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ABSTRACT

Visual recognition (e.g., object, scene and action recognition) is an active area of research in

computer vision due to its increasing number of real-world applications such as video (image)

indexing and search, intelligent surveillance, human-machine interaction, robot navigation,

etc. Effective modeling of the objects, scenes and actions is critical for visual recognition.

Recently, bag of visual words (BoVW) representation, in which the image patches or video

cuboids are quantized into visual words (i.e., mid-level features) based on their appearance

similarity using clustering, has been widely and successfully explored. The advantages of

this representation are: no explicit detection of objects or object parts and their tracking

are required; the representation is somewhat tolerant to within-class deformations, and it is

efficient for matching.

However, the performance of the BoVW is sensitive to the size of the visual vocabulary.

Therefore, computationally expensive cross-validation is needed to find the appropriate quan-

tization granularity. This limitation is partially due to the fact that the visual words are

not semantically meaningful. This limits the effectiveness and compactness of the represen-

tation. To overcome these shortcomings, in this thesis we present principled approach to

learn a semantic vocabulary (i.e. high-level features) from a large amount of visual words

(mid-level features). In this context, the thesis makes two major contributions.

First, we have developed an algorithm to discover a compact yet discriminative seman-

tic vocabulary. This vocabulary is obtained by grouping the visual-words based on their

distribution in videos (images) into visual-word clusters. The mutual information (MI) be-

tween the clusters and the videos (images) depicts the discriminative power of the semantic

vocabulary, while the MI between visual-words and visual-word clusters measures the com-

pactness of the vocabulary. We apply the information bottleneck (IB) algorithm to find the

optimal number of visual-word clusters by finding the good tradeoff between compactness

and discriminative power. We tested our proposed approach on the state-of-the-art KTH
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dataset, and obtained average accuracy of 94.2%. However, this approach performs one-side

clustering, because only visual words are clustered regardless of which video they appear in.

In order to leverage the co-occurrence of visual words and images, we have developed the

co-clustering algorithm to simultaneously group the visual words and images. We tested our

approach on the publicly available fifteen scene dataset and have obtained about 4% increase

in the average accuracy compared to the one side clustering approaches.

Second, instead of grouping the mid-level features, we first embed the features into a

low-dimensional semantic space by manifold learning, and then perform the clustering. We

apply Diffusion Maps (DM) to capture the local geometric structure of the mid-level feature

space. The DM embedding is able to preserve the explicitly defined diffusion distance,

which reflects the semantic similarity between any two features. Furthermore, the DM

provides multi-scale analysis capability by adjusting the time steps in the Markov transition

matrix. The experiments on KTH dataset show that DM can perform much better (about

3% to 6% improvement in average accuracy) than other manifold learning approaches and

IB method. Above methods use only single type of features. In order to combine multiple

heterogeneous features for visual recognition, we further propose the Fielder Embedding

to capture the complicated semantic relationships between all entities (i.e., videos, images,

heterogeneous features). The discovered relationships are then employed to further increase

the recognition rate. We tested our approach on Weizmann dataset, and achieved about

17% 21% improvements in the average accuracy.
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CHAPTER 1: INTRODUCTION

Visual recognition is one of the fundamental functionalities of the human vision system in

daily life. According to our experience, a human being has no difficulty in quickly recognizing

new objects, even as a child. Research scientists from various fields such as biology, brain

cognitive science, computer science, and so on have attempted to discover the secret of

the human vision system. In recent decades, with a vast amount of image and video data

generated every day around the world, visual recognition is gaining increasing attention in

the computer vision community. The goal of this dissertation is to develop new techniques

for visual recognition, which includes scene and object recognition from an image and action

recognition from a video. Although image and video have different dimensionality, we aim

to discover the underlying connection between them and design a common representation

and recognition model for object/scene recognition and action recognition.

Object recognition is tasked to judge whether a specific object is contained in the image

or not. Figure 1.1 shows some images selected from the famous CalTech object data set,

in which each image contains some specific object with various scales, lighting conditions,

view points, and so on. In the context of this work, the scene is defined as the physical

setting of the environment where the image is taken. Some examples of image scenes include

outdoor, indoor, beach, mountain, forest, office, and urban landscape. Figure 1.2 shows

some scene images from the publicly available fifteen-scene data set [107]. In general, the

image scene cannot be described by a single object. Rather, it is often a collection of objects.

For instance, an office scene may be composed of the interior building walls, desks, chairs,

computer monitors, and so on.

Object and scene recognition has a wide range of applications, such as image under-

standing, robot navigation, and content-based image indexing and retrieval (CBIR) [10] [17]
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Figure 1.1: Example object images selected from Caltech-6 dataset showing the variation in
scales, viewpoints, and illumination changes. Each row corresponds to one category.

[20] [29] [88] [125]. Most commercial image search engines retrieve images using the file-

names, attached tags, or surrounding web texts rather than the visual content of the images.

Therefore, the search quality is very poor. Scene and object recognition can be employed

to automatically label the images based on their visual content, such that we can index the

images based on their semantic labels for fast and high quality search. Another important

application is in robotics. In certain situations, robots can be used to substitute for humans

for dangerous tasks. Recognizing the location (i.e., scene recognition) is critical for robot

navigation, and further localizing the target objects is also significantly important.

In the context of this dissertation, the goal of action recognition is to discriminate varied

human actions (e.g. running, walking, horseback riding) from videos. Figures 1.3 and 1.4

demonstrate some examples from the frequently used action data sets: KTH [21], Weizmann
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Bed Room (216) Suburb (241) Industry (311)

Kitchen (210) Coast (360) Living Room (289)

Forest (328) Highway (260) Inside of City (308)

Mountain (374) Open Country (410) Street (292)

Tall Building (356) Office (215) Store (315)

Figure 1.2: Example scene images selected from the fifteen-scene data set. The number of
images contained in each category is shown under the images.

[34], and IXMAS [31]. All the three data sets were taken in human-controlled environments.

In general, the backgrounds of the actions are simple and the cameras are almost static.

Unlike object and scene recognition, recognizing actions from those simple videos is very

difficult, because the acquisition of dynamic features from actions is not trivial. Recently,

research on action recognition has moved to the more complicated and realistic action data

sets [54] [47]. Figure 1.6 demonstrates some action examples from the UCF YouTube data

set, which consists of unconstrained videos. Generally, the unconstrained videos contain

significant camera motion, cluttered backgrounds, and changes in object appearances, scales,

illumination conditions, and viewpoints.
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Boxing Clapping Waving Running Jogging Walking

Figure 1.3: Example actions selected from the KTH dataset. Each column shows two action
examples from one category. It has 6 categories with about 600 action videos in total.

Bending Jacking Waving (one hand)

Jumping PJumping Waving (two hand)

Running Skipping Walking

Figure 1.4: Example actions from the Weizmann action data set. It contains 9 actions with
about 81 action videos in total.

Automatic action recognition can benefit video content understanding, video content

based indexing and retrieval, human-computer interaction, intelligent video surveillance,

and robotics. For instance, detecting abnormal actions in surveillance or retrieving similar

actions from large amounts of archived videos is critical for video content analysis in mod-

ern intelligent systems. What is more, in robotics, a practical smart robot must be able

to understand the actions from the partners (humans or machines) and make the correct

response.
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Figure 1.5: Four views of five selected action examples from IXMAS dataset. It has 13 action
categories with 5 camera views and about 2,000 video sequences in total.

