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ABSTRACT

Recently, Attention Deficit Hyperactive Disorder (ADHD) getting a lot of attention
mainly for two reasons. First, it is one of the most commowlyrfd childhood behavioral dis-
orders. Around 5-1% of the children all over the world are diagnosed with ADHDc&ed, the
root cause of the problem is still unknown and therefore dolgical measure exists to diagnose
ADHD. Instead, doctors need to diagnose it based on thecalisymptoms, such as inattention,
impulsivity and hyperactivity, which are all subjective.

Functional Magnetic Resonance Imaging (fMRI) data has imeca popular tool to un-
derstand the functioning of the brain such as identifyiregtitain regions responsible for different
cognitive tasks or analyzing the statistical differendee brain functioning between the diseased
and control subjects. ADHD is also being studied using thRFiata. In this dissertation we aim
to solve the problem of automatic diagnosis of the ADHD scigj@ising their resting state fMRI
(rs-fMRI) data.

As a core step of our approach, we model the functions of alasaa connectivity network,
which is expected to capture the information about how sgorabus different brain regions are in
terms of their functional activities. The network is consted by representing different brain re-
gions as the nodes where any two nodes of the network are ctechigy an edge if the correlation
of the activity patterns of the two nodes is higher than sdmeshold. The brain regions, repre-
sented as the nodes of the network, can be selected at diffgi@nularities e.g. single voxels or
cluster of functionally homogeneous voxels. The topolabdifferences of the constructed net-
works of the ADHD and control group of subjects are then ex@tbin the classification approach.

We have developed a simple method employing the Bag-of-8/BdW) framework for
the classification of the ADHD subjects. We represent eacdke mo the network by a 4-D feature
vector: node degree and 3-D location. The 4-D vectors ohalhietwork nodes of the training data

are then grouped in a number of clusters using K-means; wéare such cluster is termed as a



word. Finally, each subject is represented by a histograg)(bf such words. The Support Vector
Machine (SVM) classifier is used for the detection of the ADBIlbjects using their histogram
representation. The method is able to achigig classification accuracy.

The above simple approach has several shortcomings. thiesg is a loss of spatial infor-
mation while constructing the histogram because it onlyn¢®the occurrences of words ignoring
the spatial positions. Second, features from the wholenlana used for classification, but some of
the brain regions may not contain any useful informationmag only increase the feature dimen-
sions and noise of the system. Third, in our study we used améynetwork feature, the degree
of a node which measures the connectivity of the node, witilerazcomplex network features may
be useful for solving the proposed problem.

In order to address the above shortcomings, we hypothdgrenly a subset of the nodes
of the network possesses important information for thesdiaation of the ADHD subjects. To
identify the important nodes of the network we have devedopenovel algorithm. The algo-
rithm generates different random subset of nodes each tinacéing the features from a subset
to compute the feature vector and perform classificatioe. Subsets are then ranked based on the
classification accuracy and the occurrences of each node itop ranked subsets are measured.
Our algorithm selects the highly occurring nodes for thel fatassification. Furthermore, along
with the node degree, we employ three more node featuregoretycles, the varying distance
degree and the edge weight sum. We concatenate the feafuites selected nodes in a fixed
order to preserve the relative spatial information. Expental validation suggests that the use of
the features from the nodes selected using our algoritheeitidhelp to improve the classification
accuracy. Also, our finding is in concordance with the ergptiterature as the brain regions identi-
fied by our algorithms are independently found by many othetiss on the ADHD. We achieved
a classification accuracy 6D.59% using this approach. However, since this method represents
each voxel as a node of the network which makes the numberd#snof the network several

thousands. As a result, the network construction step besa@omputationally very expensive.
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Another limitation of the approach is that the network feas,l which are computed for each node
of the network, captures only the local structures whileigrthe global structure of the network.

Next, in order to capture the global structure of the netwpnke use the Multi-Dimensional
Scaling (MDS) technique to project all the subjects from aknown network-space to a low di-
mensional space based on their inter-network distanceuresasFor the purpose of computing
distance between two networks, we represent each node bybat&ibutes such as the node de-
gree, the average power, the physical location, the neigindde degrees, and the average powers
of the neighbor nodes. The nodes of the two networks are tlagped in such a way that for all
pair of nodes, the sum of the attribute distances, whichasrter-network distance, is minimized.
To reduce the network computation cost, we enforce that theimum relevant information is
preserved with minimum redundancy. To achieve this, theeaat the network are constructed
with clusters of highly active voxels while the activity kg of the voxels are measured based
on the average power of their corresponding fMRI time-ser@@ur method shows promise as we
achieve impressive classification accuraciesib %) on the ADHD-200 data set. Our results also
reveal that the detection rates are higher when classditadiperformed separately on the male
and female groups of subjects.

So far, we have only used the fMRI data for solving the ADHDgdiasis problem. Finally,
we investigated the answers of the following questions. l@odtructural brain images contain
useful information related to the ADHD diagnosis problengh@he classification accuracy of the
automatic diagnosis system be improved combining themmdion of the structural and functional
brain data? Towards that end, we developed a new method toicertne information of structural
and functional brain images in a late fusion framework. Farcdural data we input the gray matter
(GM) brain images to a Convolutional Neural Network (CNNheloutput of the CNN is a feature
vector per subject which is used to train the SVM classifier the functional data we compute
the average power of each voxel based on its fMRI time sefiibs. average power of the fMRI

time series of a voxel measures the activity level of the LoXee found significant differences



in the voxel power distribution patterns of the ADHD and cohgroups of subjects. The Local
binary pattern (LBP) texture feature is used on the voxelgrawap to capture these differences.
We achieved’4.23% accuracy using GM feature®7.30% using LBP features anth.14% using
combined information.

In summary this dissertation demonstrated that the stralcimd functional brain imaging
data are useful for the automatic detection of the ADHD sttbjas we achieve impressive classi-
fication accuracies on the ADHD-200 data set. Our study ad$osito identify the brain regions
which are useful for ADHD subject classification. These filgdi can help in understanding the
pathophysiology of the problem. Finally, we expect that approaches will contribute towards

the development of a biological measure for the diagnosise@ADHD subjects.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

ADHD is rated as one of the most commonly found childhood figinal brain disorders.
Around 5-10% of the children all over the world are diagnosed with ADH.[Children diag-
nosed with ADHD may suffer from learning difficulties, deoping behavioral abnormalities or
fidgety, disobedience or aggression towards authoritieey Dften face difficulties in understand-
ing instructions, concentrating on a task and remembenmgprtant things. The children also
suffer from anxiety and depression and cannot control #rations.

Recently, researchers are putting a lot of effort to disctive root cause of this problem
which is still unknown. No well known biological measure sito date to detect ADHD. Instead,
clinical symptoms, such as inattention, impulsivity angbésactivity are used to characterize the
subjects affected with this problem. The ADHD diagnosiscess is often questioned for various
reasons. Many times the diagnosis is performed by gened@fpieians and family doctors who
do not have extensive training required for the task. Styadfi psychiatrists and neurologists,
lack of knowledge of the problem and instinctive judgmenkenghe situation even worse. As
a result, according to the Centers for Disease Control asdetion, one in seven children in
the United States and almost 20 percent of all boys receivagndsis of ADHD by the time
they turn 18. Many experts believe that this one in five ratia cclear sign of over-diagnosis of
the problem. All these facts motivate us to develop an auticnddagnosis process using brain
functional activity data which can standardize the detecprocess and reduce the dependency
on the human expertise. Dr. Thomas Insel, Director of theddat Institute of Mental Health

(NIMH) also shares the same view as he mentioned - "We neeédin lzollecting the genetic,



imaging, physiologic, and cognitive data to see how all the&ad not just the symptoms - cluster
and how these clusters relate to treatment resporis}”While talking about the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5). These esshave motivated us to ask two major
guestions. Can we create a framework for automatic claggditof ADHD subjects that performs
better than the current best algorithms? How can we idebtdijn regions that contain significant
differences between the ADHD and control groups? For outissuwe used rs-fMRI and sMRI

data of the brain.

1.2 fMRI Overview

The main part of our brain activity is performed in terms afrcounication among the neu-
rons. Neurons communicate among each other by transpatigaged particles or ions through
their synapsis. This activity results in an increase of gneequirements for the brain regions.
The brain produces this energy by consuming glucose andeoxygnsported through blood ves-
sels. Hence, the measurement of the blood oxygen level inia t#gion can be considered as an
indirect measure of the activity level of the region. Blooxly@en Level Dependent(BOLD) fMRI
is a technique to measure the brain activity by measurindkbed oxygen concentratiors}).
The fMRI data can be considered as a video where each frane eideo is a 3D image of the
brain activity. The regions with higher activity levels araptured with brighter intensity. The
brain volume is divided into small cubicle regions calleaeis. Hence, the fMRI data can also be

viewed as an intensity time series observed for each voxéledbrain volume.

1.3 Previous Works

Recently, fMRI has become a very popular tool for the analgdibrain functional ac-
tivities. It has extensive use in identifying the brain s responsible for particular cognitive

activities (task-related fMRI). Researchers also used hidtter understand different brain func-



tional diseases like Dementi&1] based on the functional activity pattern differences frtha
control group. Likewise, structural and functional braimaiging techniques are also being used to
analyze the group level statistics of the ADHD and contrdljects. Studies using structural MRI
(sMRI) data on ADHD subijects found abnormalities in diff@rerain regions, specifically in the
frontal lobes, basal ganglia, parietal lobe, occipitaeoénd cerebellum (Castellanos et al., 1996,
Overmeyer et al., 2001, Seidman et al. 2006, Sowell et al3200 57,65, 71]). In a different
set of studies, task-related fMRI analysis is used on ADHBjets. Bush et al., 1999] found
significant low activity in the anterior cingulate cortex &@hADHD subjects are asked to perform
the Counting Stroop during fMRI. Durston, 20039 showed that ADHD conditioned children
have difficulties performing the go/no-go task and displagrdased activity in the frontostriatal
regions. Teicher et al., 200G§] demonstrated that boys with ADHD have higher T2 relaxation
time in the putamen region of brain which is directly coneedio a child’s capacity to sit still.

A third set of works is done using the resting state brain fMtRlbcate any abnormalities
in the Default Mode Network (DMN)49]. Castellanos et al., 2008 ] performed the General-
ized Linear Model based regression analysis on the whole tiith respect to three frontal foci of
DMN, and found low negative correlated activity in precusf@nterior cingulate cortex in ADHD
subjects. Tian et al., 2006 §] found functional abnormalities in the dorsal anteriorguifate cor-
tex; Cao et al., 20061[J)] showed decreased regional homogeneity in the fronteltatrcerebellar
circuits, but increased regional homogeneity in the otaigortex among boys with ADHD. Zang
et al., 2007 §1] verified decreased Amplitude of Low-Frequency FluctuaidLFF) in the right
inferior frontal cortex, left sensorimotor cortex, bilegecerebellum, and the vermis, as well as
increased ALFF in the right anterior cingulate cortex, &fhisorimotor cortex, and bilateral brain-
stem.

Studies of group level statistics are successfully abled@ate the abnormal regions of the
ADHD subjects but still these techniques lack the abilitpofomatic diagnosis of the disordered

subjects. There have been relatively few investigatiorieaindividual level of classification of
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the ADHD subjects. One of the first attempts is made by Zhu.e2800 BZ] where regional
homogeneity of the fMRI data is used as the feature to chatisef ADHD subjects.

Recently, there is a global competition (ADHD-200) orga&adizor automatic diagnosis of
ADHD subjects as well as understanding the pathophysiotddlye problem. Researchers from
different disciplines of science are involved in this woflkhe organizers released a data-$¢f |
containing rs-fMRI data, SMRI data and phenotypic infonoabf a large number of ADHD and
control subjects. In total, eight different data collentm®enters contributed for the data set. Since
subjects from different demographic and different expental protocols are used by different
data centers for collection of the data etc make the dataosgplex and challenging.

A set of interesting works on automatic classification islghied using the ADHD-200
data set (§], [7], [16], [17], [19], [24], [26], [3Q], [56], [63], [6€]). Many of these works used
some combination of rs-fMRI, sSMRI and phenotypic data. Sahthe common sMRI features
used for the classification are cortical thickness, grayjtengirobability and texture of structural
brain images. Regional homogeneity and Fourier transfbomare some of the features calcu-
lated from fMRI data and used for the classification in thel&s. Many of the studies computed
functional networks from fMRI data and used different netiwstatistics as the features. Brown
et al., 2012 7] used only phenotypic features for their experiments aiticgstt impressive classi-

fication accuracies. All of these works achieved classificediccuracy higher than the chance.

1.4 Proposed Approach

The purpose of this dissertation is to analyze the impogasfcthe brain imaging data
for developing an efficient method for automatic diagnosithe ADHD affected subjects. We
used rs-fMRI and gray matter (GM) structural MRI data reéebfor the ADHD-200 competition
for the experimental validation of our proposed method. We alentified the key brain regions

which show significant differences of feature values betwtee ADHD and the control groups of



subjects. We believe that our study will not only help to Ouwh efficient diagnostic system, but
also will provide important pathophysiological findings iatn will help to better understand the
root cause of the disorder.

As already indicated, though the root cause of the ADHD Ikwstknown, there are some
hypothesis regarding the problem. One of the strong noi®tise lack of neurotransmitters in
the ADHD affected subjects that prevent the normal comnatiins among the different brain
regions. In our dissertation, we attempt to verify this hjy@sis. The core step of our approach is
the construction of the network which can capture the fmeti connectivity among different brain
regions. To construct the network, the brain volume is didithto small regions where each region
is represented by a node of the network. The brain regionbeaelected at different resolutions.
In our approach we chose to use two different resolutiongigriiner resolution, we represent each
voxel as a node while in the coarser resolution, clustersio¢tionally homogeneous voxels are
represented as the nodes of the network. Any two nodes ofettverk are connected by an edge
if the correlation of the average time series of the regismsuificiently high. Once the networks
are constructed for the subjects under study, the netwtwgslogical differences are exploited for
the classification of the ADHD subjects. We started with apdéxmethod which uses the Bag of
Words (BoW) framework to encode the network topologicatdess. In this method, each node
of the functional connectivity network is expressed by aplds: the degree of connectivity and
the physical 3D coordinates. The 4 tuples representatibalt the nodes of the training data are
then grouped into clusters using the K-mean clusteringriilgn. These clusters are referred to
as the words. The BoW framework represents each subject essogiam of such words. The
histograms are then fed into the SVM classifier for the autan@assification of the ADHD
subjects. We achievetll% classification accuracy rate using this method on the ADHD+2old
out set.

While BoW framework provides us an automatic system for tasgification of the ADHD

subjects, we look forward to address the shortcomings afitod and improve the classification
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accuracy. First, the stated framework uses the features thhe whole network to construct the
histogram, but some of the brain regions may not contain aeyullinformation for the ADHD
diagnosis problem. Hence, using features from the wholevor&tmay unnecessarily increase
the dimensions of the feature vector and add noise to thersysTo address this issue, we hy-
pothesize that only some nodes of the network contributetlilismformation for the classification
problem. We developed an algorithm to identify the usefulexof the network and construct the
feature vector using the features from the selected nodgs loneach iteration of the algorithm,
it selects a random subset of the network nodes, extradisrésafrom these selected nodes, and
performs classification. The subset selection step is pagd several times each time recording
the classification accuracy. The subsets are then ranked lnaisthe classification accuracy and
the occurrences of each node of the network in the top penmgrsubsets are computed. The al-
gorithm selects the highly occurring nodes as useful regigimother problem of the Bow method
is the loss of spatial information while constructing thetbgram of the degree features. To ad-
dress this problem, we compute the feature vector by conatitgy the features from the selected
nodes in a fixed order. This helps to preserve the relativeadpasition of the nodes. Finally, we
realize that along with the degree features, other compdéxark features may also be useful for
this problem. Therefore, we compute three more networkifeatsuch as the network cycles, the
varying distance degree and the edge weight sum.Experinaitdation shows that the improve-
ments help to increase the classification accuracy. Theoweprmethod achieve a classification
accuracy 0£9.59% on the ADHD-200 hold out set.

The method described so far computes the network featuresatd node of the network.
While these features can capture the local structure oféheark they ignore the global topology.
In order to address this issue, we propose a classificatenefivork which refrains from using
the network features. Instead it maps the networks onto alovensional spatial configuration
and perform classifications on the projected space. Theank$won their own are hard to use

as feature points as they are part of a unknown high dimeakgpace. The projection method
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helps us to use the entire network structures of the subgectke features for the classification.
Our method can be subdivided into three main parts. In thegag we construct the resting
state functional connectivity networks of the brains ofth# subjects under consideration. The
nodes of the network are formed by the clusters of highlwacdind functionally homogeneous
voxels which helped to significantly reduce the network disien as well as network computation
cost. The networks are modeled as attributed graphs whekeresle has a signaturé4]. The
signature of a node is a set of attributes which charactetize node. The attribute set includes
the degree of the node, the degree of the neighbour nodeppther of the node, the power of
the neighbour nodes and the physical location of the node.pbwer of a node is calculated by
averaging the power of the fMRI time series of all the voxemprising the node. In the second
part we compute distances between all possible pairs ofankéwThe distance computation for a
pair of networks is a two step process. In the first step alenualr distances are computed based
on their signature values. In the next step, all nodes of eheark are assigned to the nodes of the
second network such that the total matching cost is minichiZée Munkres algorithm is used for
the node assignment problea?]. In the last part the networks are projected to a space aifspe
dimensions based on their distance measures. The Multidiimeal Scaling (MDS){7] method

is used for this purpose. Finally, a Support Vector Machi®¥€N]) is used for the classification
of ADHD subijects in the projected space. The main contrdvutif the work is a novel automatic
classification framework of ADHD subjects based on the togigial differences of the functional
brain connectivity networks of the ADHD and control grouppsabjects. We achieved impressive
detection accuracies on the holdout s&&H5%) of the ADHD-200 data set.

Finally, we try to find the answers to the following questiomidrst, is SMRI data useful
for solving our proposed problem? Second, is it possiblenjorove the automatic classification
method by combining structural and functional imaging @afo seek the answers we use two
classification frameworks for structural and functionaldaodalities. Later we combine the two

modalities in a late fusion framework. For structural datause the 3-D Gray Matter (GM) image
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of the brain. The GM image is presented as 2-D slices to a Gotwnal Neural Network (CNN)

to extract features. The features from all the slices ara therged using a novel late fusion
framework. For functional data we use a distribution of agerpower of all of the brain voxels.
The average power of all the voxels of a brain constituteptiveer map which is a 3-D image. We
found considerable differences of power distributionsuMeein the ADHD and control groups of
subjects. To capture the differences, we compute the Localris Pattern (LBP) texture features
in three orthogonal directions of the power map image. Theeae accuracy on ADHD-200 hold
out data set using GM and LBP power map featuresrarg3% and77.30% respectively while

combination of both modalities further improve the accyracr9.14%.

