a large corpus of concepts, which may be

learned in an unsupervised fashion, given a collection of videos.
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CHAPTER 7: FUTURE WORK

The previous chapters in this dissertation discusses a complete bottom up approach towards

recognition of complex events in web videos. However, the visual recognition algorithms discussed

so far, rely heavily on variants of supervised learning aproaches which require labeled training

samples. Although these approaches have reported commendable success rates on benchmark

datasets, their performance usually do not translate to larger datasets i.e. scale of YouTube or

Flickr. This is primarily due to the assumption that both training and testing samples are drawn

from the same distribution [17, 42, 53, 65, 103, 135, 142]. This causes well trained classifiers to

fail miserably when subject to test samples that belong to domains different from source training

domain. The term domain [142] in context of visual recognition can be interpreted as a closed

setting defined by factors such as illumination, camera motion & orientation, background clutter,

resolution etc. that directly affect the capture of an image or a video.

Since obtaining more annotated samples for each domain is not a practically feasible idea,

there is a demanding requirement for efficient algorithms that are capable of propagating knowl-

edge from existing representation into newer data. Inspring research [65, 103, 135] has been con-

ducted in this direction, under the umbrella of visual domain adaptation or transfer learning.

We intend to address this problem using foundations from deep convolutional neural networks

(CNN) which have demonstrated exceptional credibility in recent large-scale object recognition

challenges [79]. The success of CNNs can be attributed to their training which are inspired from

mechanisms employed neural networks in biological vision. Similar to neurons, artificial CNNs

exploit spatially local correlation by enforcing a local connectivity pattern between adjacent layers

of receptive fields. However, simulating such sophisticated layered networks incur heavy compu-

tational complexity due to direct optimization of the supervised objective of interest.

In view of the above, two alternative approaches have been proposed namely — Restricted

Boltzmann Machines (RBM) [16] and Denoising Auto-encoders (DA) [168,169]. Both use a local
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unsupervised criterion to pre-train each layer in order to produce a useful higher-level abstract

representation at the current layer from the immediately lower layer. While RBMs are probabilistic

models and require approximations which are usually intractable, DAs are deterministic and can be

trained simply using gradient descent. Representations learned using layers of DAs (Stacked DAs)

have been demonstrated to be effective in textual sentiment classification [33, 52] across different

domains.

To the best of our knowledge, there has not been significant body of work involving SDAs

that involve transfer learning to solve visual recognition tasks. Hence, we intend to demonstrate

how SDAs can be used in context of learning useful representation from images across multiple

visual domains [142]. Fig. 7.1 provides a bird-eye view of our proposed framework that can

be used to learn meaningful representations across different domains, in order to achieve robust

recognition performance.

…
 

…
 

Domain A 
Samples 

Domain B 
Samples 

Input Data 

Autoencoders 

… 

Labeled Domain A Samples 

+ 

Trained Model on 
Domain A 

Unsupervised Pre-training Regular Training 

Unlabeled Domain B Sample 

Class Label 

Regular Testing 

+ 

Figure 7.1: Various stages involved in training a two layered SDAs from two domains: Data from both input do-
mains are corrupted and mapped to a combined hidden representation using SDA (output). Next labeled samples from
domain A and unlabeled samples from domain B are combined with mapped output which form the final representation
to train a classifier (linear SVM) and subsequently test samples from domain B.
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We conjecture that the methodology proposed in Fig. 7.1 can be adapted to address chal-

lenging action recognition problems across multiple views [179] and across datasets [22, 29]. In

addition, we can build on the experience on objects and actions, and apply this approach into recog-

nition of complex events in scenarios where very few or no training samples are available for target

events. We envision that this fundamentally different perspective to cross-domain transfer learning

using SDAs would facilitate solving a broader spectrum of computer vision problems. We envision

that this methodology, in conjunction with the previous set of work discussed in Chapters 3 , 4, 5,

and 6 can eventually be used to close the loop in recognition of complex events from unconstrained

open-source Internet videos.
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CHAPTER 8: CONCLUSIONS

In this dissertation we presented a set of methodologies with an end objective to perform

semantic analysis of open-source consumer uploaded Internet videos depicting complex events.