Although we recognize objects and scenes from still images and actions from videos, we

have developed a generic visual representation schema for objects, scenes and actions. This

results from the observation that both images and action videos can be modelled by bag of

features. Therefore, the recognition techniques proposed in this work can be applied to both

object or scene recognition and action recognition.

1.1 Motivations

Meaningful visual representation is of fundamental importance for visual recognition. Just

like the physical world is composed of rich structures (e.g. electrons, atoms, molecules, and
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Figure 1.6: Examples actions from UCF YouTube action data set. It contains 11 action
categories (here, eight categories are listed). Each category contains more than 100 video
clips.

polymers) and documents consist of a large number of units (such as characters, words,

phrases, and sentences), images and videos can also be treated as a collection of elements

(pixels, voxels, edges, patches, etc.) [112]. The early studies on image processing discovered

that neighboring pixels are highly correlated, which can be measured by the conditional

entropy of a pixel given its neighbor’s information [27]. Due to the information redundancy,

we can transform an image into a new space with less correlated or ideally independent bases

(e.g. wavelet transform, Principle Component Analysis), where an image is represented by

its coefficients associated with this lower dimensional space [15] [87] [113]. Therefore, this

discovery can be used for image coding and redundancy reduction.

Just as a chemical analyst differentiates a material by checking the proportion of its

ingredients, the machine may be able to recognize a scene or object image by analyzing the

statistics of the image components or elements. One widely adopted approach is to apply

different frequency filters on each pixel, and then compute the first or second moment of
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the response values of the entire image or local patch. For instance, the well-known GIST

feature descriptor [7] [11] is computed on the output of filters tuned to different orientations

and scales (i.e., Gabor filters with 6 orientations and 4 scales [11]). In order to further

capture the coarse spatial information, the response image can be down-sampled to have

spatial resolution of M×M pixels [11].

A histogram of the filter responses is another widely used image representation, such as

texton (i.e., quantized filter responses) histogram [66] [87] [115]. Figure 1.7 shows 38 filter

banks with varied orientations and scales to capture some basic structures such as edge,

spot, bar, etc [87]. These filters are convolved with the image and generate 38 response

values at each pixel. In the next step, all the pixels that are represented by 38-dimension

vectors are grouped into N clusters as a texton dictionary, with which the image can be

represented by the histogram of textons. Texton-based approach was also used for object

recognition recently in [66]. Another statistic on pixels is a color histogram that depicts

the color distribution of an image. Color histogram is one of the earliest and most popu-

lar image representations for image classification, indexing and retrieval [17] [29] [88] [51].

Going beyond pixel statistics, some recent work perform recognition using the statistics of

image components consisting of a group of correlated pixels (e.g. contours [8] [119], object

shapes, local patches [4] [18] [79] [100]), because the components are able to capture the

local geometric structure of the pixels.

Recently, bag of local patches (i.e., 2-D image patches or 3-D video cuboids) based

approaches are receiving increasing attention in object, scene and action recognition due

to their computational simplicity and surprising good performance. This was first used in

object recognition to cope with partial occlusion problems, then it was widely used in scene

and action recognition. Inspired by the success of bag of words (BOW ) approaches in text

categorization [23] [114], computer vision researchers have discovered the connection between

local patches in images (or videos) and words in documents. In the BOW text representation,

a document is represented as a histogram of words. In order to employ the BOW to represent
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Figure 1.7: The Maximum Response filters ( this figure is taken from [87] ). They include
two anisotropic filters with 3 scales at 6 orientations capturing the edges (the dark images
of the first three rows) and bars (the light images of the first three rows), and 2 rotationally
symmetric filters (a Gaussian and a Laplacian Gaussian).

an image or video, first we need to quantize the local patches into visual words. The k-means

algorithm is commonly used to construct an initial visual vocabulary due to its simplicity.

The visual representation in terms of the visual-words histograms is generally called the

bag of visual words (BOVW) approach. The advantages of BOV W are various. First of

all, it can handle partial occlusion, because histogram intersection is used to match images.

With the introduction of varied feature detectors and descriptors [71], BOVW is somewhat

invariant to appearance transformations, such as changes of viewpoint, scale, orientation,

and translation. In addition, BOVW makes the model somewhat tolerant to within-class

deformations by adopting the appropriate granularity in feature quantization. Finally, it is

not only efficient in computation time but also in feature storage. The time efficiency results

from the fact that the features quantized into the same cluster (visual word) are deemed

matched. So the image matching is pre-computed to some extent by feature quantization.

On the other side, the system stores the feature labels instead of high-dimensional feature

descriptors.
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However, the BOVW model has some drawbacks. First of all, the recognition performance

of BOVW is sensitive to the vocabulary size. Usually, one common concern of BOVW is

what optimal vocabulary size is appropriate. Although coarse quantization may handle

within-class deformation as aforementioned, it also makes the feature less discriminative.

In practice, larger vocabulary size (i.e., fine quantization) can achieve better performance.

Yet, this also brings up new problems, such as the visual representation (i.e., vector) is high

dimensional and sparse, which may cause the model to be sensitive to noise and inefficient

for weaker classifiers (e.g. KNN classifier). Therefore, learning a compact vocabulary with

an optimal number of visual words is necessary.

Another major problem in the BOVW model is that the visual words are not semantically

meaningful. For example, given the local patches extracted from an image, a human being

may have the capability to deduce the high level concepts implied in them based on their

prior knowledge about the local visual structures. A visual word to the machine, however, is

only a collection of patches with similar structure. In other words, the machine is unable to

predict the possible contexts of a visual word without further information. The underlying

reason is that the quantization criterion (i.e., the clustering measure) is only based on the

appearance similarity (i.e., Euclidean distance). Hence, k-means clustering is unable to

capture the semantic relationships between the patches. This semantic relationship is the

so-called semantic gap between low level vision and high level concepts. Discovering this

relationship is useful for image and video understanding.

In addition, because BOVW approaches disregard all information about the spatial layout

of the features, it is incapable of depicting the entire shape of a scene or the global structure

of an object. This severely limits the descriptive capability of the model. For example, in

Figure 1.2, the three categories of scenes: street, tall building, and inside of city, may share

certain local patches (e.g., construction patches from buildings), but they have different

structural layouts. For example, street may have “road” patches in the mid-bottom of the

scene, and tall building may have “sky” patches on the top of the scene.
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In order to overcome these shortcomings, we developed novel algorithms to acquire the

semantic meaning of the visual words, as well as their structural information. Given an initial

visual vocabulary V = {x1, x2, ..., xn}, where xi ∈ Rd (e.g. d=128 for SIFT descriptor),

which is generated from a collection of training patches x ∈ Rd by k-means clustering,

our goal is to discover a semantic vocabulary V̂ = {x̂1, x̂2, ..., x̂m}, such that m << n and

∀xi ∈ V , ∃x̂k ∈ V̂ includes xi. In other words, x̂k is a cluster of visual words xi. However, the

visual words grouped into one x̂k are supposed to possess a similar semantic meaning. They

do not necessarily share the same appearance. Namely, patches with varied appearances may

be assigned into one visual word cluster x̂j, if they are semantically similar. For instance,

the patch from “chin” and “eye” may be highly associated with some visual word cluster x̂j

since this visual word cluster depicts the “face” concept. Hence, in general, the distortion of

cluster x̂j in terms of Euclidean distance may be larger than that of xi.