1.5 Contribution

In this dissertation we propose a hypothesis for the autiordatection of the ADHD sub-
jects using their MR brain image data. Different brain regiaeed to functionally coordinate with
each other to perform different cognitive tasks. We propbs¢ the ADHD subjects lack these
coordinations due to reduced levels of presence of sometmansmitters in the brain. To ver-
ify this hypothesis, our proposed method tries to find outttp®logical differences of the brain
functional connectivity networks between the ADHD and colgroups of subjects and use those
for the classification problem. Finally, we showed that ttractural brain images also contain
useful information related to the ADHD diagnosis problend arsing it with functional images
can provide additional information which helps to improke tlassification accuracy.

The experimental results validate our proposed method aschieve impressive classifi-
cation accuracies. Especially, our results using attedbgraphs and combination of structural and
functional imaging data beat the current state of the agdlien rate on the holdout sets of the
ADHD-200 data set. Other than the diagnosis of the ADHD sttbjeour method helps to identify

the brain regions with most useful information for the cifasation task. We believe that this will



help the community to better understand the pathophysyadbthe problem.

1.6 Organization of Dissertation

The rest of the dissertation is organized as follows: Chadidescribes the previous ap-
proaches on automatic ADHD detection, different brain imgdechniques especially fMRI, the
details about the ADHD-200 data set and the data prepraaestaps. Chapter 3 provides our first
approach for ADHD detection based on the BoW framework. Niexthapter 4 we present the
network features for the classification of the ADHD subje@bapter 5 describes our method for
ADHD detection using the whole network structure and prijecthem into a lower dimensional
space based on inter-network distances. Chapter 6 des¢hbdusion framework of structural
and functional brain imaging data. Finally, Chapter 7 summea the contributions and findings

of this dissertation followed by a discussion of future direns to explore.



CHAPTER 2: BACKGROUND

In this chapter first we provide a brief description of diffet brain imaging techniques
and introduce the main concepts of fMRI data. Next, we dbsdtie previous works related to the
problem of automatic detection of the ADHD subjects. In timalfisection we provide a detailed
description of the ADHD-200 data set and the preprocesdimsserformed to make the data

useful for any further analysis.

2.1 Brain Functioning and Functional Imaging Techniques

Most of the brain cognitive activities are performed in terof communications among
the neurons through their synapses. The communicatiomtelsied as neural signaling, is per-
formed through transmission and reception of the neursirgtiter molecules which are essentially
electrically charged particles or ions. The transmissiatess of these ions through the electri-
cal potential field between a transmitter and receptor meui® called conduction. This neural
signaling is a high energy consuming process. Wheneverarefa brain is activated by a cog-
nitive task, it increases the neural signaling processamelyion which in turn amplifies the energy
requirements in the locality.

The energy required for the functioning of the brain is pratlithrough the oxidation of
the glucose supplied by the blood vessels of the brain. Ibseved that the activity in a region
of the brain is highly correlated with the local blood flow, Y@en and glucose consumption as the
increase of brain activity level in a locality leads to thergase of the other events. Thus the brain
metabolism process is highly informative about the agtilével of the brain. Brain functional
imaging techniques take advantage of this relation to mapattivity level of the brain regions
with measured local blood flow and glucose/oxygen consuwmgti

During the last few decades there have been a lot of intememalyzing brain function-
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ing using brain functioning imaging techniques. The pleshof research papers in the area of
neuroimaging indicates the same. Here a brief discussiontabhe common functional imaging

techniques is provided.

2.1.1 Positron Emission Tomography (PET)

In PET the subject s first injected with a short lived radidgtracer isotope. The tracer is
introduced into the body through a biologically active noolke. After a waiting period the active
molecules are concentrated in the desired tissue and tiecsigoplaced under a scanner to record
radioactive emission of the tracer. In the process of debaytracer molecule produces a positron
which in turn generates two photons moving in opposite tivas. The scanner can detect the
photons to measure the location of the emission. PET cactdéeblood flow or glucose intake
rates, which are the indirect measures of the brain actigitgls, by measuring the quantity of
radiation from a location. PET data has high spatial regmiutapproximately 1-10 mm) at the

cost of low temporal resolution. For further details plegefer to the document|/].

2.1.2 Multichannel Electroencephalography (EEG)

As itis already described, the neurons communicate with etieer by exchanging ionized
particles through the synapses. The communication pramesgitutes the main part of the brain
activity which causes an electrical current in the brain.GEE a recording technique of brains
electrical current for a short period of time. EEG can redbelneuronal activity in a very high

temporal frequency (in the range of milliseconds) but thetigpresolution is compromised.

2.1.3 Magnetoencephalography (MEG)

The flow of ionized particles through neurons produces a weadnetic field in the brain.
MEG is a functional neuroimaging technique which can re¢bedmagnetic field produced by the

electrical current due to neuronal activity. The brainatstievel is then mapped with the recorded
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magnetic field. As the brain’s magnetic field is very weak reisorded using extremely sensitive
magnetometers which use an array of superconducting quainterference devices (SQUIDSs).

Similar to EEG it has very high temporal resolution and lowtsgd resolution.

2.1.4 Near Infrared Spectroscopic Imaging (NIRSI)

NIRSI is a non-invasive optical imaging technique which barused as a functional brain
imaging method. NIRSI uses near infrared (from about 800002500 nm) electromagnetic signal
to measure blood oxygenation changes in blood vessels dir#iie by measuring the absorption
of the near infrared signal emitted by the source onto thelstaface. The advantage of NIRSI is
it is inexpensive, portable and can be used even when thecgudmoving. NIRSI and functional
Magnetic Resonance Imaging (fMRI) produce similar datacasesprevious studies’{]] have

shown close spatial and temporal correlations when theisiatégorded using the two methods.

2.1.5 Functional Magnetic Resonance Imaging (fMRI)

As we used fMRI data for solving the ADHD classification pratol, we provide the basic
principles behind the data capturing method. The core q@nokefMRI is based on the idea
of the Nuclear Magnetic Resonance (NMR) technology which heen around for a long time.
NMR has a widespread application in the biomedical field foalyzing the characteristics of
biomolecules. The basic principles of NMR are explainechmriext few sections without going
into the mathematical details. The interested readersedeered to the following document f]
for further details.

It is observed that the proton and neutron particles thastttoe the nuclei of atoms,
possess some angular momentum. A well-known fact of Physit&t a moving electric charge
produces a magnetic field. Now, because a proton is a chay#idlg, the rotational motion

produces a magnetic field whose direction is along the dinect the rotational axis.
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Figure 2.1: The figure demonstrates the main steps of NMRAt(#)e beginning the nuclei rotate
around their axes where axes of rotation oriented in randogntibns. As a result the net magnetic
effect is zero. (b) When an external magnetic figlgis applied, the axes of rotation are aligned
along or against the direction d¥,. (c) When an radio wave in the Larmor frequendy, ) is
applied, nuclei absorb the energy to change their state #lomg theB, to against the3,. As a
result the net magnetization vector drops down taithey plane.

On the contrary, a non-charged particle neutron does net #tie property. Nuclei being
constituted by protons and neutrons sometimes possesgataamomentum as a net effect. All
the nuclei which have odd numbers of protons and/or neutnas an angular momentum. This
is also called nuclear spin. Because a nucleus is also aezhaayticle, it produces a magnetic
field due to the rotational motion. Such nuclei with spins banmagined as small bar magnets
with north and south poles causing tiny magnetic fields. Tdrecept is explained in Figur2.1
(a). According to quantum mechanics, the nuclei with angolamentums are allowed to have
only very specific quantized spin values. These quantiz&tesaare called spin numbers. In a
magnetic field the energy of a nucleus with spin numbeplits into (2/ + 1) discrete levels.
For example the nucleus of a hydrogen atom has only one pwitbnspin numberl = % and
(2 x £ + 1) = 2 discrete energy levels. There are other nuclei likg, ° N, "O which have non

zero spin numbers but for the sake of the easiness of unddistawe will describe the concept of
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NMR using the example dfH (hydrogen nucleus) only. As it is staté® can have two discrete
energy levels under the influence of some external magnelit fThe energy levels correspond to
the relative orientations of the nuclear magnetic momentthe lower energy state the magnetic
moment of & H is aligned in the direction of the applied magnetic field vehierthe higher energy
state the direction of magnetic moment is antiparallel toagpplied field. Now consider a sample
for example water that contains hydrogen atoms. Initidily tnagnetic moment o7 will be in

the random direction producing a zero magnetic field in theeffect. Once an external magnetic
field B, is applied on the sample, thé will try to align themselves along the direction of tig.
Actually, in the absolute zero temperature, all tieshould be in the lower energy state and hence
should be aligned along thig,. While in natural temperatures, due to the thermal agitesmme

of the' 7 will align along theB, and some against thg&, cancelling each others’ magnetic effect.
In room temperatures, a slight excess'&f will align along the B, leading to a net magnetic
moment along thé,. The stronger thé, the more' A will align along the direction. Also, these
alignments (along or against tii#) of ' I are not perfect. Instead, they wobble or precess about
the axis of theB, with a frequencyw, (Figure2.1(b)). This is called the precessional, Larmor or

resonance frequency, and is defined by the famous Larmotiequa

wo = 7By (2-1)

Where~ is the gyromagnetic ration and is unique for every types afmatNow according
to the quantum mechanics, th& which are in the lower energy state can change their state to
the higher energy if an external electromagnetic signaiclwioscillates exactly in the Larmor
frequencywy, is applied. For NMR this electromagnetic frequency liethie range of the Radio
Frequency (RF). Lets assume that tBgis in the direction of the z axis of a coordinate frame.
Then the effect of applying the RF signal with frequengycan be viewed in the macro level as

the M, spiral down towards they plane of the coordinate (Figug1(c)). Once the RF signal is
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turned off three things begin to happen.

e In micro level the nuclear spins start returning from thehleigenergy state to the lower
energy state. As a net effect the absorbed RF energy is setidad at the Larmor frequency.
This retransmission can be detected as a signal whose adgptiecays away exponentially.

The decaying of the signal is termed as the 'free inducticrage

e The M, begins to return towards the initial direction along thaxis. The recovery rate of
M, along thez axis can be mathematically described by an exponentiakcufhe timet
needed to recovet3.2% of M, along thez axis is called th&'1 relaxation time. Thig'1

value is unique for each sample under consideration.

e Initially in phase, the excitedH begin to dephase. This is because ebHhexperience
a slightly different magnetic field due to the interactiontioly magnetic fields created by
neighbor' H. As a result theé H start precessing at different frequencies which resulein d
caying of the amplitude of the released signal. The decaigaBsamplitude is exponential
and the time taken for the signal strength to reduce t8t#&, of the original value is called
T2 time. In real world the decay is fastéF%x) than theT'2 due to the variables outside of

controls.

From the above discussionitis easy to understand that thie biv be used for the analysis
of the chemical composition of the underlying sample beedtlisand 72 relaxation times are
uniquely dependent on the sample. The concept of the MRIri&se realization that a spatially
varying magnetic field results in a spatially varying Larrfrequency. To elaborate, we know from
the Larmor equation that the Larmor frequengyis proportional to the strength of the applied
magnetic fieldB,. When a spatially varying external magnetic field is appbadhe sample, the
nuclei from different spatial locations start precessimglifferent frequencies. After the sample

is excited using a RF signal, the nuclei start releasingadggim different frequencies which is
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a function of their spatial locations. These signals areaetl and when a Fourier transform is
performed they reveal the whole spectrum of frequenciesh Er@quency of the spectrum of the
signals can then be mapped to the corresponding spatididodzsed on the function.

As described in Sectio.1 brain activity requires energy in the form of Adenosine Tri-
Phosphate (ATP). The formation of the ATP requires glucogkaxygen transported to brain via
blood vessels. This oxygen is carried by large iron-coirtgimolecules called hemoglobii/().
When oxygen is bound, the molecule is represented@3,. Now, Hb is paramagnetic (having
significant magnetic effect on the environment) due to tles@nce of the iron atoms bithO, is
diamagnetic and therefore have very little magnetic effétiese changes in magnetic properties
have an effect ofi”2 and7'2x relaxation times. Higher density dfb0O, in the blood increases
theT2 and72x relaxation time and as a result, also increases the cowofrd® images. Because
the brain regions with higher activity have higher density»0O,, high activity can be directly
linked to the high intensity regions of the fMRI image. In suary, a frequency in the spectrum
of signals retransmitted back by the blood sample, whiclkkéged by an RF signal, indicates the
spatial location of the transmission while the relaxation time of the transmitted signal indicates

the density of the7b0, as well as activity level of the particular spatial location

2.2 Related Work

The fMRI data has been widely used in the studies of betweeunpgstatistics to identify
the abnormal regions related to the ADHD subjects. Whileigrievel studies are definitely help-
ful for understanding the problem, they are not that usefudfitomatic diagnosis of the individual
subjects. The use of the machine learning approaches omdreilmaging data for the prediction
of functional diseases like Alzheimer’'s and Schizophresigery common $1, 36, 37], but auto-
matic classification of the ADHD subijects is a relatively nesid. Among the first few efforts,

Zhu et al. BZ] used rs-fMRI data to predict the ADHD labels of the subjettster, the release of
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the ADHD-200 competition data set motivated a series ofietfd, 7,16,17,19,24,30,56,63,68)]
to be published related to the diagnosis of the ADHD subje@e grouped these works based
on the main approaches or features used to solve the prolMiamy of the works fall under the

multiple groups as they used different methods or featuresinpare the performances.

2.2.1 Regional Homogeneity (ReHo0)

One of the earliest efforts made for the classification of AllHD subjects using their
rs-fMRI data used the regional homogeneity of brain actiei the feature for the classification
process §2]. For each voxel of a brain volume, the regional homogenisitmeasured with K
nearest neighbor voxels using the Kendall's Coefficientaficdrdance (KKC). This is a measure
to determine how synchronous a voxel activity pattern isivig locality. Finally, the combination
of the Principal Component Analysis (PCA) and Fisher Disanative Analysis (FDA) are used
for the classification. The result is inconclusive as theeexpents are performed on a data set
containing only 20 subjects. ReHo feature is also used iresointhe studies performed on the
ADHD-200 data setl7, 24,63]. While ReHo can measure the similarity of the activity pats
in a local region, it completely ignores the similarity/isilarity of the activities of the regions

which are spatially far from each others. Thus, it fails tptoae a global picture.

2.2.2 Functional Connectivity Network (FC-Nw)

FC-Nw is produced by segmenting the brain volume into d#férRegions Of Interest
(ROIs) and representing each ROI as a node of the networkn&wggtion of brain into ROIs can
be performed using different criteria such as the funclitleanogeneity or structural similarity.
Intensity time series for each node of the network is thenpmded by averaging the intensity time
series of all the voxels belonging to the node. Correlatmirtbe time series of all pairs of nodes
of the FC-Nw produce the edge weights. Different variatiohsorrelation are used in different

methods to compute the FC-Nw. Dai et ai4] used Pearson’s correlation coefficient to compute
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correlations of average time series of 351 functionally bgeneous ROIs of CC400 map produced
by Craddock et al.{7]. These correlation weights are used as the features farléissification.
Bohland et al. §] used AAL atlas of 116 ROIs to compute FC-Nws using threeatams of
correlation - Pearson’s correlation coefficient, Sparggilegized Inverse Covariance and Patel’s
Kappa. Different local and global network features are coteg for classification. Eloyan et
al. [30] used 5 regions of motor network and 264 seed voxels to coenpud different FC-Nws
using Pearson’s correlation coefficient. Network edge hisigre used for final prediction. Colby
et al. [L9) used Harvard-Oxford atlas with 100 ROIs and CC400 map topgetwo different FC-
Nws. Classification is performed using network edge weightthe features. A similar FC-Nws
formation technique is used by Cheng et al][ The FC-Nw is a more sophisticated and efficient
approach to model the brain functional activity patterraitthe ReHo feature. This is because the
FC-Nw can capture the functional similarities of the regiovhich are in close spatial proximity
as well as far from each others. Often the networks cannosbd directly for the classification
because of the very high dimensionality and a careful feasatection technique is needed on

those cases.

2.2.3 Fractional Amplitude of Low-frequency FluctuatiéAL(FF)

fALFF of a signal is defined as the power of the signal in a gil@n frequency range
divided by the total power in the entire detectable freqyeange. The low frequency fluctuation
of the activity pattern is a basic characteristics of théimgsstate brain and can be used as a bio
marker for the prediction of the ADHD label of the test sulbgecCheng et al.17] computed
fALFF score for each voxel of the brain volume in the frequerange 0f0.0090.08Hz. Sato et

al. [63] also computed voxel level fALFF score for the frequencygainf0.010.08 Hz.
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2.2.4 Structural Image Features

Structural images are also proved to be useful for the autorlassification of the ADHD
subjects. Chang et all§] computed the Local Binary Patterns (LBP) texture featuvoenfsSMRI
data provided with ADHD-200 data set. For each voxel of trarbvolume three LBP scores are
computed for three orthogonal plane directions. Next, eadiject is represented by a combined
histogram of LBP scores computed for the three plane doestiLBP scores in each plane direc-
tion can have 256 different values. Hence, the size of thebowead histogram I8 x 256 = 768
where each bin of the histogram represents the number oflsyewth a particular LBP score.
These histograms are used for the training of the classiii@rrddHD label prediction of the test
subjects. In some other papers, structural features frdi@reint cortical and non-cortical brain
regions are computed. Dai et al/] used the cortical thickness and gray matter probabilitthas
structural image features. Bohland et &l. Jised the average cortical thickness, surface area, vol-
ume, mean curvature and standard deviation of these medeussach cortical area of interest and
subcortical gray and white matter structures. Colby etlal.jomputed the number of surface ver-
tices, surface area, gray mater volume, average cortindss and standard deviation, cortical
mean curvature, cortical folding index and cortical cuavatindex from 34 cortical regions and
the regional volume, regional voxel intensity mean anddaath deviation from 45 non-cortical
regions. Structural images provide a different perspediivapproach the ADHD subject clas-
sification problem. The data helps to verify if the brain stanal deformities are related to the

functional irregularities found in the ADHD subijects.