In our approach, we first presented a principled decomposition of complex events into hierarchi-

cal components and performed an in-depth analysis of how existing research are being used to

cater to various levels of this hierarchy. Next we identified three key stages where we highlighted

our technical contributions, emphasizing on a recognition framework which is more semantically

driven. As part of the first stage, we introduced two novel semi-global features which can be used

to capture complementary information from videos.

In this context, we introduced a video-level feature that encapsulates coarse statistics per-

taining to camera motion present in typical consumer uploaded videos. We devised this novel

feature on top of inter-frame homographies which using Lie algebra of projective groups, are

transformed to an intermediate vector space that preserves the intrinsic geometric structure of the

transformation. Multiple time series are then constructed from these mappings. Final features

computed from time series are used for discriminative classification of video shots. Additionally,

we demonstrated how this feature can be used as a source of complementary information for recog-

nition of complex events in videos. We also observed that global spatio-temporal context plays an

important role in analysis of web videos, which motivated us to propose compact clip level de-

scriptors for such videos based on covariance of low-level appearance and motion features. These

features were later assimilated into a sparse coding framework to recognize realistic actions and

gestures. Within this, the sparse approximation of a set of covariance matrices is treated as a de-

terminant maximization problem where the bases (covariance matrices) are obtained from training

videos. We evaluated the proposed technique with a sparse linear approximation alternative suit-

able for equivalent vector spaces of covariance matrices using Orthogonal Matching Pursuit. A

variety of experimental settings validates our hypothesis that contextual information in the form
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of camera motion, background motion and even correlation between different individual feature

modalities are vital cues for the analysis of web videos.

In the next chapter of this dissertation we switched our focus from low-level or semi-global

features to intermediate representations which in practice, is an equally important area of research

in video understanding. We presented an efficient probabilistic alternative to the traditional bag-

of-features based representation from low-level features computed from videos. Since we itera-

tively generate a Maximum Likelihood estimate of an instance given a set of characteristic features

which can be sampled randomly, our representation is conceptually more elegant and computation-

ally superior to the quantization approaches used in traditional bag of features based techniques.

In addition to commendable performance in standard action and scene recognition datasets, we

demonstrate substantial improvement in detection of large scale semantically accurate, human-

understandable mid-level spatio-temporal concepts for modeling complex events.

In the concluding technical section of this dissertation, we insinuated two discriminative

feature spaces to model temporal interactions between spatio-temporal concepts which can be effi-

ciently integrated into existing classifiers for complex event recognition. The first in these lines is

based on Subspace state identification techniques, wherein Block Hankel Matrices are constructed

from temporally evolving sequences of concept detector responses, followed by their Eigen decom-

position to yield compact descriptors. The second exploits statistically meaningful characteristics

from multiple interacting time-series such as lag-independence, harmonics, frequency proximity

etc., grouping similar temporally evolving processes into identical harmonic groups using an ex-

pectation minmization algorithm. Through thorough experiments, we exhibited state of the art

performance in complex event recognition on benchmark TRECVID MED 11-12 datasets.

Although the suggested approaches address major issues in complex event recognition from

multiple perspectives, their success for some of the frequently encountered issues - such as recog-

nizing events with very few training samples, is not conclusive. In future, we intend to address such

issues leveraging on information available from external sources such as web corpus, social media,
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and other image/video sharing sites, using advanced domain transfer techniques. We provided a

potential insight along this direction in our future work. We conjecture that this dissertation will

provide a significant amount of knowledge to researchers and practitioners in both computer vision

and multimedia communities, who are interested in solving the challenging problem of complex

event recognition.
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