In fact, the discovery of semantic vocabulary V̂ is to find a soft or hard mapping between

V̂ and V . The mapping aims to identify and discriminate between different contexts of

visual words without the appeal to high level analysis. We have to face two significant

issues: the polysemy problem in which one visual word may have multiple meanings, and the

synonym problem, which means that several visual words may characterize the same object

or scene context [95]. Figure 1.8 demonstrates both problems. The top visual word has

the polysemy problem, as the majority of patches are from “forehead” while some are from

“wheels”. Therefore, this visual word is highly correlated to the “face” context, but possibly

also occurs in the context of “motorcycle”. The bottom visual word also demonstrates the

same case as the top one. Although these two visual words have different appearances, they

occur in the same “face” context. This is the synonym problem.

Thus, semantically similar visual words must be associated to a concept context. The

degree of co-occurrence between pairs of visual words can be one of the measures telling their

semantic similarity. Given a training data set, two visual words are semantically similar if

they have very close distribution on the data set. Therefore, the thesis of this work is to:
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Visual Word A

Visual Word B

Figure 1.8: Two visual words demonstrate the polysemy and synonym problems in visual
vocabulary learning.

Exploit the distributions of the visual words (mid-level features) on the training data (i.e.

images or videos) and then discover the semantic visual word clusters (high-level features)

based on their distributions on the data, hence acquiring a compact yet discriminative visual

vocabulary for recognition.

For this purpose, in this dissertation we explored this problem from the following two

aspects: feature clustering and projection.

In the clustering framework we aim to group the visual words into visual word clusters

(VWCs). This can also be considered as finding a mapping function between the visual

words and VWCs. This mapping can be either “soft” (n to n mapping) or “hard” (n to one

mapping). For simplicity, we only consider the “hard” mapping, which actually is a partition

of the visual words into several mutually exclusive clusters. In general, the partition quality

is measured by the overall distortion of the clusters. A good cluster is supposed to have small

distortion, which means it includes highly “similar” visual words. However, the dissimilarity

metric is defined on the “semantic” space (e.g., the basis of the space consists of the semantic

concepts like face, wheel, windows etc.), instead of “appearance” space (e.g., color or edge

feature space for image patches). In our work, we adopt Mutual Information (MI) between

visual words and videos or images, estimated from the co-occurrence matrix, as our clustering

criteria.
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Rather than directly clustering the features (visual words), we can embed each feature

into a low-dimensional semantic space that can preserve the semantic “structure” of the

data, which means semantically similar features are placed closely in the new space. This is

the idea of feature projection. The essence of the manifold embedding is that the features

can be descried with far fewer parameters than the actual number of parameters. Namely,

the features are located on some manifold of a high-dimensional space. There are numer-

ous methods proposed for manifold embedding, including linear projections (e.g. Principle

Component Analysis) and non-linear methods such as the local method Diffusion Map and

the global method ISOMAP [82]. Both Fiedler Embedding [14] and Diffusion Map [102]

employed in our work can be categorized into non-linear local embedding methods.

1.2 Proposed Work and Contributions

In this section, we briefly review the motivation and basic idea of the approaches developed in

our work. Before the detailed discussion, we would like to summarize our major contributions

in this dissertation into the following five points:

• Automatically discovering the optimal number of semantic visual features (visual words

clusters) for action recognition by maximizing the mutual information between actions

and the visual words [53].

• Simultaneously clustering images and visual words to extract semantic features for

static scene classification using information-theoretic co-clustering approach [52].

• Developing the Spatial Correlogram Match Kernel (SCMK) that is able to capture the

spatial correlation between features to make up for the absence of spatial distribution

of features in BOVW [52] [53].

• Automatically exploiting the semantic relationships between heterogenous visual enti-

ties (i.e., images, videos, and different types of features) by embedding all the entities
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into the common low-dimensional semantic space using Fiedler Embedding. The dis-

covered relationships result in performance improvement on visual recognition [55].

• Systematically developing a framework to learn a compact yet discriminative semantic

vocabulary for visual learning using Diffusion Map, which is able to capture the intrinsic

geometric structure of feature space at multiple scales. [56]

1.2.1 Action recognition via maximization of mutual information

The first approach that we developed is to automatically learn a compact yet discriminative

appearance-based human action model. It starts by treating a video sequence as a bag of

features (i.e., cuboids). The cuboid is detected at the location where the local maximal

response value is obtained by applying an one-dimensional Gabor filter in time direction on

the video. The collection of cuboids is further quantized into the so-called video words by

a clustering algorithm (e.g., k-means). Then a video is represented by a histogram of the

video words. This is the procedure of the well-known BOVW approach.

Beyond BOVW, our proposed approach is able to automatically discover the optimal

number of video word clusters by the Maximization of Mutual Information (MMI). The goal

is to obtain a compact video representation, but we also want to keep the discriminative

capability of the representation. In other words, to find the optimal number of video word

clusters is to obtain a good tradeoff between the compactness and the discriminative capa-

bility. If we treat the visual words and videos as two random variables X and Y, the Mutual

Information (MI) between them is the measurement of how much information of one variable

is contained in another one. To maintain the discriminative capability of the visual vocabu-

lary is to preserve the MI between the video words and action videos. In practice, grouping

the video words into clusters will surely decrease the mutual information. Nevertheless, we

can maximize the final mutual information between video words and videos. We adopt the
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Information Bottleneck [92] [91] approach to implement it, which greedily merges pairwise

video words or video words clusters at each step.

Aside from finding optimal numbers of video words clusters, MMI clustering also endows

semantic meaning with each cluster. Unlike the traditional k-means algorithm which top-

ically clusters cuboids based on their appearance similarity, the MMI clustering can group

features that are highly correlated to each other. This group of features may have a diverse

appearance, but they may be related to the same concept. For instance, one particular clus-

ter may contain the cuboids related to the “raising the hands” motion in different actions.

These cuboids may be varied in appearance, but they have high co-occurrence. This means

that separating them into different clusters does not help strengthen the discriminative ca-

pability of the clusters, so we can merge them into the same cluster. This is the underlying

concept of MMI clustering.

As aforementioned, the Bag-of-Features based approaches are unable to preserve the

layout of the features in the spatial and/or temporal space. In order to overcome this

drawback, we proposed the spatial correlogram to capture the spatial distribution of the

features. The correlogram is a probability distribution which depicts the likelihood to obtain

semantically similar features at some distance away. This model is somewhat invariant to

translation, rotation, and scale changes.

1.2.2 Scene recognition using MMI co-clustering

The second approach we proposed is to utilize the MMI co-clustering to model the static

scenes for recognition. Just like representing a video by bag of video words, we extract image

patches from a scene image and describe them with the SIFT descriptor. Furthermore,

the scene is modelled as a bag of visual words, which are quantized SIFT descriptors. As

aforementioned, the visual words may be further clustered on the basis of images or videos

in which they co-occur, just like MMI clustering. The underlying assumption is that visual
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words that typically appear in the same instance (image or video) are usually associated with

the same concepts. Then the clustering results are used to improve the visual recognition

performance.

Let us look at the “document-words” matrix whose columns are documents (i.e., images

and videos in the context of this dissertation) and whose rows are visual words. Most existing

clustering is one-side clustering, either documents (columns) clustering that is based on

the visual words (rows) distribution or visual words clustering that is determined by their

co-occurrence in documents. This shows a duality between documents and visual words.