2.2.5 Phenotypic Information

Many of the studies used the phenotypic information praviide each subject in the data
set to improve the prediction accuracies. Brown et gdlshowed that the use of the phenotypic

information only for the prediction of the ADHD label can petform the imaging data. The
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phenotypic information used for the classification inclsidiee data collection site, gender, age,
handedness, verbal IQ, performance 1Q and full 4 1Q with &stogclassifier. Among other works
Bohland et al. §] used the age, gender, handedness, verbal IQ and Perfan@nSidhu et
al. [68] used the age, gender, scanning site, verbal 1Q, perforen&@cand full IQ, Colby et
al. [19] used the age, gender, full-scale 1Q, handedness, ADHIximEasurements, hyperactiv-
ityimpulsivityinattentive scores, secondary diagnosid medication status. While the phenotypic
information is an indirect measure and does not providesimgight about the brain functional
or structural abnormalities, it can some times help bogdtie classification accuracy when used

with imaging data.

Table 2.1: Summary of the training and test sets from diffedata centers released for the ADHD-
200 global competition.

Center | SubCnt | Age (yrs.) [ Male | Female | Control [ Combined | Hyperactive | Inattentive
Released data set
KKI 78 8-13 42 36 57 16 1 4
NeurolIMAGE 39 11-22 25 14 22 11 6 0
NYU 176 7-18 111 65 87 57 1 31
OHSU 66 7-12 34 32 38 15 1 12
Peking 183 8-17 135 48 114 22 0 47
Pittsburg 89 10-20 46 43 89 0 0 0
Washington 61 7-22 33 28 61 0 0 0
Holdout data set
KKI 11 8-12 10 1 8 3 0 0
NeuroIMAGE 25 13-26 12 13 14 11 0 0
NYU 41 7-17 28 13 12 22 0 7
OHSU 34 7-12 17 17 27 5 1 1
Peking 51 8-15 32 19 27 9 1 14
Pittsburg 9 14-17 7 2 5 0 0 4
Brown 26 8-18 9 17 - - -

2.3 Data Set and Preprocessing Steps

We used the ADHD-200 data set for all the experimental véibda of our methods. The
following sections describe the data set and the prepriogesteps needed to make the data useful

for any further analysis.
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Table 2.2: Table lists the summary of the scan parameteglftire data centers.

TR/TE (ms) | Slices | Thickness (mm) | FoV Read (mm) | FoV Phase (%) | Flip Angel (degree)
KKI 2500/30 47 3.0 256 100 75
NeuroIMAGE 1960/40 37 3.0 224 100 80
NYU 2000/15 33 4.0 240 80 90
OHSU 2500/30 36 3.8 240 100 90
Peking 2000/30 33 35 200 100 90
Pittsburgh released 1500/29 29 4.0 200 100 70
Pittsburgh holdout 3000/30 46 35 240 100 90
Washington 2500/27 32 4.0 256 100 90
Brown 2000/25 35 3.0 192 100 90

2.3.1 Data Set

The ADHD-200 data set is prepared and publicly shared by tag®Bureau. Eight dif-
ferent centers contributed to the compilation of the whaadet, which makes it diverse as well
as complex. The following abbreviations for the data centee used throughout the disserta-
tion: Kennedy Krieger Institute (KKI), Neuro Image Samphe(rolmage), New York University
(NYU), Oregon Health and Science University (OHSU), PeHlihgversity (Peking), University
of Pittsburg (Pittsburgh), Washington University in St.ui® (Washington) and Brown university
(Brown).

The data for the competition was released in two stages. driiitst stage data from the
seven data centers, containing in totab subjects, was released for the training of the classifica-
tion model. Throughout the dissertation we refer to it asréleased data set. Later, data f0F
subjects from the seven data centers was released witleolaidtél (ADHD or control) information
for validation of the performance of the trained classifmatmodel. We refer to it as the hold-
out data set. After the competition, labels for the holdatbdset were released for the research
community. Mainly three different categories of data, utthg structural data, functional data
and phenotypic information, are provided for each subjethé data set. Structural data contains
3D structural brain image of a subject. The voxel resolufibrx 1 x 1 mm) of the structural

data is four times higher than the functional data. Alondhilite whole brain images, Gray Matter
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(GM), White Matter (WM) and CerebroSpinal Fluid (CSF) imagee also provides. These are the
segmented images contain only GM, WM, and CSF regions of thie bespectively. The voxel
resolutions of these images are same as the whole brainwstablitnages. Functional data con-
tains rs-fMRI data of the brain where subjects are askedmpétform any conscious task while
capturing the data. rs-fMRI data can be assumed as a 3D vidée brain function captured at
a voxel resolution oft x 4 x 4 mm. Different phenotypic information, such as the age, gend
handedness, 1Q, is also provided for each subject. In odlystue used the rs-fMRI data, GM
images and male-female phenotypic information.

Based on the information provided with the phenotypic datexcluded all those subjects
from our study which have questionable functional imagdigu@)Cr.s;, = 0 of the phenotypic
data sheet). Consider Tab®l for an overview of the data used in our study. Different data
centers used different scanners and scanning parametecagdturing data. For example KKI
and NeurolMAGE used the Siemens Trio 3-tesla scanner, OH&dd the Siemens Magnetom
TrioTim syngo MR B17 scanner and Peking used the Siemens &lagnTrioTim syngo MR
B15 scanner. Some important scanning parameters used ldatheenters are listed in Table
2.2 Also different data acquisition parameters are used bgreifit data centers such as KKI and
NeurolIMAGE captured data with subjects’ eyes closed, OH8U Reking asked their subjects
to keep their eyes open. While OHSU showed a fixation crodseasdreen, Peking didn’t show
anything. All research conducted by the ADHD-200 data ¢buating sites were performed with
local IRB approval, and contributed in compliance with lo&B protocols. In compliance with
the Health Insurance Portability and Accountability AciPA) privacy rules, all the data used
for the experiments of this dissertation are fully anonyediz The competition organizers made

sure that the 18 patient identifiers as well as face inforonedre removed.
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2.3.2 Data Preprocessing

The recorded fMRI data need to be preprocessed before iteasdful for any analysis.
For all our experiments we used the preprocessed restiteyfs&| data released for the com-
petition. The preprocessing is performed by the competibi@anizers using the AFNP[] and
FSL [40] tools and computed on the Athena computer clusters at tlggrivé Tech advance re-
search computing center. The main preprocessing stepsperd on the fMRI data are described
in the following paragraphs.

The first preprocessing step requires the slice timing ctoe. fMRI data can be assumed
as a video of brain activity where in each time stamp a 3D imafgéhe brain functioning is
captured. These 3D images are formed by scanning the bre@s sine after another. As a result
each slice represents the brain activity at a different fawiat. To correct this problem a temporal
interpolation method is used such that it appears that tteefdaall the slices of a brain volume is
acquired at exactly the same time.

The next common preprocessing step is the head motion tiome®uring the scanning
process the subjects might slightly move its head. As atethd brain regions in different 3D
images are not exactly superposed with each other. To fixptiolslem each of the 3D images
is transformed using rotation and translation so that tfiferént brain regions are aligned in the
whole video.

The third main preprocessing step involves the registmatibthe brain volumes of the
individual subjects onto a common template space. As thessand shapes of the brains may
vary a lot for the subjects under consideration, the voxéls same coordinates in fMRI data may
belong to the different brain regions for the different ®at§. To solve this problem the data is
registered on thé x 4 x 4 mm voxel resolution Montreal Neurological Institute (MI$pace which
is a common space on which further analysis can be performed.

Next the data is bandpass filtered (0.009 Hfz <0.08 Hz) in the temporal domain to
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exclude all the frequencies which are not relevant for theyasis of the resting state functional
connectivity. Finally, to remove the noise, the data is t@drby convolving with &-mm Full
Width at Half Maximum (FWHM) Gaussian filter. All fMRI data Wwames are of sizd9 x 58 x 47
voxels, but the number of samples across time varies amenggiia capturing centers.

Structural images preprocessing involves removing skudiges from the data, segmenting
the images into GM, WM and CSF regions, and transformingrttegies to a template space. All
the structural images have voxel resolution 7 x 233 x 189. For further information about the
data and preprocessing steps and how to access the fredpbbvaata we refer the interested

readers to the following web document].

2.4 Summary

In this chapter we provide a short description of how brainctions and explained the
fundamental concept behind the brain imaging techniques.li$téd the commonly used brain
imaging techniques and provide a detailed description®fMRI| data capturing process. In the
related work section we introduced the already existingrigpies for the automatic detection of
the ADHD subjects using the brain imaging data as well as benptypic information. Finally,
we provide a detailed description of the ADHD-200 data settvis used in this dissertation for
the experimental validation.

In the next four chapters we describe our method for solviregproposed problem. The
first approach uses the BowW framework to compute the histogfahe brain functional network
features. In the second approach we analyse the importattee metwork features in more details
for the classification of the ADHD subjects. The third apmtoanodeled the functional brain
networks as attributed graphs and uses the inter-netwstérdies for projecting the networks in
a low dimensional space for the efficient classification. hia fourth approach we combined the

structural and functional imaging data to further improwe olassification accuracy. Finally, in
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the last section we provide a summary of the dissertatiorttamgossible future works.
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CHAPTER 3: BAG-OF-WORDS FRAMEWORK FOR THE DIAGNOSIS
OF ADHD

The BoW approach, originated in the natural language psingsallows a dictionary-
based modeling of the documents. The framework represantsdcument as a bag containing
a subset of words from the dictionary where each word in tleegh@nt can occur multiple times.
This type of approach has also been popular in the Computgor/area and has been applied
to many problems such as the image or video representaiignl |, 48]. In this chapter, we
introduce the BoW approach to the biomedical imaging comtywspecifically for the processing
of the functional brain networks for the automatic detatttbthe ADHD subjects. The following
sections present an overview of BoW framework, our methatbsisification using the framework,

experimental details and a discussion of the significantleeoivork.

3.1 BoW Overview

The idea of BoW framework originated in the area of documiassification P3,43]. This
is based on a simple idea which says the class of a documebeocdetermined from the number
of occurrences of the words in the document. Following tleajda document is represented by
a histogram where each bin of the histogram represents tmbenof occurrences of a distinct
word of the document. A dictionary is constructed contagnatl the distinct words considered
for the classification model. The number of bin count of tredgram represents the size of the
dictionary. The framework is named BoW as a document is sgorted by the count of occurrences
of all the distinct words only, ignoring the grammar and ordkthe words. Finally, a classifier
can be trained based on the histogram representationderietit examples of training documents.
Given the histogram representation, the class of any unkrimeument can be determined using

the trained classifier.
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The same idea is adapted in the computer vision area for finesentations of the images
and videos as the bag of visual words. The main problem ofrparating the BoW framework
in the computer vision is the construction of the visual wdrctionary. This is because unlike
in the case of words for document classification, visual wak not easily identifiable. For the
purpose of constructing the visual word dictionary, firstheBnage or video is represented as a set
of local features. Next, all the local features from all thearting samples are represented in the
feature space where they are clustered using the K-meaechgsalgorithm. Each of the clusters
forms a codeword which can be considered as a set of simitah@sa These codewords have
similar functionality as words for a dictionary. Visual vabdictionary, also referred as codebook,
is constructed using the collection of all the different ee@drds generated. For a given image
or video, its bag of visual words representation is constdiby computing the local features,
assigning the computed features to the most similar codisy@nd forming the histogram of
codewords. Once the histograms for training and test sangoke constructed, classification can

be performed in a similar way as in the case of the documessidication.

3.2 Method

The overview of our approach is depicted in Fig@t& The first step of our approach is
the brain functional connectivity network constructioidaved by the network feature extraction,
representation of each subject as a histogram following B@Mework, and classification using

the SVM.

3.2.1 Functional Connectivity Network Construction

We assume that the activity of a brain can be modeled as admattonnectivity network
constructed by connecting different brain regions. To toies the network, each voxel of the

brain volume is represented as a node and any two nodes otthenk are connected with an
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edge if they show high similarity of activity patterns ovieettime domain. In this chapter we have

used the terms voxel and network node interchangeably wlsimilar meaning.
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Figure 3.1: Overview of our approach: First (a) the 4D fMRtades (b) reorganized in a matrix
where each column of the matrix is the intensity time serfes woxel. (c) Next, we compute an
N x N matrix which contains correlation values of pairs of voxeld series (N is the number of
voxels inside the anatomical brain mask). (d) The adjacematyix is formed by thresholding the
entries of the correlation matrix. (e) The features sucthasdegree per node and raw intensity
time series for each voxel are used for (f) Bow codebook geiwer. (g) Finally, classification is
performed using an SVM.
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As the first step of the algorithm, we extract the intensityetiseries for all the voxels of
the brain volume and reorganize them in a 2-D matrix. Please that the intensity time series
of each voxel contains the information of its pattern of\atés. This is illustrated in Figur.1
(b). Next, the correlations between all possible voxelparcomputed as the measure of their
similarity of activity patterns. If a subject contaifé number of voxels, a correlation matrix of
sizeN x N is constructed, where thé& row of the matrix corresponds to the pairwise correlation
values of thei* voxel with all other voxels of the brain volume. The anatoahimask provided
with the ADHD-200 data set is used to identify the voxels bgiag to the brain volume.

For any two voxels: andv, if the time series ara = [uy, ug, ..., ur] andv = [vy, vy, ..., vr

respectively, the correlation can be computed as,

T

(TN i) = O u)(O vi)
- =1 1=1 1=1 7 (3.1)

r Z uj — (Z w1y 0f = w)]

i=1 i=1

whereT is the length of the time series.

Before we compute the correlations, the time series are alared betweer—1, 1]. Next,
we threshold all the values of the correlation matrix to géfireary map of zeros and ones. We
empirically choose the correlation threshold valué) &9 and zeroed in all the absolute correla-
tion values lower than that. This binary map can be consitlasethe adjacency matrix of the
network where thé'" node is connected to all the nodes for which non-zero valtepra@sent in
the corresponding column positions of the row of the matrix. Note that we can consider two
voxels to be connected by an edge when the correlation isguoghive, high negative or simply
the absolute value of the correlation is high. We have coetpthiree different sets of networks
considering high positive, high negative and high absatoteelation values respectively. As we

consistently achieved higher detection accuracies uemgetworks with positive correlation val-
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ues compared to the two other types of networks, all the @xjgatal results reported are on the

positive correlation networks only.

3.2.2 Network Feature Extraction

Once the functional connectivity networks for all the sulgeare constructed, we extract
degree feature from each node of the networks. As it is kntinngegree of a node is the num-
ber edges incident on it. The degree for tfenode of the network can easily be calculated by
summing up the values of th& row of the adjacency matrix. Finally we represent each nede a
a 4-tupleld, x, y, z|, whered is the degree and, y, ~ are the 3D coordinates of the node. Adding
the 3-D coordinates helps us to capture the spatial infoomatf the node. Please note that the

y, z andd are normalized to have values between 0 and 1.

3.2.3 BoW Histogram Representation

In the next step, following the BoW representation, we repn¢ each subject by a his-
togram of codewords. The codewords are generated by a@rgasttwork features from each of
the subjects under consideration and clustering the fesitarthe feature space using the K-means
clustering algorithmi, 72]. As stated, our feature vector for each node of a networkdigugple
ld,z,y, z]. To be clear, a feature vector is constructed for each notteeafetworks corresponding
to the subjects in the training data set and clustering ifopaed on all the feature vectors gener-
ated for the training set. The number of clusters used foKHneeans clustering is the size of the
codebook generated as well as it defines the bin count of stegnam.

For our experiments we empirically selected the clustetrastdgram bin count’ = 100)
where each bin is represented by the center of the corresmpollister. Once the codebook is
generated, any subject can be represented as the histofréutuge features by mapping the
features to the nearest cluster centers in the 4-D feataeesf hus, the histogram representation

for each subject captures the occurrences of each code words
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Figure 3.2: The figure shows the clusters formed using theg&nmclustering on the features
computed from the training examples. (a) THer, y, z] 4-tuple clusters are plotted on they, =
space while the size of the clusters are proportional to duyged. (b) Few of the raw intensity
time series clusters are plotted amanglifferent clusters due to space constraint.

To show the importance of network feature we used a diffempptoach to compute his-
tograms. Instead of the degree feature, we represent eaehwih their intensity time series.
Formally, the feature vector for any voxels constructed ag:, y, z, u] whereu = [uy, us, ..., ur]
is the intensity time series of the voxel Please note that the different data centers of ADHD-200
data set have different time length for the fMRI data. To kibedength of the intensity time series
equal, we consider only the first 72 time stamps which is thallest length of the fMRI data
for any of the subject of the data set. Hence, all of our timeesdeature vectors are of length
3 + 72 = 75. Following the same steps as in the network features, wergena codebook of 75
codewords and represent each subject by a histogram of g54gain the bin count is empirically

selected.
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Figure 3.3: The figure shows the differences of averagedmatos of the control and ADHD group
of subjects for (a) 4-tuple degree features and (b) raw gitytime series features.

A third approach is used to combine network and raw interfedyures to generate the
third type of histograms. For this purpose, we concatemat@bormalized network feature and raw
intensity feature histograms to represent each subjectlliy dimensional histogram. Figu@4
explains the histogram generation process.

Figure 3.2 shows the examples of the clusters formed on the 4-tupdea( vy, z| ) and
raw intensity time series features. 4-tuple clusters aoétga in thez, y, = space where the size
of the clusters are proportional to the degréed he intensity time series clusters are plotted as
xyz + time stamps VS spatial coordinate and intensity values. Due to space constraint only a
few of the 75 clusters are shown in the figure.

To find out if the histograms can capture the differences @ ABDHD and control groups
of subjects we construct FiguB3. The figure shows the average differences of the histograms

corresponding to the Control and ADHD groups of subjectd.ti#d subjects of the ADHD-200
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released sets are used to construct the subjects. Thevpdsiticounts represent a higher average

codewords counts for the control subjects while the negdtin counts represent the opposite.

3.2.4 Classification

Finally, the SVM [L5] with histogram intersection kernel is used for the clasation. First,
the SVM is trained using the histograms generated for thgestshin the training set. Given the
histogram of a test subject, the trained SVM is used to dlaslse subject into the ADHD or
control group. Three different sets of classification ekpents are performed using the network

feature histogram, raw intensity feature histogram andioed histogram.
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Figure 3.4: Overview of our BoW approach.
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3.3 Experiments and Results

For the experimental validation we selectgi subjects from across the released sets of
the seven data centers. A brief description of all the subjesed in the experiment is included in
Table3.1 The classification is performed in a leave one out crosslaatin fashion, i.e. in each
iteration a single subject is used for the test while reshefdubjects are used for the training of
the SVM classifier. Hence, the training and testing are peréal 506 times, each time choosing
a separate subject for testing and using the rest of the @slr the training of the classifier.
Also, note that we performed three sets of experiments ®histograms using the raw intensity
feature, the network feature and concatenation of the sitieand network features. The Receiver
Operating Characteristic (ROC) curve, which is obtainesldoying the confidence of detection, is
shown in Figure8.5for all three sets of experiments. The best classification@cies for all three
of the experiments are included in TalBl2 As it can be seen the network features perform better
than the raw intensity features but the combined featurdsnpe the best. The best detection rate

obtained i54% at the cost 0f).50 sensitivity and).72 specificity.