Therefore, instead of one-side clustering, our proposed approach conducts co-clustering by

simultaneously grouping both visual words and documents to boost the quality of both

clusterings. The essence of our co-clustering method is to find a specified visual words

and documents partition which can maximize the mutual information between documents

(clusters) and visual words (clusters).

We treat the “document-words” matrix as a joint probability distribution between two

random variables. The co-clustering method is to find two mapping functions from doc-

uments (columns) to document clusters and visual words (rows) to visual word clusters.

Given the number of clusters for both row and column, the optimal mapping functions are

supposed to give the largest mutual information between the new clusters. The procedure

is similar to the k-means algorithm. It starts with random partitions, and in the following

stages it alternately updates the cluster centroids by measuring the probability distribution

of each row or column to the so-called “centroid”.

In addition, we propose to use the Spatial Correlogram Match Kernel and the Spatial

Pyramid Match Kernel [107] to capture the layout of the features. The experiments were

conducted extensively on two very challenging datasets (the 15 scene categories and the

LSCOM dataset [77]). The results demonstrated the advantages of co-clustering.
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(a) (b) (c) (d)

Figure 1.9: Representation of an image in terms of multiple features. (a) The original
image. (b) Interest points (SIFT) representing local features. (c) Contours representing
shape features. (d) Segments representing region features.

1.2.3 Visual recognition using multiple features

Many problems in the field of computer vision require analysis of entities that convey inher-

ently different information, but are tied together due to explicit and implicit relationships

between them. Such relationships, if properly identified, can play a crucial role in solving

the problem at hand. To further illustrate this point, we give examples of two such prob-

lems from the domain of object recognition. In an object recognition task, the given visual

information can be considered as an mixture of multiple classes of features such as interest

points, contours and region segments. As a result, the appearance of any target object in

the image stems from the interaction of these classes of features in the form of homogenous

relationships (i.e., among features of the same type as in region segment to region segment,

contour to contour, etc.) and heterogenous relationships (i.e., among features of different

types as in interest point to contour, contour to region segment, etc.). Figure 1.9 provides

a visual description of this point, where the relationship between the interest points on the

eye and the nose can be categorized as a homogenous relationship, while the relationship be-

tween the interest points on the eye and the contour around the eye-brow can be categorized

as a heterogenous relationship. It is quite evident that a framework capable of discovering

such relationships will be immensely useful for solving the object recognition task.
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We propose an algorithm that embeds different entities into a common Euclidian space

and thus enables us to use simple Euclidian distances for discovering these relationships. The

algorithm starts by treating different classes of entities as nodes in a graph where explicit re-

lationships between entities are encoded by edges between nodes. The problem is then recast

as a graph embedding problem where the entire graph is embedded into one k-dimensional

space, such that the nodes which have a stronger relationship between them are closer to

each other. This is achieved through Fiedler embedding, which is an algebraic method that

explicitly optimizes the closeness criteria. Once all classes of entities are embedded into a

common k-dimensional space, relationships between entities are discovered by using simple

Euclidian distances. With the new space containing heterogenous entities, we are able to

visualize the semantic connection amongst them, which will be propitious to visual under-

standing. What is more, all the discovered explicit and implicit relationships in turn can

help improve the visual recognition performance. Therefore, our proposed approach seam-

lessly integrates visual recognition and relationship mining into one common framework. We

applied it to object recognition and action recognition. The results demonstrate that fusion

of multiple features helps in achieving improved performance.

1.2.4 Learning semantic visual vocabularies using diffusion distance

As aforementioned, Fiedler Embedding is capable of acquiring the semantic relationships

amongst varied entities by embedding the entity graph into one common k-dimensional space

via minimizing the geometric distance amongst the entities. However, it does not provide an

explicit metric to measure the relative distance between any pair of features. Therefore, we

propose the “diffusion distance” to learn a semantic visual vocabulary. The diffusion distance

reflects the connectivity of the feature points (geometric structure between the points), to

measure the semantic distance between two feature points when constructing a compact

semantic vocabulary. The diffusion distance is derived from diffusion maps (DM) [102], which
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embeds the manifold points into a lower-dimensional space while preserving the intrinsic local

geometric data structure.

The diffusion process begins by organizing the data points into a weighted graph (where

the weight between two feature points is the feature similarity), which is a good way to

represent the complex relationships between the feature points. Once we normalize the

weight matrix and also make it symmetric and positive, we can further interpret the pairwise

similarities as edge flows in a Markov random walk on the graph. In this case, the similarity

is analogous to the transition probability on the edge. Then, utilizing the spectral analysis on

the Markov matrix of the graph, we can find the dominant k eigenvectors as the coordinates of

the embedding space and map the feature points to a low-dimensional space while preserving

their local geometric structures. In addition, by adjusting the time of the Markov chain,

DM can be used to employ multi-scale analysis on the data. This multi-scale analysis is

similar to the Pyramid Match Kernel (PMK) [70], which performs matching under different

resolutions of the feature space. If we consider the embedding process as clustering, DM

embeds semantically similar features into the same cluster (i.e. some concept). The size of

the cluster or the range of the concept is defined by the diffusion time. A larger diffusion time

corresponds to a bigger cluster, which means a larger range of concept. For instance, “sport”

is on a larger scale than “baseball” and “football”, and “baseball” is on a larger scale than

“team”. With the multi-scale data analysis, we can match the data under different scales.

1.3 Organization of the Thesis

The rest of this dissertation is organized as follows. Chapter 2 contains the literature review

on visual recognition and bag-of-visual-words approaches. In Chapter 3, we present MMI

clustering to find the optimal number of video words clusters for action recognition. Chapter

4 presents our framework for scene recognition using MMI co-clustering. Chapters 5 and 6
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describe two projection based approaches: Fiedler Embedding and diffusion maps for visual

recognition separately. Finally, Chapter 7 describes our future research plan.
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CHAPTER 2: LITERATURE REVIEW

Visual recognition has been studied for many decades, starting with object recognition. Early

object recognition research focused on recognizing an instance of an object using 3-D geo-

metric information, such as range data and 3-D CAD models. Since the 1980’s, researchers

have concentrated on 2-D image information for recognition. In the beginning, for the sake of

simplicity, they focused on images with uniform background, but in the 1990’s, they started

to use natural images with varied backgrounds. Meanwhile, the search of natural images

and scene recognition were also gaining more attention. On the other hand, inspired by

Johansson’s moving-light displays (MLD) [38] experiments, which demonstrate the impor-

tance of global motion for action perception, most early action recognition approaches are

also model-based (i.e., the configuration of human body via markers, rectangular patches,

sticks, etc.). This is reminiscent of the earlier object recognition. In fact, we can notice that

both object or scene recognition and action recognition have many common characteristics

in modelling and recognition methods. In this chapter, we focus on the review of recent work

on object and scene recognition in Section 2.1 and action recognition in Section 2.2. Since

our methods for visual modelling and recognition are based on bag of features, we address

the related work in Section 2.3. Also, learning semantic visual features is addressed in detail.

2.1 Object and Scene Recognition

Visual representation is of fundamental importance for both scene and object recognition.

The recognition approaches are varied according to the specific representation. Below we

review some well-known object and scene modelling methods. A scene can be treated as one

single object or a group of objects. In general, the modelling and recognition methods for

scenes and objects are highly correlated, hence, in the following, we put them together for

discussion.
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2.1.1 Geometry-Based Models

Due to the limitation of the computation capability of machines, many early works assumed

simple scenes presented with stable illumination and uniform backgrounds. With reliable

edge contours extracted from objects, people can match them to 3-D models constructed by

Computer-Aided Design (CAD) techniques. For instance, in the 1970’s and 80’s, recognizing

objects from range data was popular [61] [98] [117]. Unlike the intensity images, range data

can provide the depth information of the scene. This make it easy to obtain reliable object

contours and regions. Then the research advanced to working on intensity values of images.

However, extracting reliable object boundaries from images with complex backgrounds after

many years research is still infeasible. Therefore, earlier work generally focused on scenes

with uniform background.

Recognition is conducted by projecting the 3-D object models onto the image plane and

searching for the best match between the 2-D projections and the unknown object image. We

can coarsely group the recognition techniques into two categories: (1) Alignment techniques

and (2) Hash indexing techniques. Alignment techniques: have two major steps. First is the

hypothesis phase where a correspondence is found between a pose of the 3-D object model

and image points or line segments. In verification, the model is projected onto the image,

and all of the evidence is used to make a judgement. The representative works are [24]

and [25]. In order to increase the search speed, the interpretation tree which integrates ge-

ometric constraints between primitives is introduced to explore the space of all the possible

correspondences [120]. Another approach to reduce the number of potential correspondence

hypotheses is the RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler

and Bolles [81]. The basic idea is to compute the aligning transformation from a minimal

set of randomly sampled correspondences. The degree of its consensus with other correspon-

dences is used to measure how good one transformation is . The correct one should obtain

a large support from other correct correspondences, while an incorrect one may only have a
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small number of supported correspondences. Hash indexing techniques: Hash indexing was

well studied in the field of document indexing. It adopts a hash function to directly localize

an item in the space (i.e., in terms of hash table). The very similar idea also was used by

Lamdan and Wolfson [40] [124] to index the geometric features that are extracted from the

template images. Given an unknown image, a set of features are extracted and matched

against the hash table.

Most of the geometry-based models are useful for recognizing the specific object instances

since they attempt to match the image objects to 3-D object models. It makes full use of

the geometric structure constraints of the object primitives, so it is able to perform 3-D

object recognition. However, its success relies on two preconditions: shape is discriminative

for distinguishing the specific object, and object shapes (boundaries) are available in real

images. Both of them may not be easy to be satisfied in the real applications. Hence,

appearance-based models were further proposed to make up it.

2.1.2 Appearance-based Models

Appearance is one of the critical information sources for human vision systems. Geometry-

based models can describe the shape of the objects, but for some object categories, knowing

the object profile is not enough to recognize them. Their interior appearance, however, may

provide more distinctive information to identify them (e.g., face recognition). In addition,

most real image retrieval or scene classification systems have to cope with real natural images

that generally consist of complex scenes with multiple categories of objects and complicated

backgrounds. In these scenarios, the statics of some low-level features (i.e., color feature,

edge feature, etc.) is easier to model and more robust than geometric shapes.

We can categorize the appearance-based models into two classes: pixel-level and patch-

level methods. The former focuses on the statistics of the raw features or certain filter

outputs at each single pixel. A histogram of these pixel features is the most frequently used
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mechanism. We can treat it as a global model, but it can also handle certain occlusion, since

the matching is conducted between the bins of normalized histograms, namely histogram

intersection, which is partial matching. With the introduction of patch-level methods, partial

matching has becoming more efficient and effective. The patch-level methods are more

computationally efficient than the pixel-level methods, due to the fact that only a small

number of interest patches are considered for recognition. In addition, thanks to many good

feature detector and descriptors [71] [72], the interest patches are not only repeatable and

robust, but also invariant to scale, translation, rotation, and affine transforms. Therefore,

they are more effective for object and scene recognition.

Pixel-Level methods Appearance features include the very basic features such as pixel

color, intensity, gradient. Diverse statistics can be used to model appearance, such as color

moments [57] and color correlograms capturing the spatial correlation of colors [51]. The

most straightforward statistical mechanism is histogram. For example, various color his-

tograms computed from different color spaces (e.g., RGB color space or HSV color space)

were proposed for image classification in the hope of capturing different human percep-

tual information. In addition, histogram of oriented gradients (HOG) is another simple yet

widely used features for object detection and image classification [89] [97], which is similar

to edge orientation histograms [57], scale-invariant feature transform descriptors [79], and

shape contexts [103].

The texture feature is another type of appearance features used as an image represen-

tation. In general, texture refers to metrics calculated to quantify the perceived texture of

an image. Various representations of texture have been proposed based on grey-level co-

occurrence matrices, wavelet features, Gabor features. Among them various Gabor filters

were used to produce different texture features [16] [66] [87] [115]. The main idea is to

convolve a set of filters (i.e., Gabor filters with different combinations of orientations and

scales) with an image such that each pixel has a set of filter response values. There are two

popular schemas to model them. One is a histogram-based approach [66] [87] [115]. It first
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quantizes all the pixels into textons. As each pixel is represented by a vector in which each

dimension contains one filter response, we cluster them into a fixed number of centers, and

treat each center as a texton. Then, an image is represented by the histogram of the textons.

In general, the histogram based models are global. In order to capture coarse spatial layout

of the texture feature, an image is split into multiple regions (cells), and treat each cell as

a super-pixel [16]. If each cell is approximated as a homogenous region, it can be described

by the mean and variance of all the filter response values of the pixels in the region. The

image is simply represented by a vector consisting of these mean and variance values.

The Haar-like feature is another widely used appearance feature in object recognition [22]

[96]. It was originally proposed by Papageorgiou et al. [22] for object detection, where they

used two rectangles; they were extended by Viola [96] to three rectangles. Its name came

from its intuitive similarity with Haar wavelets. The filter values indicate characteristics of

some particular area of the image, which may reflect the local texture of the image.

Patch-Level Methods All the diverse image representation approaches discussed above

are based on different pixel properties. The pixel-level texture feature can reflect somewhat

local structure information of the image (i.e., the spatial frequency of the image). However,

the spatial frequency does not fully reflect the local geometric structure. This is because

each fixed filter can only acquire one specific frequency and scale information. Recently,

scene and object recognition obtained surprising results thanks to the image representation

by local patches (regions). The basic idea is to use a patch detector to acquire interesting

patches or sample patches randomly from an image, and then depict them with certain

feature descriptors (i.e. SIFT [79]). The recognition is performed by directly matching

patches, or matching the histogram of visual words.

To our best knowledge, Schemid et al. [20] were first to propose local gray-value invariants

for image retrieval (object images). Interest points at which the signal changes in both

directions are detected by the Harris interest operator [19]. As the neighborhoods of a

point can be described by a set of its derivatives that are the so-called local jet [67], we can
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compute different invariants from these local jets. Finally, these invariants are stacked in a

vector X which is considered to be the feature descriptor. These descriptors are invariant to

rigid displacements and rotations. In order to cope with scale changes, these descriptors are

computed at multiple scales. However, it did not deal with the affine transformation. All the

descriptors were indexed by hash tables. When retrieving images ( or recognizing objects ),

they used voting schema to find similar images or image labels (i.e. object classification).

The authors tested this approach on both the COIL data set and aerial imagery.