Table 3.1: Description of the test subjects of the largea dat.

Test Number of| Number of ADHD | Number of Female| Male
Center Subjects | conditioned subjects control subjects

KKI 83 22 61 37 46
Neuro Image 48 25 23 17 31
NYUpartl | 55 31 24 19 36
NYU part2 | 67 32 35 22 45
OHSU 79 37 42 36 43
Peking 1 85 24 61 49 36
Pittsburgh 89 0 89 43 46
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Figure 3.5: Receiver Operating Characteristics curveglift@rent combinations of features on
506 subjects.

To verify the performance of our algorithm on the holdoussete performed another set
of experiments. The experiments are performed on the fivdowblsets which are reported in
Table 3.3 along with their detection accuracies. To conduct this $eixperiments, five SVM
classifiers are trained separately on the correspondiagset] sets and tested on the holdout sets.
Similar to the first set of experiments, we achieve overglhbst detection accuracy4.81% with
0.5341 sensitivity and).7416 specificity) when combined features are used to constrec #d

dimensional histograms.

Table 3.2: Summarize the detection rates of the ADHD clasdifin results using three different
types of histograms.

Used Feature Number of Subjects | Accuracy
Degree Map 506 61%
Raw Intensity Time Series 506 56%
Degree Map+Raw Intensity Time Serie$06 64%
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3.4 Discussion

In this chapter we show that the brain function can be modaea connectivity network
and the network topological differences of the ADHD and colrgroup of subjects can be utilized
for the prediction of their ADHD label. To capture the netwtmpological information we express
each node by its degree and 3D spatial coordinate and repesseh subject as a 100 dimensional
histogram of network features. We also represent each duagea 75 dimensional histogram
of intensity time series and a 175 dimensional combinedgisin of network+ intensity time
series to compare the classification performance. As it easeln, the detection accuracy using
the network feature histograms is better than the interisitg series histograms. This shows
the effectiveness of modeling the brain function as a néiwdir also indicates the presence of
topological differences in functional connectivity netks between the ADHD and control group
of subjects. Finally, the combined histogram performs,b&kich suggests that the network and

time series representation captures complimentary irdbon.

Table 3.3: Shows the detection rates of the classificatipemxents on the holdout sets released
for the ADHD-200 competition.

Accuracy (%)
Degree Map | Intensity Time Series | Deg. + Intensity Time Serie

KKI 81.82 72.73 81.82
Neuro Image 60.00 60.00 68.00
NYU 68.29 31.71 56.10
OHSU 61.76 82.35 70.59
Peking 54.90 52.94 62.75
Overall 62.35 56.17 64.81

One of the shortcomings of the method is the loss of spafiatnmation while constructing
the codewords using K-mean clustering. This is becausectaster is represented by their center
which is the average of the cluster volume in the featureespAtso, in this framework we gave
equal importance to all the nodes of the network even thoagtesnodes may not be active during

the resting state of the brain. Including features fromralnodes in the classification framework
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can unnecessarily increase the feature dimensions whightmegatively impact the classification
accuracy. Finally, we analyze only the degree featurefoclassification of the ADHD subjects
while there might be other features which are useful for ttogpsed problem. We address these

issues in the next chapter.
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CHAPTER 4: NETWORK FEATURES FOR THE ADHD DETECTION

In the previous chapter we showed that the brain functioctity can be modeled as a
network where the network features, such as the degree bfreate of the network, can be useful
for the classification of the ADHD subject. In this chapterfweher investigate the usefulness of
the network features and therefore compute more compléxressasuch as the cycles, the varying
distance degree and the edge weight sum of the nodes aldmgheinode degree. Moreover, we
propose that the voxels from the whole brain are not usefubhbly some specific brain regions
(group of voxels) contain information to distinguish the AD and control groups of subjects.
For this purpose we developed an algorithm to identify thefulsrain regions and we demon-
strate that using the features only from the regions ideuitifly our algorithm help to improve the
classification accuracy. Throughout this chapter we refeéhé useful regions identified by our
algorithm as the useful region mask. Finally, we show thatfimding is consistent with the other

studies which are aimed to find the brain regions responfbl&DHD.

4.1 Method

Network motifs such as the distribution of node-degreeles/etc. are analyzed in different
disciplines of science including neurosciencé][ [51], [49]. We propose to use different graph
theoretic concepts for our study. We assume that the difféneain regions need to cooperate with
each other for the proper functioning of the brain. Thesgeoations of the regions manifestin the
fMRI data in the form of the correlations of their activitytperns. We modeled the correlations of
the brain regions as a network with the belief that the nétwtuctures of the ADHD and control
groups of subjects have sufficient differences to be usedd&ynachine learning approaches for

the automatic classification.
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Figure 4.1: Overview of our approach: (a) given the 4-d fMRtalfor a subject, (b) first we
rearrange it as a matrix. (c) Next, a correlation matrix aésy x N (N is the number of voxels
) is computed. (d) An adjacency matrix is generated aftegstiolding the correlation values into
binary numbers. The adjacency matrix represents a netw@kNetwork features such as the
node degree and cycle count for each node of the network arpuded. (f) Next, we generate the
useful region mask. (g) Feature values from the nodes,iftehby the useful region mask, are
used to form the feature vector and a PCA-LDA classifier isldsethe classification.

Figure4.1shows the flow chart of our classification model. The first stiepur method is
the computation of the functional connectivity network ahis exactly the same as described in

Section3.2.1. The rest of the steps are described in the next few sections.

4.1.1 Network Feature Computation

Once the functional networks for each of the subjects in @@ det is constructed, we
compute different network features. The network featureseapected to capture the structural
information of the networks and exploit the network topataddifferences to segment the ADHD

subjects from the control subjects. The features computaed &ll the nodes of a network are
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referred to as the feature map, such as the degree Map, cyapeeld. The descriptions of the

different network features computed are given below.

-

Rt Tl

(B)

Figure 4.2:(A) The degree of the node, highlighted in yellow, is the courdlbthe green nodes
connected to it (i.e8), while the varying distance degree is the counts of all trenected nodes in
each of the bins defined by the three edge length threshilds (3) showed by the blue arrows.

In this example the varying distance degrees of the yelloderare{4, 2,2}. (B) Shows all the
distinct 3-cycles that contain node

Degree: The degree of a node in a network is the number of other nodesected to the
node. In other words, the degree of a node is the number ofedgielent on it.

Varying Distance Degree:Instead of considering the count of all the edges of a nods as i
degree, we group the edges based on their physical lengttoamplute a separate degree for each
of the groups. So, if we havethreshold values for edge length, sdy, I, ..., ,,}, we can compute
n degrees{d;, ds, ..., d,}, of a nodev, whered; is the count of all the edges connected twith
length betweer,;_; to /;. Refer to Figure4.2 for details. We use the Euclidian distance for the
computation of the edge length. For our experiments, we tigeghold values of 20, 40, and 80
mm., where the average brain volume is approximately ofisi2ex 140 x 140 mm. Therefore, we

get 4 degrees per node which are the counts of the edges ¢t le+&f, 20-40, 40-80 and greater
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than 80 mm. respectively. The thresholds are selected intaiive fashion such that the different
degrees capture local to global connectivity patterns. preentage of average edge counts in the
length range of 0-20, 20-40, 40-80 and above 80 mm are comhps®®.44%, 16.54%, 8.40% and
4.62% respectively.

L-cycle Count: A path in a network is a sequence of distinct nodes which carelersed
in a given order using the connecting edges. A cycle, on therdtand, is a closed path in the
network where the starting and ending node is the same amdha&lt nodes are distinct. The L-
cycle count of a node is the number of all possible distindéngth cycles containing the node.
Figure 4.2 illustrates this idea. L-cycle count for a node is computgdraversing through all
the L-length paths starting from the node and counting thiespahich lead to the starting node.
The traversing can be performed using the breadth firstisedgorithm. We used the 3-cycle and
4-cycle count features for our experiments.

Weight Sum: Instead of binarizing the values of the adjacency matrixuae the actual
correlation values, if it is greater than a threshold, ofelgxairs as the edge weights. As the
correlation values can be positive or negative, we sefdgratiel up all the positive, negative and

absolute edge weights of a node to get its sum of positivegtiegand absolute weights.

4.1.2 PCA-LDA Classification

Once we complete computation of the network features, waehe features from all of
the nodes within the useful region mask. The mask generatgorithm is described in the next
subsection. Concatenation of the feature values extrdatedall the nodes generates a feature
vector per subject. A PCA-LDA based classifier is trainedasafely using different sets of the
feature vectors computed for different types of the netwesdtures. Finally, the trained classifier
is used for the automatic classification of the ADHD subjects

It is expected that the topological characteristics of traputed networks are represented

by their feature vectors. A feature vector of a network isespnted by a point in the feature space
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where the dimensionality of the space is the same as thehlefigjte vector. If the feature vectors
of the ADHD and control subjects are separable in the featpaee, then their corresponding point
representations should be clustered at different locatadrthe feature space. When a classifier
is trained, it learns to partition the feature space in suetag that the feature vectors from the
separate groups ideally fall under the separate segmetiie gpace. Given the feature vector of
a test example, the classifier can identify the specific sagjoiethe feature space it belongs to
and classify the test subject accordingly. Linear Disaniamt Analysis (LDA) is a widely used
data classification technique which maximizes the ratioativieen-class variance to the within-
class variance to produce maximal separability. Mathezalyi the objective is to maximize the
following function :

wT' Spw

J(w) =

= — 4.1
wT'Syrw (4.1)
where Sp and Sy, are between class and within class scatter matrix, and cdorivellated as

follows:

Sw = (u'Y — plN) (Y = N7, (4.3)

na andnq are the number of subjects?) and;(“) are the mean feature vectors* andz;©
are thesth feature vectors of the ADHD and control group respecyivélor all our experiments
we used Matlab implementation of the LDA classifietatsify function with linear type of
discriminant function).

In many cases, the dimension of the feature space becomaghsthht the proper parti-
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tioning of the space is difficult. For example, in our case, dimensions of the feature space is
equal to the number of voxels within the useful region maskctvis several thousands. Again,
most of the dimensions do not contain any significant dateanee. The Principal Component
Analysis (PCA) is a procedure to find out a set of orthogonaations, called the principal com-
ponents, along which the variance of the data is maximurheh projects the data into the smaller
dimensional subspace composed of the principal compan&htsclassifier can work efficiently
on the subspace which is significantly smaller in dimensi@ntthe original feature space. We
use the first 40 and first 100 principal components for the ex@nts on the KKI and full data set
respectively as they cover more thag¥s of the data variance. We have included a plot of principal

component vs. percent of data variance in Figui Refer to [I] for details about PCA.

4.1.3 Useful Region Mask

Different research studies have proposed several Regibirg&dests (ROI) for the brain
fMRI data analysis. These different ROIs vary in size and bem In some studies, ROIs are
identified based on the anatomical structure of the brairlenini some other studies they are
segmented based on the homogeneity of the functional &esivi Tzourio-Mazoyer et al.7f]
identified the ROIs based on the similar functional respsrniise¢he brain. Craddock et al2¥]
generated a homogenous functional connectivity map freamrsifMRI data. Smith et al.7[]]
identified several co-varying functional subnetworks ie thsting state brain. However, it is still
unclear which ROIs are the best for the resting state funaticonnectivity network analysis. Also
it is not known if all the ROIs detected by one method are neglior the ADHD classification or
the use of a subset of ROIs would be more efficient. To find cegdlanswers we propose a novel
method to identify the useful region mask for the classiftcabf the ADHD and control subjects.

The algorithm for the useful region mask generation is ds\ic:
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Figure 4.3: (A)This part of the figure explains the useful region mask geieralgorithm on a
single brain slice. The figure is just a graphical examplétlmreal data. In the actual experiments
the brain volumes are used instead of slices and volumetgiomns are used instead of square
subdivision areas.(a) Divide the slice into square regiongb) Select random sub sets of the
regions marked in dark greeft) Select the sub sets with tap% of detection rate(d) Generate a
probability map based on the regions occurrence inltdp subset.(e) Threshold the probability
map to produce the useful region ma@R) This part shows the flowchart for the mask generation
algorithm.

step 1 For each of the subjects used for the mask generation digovite do the following:
e Divide the whole brain into small cubicle volumes. Each af ttolumes is typically
5 x 5 x 5 voxels except the volumes at the boundary of the brain.

e Select a random subset of the volumes. We include each valurthe subset with

probability p.

e Generate a degree map by extracting the degrees for all #edswithin the selected

subset of volumes.
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step 2 Train the PCA-LDA based classifier and calculate the deiraiccuracy on the test data

set.

step 3 Perform step 1 and step 2 fornumber of times, each time generating a different random

subset, and computing the detection accuracy.

step 4 Choose the random sub sets corresponding to thd @&pof the detection accuracy as
the candidates for generating the useful region mask. Watdba occurrences of each of
the volumes in all of the candidate sub sets and normalizedbats between 0 to 1 after
dividing it by the number of candidate sub sets. This givethagrobability of inclusion of

each of the volumes in the mask.

step 5 Generate the useful region mask using a threstiold prune the regions with low proba-

bility.

Final Threshold th

0.2 0.25 03 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

0.2 | 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 66.6667
0.25 | 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 71.7949| 71.7949| 66.6667| 69.2308|
03 69.2308| 69.2308] 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 71.7949| 71.7949| 71.7949| 66.6667| 66.6667
0.35 [ 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 71.7949| 71.7949| 74.359 66.6667| 66.6667
0.4 | 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308 71,7949- 74.359| 66.6667| 66.6667| 64.1026
0.45 | 69.2308| 69.2308| 69.2308| 69.2308| 71.7949| 69.2308| 69.2308| 69.2308| 74.359| 69.2308| 71.7949| 69.2308| 66.6667
0.5 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 69.2308| 64.1026| 71.7949| 71.7949| 69.2308| 66.6667| 64.1026
0.55 [ 69.2308| 69.2308| 69.2308| 71.7949| 69.2308| 66.6667| 69.2308| 71.7949] 74.359| 71.7949| 69.2308| 66.6667| 64.1026)
0.6 | 69.2308| 71.7949| 71.7949| 69.2308| 71.7949| 66.6667| 69.2308| 71.7949| 69.2308| 69.2308| 66.6667| 69.2308| 66.6667
0.65 | 69.2308| 71.7949| 69.2308| 69.2308| 69.2308| 66.6667| 64.1026] 71.7949| 71.7949| 69.2308| 69.2308| 64.1026| 61.5385
0.7 | 69.2308| 69.2308| 69.2308| 66.6667| 69.2308| 74.359| 66.6667| 69.2308| 66.6667| 71.7949| 66.6667| 66.6667| 64.1026
0.75 [ 71.7949| 69.2308| 69.2308| 66.6667| 69.2308| 71.7949| 69.2308| 66.6667| 69.2308| 69.2308| 71.7949| 64.1026| 61.5385
0.8 | 69.2308| 69.2308| 66.6667| 71.7949| 69.2308| 69.2308| 71.7949| 69.2308| 69.2308| 66.6667| 69.2308| 66.6667| 64.1026

Region Selection Probability p

Figure 4.4: Different detection results on KKI data set lolame different set of values gfandth.

We experimentally verified that the highest detection ratachieved whep is 0.40 and
this 0.60. The details of the experiment is included in Secfidn4d The value ofm was kept at

500 so that the number of iterations should be large enougbdmaputationally feasible. Figure

45



4.3(A) is an illustration of the proposed algorithm on a cart@e slice of a brain while Figure

4.3 (B) is the flowchart for the mask generation algorithm. Ndtatthe other network features
may also be used in the algorithm but we only use the degreefeasre. We assume that the
regions, which are useful for identifying ADHD conditionkerhins, should not vary depending on
the feature type used for the detection of the mask. We vétifie idea by computing the useful
region mask using the 3-cycle map features also. We fouridhikdinal detection rates are very

similar (refer to Sectio®.3) which supports our hypothesis.

Figure 4.5: The figure shows different brain slices to dertratesthe computed useful region mask.
The masked regions are highlighted in orange color and aidedn the slices of the structural
image of a sample subject.

Table 4.1: Shows list of the clusters and their approximateters, sizes and standard devia-
tions found using the most useful region mask algorithm. dderdinates are calculated on the
HarvardOxford-cort-maxprob-thrO-1mm standard atlasvigied with the FSL4.1. We list the
ROls of Harvard-Oxford Cortical and Subcortical Structuxtlases for which more thaB0% of
the volumes are selected in the useful region mask. Atld®fde5L view is used for this purpose.

ROls [X, y, z] centers inmm. size inmm.3 standard deviation in mm.
X y z
Precuneus Cortex [0, -66, 42] 7872 5.4894 6.6435 10.3592
Cingulate Gyrus [0, -36, 52]; [0, 6, 42] 13056 4.5593 11.3751 10.9128
Temporal Pole [56, 14, -18] 5312 4.7728 5.5878 5.7664

Superior Temporal Gyrug  [60, -18, -8]; [-60, -20, -4] 3392; 6400 7.1938;6.6817| 9.4413;11.6393| 4.0790;5.7075
Inferior Temporal Gyrus | [54, -30, -20]; [-60, -48, -10] 1856; 2816 7.6293;5.4892| 6.7262;8.2390 | 8.2617;5.3582

Pre-central Gyrus [-6, -22, 62] 8000 16.7226 8.5099 5.2886
Lingual Gyrus [6, -64, 4] 19072 12.5240 11.4946 5.8835
Right Amygdala [24, -2, -18] 2176 9.6639 7.3186 7.1020
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Figure 4.6: The plots show how detection rates for differeetivork features change with corre-
lation threshold(A) Degree map positive correlatio®) degree map negative correlatiofg)
degree map absolute correlatio(I3) varying distance degree map positive correlat{&),3 cycle
map positive correlatior{F) 4 cycle map positive correlatiofi) weight map positive correlation.

4.1.4 Experimental Setup

In this section we describe all the experiments performedatmate our method. The
results are reported in the following section.