Along this research stream, a diversity of feature detectors were advanced in the computer

vision literature. We can coarsely categorize them into one of the following groups: corners

[42] [62] [108], blobs [58] [71], edges [49] [32] [116] and ridges [116]. The corner feature is

the most frequently used feature in object recognition. Generally, a corner is defined as the

intersection of two edges. What is more, it can be a point which has two dominant edge

directions. Aside from the famous Harris corner detector, there are several other common

corner detectors, such as the Moravec corner [42], Shi and Tomasi corner [62], SUSAN

corner [108], etc. In order to deal with scale changes, all the detectors can be applied on

multiple image scales such as the multi-scale Harris detector. Blob detector aims to retrieve

the homogenous regions that are either darker or brighter than the neighboring areas in an

image. Most detectors use either differential methods [71] [79] or methods based on local

intensity extrema [58]. Maximally stable extremum regions (MSER) [58] is the representative

technique. With all possible thresholds applied on the image, a sequence of nested contiguous

regions is obtained. Then MSER is used to find the regions with an approximately stationary

area under different thresholds. With the introduction of some strategies, both corner and

blob detectors are invariant to translations, rotations and scales. However, the images may

be subject to perspective distortions. Hence, it is necessary to obtain interest points that are

more robust to perspective transformation. This can be achieved by applying affine shape

adaption to the detected regions. Mikolajczyk et al. [71] has extensively explored this topic,

and proposed the Harris-affine and Hessian-affine feature detectors.
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Edges (line segments, fragments, or contours) have recently been used for object recogni-

tion [8] [63] [100] [119]. This idea is similar to the earlier stage of object recognition with 3-D

CAD models. The concern is that for certain types of object (e.g. bottles), the profile or the

interior contours information may be more discriminative. Unlike early object recognition,

now only 2-D images are used for training and testing. There are mainly two ways to use

contours. Opelt et al. [8] and Shotton et al. [63] directly applied contour matching algorithm

for recognition, but also devised a shape model of the contours to make the contours more

discriminative. Instead of performing basic contour matching, Ferrari et al. [118] [119] dis-

covered contour networks (i.e. several spatially connected contours) as the basic units for

matching. Another way to use contours is to sample points from the contours and extract a

local patch around the sampled points. This mechanism was first used in [100]. The advan-

tages of this method are that it feature detection is efficient and it captures both appearance

and contour information.

Local descriptors Once a collection of patches are detected, next is to find an efficient

way to depict the patches. Using the flattened patch intensities is the most straightforward.

For example, supposing the patch size is 10 by 10, then the descriptor is a 100-dimensional

numerical vector. The similarity between two patch descriptors can be measured by cross-

correlation or the sum of squared differences. Instead of intensity values, we also can use

the gradient values to make the descriptor invariant to illumination changes. The above

mentioned differential invariants based descriptor is also formed by different statistical mea-

surements of the gradient. In order to make it rotation invariant, steer filters [121] with

Gaussian derivatives can be convolved with the local patch, which basically rotates the

Gaussian derivatives at different orientations. Shape orientated descriptors such as shape

context [103], and spin image [106] are also used in certain applications.

The SIFT descriptor [79] is one of the most well-known and widely used patch representa-

tions. As figure 2.1 illustrates, an image patch is split into a 4 × 4 spatial grid (in the figure

for demonstration it is 2 × 2). In each cell of the grid, a histogram of gradient orientations
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Figure 2.1: The demonstration of SIFT descriptor (this figure is taken from [79]). The left
panel shows the gradients of an image patch that is divided into 2×2 subregions. The overlaid
circle is the Gaussian window weighting the gradients. These gradients are accumulated into
orientation histograms, as shown on the right panel. The length of the arrow represents the
sum of the gradient magnitudes in the corresponding direction bin.

is computed by quantizing the orientation into 8 bins. This results in a descriptor with

128 dimensions. The orientation of the maximum peak is selected as the reference direction

such that the descriptor is orientation invariant. Gradient location-orientation histogram

(GLOH) [71] is the extension of the SIFT descriptor. Instead of using a grid to split the

spatial space, it uses log-polar schema to arrange the space. Its design goal is to improve

the robustness and distinctiveness. PCA-SIFT [75] is a training-base SIFT, which attempts

to reduce the dimensionality of the vector.

We can represent an image as a bag of features (BoF). In the training phase, we create

the database of patch features with labels from the training data. In the testing phase,

the detected patches are matched to the stored patches in the training database. Then the

content of the image is judged by a simple voting mechanism. This is suitable for instance

recognition. For category level recognition, a histogram of the quantized patches is a very

effective image representation. In fact, this is the so-called bag of visual words. The local

patches can be quantized by any clustering algorithm ( e.g. k-means ). Bag of visual words
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Figure 2.2: Two images having similar color histograms (the images are original in [51]).

has been extensively applied in object and scene recognition and it has shown impressive

performance.

Spatial Layout of Features The underlying idea of most appearance-based methods

(either pixel-level or patch-level appearance) is the bag of features (BoF) image represen-

tation. The image matching is conducted by a patch to patch, or a histogram bin to bin

(i.e., matching a batch of patches). Therefore, the spatial relationships between features

or spatial distribution of features are missed in BoF image representation. However, the

spatial layout of features may be critical to distinguish some types of images. A very simple

example is illustrated in Figure 2.2, where two totally different images have similar color

histograms [51]. In fact, the colors in the left image are very dispersive, while the right

images contain very concentrated colors. Thus, Huang et al. proposed color correlogram to

make up the shortcomings of the general color histogram. Color correlogram essentially is

the distribution of a given color as a function of the distance between two pixels. It depicts

how the spatial correlation of pairs of colors changes with distance.

For object recognition, the shape information is as important as the appearance. Fergus et

al. proposed the famous probabilistic constellations of the patches [100]. As color correlogram

measures the pair-wise relationship between two colors at a certain distance, the constellation
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model aims to describe the probabilistic distribution of patch appearance and pair-wise patch

correlation, which are modelled by a Gaussian. Essentially, the constellation model represents

the relative positions between pair-wise distinctive patches. The parameters of the model

are learned from the training data. Given an unknown image, the interest patches are first

extracted. Next the patches are compared to the learned category models to judge whether

it is generated by this category model.

One simple way to integrate coarse layout information of the features is to partition the

image into relatively small grid cells [57] and then compute a local histogram for each cell.

The image is described by concatenating the local histograms into a long vector. We call

this the grid-based approach. Theoretically, it is a location quantization method, which

integrates coarse location information into the visual words. Basically, it is similar to [99]

in which absolute patch locations were integrated into the probabilistic Latent Semantic

Analysis (pLSA) models [4] [95] [114]. This simple approach works very well in solving

realistic problems.

Inspired by the Pyramid Match Kernel [70] for multiple scale matching with different

granularity, Lazebnik et al. proposed the Spatial Pyramid Match Kernel (SPMK) to match

images at different grid resolutions of image partitions. Rather than only considering the

highest resolution of the image partition (i.e. grid-based approach), SPMK conducts image

matching from the coarse level to the finest level. The match score is weighted by the

pyramid level, as the matches made at various pyramid levels are of different importance.

Generally, the matches made at fine grid resolutions are supposed to gain more weight. The

similarity between two models are measured by histogram intersection.

Finally, we review the Spatial Envelope proposed by Oliva et al. [7] to depict the shape of

the nature scene. Traditionally, we are apt to think that a scene consists of multiple objects

or some elementary patterns. It is also consistent to the observations that scene recognition

is a progressive reconstruction process of the input from local elements. This is a bottom-up

method. In contrast, we also can achieve the same goal using a top-down approach, which
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attempts to capture the scene information globally. This is supported by research stating

that humans can recognize a scene without knowing the detailed object information in the

scene. Based on these observations, Oliva et al. treated a scene as an object and attempted

to describe the shapes of scenes by a set of perceptual dimensions (i.e., naturalness, openness,

roughness, expansion, ruggedness).

2.2 Action Recognition

For action recognition, we can trace back to Johansson’s research in 1973 on point-light dis-

plays (PLD) attached to the moving human body [38]. From a psychophysics point of view,

his research proved that humans are able to recognize actions solely from the global body

motion. Inspired by this research, many techniques have been developed to model the human

body by capturing the global human motion via attached markers. Just like recognizing 2-D

objects using 3-D models, action recognition also has one stream to reconstruct a 3-D model

of human body, and then it is projected into 2-D space to match the observation [26] [73].

More works using markers [80], rectangular patches [28] and blob models [85] have been ex-

plored to recognize actions. Using attached physical markers to capture human body motion

is useful for some practical problems such as films, games or automatic control systems, but

for other scenarios such as surveillance systems and video search, this is difficult because the

human body parts (or joints) are required to be automatically detected.

In this section, we address the approaches for action recognition using mainly vision

techniques on videos. These approaches can be classified into two categories according to

the extracted features. If the extracted features are global shapes, contours, or trajectories,

we refer to them as holistic approaches, otherwise, they are part-based approaches.
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2.2.1 Holistic Approaches

The most straightforward holistic approach is to correlate the action template (i.e. video clip)

to the queried video. The correlation can be computed from various spatiotemporal volume

properties such as intensity, gradient, optical flow, Gabor filters, etc. Shechtman et al. [34]

proposed to measure the degree of consistency by computing the correlation using the local

intensity variance. Similarly, Efros et al. [5] extracted an optical flow field as a descriptor

from the stabilized object spatiotemporal volume and computed the cross correlation between

the model and the input optical flow descriptors.

The shape of the subjects is one of the most reliable and frequently used pieces of global

information, which can be described by silhouettes and contours. Cheung et al. [37] used

Shape-From-Silhouette (SFS, or Visual Hull) to reconstruct the 3-D model of moving dy-

namic articulated subjects using multiple camera views. With the reconstructed 3-D model,

the acquired shape and joint information was used to recognize the human motion. Instead

of reconstructing the 3-D model of the unknown action in the recognition phase, Lv and

Nevatia [35] proposed to match the 2-D silhouettes of the test sequence to the 2-D projec-

tions of the selected 3-D action exemplars. These 3-D exemplars captured the key poses

of each type of actions and they can be shared by different actions. Weinland et al. [30]

proposed a very similar idea, which is illustrated in Figure 2.3. Both of them can recognize

an action from an arbitrary view.

Rather than reconstructing a 3-D model using multiple cameras, we can directly integrate

the silhouettes into a 3-D space-time shape volume. Unlike the reconstructed 3-D subject

model at every unit time, the 3-D space-time shape volume has a time dimension. Therefore,

it is able to capture the shape volume changes resulting from the pose changing. Then the

action recognition problem is successfully converted into 3-D object recognition. Yilmaz and

Shah used differential geometry features extracted from the surfaces of the action volumes,
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Figure 2.3: Examples showing arbitrary view action recognition (this figure is from [30]).The
fourth and third row are the observed image sequences and their corresponding silhouettes.
The second and first row are the matched silhouettes and their corresponding 3-D exemplars.

and achieved good performance. Blank et al. applied a 2-D shape analyzer to compute shape

features with each frame of shape; however, the recognition is not view invariant.

Another way to integrate the silhouettes is through the use of the motion history image

(MHI) and motion energy images (MEI) proposed by Bobick and Davis [3]. The basic

idea is to record the moving path of motion into one single image. The time information

is integrated into the image by assigning darker values to earlier motions. Figure 2.4 (A)

illustrates this idea. This idea is extended to Hierarchical Motion History Images in papers

by Davis [50] and by Meng et al. [41]. By combining both 3-D reconstruction and MHI,

Weinland et al. [31] proposed an view independent motion history volume (MHV), which

records the motion changes at any view over time.

It is obvious that silhouettes can provide sufficient discriminative information for action

recognition when they are available. Nevertheless, its performance really depends on the

results of background subtraction, which may be sensitive to illumination, color, and texture

changes. Also, it is unable to handle self collusion. Since the requirements of silhouettes

are too strict, this is relaxed to figure-centric schema, which only needs to detect the coarse

location of the figure. With the detected figure, either optical flow features [5] or other filter-

based features can be extracted from the block. For example, Schindler et al. [74] used linear

Gabor filters to capture shape information and optical flow to depict motion information.
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Key Frame MEI MHI Key Frame MEI MHI
(A)

(B) (C)

Figure 2.4: (A) Motion energy images (MEI) and motion history image (MHI)(this figure is
taken from [3]); (B) Space-time interest points are detected by 3-D Harris-corner detector
(this figure is taken from [46]); (C)Space-time interest points are detected by 1D Gabor
detector in time direction (this figure is taken from [93]).

As discussed above, global approaches usually have to store 3-D templates or sequences

of 2-D images. The recognition is achieved by various matching mechanisms like shape

matching. To construct the templates, background subtraction might be a pre-condition.

Yet, current background models are sensitive to camera motion and illumination changes, so

the templates are not very reliable. What is more, template matching focuses on instance

recognition, which makes it hard to generalize the templates for category-level recognition.

This is because the model has to cope with many variances, such as deformations, view

changes, and scale changes.

2.2.2 Part-based Approaches

Due to the limitation of holistic models in solving some practical problems, recently part-

based models have received more attention. Unlike the holistic-based method, this approach
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extracts “bag of interesting parts”. Hence, it is possible to overcome some limitations like

background subtraction and tracking. The local appearance features include local motion

features and static features.

Local motion feature Fanti et al. [18] and Song et al. [126] proposed a triangulated

graph to model the actions. Multiple features such as velocity, position, and appearance

were extracted from the human body parts in a frame-by-frame manner. Ke et al. [123]

extended the 2-D Harr-like filters, originally applied in face detection, into 3-D to capture

volumetric features.

Inspired by the success of interesting patches used for object recogntion [79] [100] [71]

[99], the so-called bag of space-time interest points [45] [93] based approaches are obtaining

increasing attention. Typically, spatiotemporal interest points are first detected either by a

3-D Harris corner detector [45] in videos or 1D Gabor filters [93] in the temporal direction of

the videos (Figure 2.4 (B) and (C) demonstrate some examples). Supposing a video is in xyt

space, detection of interest points from direction x, y, and t were explored in [74]. Ning et al.

[44] proposed 3-D Gabor filters to detect interesting points. Then various feature descriptors

are extracted from the cuboids surrounding the interesting points. The descriptors can be

flattened intensity, gradient and optical flow vectors [93], or a histogram of gradients and a

histogram of optical flows [47].