First, we verified the performance of each of the networkuiesst computed on the released
set of one of the data centers. We used fMRI dat&3ofubjects from the KKI data set. Among
the 83 subjects, the first4 subjects are used for the training and the remaiaihtpr the testing.
The performances of each of the network features is compwitidor without using the useful
region mask. The mask is generated on the KKI training sepeising the first 44 subjects of the
KKI subset and using the algorithm described4id.3 Each time a random subset of regions is
selected, the classification performance is measured bg-l@@e-out cross validation, i.e. take

subjects for the training and test on the one remaining stibgpeat the procesd times, testing
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each of thel4 subjects one at a time and averaging the correct detectigmso

As it is mentioned in Sectiod.1.3 we experimentally determined the valuespadndth
used in the useful region mask computation algorithm. Herghrpose, we varied the probability
p of including a region in the random subset and the final tholelih used on the probability map
of the regions to produce different useful region mask. Rahepair of values of thp andth, we
compute a different useful region mask which is used to geaatifferent detection rates on the
KKI data set. The detection rates are reported in the FiguteThe best performance is achieved
whenp = 0.4 andth = 0.6. We used these values to generate the final useful region. mask

To remove the unnecessary connections in a network, we usedelation threshold to
remove all the edges whose correlation values are lowerttieathreshold. To empirically select
the correlation threshold to be used for our experimentsyavesd it from 0.4 to 0.8 with an
increment 0f).1 in every step. In each step, a different set of networks ispeded using different
threshold values, network features are extracted and teetdn rates of the classification process
are computed on the remaining 39 subjects of the KKI released

We also perform a thorough experimental validation of outhoé on the full data set
using the positive degree map and positive 3-cycle map festuVe trained our classifier with
the full released data, which h&%6 subjects froni different centers, and tested on the holdout
sets containing 71 subjects front centers of the ADHD200 data set. Again, we compared the
performance with and without using the useful region mask.rgvsed the same mask generated
using first 44 subjects of KKI. It is worth mentioning that timask selects 6916 voxels from which
features are extracted.

We assume that the regions, which are useful for identifibgHD conditioned brains,
should not vary depending on the feature type used for thectieh of the mask. To justify our
assumption we generate another useful region mask on thedtédsed set using the 3-cycle map
features. As in the case of generating useful region mapubkim degree map features, we use

p = 0.4 andth = 0.6 for the map computation. The mask generated is used to \thgfgetection
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rates of the degree map features on the ADHD-200 holdout sets
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Figure 4.7: The figure shows the plots of principal comporennt vs percentage of data variance
for (a) KKl released set (b) full released data of 776 sulject

We use the first 40 and first 100 of the principal componentg®experiments on the KKI
released set and full data set respectively as they cover thand8% of the data variance. Figure
4.7 shows the plots for the number of principal components ve.pigrcentage of the total data
variance captured. For the KKI released set, the first 4Gprah components are able to capture
99.8% of the total data variance while the first 100 principal comgrats of the full released data

set are able to captuts% of the total data variance.

4.2 Results

As it is said in Sectior.1.4 we compute the useful region mask on the first 44 subjects
of the KKI released set. Figueke5 shows the computed mask on the different slices of the brain.
Table 4.1 lists the information of the different clusters found in theeful region mask and the
ROIs they are overlapped with. The computed useful regioskimsaproved to be helpful in terms

of improving the classification rates when the features sir@eted only from the regions selected

by the mask.
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Table 4.2: Initial test results shows the performance oftelnetwork features computed on the
KKI released set. The Positive, negative and absolute keysvare used to indicate that the pos-
itive, negative and absolute correlation values are censdifor the network construction. If any
keyword is not specifically mentioned, then the positiveeation values are used.

Feature Correlation Threshold Performance (%) Performance (%)

using useful region mask | without useful region mask
Degree Map positive 0.80 76.92 69.23
Degree Map negative 0.80 71.79 69.23
Degree Map absolute 0.80 74.36 71.79
Varying Distance Degree Map 0.80 76.92 69.23
3-cycle-map 0.80 74.36 71.79
4-cycle-map 0.70 74.36 69.23
Weight Map positive 0.80 76.92 69.23
BOW time series histogram - 69.23 66.67
BOW Degree Map histogram 0.80 69.23 66.67
BOW time series and Degree Map histogrgm 0.80 69.23 66.67

We computed the detection rates while different corretattweshold values are used to
construct the networks. This helped us to find out the raiatietween the detection rates and
the correlation threshold values. The plots of correlatioeshold vs. detection rate for different
network features are shown in Figudes. Note that the detection rates for each feature type are
measured for the positive, negative and absolute comelatlues. However, the features com-
puted from the positive correlation values have always @ditpmed the other two cases. Hence,
we have not reported the results for the other two casese Siocall the network features, other
than the 4-cycle map, the best performance is consistecitig@ed when correlation threshold is
0.80, we choose to use this value for all the experiments @futhdata set.

Table4.2summarizes the best performances obtained for each of thenkefeature types
and the corresponding correlation threshold values. Thioieance in the table signifies the
percentage of total number of correct detection (contrdl ADHD) among total number of test
subjects. Note that for all the features, the performantieout using useful regions mask is lower
compared to when we use the mask. This demonstrates thetanperof the voxel selection step

through the generated mask.
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Table 4.3: Shows the detection rates (Dt. Rt.), specifeif®&pc.) and sensitivities (Sens.) of the
classification experiments on the ADHD-200 holdout setsm@arison of the performances are
shown when useful region mask is used and not used for theelegsp and 3-cycle map features.

Deg. Map (mask) Deg. Map (no mask) 3-cycle Map (mask) 3-cycle Map (no mask)
Dt. Rt.% Spc. | Sens.| Dt Rt.% Spc. | Sens.| Dt. Rt.% | Spc. | Sens.| Dt. Rt.% | Spc. | Sens.

KKI 72.72 1 0 72.72 1 0 72.72 1 0 72.72 1 0
Neuro Image 68 .7857 | .5454 64 7143 | .5454 72 7857 | .6364 68 .8572 | .4545
NYU 70.73 9167 | .6207 65.85 .7500 | .6207 70.73 .8333 | .6552 63.41 .8333 | .5517
OHSU 70.59 7778 | .4286 64.70 7037 | .4286 73.52 .8148 | .4286 70.59 .7407 | 5714
Peking 64.71 .8889 | .3750 60.78 .8889 | .2917 62.74 9259 | .2917 56.86 19630 | .1250
Pittsburgh 77.78 1 .5000 66.67 .8000 | .5000 77.78 1 .5000 66.67 1 .2500
Overall 69.05 .8602 | .4872 64.32 7957 | .4615 69.59 .8710 | .4872 64.33 .8710 | .3718

Table 4.4: Shows the detection rates (Dt. Rt.), specif&iifpec.) and sensitivities (Sens.) of the
classification experiments on the ADHD-200 holdout sets GAFSVM classifier with a quadratic

kernel is used to generate the results. Useful region masked to extract the features from the
selected voxels.

Deg. Map 3-cycle Map

Dt. Rt. % | Spec. | Sens. | Dt. Rt. % | Spec. | Sens.
KKI 72.73 1 0 81.82 1 0.3333
Neuro Image 80 0.7143 | 0.9091 76 0.8571 | 0.6364
NYU 58.54 0.25 0.7241 58.54 0.25 0.7241
OHSU 73.53 0.7407 | 0.7143 79.41 0.8889 | 0.4286
Peking 64.71 0.8148 | 0.4583 64.71 0.8148 | 0.4583

Pittsburgh 88.89 1 0.75 77.78 0.8 0.75
Overall 69.01 0.7312| 0.641 69.59 0.7849 | 0.5897

We compare the performance of our method with the Bow methtwdduced in the last
chapter. Following the experimental setup of the Bow meteach subject is represented by
75 and 100 dimensional histograms when the raw time series and degapefeatures are used
respectively. A third kind of experiment is performed by negenting each of the subjects as a
concatenation of the two types of histograms resulting ifffabin histogram. These results are
also included in Tabld.2

The results on the full data set are reported in T&8 The table includes the detection
rate, specificity and sensitivity for each of the holdoussdbng with the average measures for

all the holdout sets. Since the subject labels of the Browivéssity holdout set have not yet
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been released, we cannot compute the performance measutbato To compare the result,
we performed the same experiments using the PCA-SVM clasgifth a quadratic kernel. The
results are reported in Tabded. As it can be seen, the performance is very similar to the ROA-
classifier.

Finally, we compute a useful region mask using the 3-cyatuies and use it to perform
classification on the holdout sets. Figu¥d8 shows the useful region mask generated using the
3-cycle features and computed on the 44 subjects of the Kigased set. The mask is plotted
on the different slices of the brain image of a sample subjébe experiment results on the full
data set are reported in Takléb where features are extracted from the regions selectee inev
mask. The detection rates we got using the masks generathd Bycycle and positive degree map
features are almost same. This matching results suppartsitial assumption that the computed

useful regions mask is invariant to the feature used to coeipu

Table 4.5: Shows the detection rates of the degree featuard®cADHD-200 holdout sets while
a useful region mask is used to select the features. Thelusgfan mask is generated using the
3-cycle features computed on the first 44 subjects of the Ieldased set.

Detection Rate (%) | Specificity | Sensitivity

KKI 72.72 1 0
Neuro Image 72 5714 .9091
NYU 70.73 .8333 .6552
OHSU 73.52 .8889 .1429
Peking 60.78 .9630 .1667
Pittsburgh 77.78 1 .5000
Overall 69.01 .8710 4675

4.3 Discussion

We modeled the brain as a functional network which is expktdeepresent the interac-
tion of the different active regions of the brain. We assurtined the ADHD is a problem caused

due to the partial failure of the brain’s communication natwand the affected subjects can be
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distinguished from the control subjects using the topaabdifferences of their respective func-
tional networks. To verify the idea, we extracted differaptwork features to train a PCA-LDA
based automatic classifier. Figut®shows that the average degree map, computed for the ADHD
and control subjects of the KKI released set, is able to caphe differences of connectivity in
the Cingulate Gyrus and the Paracingulate Gyrus regionseobtain. We also proposed that the
features from the whole brain are not required for the digss¢ion, but some key areas hold useful
information. Our results shows that the inclusion of thadess from the whole brain can nega-
tively impact the classification accuracy. This resulted imovel algorithm to compute the useful

region mask which helped to improve the classification peréoce.

Slice 5 Slice 10 Slice 15 Slice 20 Slice 25 Slice 30 Slice 35

Figure 4.8: The figure shows different slices to demonstita¢ecomputed useful region mask
using the 3-cycle map features. The masked regions areidiiggdi in orange color and overlaid
on different slices of the structural image of a sample stibje

For our analysis, we only selected node based features taredpe local structures for
the network. The features we used are easy to compute, simgacept, and expected to capture
different topological characteristics of the functionakwork. As we hypothesize that the cause
of ADHD is the presence of abnormalities in the brain funeélboconnections, we selected the
features such a way that they capture different connegtpattern of the network. The degree
map and the weight map can capture how densely the nodes nétherk is connected. These

give us measures of how synchronous different brain regimas The varying distance degree
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map, on the other hand, can also reveal how the synchronglasmseare distributed over the brain.
While the degree map only captures the pairwise interastibthe voxels, it ignores higher-order
interactions, such as among three voxels simultaneoustyki@gw from the brain anatomy that
there are such multiply connected brain regions. Hencdeayaps offer a different perspective
from which a given network may be viewed. The utility of usmgtwork motifs such as the cycles

is described in§1].

Figure 4.9: The figure shows the average differences of theeds between the control and ADHD
groups in the voxels belonging to the useful region mask. alezage differences are calculated
for the 83 subjects of the KKI released set. The dark red taemdvlor map is used to represent
the regions with higher degrees in control subjects andtolgeeen color map is used to show the
opposite. The control group shows higher connectivity e @ngulate Gyrus4{ = 10, 15) and
Paracingulate Gyrus regions 19, 23).

The useful region mask selection algorithm has three paeamsuch as the probability of
inclusion ) of a region in an iteration of the algorithm, the thresh@ido prune the low occurring
regions, and the number of iterations the algorithm shauid The first two parameters are decided
empirically @.4). Let us assume that in each iteration of the algorithm= v numbers of regions
are selected, whergis the total number of brain regions considered. Then therikgn can select
(Y) number of possible distinct subsets of regions. The valyé)ds the upper limit of the number
of iteration parameter. Unlesksis a very small the numbe(fj) is very large which is impractical
for the algorithm. We used the number of iteration586 in our algorithm as we observed not

much changes in detection accuracies after the numberrafide crosses few hundreds. Further
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thorough analysis can be performed to decide the best vatuki§ parameter.

Figure4.5and Table4.1 present the ROIs found through our adaptive labeling teglei
described in Sectio#.1.3 These ROIs were used in the classification including regsoaich as the
cingulate and precuneus which is consistent with the firglofgCastellanos et all f]. The cingu-
late and precuneus regions are known to be part of the defaade network 75]. Many regions
in the Table4.1have also been identified by Assaf et &l, such as the precuneus, temporal pole,
superior temporal gyrus, and pre-central gyrus. Regiofiglibe4.1that are consistent with those
reported by Uddin et al.7[] include the inferior temporal gyrus and lingual gyrus.elrstingly,
Table 4.1 identifies the right amygdala, which did not show up in thelygsia of Castellanos et
al. [13] or Assaf et al. ] or Uddin et al. /9]. The limbic system is known to play a role in ADHD,
and a study by Plessen et & ] reported disrupted connectivity between the amygdala@iR@
in the children with ADHD. Hence the value of our techniquéhiat it provides an independent
and automatic source of hypotheses about the brain rediahare implicated in the diagnosis and
classification of ADHD. In this sense, our technique for R@entification can be considered to
be a model-free method. Furthermore, our classifier is dgnosany particular theory of ADHD,
and works strictly on a machine-learning approach to sépdn@ ADHD patients from the con-
trols by utilizing labeled data. Therefore, the technigesalibed in this chapter is applicable to
other types of brain disorders where one can create labaladal the accompanying brain scans.

The plots in Figuret.6 show that for all the network features, high performanceeslkre
achieved when correlation threshold0 is used for the network construction. In four out of seven
cases the performances are the highest, in other two casesar one of the highest and in one
case it is slightly lower than the highest. The results atesarprising since they indicate that the
differences of connection structures of the highly cotezlaszoxels matter the most for the ADHD
classification problem.

Considering the results in Tade3, we observe that the 3-cycle features performed slightly

better than the the degree features. To the best of our kdge¢his is the first time that the utility
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of the cycle-related features has been demonstrated inMRe imaging literature. The study
in [49] showed that the cycle-related features are useful in idiscating biological networks
from man-made networks, but did not investigate varioussyqf fMRI-derived networks.

We found that the construction of the cycle-related featisenore computationally inten-
sive than the degree map, and the computation cost incregpesentially with the cycle length.
The use of GPUs can reduce the cost of computation, as esttigies with fMRI images have
shown [O]. If standardized libraries for the cycle computation beeocavailable on GPU plat-
forms, it will promote the use of such features in fMRI resbar The use of the degree map
provides a good compromise between the classification peaioce and computational cost. It is
easy to compute, and provides classification performamegsite only marginally worse than that
of the 3-cycle maps in most cases.

In summary, the results clearly suggest that the use of thel fil&ta for the analysis of
ADHD can be helpful in terms of identifying the root causelud problem as well as developing a
system for the automatic detection of affected subject® @rthe shortcomings of this approach
is that the features are computed on the nodes of the netwdrich can only capture the local,
structures ignoring the global topology of the networkscd®el, each selected voxel is represented
by a node of the network which increase the size of the netasnkell as the computation cost.

We address these problems in the next chapter.
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CHAPTER 5: ATTRIBUTED GRAPH DISTANCE MEASURE FOR THE
ADHD DETECTION

In the last two chapters we represented each voxel of a bodirme as a node of the brain
functional network. While this representation gives usriean to model the brain dynamics, the
cost of the network computation becomes too high. This isbge, in the fMRI data, the brain
volume of each subject is represented by approximately0B8;0xels which makes the size of the
correlation matrix very big28, 000 x 28, 000). In this chapter, we propose an efficient represen-
tation of the network such that the maximum information issgrved with minimum redundancy.
To achieve this goal, first we select only the highly activeels for the construction of the net-
work. We hypothesize that these highly active voxels contia@ most useful information for the
classification of the ADHD subjects. Next, we notice that Woeels in the spatial proximities
contain redundant information as their activity pattemshie fMRI intensity time series are very
similar. Therefore, we group the selected highly activeelexbelonging to the different func-
tionally homogeneous regions, into different clusterse Tumctionally homogeneous regions are
identified using the CC200 mafi{], which segments the whole brain into 190 spatially contigu
ous and functionally correlated regions. Each cluster gklsis then represented as a node of the
network. These steps help us to significantly reduce thearktaomputation cost.

The second main difference from the last two chapters istkatpproach the classification
problem in a different way. Instead of computing the netwfaitures, we map the networks
onto a low dimensional spatial configuration and perfornssifécation in the projected space.
While the network features are computed for each node andagature only the local network
structure, the projection of the networks helped us toagtilhe global topology in our classification
framework. The Multi-Dimensional Scaling (MDS) technigseused for the projection of the

networks using the inter-network distance measures. Otlmodeshows promising results as we
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achieve impressive classification accuracies on the eti€¢as49%) and holdout(3.55%) sets.
Our results reveal that the detection rates are higher wiasasification is performed separately on

the male and female groups of subjects.

5.1 Multidimensional Scaling

In this section, we provide a general overview of the MDS Ifar $ake of the completeness
of the chapter. The MDS is a set of data analysis techniqat®ttables one to understand the key
dimensions of the objects under investigation. The metimabthae term were first introduced by
Torgerson [ 7]. Given a set of objects and the proximities of each posgibles of objects, MDS
techniques can find a spatial configuration of the objectsdas their proximities. Here, prox-
imities suggest the overall dissimilarities or similagiof the objects being considered. Hence,
MDS can be understood as a method to project the objects frgma@e of unknown dimensions
to a space of specified dimensions in such a way that the afighoximities of the objects are
preserved as closely as possible. To state it formally,gvaumbers of objects and a dissimilar-
ity (or similarity) matrix Dyyxn, MDS projects the objects on a space of given dimensionsan au
way thatD — D, is minimized.D, is the distance matrix in the projected space.

Depending on how a dissimilarity (or similarity) matrix israputed, MDS can be subdi-
vided into direct and indirect methods. While for the dineethods numerical dissimilarity value
of each pair of objects can be directly computed, for therexdimethods dissimilarity values need
to be derived from other values like confusion data. Agai3/an be divided into classical and
nonmetric classes depending on how the problem is solvedleWie classical methods assume
that the dissimilarity matrix contains exact distanceshef dbjects, the nonmetric methods con-
sider only the ordinal information of the object proximgid-or more details on the MDS, we refer

the interested readers td5). For our experiments, we used a direct classical MDS tepleni
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Correlation between avg. fMRI time series
of any two clusters forms the edge weight

4

High power voxels are clustered in space
using CC200 map

Voxels with power greater than
a threshold

Part 1 (a) (b) (c)

- - - For each pair of
Low Dimension Graph Matching « network, compute node

Projection (MDS) (Munkeres) to node distance matrix

® & O) (@

Part 2

Part 3

Figure 5.1: Flowchart of our proposed method. (a) High poweels are selected. (b) High power
voxels belong to each region of interest of the CC200 maplastered together and represented
by their cluster centers. Each of the clusters representsla of the network. (c) Edges of the
network are formed based on the correlations of average #fRils of the clusters. (d)-(e) Inter-
network distances are computed in two steps. First, formgbaietworks a node to node distance
matrix is computed. Next, each node of the network with a favegle count is assigned to a node
of the second network using Munkres algorithm such thatdta inatching distance is minimized.
() The MDS is used to form a spatial configuration of the satgen a low dimensional space
based on the inter-network distance measures. (g) Clag®ficis performed in the projected
space.

5.2 Method

The proposed method can be divided into three main partsvonketconstruction, graph
distance computation and ADHD subject classification. Thewing sections describe the parts

in details.
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5.2.1 Network Construction

For each subject of the data set, the resting state brairtiduat connectivity network
is computed. The following steps describe the network ecansbn method. The concept is
graphically explained in Figurg.1 (a) — (¢).

The first step of the network construction method is the seleof the candidate voxels
which constitute the network. We observe that all the braixels do not contain valuable infor-
mation and including irrelevant voxels can degrade thesdiaation performance. We hypothesize
that the voxels with high activity levels contain the mostfus information for the ADHD clas-
sification problem and therefore selected to construct timetfonal connectivity network. We
substantiate our hypothesis by examining the experimelatia in Sectiorb.3, where we show
that the inclusion of all the brain voxels in the constructad the network degrades the classifica-
tion performance. We consider the power of the fMRI timeeseaf a voxel as the measure of its
activity level. Higher the power of a voxel, higher is itsigity level. For a discrete time series

T = {t1,ts, ..., t, }, the power can be computed as,

P(T) = % zn: 2 (5.1)
i=1

We then normalize the power values of all the voxels betweelj. The voxels are then
ranked based on their power values. Finally, we selectegtdkels ranked witl98 percentile or
more for the network construction.

In the second step of the network construction method we aisedficient way to represent
the nodes of the network such that the node count is reductwbwtisacrificing any relevant
information. In the last two chapters we represent eachctealebrain voxel as a node of the
network. There are two problems in doing this. First, it neltee size of the network very large,
which is inefficient for further computational analysis. cBed, we observed that the voxels in

the close spatial proximities have very similar functioaetivity patterns. Hence, including all
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these voxels for the network construction makes the netddrlof redundant information. For
these reasons we use an ROl map, (CC200) proposed by Cragldaick ”], to cluster the highly
active voxels to form the nodes of the network. The map is ge¢ed by parcellating the whole
brain resting state fMRI data intt)0 spatially contiguous regions of homogeneous functional
connectivity (FC). The selected highly active voxels bgiog to each of the ROIs form the cluster.
The issue concerning the best resolution of ROIs which ¢ortkee maximum information with
minimum redundancy for the functional study of the brainas addressed in this work.

In the third step, we construct the edges of the network amtpate the weights of the
edges. We represent each of the nodes by the average fMR3¢ines of all the voxels comprising
the node. Then, a correlation matrix is computed which dgostidne correlation values of the fMRI
time series of all possible pairs of the nodes in the netwé&i. two nodesrn andn with fMRI
time seriesny = {my, my, ..., m;} andny = {ny, ns, ..., n, } respectively, the correlation value is

computed as:

corr(myp,nr) = = =1 =1 ; (5.2)

Note that the correlation values have rangé, 1]. We empirically verified that the net-
works constructed with only the positive correlation valpeovide better classification accuracies
compared to the networks constructed with only the negatweelation values or absolute corre-
lation values. Hence, the experimental results reportetthe@metworks constructed with positive
correlation values only. Also, we use a correlation thréslkorrTh to remove all the edges from
the network which have correlation values less than theskialel.

In the final step, we represent the network as an attributapghgwhere each node of the

network is represented by a set of attributes. We call it ifpeagure of a node. Given a nodeits
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signature is defined as:

Signature(n) = (deg(n), deg(ngh(n)), pow(n), pow(ngh(n)), coord(n)), (5.3)

where the functionsieg(.), ngh(.), pow(.), return the sum of weights of all the connected edges,
the nodes connected by edges and the power respectivespornding to the input nodes in the

functions.coord(.) is the mean physical coordinates of all the voxels compgitiie node.

5.2.2 Graph Distance

Once the functional networks are constructed for all of thiejects in the data set, we
compute the distances of all possible pairs of networks awstin Figure5.1 (d). For a pair of
networks, the distance computation is a two step proceskelfirst step we compute the distances
of all the node pairs formed by selecting one node from eatheofietworks. Given two networks
G, = (W1, Ey) andGy = (V,, E>) and two nodes; € V; andv, € Vs, the distance between

anduw, is computed as the difference of their signatures:

dist(vy,v) =W - [dy, dy, d3, dy, ds)", (5.4)

whereW = [0.2,0.1,0.2,0.1,0.4] is the weight vector and,, d», ds, d4, d5 are the differences of
the node degrees, the neighboring node degrees, the noagsydiae neighboring node powers,
and the physical locations ef andwv,. All the difference values are normalized between |

to enable proper comparison. The valuesipfandd; are simply calculated by computing the
degree and power differenceswgfandv, and dividing them respectively by the maximum degree
and power encountered for any of the nodes in the training®etomputed,, first we sort the

neighbor degrees in descending orders. The node with lesberuof neighbor nodes is zero
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padded at the end to make the size of the degree arrays the Baraky, we sum up the absolute
differences of the array elements and divide it byaximumdegree x size(degreearray)). dy is
computed in a similar fashion while power values are useigawsof degreesl; is calculated as

follows:

1
" 1+ 300e (er—eD/a’

ds (5.5)

wherec; andc, are the physical coordinates of and v, respectively. This is a sigmoid curve
which restricts the value af; in the range of0, 1|. The parameters of the equation are heuristically
determined in such a manner that the valuel:pfs close to zero whefr; — ¢3| = 0, low for
the nodes in a spatial locality and steeply increasing ferrtbdes which are further apart. The
components of the weight vectdr are also determined heuristically considering the foltayvi
criteria. First, we want to make sure that the nodes whichpasesically far apart should not
match and hence set the highest weight corresponding todtileshphysical distance. Next,
we want to give the same importance to the degree and powrndes of the nodes. Hence,
the weights corresponding to the node degree and powendesare assigned the same value.
Similar condition is applied for the weights of the neighibgrnode degree and power distances.
Finally, we assume that the importance of the node featstamtes should be higher than the
importance of the neighboring nodes’ feature distancescklenveight for the neighboring nodes’
distances are lower than the node distances. In generaigtaace of a pair of graphs should be
calculated in such a way that the nodes from the nearby reguith similar degrees and powers
and with similar neighboring nodes’ degree and power distions should match.

In the next step, we use the Munkres assignment algorithit$ assign all the nodes of
one network to the nodes of the second network in such a wayhbaotal assignment cost is
minimized. This assignment cost is considered as the distahthe network pair. Note that the

numbers of nodes for all the networks are not the same. Tlhisdause when we select the high
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power voxels there are some ROIs from which no voxels aretseleBut this does not cause any
problem in our case as the Munkres algorithm can find the &gt cost even when the node

counts of the two networks are not the same.

5.2.3 Classification

When the subjects are modeled as the networks, they canniatdatly used for the clas-
sification but first need to be mapped onto a feature space.mnam way to deal with this is
to compute different network features which can be usedherctassification(], [87]. We took
a different approach to solve this problem. As shown in Fédul (e) — (f), we use the direct
classical MDS technique to project the networks in a spatie sgecified dimensions. The MDS
technique takes the network distance matrix, as discuss#teilast Sectio®.2.2 as input and
produces a spatial configuration of the networks in the ptegespace. The number of dimensions
of the projected space can also be specified in the MDS meWedchieve the best classification
accuracy when we use the number of dimensioris @8l the results of our proposed method are
generated on the 2 dimensional projected space.

The classification is performed in the projected space usiagVM [20] with a polyno-
mial kernel. We choose to use the SVM classifiers for the ¥ahg reasons. First, SVM can
classify the data points from two classes even when they @reasily separable in the original
feature space. SVM use a technique called kernel trick teprthe data points into a hyperspace
where the separation is easy. Second, SVM regresses thegfeataice without over fitting on the
data by allowing miss-classification with a penalty. Ourerkpental results also show that the
classifiers perform better when trained separately on tHe aral female subjects. This indicates
that there may be considerable differences in the fundtmmanectivity networks of the male and
female subject groups. Our result is consistent to the wbBatint et al. [5] who showed that the

male and female ADHD subjects have differences in the braiotfons.
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5.2.4 Experimental Setup

The setups for all the different experiments performed asedbed in this section. Exper-
iment results are listed in secti&m3.

For all our experiments we used MATLAB (version R2008b) iempkntations of MDS
and SVM. For MDS, we used the function namadsscalewith the criterion metricstressand
MazxIter = 100,000. For SVM, we used the functions namgemntrain(with polynomial kernel)
andsvmpredicto train the classifiers and test the detection accuracspeotively.

In Section2.3.1it is stated that the different data centers used diffenep¢emental proto-
cols for the data capturing. Also, in Tat2e?it is shown that the scanners and scan parameters also
vary a lot across the data centers. These motivate us toauaiolassifiers separately on the sub-
jects corresponding to the different data centers to avossiple data variance due to the change
of the experimental protocols. All the experiments are qrenkd on the subjects of released and
holdout sets of 4 data centers; KKI, NeuroIMAGE, OHSU andifRgk

For all the released and holdout sets of all the data ceritees different sets of experi-
ments are performed. While first set of experiments is peréal on all the subjects, second and
third sets of experiments are performed on the male and &graups separately. Hence, in total
(4releasedsets + 4holdoutsets) x 3 = 24 different sets of experiments are performed. For the
released sets detection accuracies are achieved by tleedaavout cross validation method. For
the holdout sets the classifiers are trained on the subjétt® @orresponding released sets and
the validations are performed on the holdout sets. For efttitese sets of experiments, we con-
struct the networks by varying tle®rrTh from 0.30 to 0.90 with a step size of 0.10. T¢@rThis
explained in Sectiob.2.1while describing the network construction steps.

We compared the performances of our method with a SVM graptekbased approaci]
which can be a natural choice to try on our problem. Graphedasna function to compute the

inter graph distance for any given pair of graphs. As we kvl can use the kernel trick to
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project the input data into the kernel space and performléssification in the projected space for
the better separations of the input classes. Similarlyaptgkernel can be used to project a set of
networks from an unknown space to a network distance matnigwcontains the inter-network
distances for all possible network pairs. Hence, the nétsvtiremselves become the dimensions
of the projected space and each coordinate signifies thendisfrom the network representing the
particular dimension. We used our graph distance computaipproach as the graph kernel and
the computed inter-network distance matrix as the inpuhef$VM. The feature vector for any
given network becomes the distances of the network fronthalhietworks in the training set.

For the purpose of comparing our results, we perform the sadassification experiments
using some standard graph features computed on the braitidoal connectivity networks. The
features are computed using the Brain Connectivity Toolf8RT) [62], which contains a large
selection of complex network measures commonly used faacherizing structural and functional
brain connectivity data sets. The features we used are teelethe topological overlap, the
clustering coefficient, the local efficiency and the richictwefficient. The following are the brief

descriptions of the network features used:

e Degree of a node is the number of edges incident on it.

e Them,, step generalized topological overlap measure quantifeesxtent to which a pair
of nodes have similat;;, step neighbors. Where,, step neighbors are the nodes that are

reachable by a path of at most length We got best results fon = 5.

e The clustering coefficient is the fraction of the trianglesuend a node. In other words, it
is the ratio of the neighboring nodes count which are comuett each other to the total

number of neighboring nodes of the node.

e The local efficiency is the global efficiency computed on tbhdaneighborhood. Where the

global efficiency is the average of the inverse shortest lgaitiths in the network.
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e The rich club coefficient at levdl is the fraction of edges that connect the nodes of degree

k or higher out of the maximum number of edges that such nodgistrehare. We compute
the coefficients for all thé values wherd) < k£ < K. Here,k is an integer andy is the

maximum degree found for any node of the training data.

Since each of the network features returns a feature vedtosevsize depends on the
node count of the network, we had to make the node counts samadl the subjects to make the
feature sizes same. For this reason we construct the netwokklittle different way. Instead of
using one power threshold value for selecting the highlivactoxels of the whole brain, we use
separate power thresholds for each of the ROIs of the CC2@0 Rua each of the ROIs, we select
the voxels ranked 98 percentile or higher based on their pgalees. The rest of the network
construction process is the same as before. The experirmentdso set up in the similar fashion
as described for our proposed method.

To better understand the physical interpretations of edd¢heodimensions of the MDS
projected space, we performed some analysis. First we cengmune global feature values for
each of the networks of the KKI released set. A brief desicnipof the computed features is as

follows:

e Density: it is the fraction of the present connections to all posstiolenections of the net-

work.
¢ Global efficiency: it is the average of inverse shortest path lengths of thear&tw

e Rich club coefficient: it is as described before in Secti®i3. The correlation values re-
ported withz coordinates of the male and female groups are achieved whenl1 and

k = 1 respectively.

e High power node fraction: it is the fraction of the nodes with power greater than a thwes

old to the total number of nodes of the network. The correfatralue reported with:
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coordinates of female group is achieved whenT H = 0.85.

For each of the computed global features, two separateréeactors for the male and
female group of subjects are formed. Please note here eattlvdevector represents a group of
subjects (e.g. the male and female groups) but not the shaisubjects. Then the correlations of
the feature vectors are computed with thandy coordinates of the networks when projected as
points on the 2 dimensional space.

To show the importance of the high power voxel selection steperform a set of exper-
iments using our method but without the voxel selection.sk@pally, we experimentally validate
the effectiveness of the node attribute set used in our rdetRor this purpose, we compute the
inter-graph distances using different subsets of thebates used for the original framework. For
each of the subsets, the inter-graph distances are comgepadately followed by the projection of
the subjects to a low dimensional space using the MDS andifitagion using the SVM. It is not
possible for us to compute the results for all possible dsta®there can be 31 different subsets
for 5 attributes. Instead we start with one attribute ancpkae adding attributes in the subsets.
The results show that the classification accuracies steiadilease as we keep adding attributes in
the subset. Finally, we performed the experiments usingaaibinations of 4 attributes to show

that even missing one of the attributes from our attributeleereases the classification accuracy.

5.3 Results

The detection rates of our method, when classification iopeed separately on the male
and female subjects, are plotted in Figbt2 The plots show how the detection rates vary for the
different data centers and with respect to diffekemt1'h values. In Tabl®.1we reported the best
detection rates of our method along with the specificity asmsgivity values for all the released
and holdout sets. TheorrTh values corresponding to the best detection rates on thasese

sets are selected and used to get the detection rates foolih@uhsets. One interesting fact is
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that in most of the cases we get better classification acesaden experiments are performed
on the male and female subjects separately. We achieve aagaveetection rate @f4.48% on
the released sets ait@d.81% on the holdout sets when the classification is performed bothal
subjects and@0.49% on the released sets angl55% on the holdout sets when the classification is

performed separately on the male and female subjects.

Table 5.1: Summary of the results: table shows the besttimtaates achieved (along with their
specificities and sensitivities) on all the released anddgl sets using the proposed approach.
ThecorrTh values are selected from the released sets where we aclasivddiection rates. The
rates on the holdout sets for the corresponding7'h values are reported. The values under the
heading 'Male Female Separate’ are computed by averagingdturacies on the male and female
groups.

All Subjects
Data Centers Released sets Holdout sets corrTh
Detection Rate% | Specificity | Sensitivity | Detection Rate% | Specificity | Sensitivity
KKI 75.64 1 0.952 54.55 0.6250 0.3333 0.8
NeuroIMAGE 64.10 0.6818 0.5882 48.00 0.6429 0.2727 0.5
OHSU 60.61 0.6579 0.5353 82.35 0.8929 0.5000 0.9
Peking 61.20 0.8661 0.2113 58.82 0.9259 0.2083 0.6
Average 64.48 0.8471 0.3066 62.81 0.8312 0.2727
Male Female Separate
KKI 76.92 0.9048 0.3684 54.55 0.6250 0.3333 0.5
NeuroIMAGE 76.92 0.8182 0.7059 100 1 1 0.5
OHSU 68.18 0.7895 0.5357 61.76 0.6071 0.6667 0.3
Peking 67.21 0.8393 0.4085 72.55 0.7407 0.7083 0.3
Average 70.49 0.8453 0.4672 73.55 0.7273 0.7500

Table5.2 summarized the results of the graph kernel based approachiloled before. As
it can be seen, the classification accuracies are much lamepared to our method. The possible
reason for the low classification accuracy can be the foligwiln the graph kernel space, the
projected inter networks distances may not be the same amitiieal distances. This is easy to
understand with an example. Let us assume three netwhrks C' with inter-network distances
computed asd — B = 4, B— C =2 andC — A = 4. Then their representations in the kernel
space arel = {0,4,4}, B = {4,0,2}, andC = {4,2,0}. Hence, the Euclidian distance between
A and B in the kernel space becomésB andC' becomes around.83, andC' and A becomes

6 which are different from the original distances. MDS on tlieeo hand tries to preserve the
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original distances in the projected space.

Table 5.2: Summary of the results: table shows the besttimtaates achieved (along with their
specificities and sensitivities) on all holdout sets usiveg$VM graph kernel method. TherrTh
values are selected from the released sets where we aclesivadbection rates using our proposed
approach. The values under the heading 'Male Female Separatcomputed by averaging the
accuracies on the male and female groups.

All Subjects
Data Centers Holdout sets corrTh
Detection Rate% | Specificity | Sensitivity
KKI 63.64 0.625 0.6667 0.8
NeurolMAGE 32 0.1429 0.5455 0.5
OHSU 70.59 0.8571 0 0.9
Peking 54.90 0.9259 0.125 0.6
Average 55.37 0.7162 0.2444
Male Female Separate
KKI 27.27 0.25 0.3333 0.5
NeuroIMAGE 96 0.9286 1 0.5
OHSU 61.76 0.7143 0.1667 0.3
Peking 58.82 0.8889 0.25 0.3
Average 64.46 0.7662 0.4318

The detection rates of the classification experiments paed using the standard network
features are shown in Figuge3 along with the results of our method. The results are redorte
separately for each of the data canters as well as the avededgetion rates. As it can be seen, in
almost all of the cases our method performs better than ttveone features. Also, on average,
none of the features performs better than our method whaehsggearately on the male and female
subjects. This justifies the need of a specialized methotht@analysis of the brain functional
problems like ADHD. Please note that we ignored the clasdifio results if any of the specificity
or sensitivity is zero. This implies that either all the sdif are classified as ADHD or control.
This is why for some of the network features the detectioruemzes are zeros in Figuie3.
Figure5.3 also shows the best detection rates of our method when norbveshold is applied
for the voxel selection during the network constructiompst&he lower detection accuracies of
these experiments compared to our results demonstratmgwetance of the voxel selection step.

Figure5.4reports the results when different subsets of node at&#barte used for the cal-
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culation of the inter-graph distances. For each of the dapte average classification accuracies
on all the data centers are plotted in the Figure. The repoesults are achieved when the clas-
sifications are performed separately on the male and fernajec groups. As it can be seen the
best detection rates are achieved when we use all the &dsibuthe set. This demonstrates the

importance of using all the attributes for the calculatidthe inter-graph distance.
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Figure 5.2: Figure plotsorrTh vs detection rates of our method on the (a) released setsand (
holdout sets.

5.4 Discussion

In this work we proposed a novel framework for the automaétedtion of the ADHD
subjects using rs-fMRI data of the brain. For this purposew@restruct the functional connectivity
network of the brain where each node of the network is reptesgeby a set of attributes. The
first step of the network construction method is the efficggiéction of the voxels which relate to

the functionally active regions of the brain. These highdtivee voxels are used for the networks
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construction where the voxels activity levels are measbes#d on the power of their fMRI time
series. Often signal to noise ratio of the low active voxekiseries is very high. Also, these noisy
time series can have considerable correlations with eddr athich lead to the adding of spurious
edges in the network or changing of the edge weights of thearkt The intuition behind the
selection of the highly active voxels is to reduce this neibéch can affect the correlation weights
of the network edges. As shown in the plots of Figbi@(a) and (b), the voxel selection process in
general helps to improve the classification scores. Howawehave not experimentally verified
what is the ideal power threshold value for this. Further wedua functional ROl map (CC200)
to construct the network nodes by clustering the selectadlsdelonging to the same ROIs. The
active voxel selection step along with the use of the CC20p toaluster the voxels helped us
to reduce the computational cost of our algorithm by a gresdumt. Compared to around 28000
voxels per brain volume, the average node count of the amtett networks is around 60.

Next, we model the network as an attributed graph where eadh af the networks has
its signature. The signatures of the nodes contain infoamatout the local structures of the net-
works. Next, at the time of inter-graph distance computesitep, the Munkres algorithm is used
to match these local descriptors in a globally optimizetiif@s. To discourage the algorithm from
matching two nodes which are spatially apart, we use theidianldistance of their coordinates
as a parameter of the matching cost computation.

The inter-graph distance measures allow us to use the MD@&itpee to map the networks
from an unknown space to a 2 dimensional projected spacerd®gb shows the spacial config-
uration of the subjects of the KKI released set when they app®d to the 2-D projected space.
As it can be seen, ADHD subjects can be better segmented \whendle and female groups are
plotted separately compared to when all the subjects ateegltogether. This fact is reflected
in the experimental validations where we consistently getep results when classifications are

performed separately on the male and female groups.
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Figure 5.3: Summary of the results: figure plots the besttieterates achieved on all the released
and holdout sets using five commonly used network featurptemmented in the BCT, our method
and our method without the high power voxel selection stepatlires 1 to 5 are the degree,
topological overlap, clustering coefficient, local effivogy and rich club coefficient respectively.
(a) and (b) show the results on the released sets when thaficlaison is performed on all the
subjects and on the male and female subjects separateanddl)show the similar results on the
holdout sets. The detection rates of (b) and (d) are comptexveraging the detection rates on
the male and female groups.

We perform an analysis to understand the physical inteapoetof the different dimensions
of the MDS projected space. For this purpose we compute tinelabons of the different global
features of the networks with their coordinates in the priaie¢ space. The correlation values

are reported in Tabl®.3. It can be seen that the coordinates of the projected spaces of the
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male and female groups are highly correlated with the dgasit rich club coefficient features
and moderately correlated with the global efficiency. Itidddoe noted that these three features
capture different aspects of network edge structures. dstdeature shows some correlation with
they coordinate of the female group.

To justify the importance of a specialized method for analg$the ADHD, we compared
our results with some of the standard brain connectivity suess heavily used for functional
analysis of the brain. As shown in Figuse8our method outperforms the standard network features
by a large margin. Only the topological overlap feature genls similar to our method on the

released data sets.
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Figure 5.4: Figure plots the average detection accuraciesldhe data centers when the inter-
graph distances are computed using different subsets afdtie attributes. The classification is
performed on the male and female groups of subjects sepatai@chieve the reported results on
(a) the released sets and (b) holdout sets.

Figure 5.2 shows how detection rates vary with different correlatibresholds used for
the network computation. It can be seen that the peaks ofdteztion rates are not the same for
the different data centers. There are two main potentiagiores for this variation. First, there are

variations in experimental protocols followed by the di#fiet data centers. Also, to capture the
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data, different data centers used different scanner meaaelscanning parameters. Second, the
subjects, participated in the different centers, havesthfiit age distributions. Mehnert et &l(]
found changes of functional connectivity measures with iageuman brain. The variation of
detection rate patterns across the centers indicate$tratis a need to follow a more standardized
experimental procedure for the future studies.
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Figure 5.5: Subjects from the KKI released set are plottethenVIDS projected space. (a) All
subjects, (b) subjects of the male group, (c) subjects dEtimale group. The spaces are segmented
during the SVM training phase.
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5.5 Conclusion

To summarize, we develop a novel classification frameworlclwis modeled in a com-
putationally efficient fashion as we are able to drasticedlguce the size of the functional con-
nectivity network by efficiently selecting the voxels andstering them to form the nodes of the
network. Also, our approach is able to produce impressiassification accuracie§{.49% on
released data sets afid.55% on holdout sets) especially on the holdout sets where wehget t
better detection accuracies than any of the previouslyrtegaesults 7% by Bohland et al. §]
was the previous best). Our approach utilizes the globatstre of the networks as we use the
inter-network distances to project the networks in a 2 disi@mmal spatial configuration where the
classification is performed. We provide physical intergtiens of the dimensions of the projected
space in our analysis. Also, we show the superior performafiour method over the standard

network measures.

Table 5.3: Summarize the correlation values of the glotstlies of the networks with theand
y dimensions of the projected spaces of the male and femalgpgro

Global features Lmale Ymale L female Yfemale
Density 0.6906 | 0.3248 | 0.8310 0.1070

Global efficiency 0.4594 | 0.1924 | 0.5391 0.2578
Rich club coefficient 0.6367 | 0.4228 | 0.6482 0.4146
High power node fraction 0.3055 | 0.1984 | 0.1338 0.4942
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CHAPTER 6: MULTIMODAL DATA FUSION TO IMPROVE ADHD
DETECTION ACCURACY

In the last chapter of this dissertation we aim to addressaspects of the proposed classi-
fication problem. First, are structural brain images uskefiuthe automatic diagnosis of the ADHD
subjects? Second, can we further improve the classificatoaracy when combining information
from the functional and structural brain images?

To answer the first question, we used the Gray Matter (GMnhlraage for our analysis.
The GM image is the segmented sMRI image which contains ¢rdy@M regions of the brain.
The GM regions are very important for brain cognitive tasksheey contain most of the neuronal
cell bodies of the brain. The GM image for each subject is plewided with the ADHD-200
data-set. We used a Convolutional Neural Network (CNN) tivaex the features from the GM
images. Finally, the SVM is used for the classification.

To answer the second question, we use a separate classific@mework using the 3-D
power map image and fuse the detections obtained using thentvdalities to deduce the final
classification label. The power map concept is introduce8dantion5.2.1 A brain power map
is constructed by computing the average power of the fMREtsaries for each voxels of the
brain volume. We compute the Local Binary Pattern (LBP)usxfeature in the three orthogonal
directions of the power map. The final representation of AP is a histogram for each subject of
the data-set. The PCA-LDA classifiers are used for the firzesification.

The experimental validation showed impressive classifinaaccuracies using the GM
(74.23%) and power map77.30%) features. We use the late fusion to combine informatiomfro

both of the data modalities which further improves the éfaesgion accuracy t@9.14%.
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6.1 Method

The method is divided into mainly two parts. Secti®ri.1describes the classification
framework using the GM images and Sectti.2describes the classification framework using

the power map images. Lastly, the multi-modal data fusiatescribed in Sectio6.1.3

_____ ]:l Passed to the
next layer

-~ 10
-

-
- - = .
I:E - || Reduced size

feature maps

Input image Feature maps

Figure 6.1: Figure shows the functionality of a CNN layersFthe input is convolved by a set of
filters to produce the feature maps. Next the subsamplingeofdature maps helps to reduce the
map dimension. The reduced feature maps are then passedriextiayer for processing.

6.1.1 Classification Framework using GM Images
We first provide a short overview of the CNN for the better ustending of our method
followed by a detailed description of the GM feature exti@ciand the classification framework.
6.1.1.1 CNN Overview

CNN is a variant of multilayer perceptron (MLP) which is adderward artificial neural
network. The architecture of CNN is inspired by neurobiglagspecially the neuron organization
in the visual cortex of a cat. CNN was first introduced by K. &sthima B3] and later improved

by LeCun et al. 6.
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As itis specifically designed for the image processing, CMisl $ome architectural advan-
tage over MLP. For example, MLP has difficulties in learnifjeat shape with spatial invariance
i.e. learning to recognize object present in one locatiothefimage does not transfer to learning
to recognize the same object when it is present at a diffémeage location. The other advantages
are scale invariance, lower number of parameters to trainkesch layer of CNN performs two
functions; convolution and subsampling. Convolution isf@ened on the input of the layer by
several small filters. Convolution with each filter genesaaefeature map of the input. Subsam-
pling is used to reduce the size of the feature map. It alspshte add the position invariance
property of the network. The down-sampled feature mapshee passed to the next layer for the
processing. The concept is explained in Figbuk

For our experiments, we used an already implemented CNN Incatled Caffe [17]. The
network accepts input images of size 256x256x3. The netiasks convolution and subsampling
layers followed by two fully connected layers called FC6 &@i7. The convolution layer 1 to 5
has96, 256, 384, 384 and256 filters of sizesl1 x 11 x 3,5 x 5 x 96, 3 x 3 x 256, 3 x 3 x 384,
and3 x 3 x 384 respectively. The max pooling is used for the subsampling®feature map. We

used the output of FC6 and FC7 layers to form the feature xecto

6.1.1.2 GM Feature Extraction

The ADHD-200 data-set comes with the 3-D GM image for eacthefdubjects (Figure
6.2). All of these images are of siZ7 x 233 x 189. The details information of the GM image
can be found in the data description secti@r8(l). The 3-D GM image can also be considered
as a stack of 2-D images which we refer to as slices. Slicesanstructed by considering all the
voxels of ther — y plane while fixing the: dimension. Our algorithm treats each slice of the 3-D
GM images independent of other slices. For this purposedhtifes from each of the slices are
extracted separately for the classification. Later, thegg®f information from all of the slices are

combined in a late fusion framework. For our experiments amesler one out of every 5 slices
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starting fromz = 40 to z = 140. This gave us 21 slices in total. The range is selected in auch
way because the slices outside the range do not contain afiyl bbsain region for our problem.
Also, slices with similar z-axis values have very similausture, which is why we selected one in
every 5 slices. Slices are saved2as x 256 x 3 JPEG images to be used for further processing.
As the original size of the slices i97 x 233, appropriate zero padding is performed at the borders
of the images. Also, the GM images are gray-scale images amgpeat the gray-scale values of

the slice in red, green and blue channels to produce the iofegize256 x 256 x 3.

7=100 7=110 7=120 7=130 7=140

Figure 6.2: Figure shows different GM image slices of a sttbje

We use a CNN implementation for extracting the features ftloensaved image slices. A
CNN is believed to be able to automatically learn the featapgesentation useful for classifying
any particular concept. The concept can be anything, famgkaobjects, which can be linked to
a pattern of data. We used a pre-trained model of CNN whichaiedd on a large image data-
set released for the Large Scale Visual Recognition Chgdle?012 B&]. The data-set contains

1.2 million images with 1,000 categories. The data-set igge that the network has learned a
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generic representations of the filters which can extracuiedul features for the image categories
even if they don't belong to the training categories. This pived to be useful in our case also as
we obtained good classification accuracy using the feaaxteacted from the pre-trained network.
We only considered the features from the FC6 and FC7 layaich &f the layers produces a feature
vector of 4,095 dimensions. The final feature vector is fahmgconcatenating the feature vectors
of the FC6 and FC7, resulting a 8,190 dimensional representaNote, each of the dimensions
of the feature vector is normalized in the rangg(ofi]. The feature extraction steps are described

in Figure6.3(a) — (¢).
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Figure 6.3: Flowchart of the GM classification framework: GiM images of the training and test

subjects are provided to a pre-trained CNN (b) to extrat¢tufea from FC6 and FC7 layers. (c) For
separate slices, separate feature vectors are constaaredtenating the features from the FC6
and FC7 layers. (d) Separate classifier are trained for tharaee slices to produce the decision
vectorV¥. Dot product of¥ and a weight vectaf2zs generates the final decision scofe

Figure6.4shows some of the filters learned by the pre-trained CNN miad&le convolu-
tion layers. The filters of the first layer are particularlyuiive as they learned to capture textures,

color gradients, and edges in different orientation. Theréglso shows the feature maps gener-
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ated by the same layers for an example input image. Pleas¢haitwe do not show all the filters
and feature maps per layer for the ease of visualization. filtees of the first layer are colored
because the size of the filterslis x 11 x 3 which helped to plot them as color images. For the
rest of the layers, we display the first 10 slices of the firsfili€rs. The slices of the filters are
arranged in the rows of the figure. For each layer of the CNNyalkving a filter with the input
produces a feature map. Thus, total number of feature mapafed by a layer is equal to the

number of filters of the layer. The figure shows the first 36ueatnaps for each layer.
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Figure 6.4: Figure shows some of the filters learned by theirpieed CNN model for all five
convolution layers and the corresponding feature mapsrgitefor some input subject. Note that
due to the space constraint, the figure is showing only a subske filters and features of each

layer.

6.1.1.3 Classification

As stated, the features are extracted separately for theliB& sand separates classifiers
are trained using the extracted feature vectors. We use #taiMimplementation of the SVM

classifier with the quadratic kernel. In total 21 classifiars trained for 21 slices. Given a test
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subject, each of the classifiers produces a diagnosis labé&hé subject. The concatenation of
the diagnosis labels from all of the slices makes a decisemtov V. Elements ofl vector are
combined in a late fusion framework to produce the final digssion label. The fusion is per-
formed in two stages. First, we compute a weight veg@Xet {ws, ws, ..., w, } Wherew; represents
the weight of thei,;, slice andn = 21. For this purpose, we record the classification accuracy
for thei,, slice by performing leave one out cross validation on thimiing set using the features
from 4, slice only. Recording the accuracy values for all the slimems the accuracy vector
AC = {acy, acy, ..., ac, }. Now each element ¢k can be computed as:

ac;

(6.1)

Wi = —<p———-
i1 acj

(2 is used to ranked the slices based on their weight valuesesSiith higher weights get higher
ranks. In the second step, a sigmoid function is used todurtscale the weight vector so that
the weights of higher ranked slices get a boost. This stegymes a re-scaled weight vectoys

as follows:

1
T 1+ e (rank(w)—n/2)

) (6.2)

WRs; = W; X (1

wherewgg, is thei,, element of2;s. Final decision scoré§' is achieved as follows:

S =0T Qps. (6.3)

A decision threshold is applied gnto detect the ADHD label.
For each of the five data centers (KKI, NeuroIMAGE, NYU, OHSWU&eking) the frame-
work is used separately by considering the released seedsathing data and the hold out set as

the test data.
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Figure 6.5: Flowchart of the power map classification framewFirst, the 3-D power map image
is generated from the 4-D fMRI data. Next, the LBP texturéuess are computed in three orthog-
onal plane directions of the power map image. The classiicéd performed using the PCA-LDA
classifier.

6.1.2 Classification Framework using Power Map Images

The concept of power map is first introduced in Secbdh1l A power map is constructed
by computing the average power of the fMRI time series of eawtel of the brain volume. In
this section, we further analyze the role of the power mapy @l solving the ADHD diagnosis
problem. Hence, we do not use any functional connectivitwaek which requires the fMRI time
series to be constructed. The whole classification framlevgagxplained in Figur®.5. As it can
be seen, the power map for each subject is a 3-D image. We ¢ertimILBP texture feature of
the power map in three orthogonal plane directions. A PCAaldIassifier is used for the final

classification. Feature extraction and classificationsstgp explained in details in the following
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sections.

6.1.2.1 Power Map Feature Extraction

LBP is an image texture feature originally introduced byl®gt al., 1996%5] and Ojala et
al., 2002 p4]. Recently, Chang et al., 2012q] used the LBP feature on the structural brain images
for automatic ADHD detection but their best detection aacyr69.95%) is much lower than what
we achieved. The steps involve in LBP feature computatioa 24D image are explained in Figure
6.6. For our experiments, we compute the LBP features of the 8iepmap on three orthogonal
plane directions. Finally, we concatenate the featurem #ach of the plane directions to construct
the 3-D image feature.

The LBP operator for a voxel can simply be defined as follows:

P
LBP(v) = Z sign(pow(v,) — pow(v))2P~ 1, (6.4)
p=1
where
0, <0
sign(x) =
1, >0

P is the number of neighbor voxels, is thep,, neighbor voxel, functiopow(.) returns the power
of the input voxel. For our experiments, we only considehedinmediat& neighbours of a voxel.
Hence, the LBP score of any voxel is always in the rang@,af5|. Again, the neighbour voxels
are indexed in a particular order as shown in Figbu& Once the LBP scores of all the voxels
for each of the three plane directions is computed, a hiatogf LBP scores is constructed per
subject per plane direction. Each histogram consigb6thins which represert56 possible LBP
scores. As the final feature vector is computed by concatentite histograms of all three plane

directions, the total feature vector size becoimgs
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Figure 6.6: Figure describes the LBP feature computatioa 8D image. First, for each voxel
immediate 8 neighbour voxels in the plane direction aretiled. Then, a neighbour voxel is
assigned a value O if its power value is less the center v@xealue. Otherwise it is assigned a
value 1. Next, the binary values of all the neighbour voxetsmaultiplied by different powers of 2
in a particular order and summed. This is the LBP score of éiméer voxel. Finally, the histogram
of LBP scores is computed for all the voxels of the brain vadumder consideration.

6.1.2.2 Power difference image formation

We identified the key regions with power differences betwéden ADHD and control
groups which are shown in Figu@9. The figure shows the average difference of power be-
tween the ADHD and control groups as they are plotted on tfierdnt brain slices. The figure
is generated using the power maps of the KKI released anddutldata sets’ subjects. For any
voxelvpyy, ;, of the power difference map showing high power regions ofcttretrol group, the

power value is computed as follows:

0, 6<0
pow(UDMi,j,k) =
0, 0>0
where
1 1 &
0= 5 ;pOw(UQ,j,k) - Z ;pow(vai,j,k)' (65)

C and A are the control and ADHD subject counts. The power valueb®tbxels of the power
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difference map, showing the high power regions of the ADHBugr, can be computed in a sim-
ilar fashion. False Detection Rate (FDR) controlling teqge, introduced by Benjamini and
Hochberg, is applied on the image as it is describe®ih (Genovese et al.). The FDR control-
ling technique guarantees that the average false deteetienvill be less than a parameter value
q (0.01 in our case) specified in the algorithm. The algorithm work$adlows. First, the voxels
are sorted in the ascending order according to tRaialues. P value for each voxel is calculated
for the null hypothesis that the voxel has no statistical @oghfference in the ADHD and control
subject groups. Finally, all the voxels wifh values lower than th&; are selected whereis the

largest index such that the following condition satisfies:

iLoq
P < Vm, (6.6)

whereV is the total voxel count and(V) is a constant whose value is 1 in our case. The final
selected voxels are plotted in the power difference images.

As it can be seen, the high power regions of the control groeip@re evenly spread across
the brain slices while the high power regions of the ADHD grawe distributed as isolated small
clusters. We performed similar analysis on the subjectsebther data centers where we observed
similar patterns for the NeuroIMAGE (Figuel10, NYU (Figure6.11), and OHSU (Figur®é.12
data centers. Surprisingly, for the Peking data cente(€i§.13 an opposite trend is observed
where the average high power regions of the control grouprisagl out in the brain volume while

the average high power regions of the ADHD group are smathesaged regions.

6.1.2.3 Classification

Similar to the classification framework using GM image feas, classification framework
is used separately on each of the data centers. For eacheatd&a, dhe hold out set is used as

the training data and the released set is used as the testdatl our experiments on the power
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map we used the Matlab implementation of the LDA classifiecpded by PCA. First we compute
an average power map of the training subjects and selecottedsswhose average power values
are greater than a threshold. Only the selected voxels acdtfos the LBP feature computation.
We varied the power threshold from05 to 0.40 with an interval 0f0.01. For each value of the
threshold, a different set of feature vectors are constdjatlassifiers trained and accuracies are
recorded. The reason behind choosing the particular thiésange is because beyond either end
of the range detection accuracies generally drop rapidly.

For the purpose of the comparison of the classification actes, we performed a set of
experiments on the raw power map features. The raw power satpré vector is formed by
selecting the voxels with average power value greater thepadower threshold and arranging their

power values in a vector. The power threshold range is the s&n the case of the LBP features.

6.1.3 Multi-modal Data Fusion

We use a simple late fusion model for combining the GM and panag information. We
employ a voting using the final decisions of the GM and powep rlassification frameworks.
As we are dealing with only two votes, a subject is classifedBHD if any of the decisions is

positive.

Table 6.1: Summary of the results: showing the best deteotisults for all different methods and
their corresponding specificities and sensitivities.

FC6-FC7 LBP FC6-FC7 & LBP
Det sens spes Det sens spes Det sens spes
KKI 81.82 | 33.33 100 90.91 100 87.50 | 90.91 100 87.50
NeurolMAGE 68.00 | 81.82 | 57.14 | 88.00 | 72.73 100 72.00 | 90.91 | 57.14
NYU 73.17 | 89.66 | 33.33 | 78.05 | 86.21 | 58.33 | 75.61 100 16.67
OHSU 88.24 | 50.00 | 96.43 | 85.29 | 16.67 100 91.18 | 66.67 | 96.43
Peking 66.67 | 41.67 | 88.89 | 62.75 | 25.00 | 96.30 | 74.51 | 62.50 | 85.19
Average 74.23 | 67.57 | 79.55 | 77.30 | 58.11 | 92.50 | 79.14 | 83.78 | 75.00
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6.2 Results

As stated, for all our experiments classification is perfedraeparately on the separate data
centers. The released set of each data center is considetteel taining data and the hold out set
is considered as the test data.

Different LBP features are calculated by varying a poweeshold and each time select-
ing the set of voxels whose average power value is greatertti@threshold. For each set of
LBP features, ADHD detection accuracy is recorded. Figuvga) plots the power threshold vs
classification accuracies for all the data centers. Theageedetection accuracies of all the data
centers for different power threshold values are alsogdbtAs it can be seen the highest average
detection accuracy value is achieved for the power threlskadue of0.21. Fusion of the FC6-FC7
and LBP features are also performed for the different potueshold values (Figur@.7 (b)). The
best average detection accuracy for the fusion featursasaahieved for the same power threshold
value ie. when the FC6-FC7 features are combined with thefeB®ires computed for the power
threshold value of.21.

For the comparison of the detection accuracies, classditatre performed using GM
feature vectors of the FC6 layer only, the FC7 layer only amacatenation of the FC6 and FC7
layers. The average accuracy of the experiments for all fata denters are plotted in Figure
6.8 As it can be seen, we achieve the best classification agc(f&23%) when we concatenate
the feature vectors from the two layers. Also, the clasgiboeexperiments are performed using
the features from the White Matter (WM) and normalized whoiain images. The WM and
normalized whole brain images are also structural braimgasa&ontaining segmented white matter
regions and whole brain regions respectively. The featxtraetion and classification frameworks
on the WM and whole brain images are same as the GM classsfickamework. Finally, late
fashion is used to combine the LBP features with GM FC6-FCK] RC6-FC7 and whole brain
FC6-FC7 features respectively. Late fusion of the GM FCG-lg@d LBP features gives us the
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overall best classification accuracy whichris14%. Figure6.8 plots the classification accuracy

of all of the experiments.
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Figure 6.7: Figure plots the power threshold vs detectitesrgenerated using the LBP features
computed on different data centers. Average detectior fate¢he different power threshold values

are plotted in black. Dotted blue line indicates the poweeghold value for which the highest

average detection rate of all the data centers is achieved.
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Figure 6.8: Figure plots the average detection rates omaltiaita centers using different feature
combinations. GM stands for the gray matter, WM stands fewnthite matter and WB stands for
the whole brain.

For each of the data centers, the classification accuratmeg a&ith the sensitivity and

specificity values are listed in Tabtel

91



6.3 Discussion

In this chapter we argued that the brain structural imagesago useful information for
solving the ADHD diagnosis problem. To verify our claim weewsn already implemented CNN
model to extract the features from the GM images of the br@uar experiments show that the
extracted features can classify the ADHD and control subjeath an impressive accuracy. The
CNN model we used is pre-trained using a very large dataesgaming 1000 object categories
and1.2 million images. This helped the network to learn to extraettéires in a generic fashion
such that the features can classify the objects categamgsithey are outside of the training cat-
egories. We noticed that the GM is the most useful brain regior solving the ADHD diagnosis
problem as the other two structural image formats, i.e. tiv &id whole brain images, didn’t
perform that well. At the end, we combined the output of theNCiar each of the GM slices in a
novel late fusion framework to achieve a higher classiftcaticcuracy.

For our functional data based approach, we used the 3-D pmaprimages which is de-
rived from the fMRI data. The concept of the power map is idtrced in the previous chapter
(5.2.1) where it is used to select the highly active voxels for thectional network construction.
In this chapter, we investigate if the distribution of theege voxel powers can reveal any differ-
ence of patterns between the ADHD and control groups of stj&or this purpose we compute
the LBP texture features on three orthogonal directiont@fiower map image. LBP is a global
feature which can encode the texture pattern around a voteebinumber betweeld, 255]. The
histograms constructed from the LBP feature estimatesdbatof different texture features ap-
pearing in an image. We achieve the state of the art cladsificaccuracy17.14%) using the LBP
features.

We notice that our findings of the power difference regiomscnsistent with the existing
literature. Vincent et al §0] and Castellanos and Proal]] have investigated the role of the fronto-

parietal network in performing executive control taskseTitontal pole is known to be a part of this
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network, and our method is able to identify this region asnshim Figure6.9, panel withz = 16.
Clark et al. [L&] have reported right-frontal cortex abnormalities in ADHe identify the right
frontal orbital cortex (Figur&.9, panel withz = 16) as a region where the controls have higher
power than ADHD subjects. Schachar et &/][studied response inhibition deficits in the context
of ADHD subjects. Diane and Victori2 [] demonstrated the role played by the left inferior frontal
gyrus in response inhibition tasks. From our analysis we idlesntify the same region (Figufe9,
panel withz = 20). Several studies have shown diminished activity in thepneus region of
ADHD subijects vs. controls, such as Cao et al][and Castellanos et allf]. We also obtain
a similar result as we found high power in the precuneus refiothe control subjects (Figure
6.9, panel withz = 24). Dickstein et al. €], in their paper, compare regions in the brains of
control subjects that are hyperactivated with respect ttiBBubjects. Many of the regions they
identified are in agreement with the regions shown in Figu@esuch as the inferior frontal gyrus
(= = 20) and the precentral gyrus & 24). These regions have been implicated in tasks involving
executive function and inhibition. Sharp et &[] showed that the lateral occipital cortex, which
shows up in our finding (Figuré.9, panel withz = 24), is also implicated in inhibitory tasks that
are studied using a stop signal task. Furthermore, thealadecipital cortex is also involved in
spatial attention tasks, as shown by Silk et @]]

Finally, we are able to further improve our classificatiocwacy by combining the GM
and power map information in a late fusion framework. Thidicates that the structural and

functional data modalities might share complementingrimization.
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Figure 6.9: Plots of the average power differences of theroband ADHD groups of the KKI
released data set. Power differences are plotted on thexefitf brain slices. The top and middle
rows are showing the regions where the control group hashigbwer while the bottom row is
showing the regions where the ADHD group has higher power.
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Figure 6.10: Plots of the average power differences of tteroband ADHD groups on the sub-
jects of NeuroIMAGE released and hold out set on differeairbslices. (a) shows the regions
where control group has higher power, (b) shows the regidmsrevADHD group has higher
power.
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Figure 6.11: Plots of the average power differences of tteroband ADHD groups on the sub-
jects of NYU released and hold out set on different brairesli¢a)shows the regions where control
group has higher power, (b) shows the regions where ADHDmhas higher power.
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Figure 6.12: Plots of the average power differences of ttieroband ADHD groups on the sub-
jects of OHSU released and hold out set on different bragesli (a)shows the regions where
control group has higher power, (b) shows the regions wh&# B group has higher power.
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6.4 Summary

In summary, we showed that the brain structural images cooteful information related
to ADHD diagnosis problem as we received high classificaimouracy using the GM features. We
also analysed the 3-D power map images derived from the faraational data. Our study showed
differences in power map patterns between the ADHD and obgtoups of subject. The LBP
features are able to encode the pattern differences as wavadhe state of the art classification
accuracy on the ADHD-200 hold out sets. Finally, combinatbthe GM and power map features

helped to further improve our classification accuracy.
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK

In this dissertation, we addressed the problem of autordatection of the ADHD subjects
using their brain rs-fMRI data. The problem is particulasfyimportance due to the widespread
impact of the ADHD on the global child population and the la€kiological measures to diagnose
it. Approximately5 — 10% of the children all over the world are diagnosed with ADHD €8k
motivate us to propose a solution for the automatic ADHD dasgs problem. The central idea
of our approach is to model the resting state brain acts/aea network which we refer to as the
functional connectivity network. We exploited the topadlj differences of the networks between
the ADHD and control groups of subjects for the classificappoocesses. Lastly, we showed that
the functional and structural brain images share complémgimformation as the combination
of information from both of these modalities helped to aehia better classification accuracy
than any of the modalities. In Tabkelwe have listed the best classification accuracies of all our

approaches along with the other top performing resultseritarature.

Table 7.1: List of the best classification accuracies of guoreaches (marked in bold) and other
top performing approaches in the literature.

Daietal. [24] | Bohland etal. [5] | Sidhu etal. [65] BoW Nw. feature | Attributed Nw. Multi-modal data
61.54% 66.67% 71.35% 64.81% 69.59% 73.55% 79.14%

Ouir first approach for solving this problem used BoW framdwtorcluster the node de-
grees of the network. Final representation of the BoW is togram of degree features per subject
which is treated as the feature vector to be used by the fitasdlVe achieved4.81% accuracy
using this approach. The BoW approach has few problemst, Eilgses the spatial information
of network nodes since the histogram does not contain artiaspdormation. Second, BoW ap-
proach extract features from the whole network whereas dwaie regions may not contain any

useful information. Thus, it may unnecessarily increagefédature dimension and noise of the
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system. Third, the approach only employs the degree featuhere other network features may
also be useful.

Towards addressing the shortcomings of the BoW approacHirstenvestigated if only
some selected regions of the the brain volume contain tHeluséormation for the ADHD diag-
nosis problem. Our proposed algorithm is able to succdgséldntify the important brain regions
and experimental results suggest that the classificationracy improves when we extract the
features from the selected regions only. The regions ssldny our algorithm are similar to the
regions identified by many other independent studies inxfstieg literature on ADHD. Next, we
construct the feature vector by concatenating the netweatufes from the nodes of the selected
regions only. As the concatenation is performed in a fixe@&Qit helped to preserve the relative
spatial information of the nodes. Finally, along with theyae features, we evaluate three com-
plex network features such as the network cycles, the vadistance degree and the edge weight
sum. We are able to achie®8.59% classification accuracy using this approach. However, as we
represent each voxel of the brain volume as a node of the netiwonakes the node count of the
functional network several thousand which is computatigneery expensive. Also, the network
features, which are computed for each node, can only cafitarlcal structures of the network
ignoring the global network topology.

Next, in order to exploit the global structures of the netwgoin our classification frame-
work, we use MDS technique to project the networks from amomln network-space to a low
dimensional space based on their inter-network distan@suanes. Also, we significantly reduce
the computation cost for the construction of functionalwwek as we propose an efficient repre-
sentation of the nodes such that the network can preservaeakienum relevant information with
minimum redundancy. For this purpose, we represent each asdhe cluster of highly active
voxels where the activity levels of the voxels are measuieskd on the average power of their
corresponding fMRI time-series. As a result, the numberafes per network is reduced to 60 on

average compared to 28000 voxels in the brain volume. Owoaph is able to achieve a classi-
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fication accuracy 073.55% on the ADH-200 hold out set. Our results show that the clasgi€in
accuracies significantly improve when experiments areoperéd separately on the male and fe-
male groups. One possible reason is the differences of hragtioning of the male and female
subjects.

Finally, we focused on answering two questions. First, &dtructural brain image use-
ful for solving the proposed problem? Second, if it is then wa improve the accuracy of the
diagnosis system by fusing information of the structural &mctional data? For the structural
data modality, we use the GM brain images while for the secoadality we use the power map
images which are derived from the rs-fMRI data. Both of thedaliblies showed impressive clas-
sification accuracies as we receivetd23% accuracy using GM images aid.30% using power
map images on the ADHD-200 hold out data set. Combining métion from the two modalities
further improves the accuracy 19.14%.

In summary, this dissertation showed enough evidencehbdirain imaging data contains
useful information for the diagnosis of ADHD subjects. Aépent the accuracy is not high enough
to be used as the biological measure of the problem but it earsbd as the supporting evidence
with the manual diagnosis. Further investigation regayditandardization of data resolution and

data capturing protocols are needed to increase the féladfithe automatic diagnosis process.

7.1 Future Work

The brain imaging based methods showed promise for soli@gtoposed problems as
different independent studies reported ADHD detectiomeaty higher than a chance factor. Still,
there are many areas to improve on because none of the metigod enough to replace the
current manual diagnosis process. Further investigatierd to be performed regarding the data
capturing protocols and the community needs to decide cemalatd method as different protocols

may lead to the variations of cognitive activities of braihigh can reduce the performance of the
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diagnosis method.

In our approach we model the brain functions as a network wbannects different brain
regions based on their correlations of activity patterrtse metwork constructed in this process is
static as the weight of an edge connecting two regions is ateddbased on the correlation of the
whole fMRI time series of the two regions. Therefore, doetschange over time. One interesting
idea to try is to compute the correlation on two local wind@#i/the time series. Thus, if we slide
the windows along the time series and each time computeseaaif correlation value, the edge
weight will be a function of time. The analysis of patternstloé changing edge weights in the
network can be useful for this problem. Also, to reduce thevagk computation cost, we used a
particular ROl map to cluster the voxels to form the nodesefrtetwork. But we didn’t draw any
conclusion as to which ROI map is the best for this problenn.féqure work, different ROl maps
can be tried to get more insight on this.

To verify the usefulness of structural brain images, we USBIBl model to extract features
from GM brain image slices. We treated each of the slicespeddently as we use separate
classification framework for the features extracted frorcheslice. Later we used a late fusion
framework to combine the information from different slice®ne possible direction is, instead
of treating the slices separately, the CNN network can beifieddto extract features from the
whole brain volume. Also, we used a CNN model which was paigrérd on a large image data set.
There are two other possible approaches to explore in fututein the network. First, one can
start with the pre-trained model and fine tune the networlghitsiby further training using GM
images. Second, a network can be trained from scratch.Hareiay, training a CNN requires lot
of sample data so that the filters can learn to extract retdeatures. Also, training from scratch
can be tricky as it needs lot of parameters to decide on suelaasng rate of the network, number

of network layers, number of filters per layer, size of thefdtin each layer etc.
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