With a bag of local motion feature descriptors, we can index them using efficient trees

such as Sphere-Rectangle tree [90] and Kd-tree [68]. Then action retrieval or recognition can

be done by querying each local motion feature detected from the unknown and simply voting

to label the unknown action. Another popular mechanism is to represent an action as a bag

of video words by quantizing the descriptors into video-words and computing their statistical

distributions (histogram). Then, the discriminative learning model such as SVM [93] and

the generative model such as pLSA [59] [111] and Hierarchical Bayesian [60]can be used to

build the model.
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Local static feature It is well known that the human vision system can recognize many

types of human actions from a sequence of instantaneous postures or poses of a person in still

images without motion information. Therefore, we believe the static pose in a single image

can be useful for action categorization. Recently, pose recognition using local shape features

such as shape contexts [60] [127], histogram of gradients of the local patches [2], appearance,

and position contexts [43] [44] have obtained good results. Since a single pose only provides

instantaneous information at a single instant, it is important to select the right pose in order

to determine an action correctly. Instead of using a single pose, we can employ a sequence

of poses, in order to make up for the lack of motion information. This is particularly useful

for realistic videos where the motion features are unreliable due to unpredictable and often

unintended camera motion (camera shake).

Hybrid of static and motion features Little work has been reported on the combi-

nation of static and motion features for action recognition in realistic videos until recently.

Fanti et al. [18] utilized a mixture of static features (local appearance) and dynamic features

(simple velocity descriptors) for action recognition. Neibles et al. [60] proposed a generative

model to learn a hierarchical model using both static and dynamic features for action recog-

nition, and their results verified that the hybrid features are useful. In chapter 4, we propose

Fiedler Embedding to combine local motion features and spin image features which capture

the global pose information. However, these methods may not be applicable for realistic

videos due to the difficulty in acquiring good features in unconstrained videos. Instead of

detecting spatiotemporal interest points, Mikolajczyk et al. [72] detected local static features

with associated motion vectors from every single frame, and used motion vectors as a filter

in recognition. Their action recognition method is akin to object recognition, and requires

extra training images and object bounding boxes. Schindler et al. [39] combine different

types of ST (spatiotemporal) features by simply concatenating the feature vectors.
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2.3 Semantic Visual Vocabulary

In the field of computer vision, bag of features (BOF) is receiving increasing attention due

to its simplicity and surprisingly good performance on object, scene and action recognition

problems. The underlying idea is that a variety of statistical cues are present in images and

videos, such as color or edge patterns and local structural elements [20] [29] [45] [79] [88] [93],

which can be effectively used for recognition. Inspired by the success of the bag of words

(BOW) approach in text categorization [23] [114], computer vision re-searchers have recently

discovered the connection between local patches in images/videos and words in documents.

In the BOW text representation, a document is represented as a histogram of words. In

order to employ the BOW to represent an image or video, we need to quantize the local

patches into visual words. The k-means algorithm is commonly used to construct an initial

visual vocabulary due to its simplicity. However, it has two major drawbacks. The first

being that the quality of the visual vocabulary is sensitive to the vocabulary size [87]. In

general, thousands of visual words are used to obtain better performance on a relatively

large dataset. But this vocabulary may contain a large amount of information redundancy.

On the other hand, since the clustering criterion is only based on the appearance similarity,

k-means is unable to capture the semantic relation between the features. This semantic

relationship is useful for image and video understanding.

Several attempts have been made to bring the semantic information into visual vocab-

ularies. We can categorize these attempts into two major classes: the supervised and un-

supervised approaches. The supervised approaches use either local patch annotation [65] or

image/video annotation [13] [36] [66] [78] [122] to guide the construction of a semantic visual

vocabulary. Specifically, Vogel et al. [65] construct a semantic vocabulary by manually asso-

ciating the local patches to certain semantic concepts such as “stone”, “sky”, “grass”, etc.

The obvious drawback is that this approach is infeasible due to the large amount of manual

labor required. Yang et al. [78] proposed unifying the vocabulary construction with classifier

37



training, and then encoding an image by a sequence of visual bits that constitute the se-

mantic vocabulary. Another interesting work utilizes randomized clustering forests to train

a visual semantic vocabulary [36]. The classification trees are built first, but instead of using

them for classification, the authors assign a visual word label to each leaf, which is how a se-

mantic visual vocabulary is constructed. In addition, several other works [13] [66] [105] [122]

use mutual information (MI) between the features and class labels to create the semantic

vocabulary from an initial and relatively larger vocabulary quantized by the k-means algo-

rithm (Hereafter, we will call the visual words in the initial vocabulary mid-level features in

order to distinguish them from the low level raw features and high level semantic vocabulary

features).

Some unsupervised approaches [4] [64] [76] [95] [111] were inspired by the success of the

textual topic models in text categorization, such as pLSA [114] and LDA [23]. Those models

represent an image or video as the mixture distribution of hidden topics that can essentially

be a semantic visual vocabulary. There is a soft mapping between the hidden topics and the

mid-level features. In chapter 3, we proposed to use maximization of mutual information

(MMI) to obtain the optimal size of the visual semantic vocabulary for action recognition.

We observe that semantically similar features generally have a higher co-occurrence value

in the data set. This is the intrinsic reason that both the topic and MMI model can be

successfully used to construct a semantic vocabulary.

Both the supervised and unsupervised approaches obtained good performance on object,

scene and action recognition. This is because the semantic visual vocabulary can capture

not only the appearance similarity but also the semantic correlation between the mid-level

features. We can explain this point clearly using an example in text categorization. For

instance, “pitching”, “score” and “team” can be correlated to each other by “baseball”, while

“biker”, “wheel” and “ride” may be correlated to each other by “motorcycle”. Hence, we

conjecture that the mid-level features produced by similar sources are apt to lie on dynamic

feature manifolds. In other words, there exist strong correlations between each dimension
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of the features, which means the features may have a limited number of degrees of freedom.

Abundant dimension information is redundant.

However, very few attempts have been made to explicitly preserve the manifold geometry

of the feature space when constructing the semantic visual vocabulary. We propose to use

Diffusion Maps [102] to capture the manifold geometric structure of the features in the process

of embedding. In fact, DM is one of the techniques used for manifold dimension reduction

like PCA, ISOMAP [82], Laplacian Eigenmaps [83], etc. In many applications, the distances

between feature points that are far apart are meaningless, so preserving the local structure

is sufficient for the embedding. Unlike DM, PCA and ISOMAP are global techniques that

do not preserve local geometric information of the feature space. In addition, PCA is unable

to handle nonlinear manifold data points. Since the diffusion distance derived from DM

uses all the paths between two points to compute the distance, it is more robust to noise

than the geodesic distance (shortest path distance) used by ISOMAP. DM is very similar

to Eigenmaps-based approaches. However, since the embedding coordinates are weighted

eigenvectors of the graph Laplacian, DM has an explicit distance measure induced by a

nonlinear embedding in the Euclidean space. Eigenmaps representation does not have any

explicit metric in the embedding space. Additionally, DM can employ multi-scale analysis

on the feature points by defining different time values of the random walk.
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CHAPTER 3: LEARNING OPTIMAL NUMBER OF VISUAL
WORDS FOR ACTION RECOGNITION

3.1 Introduction

In this chapter, we propose an approach to automatically discover the optimal number of

video-words clusters (VWC s) using the Maximization of Mutual Information (MMI) principle

in an unsupervised manner. Our goal is to find compact and yet discriminative VWC s by

grouping the redundant video-words. The benefits of a compact representation is twofold:

more effective and efficient classification due to lower dimension, and effectively capturing the

spatiotemporal correlation of the VWC s. Specifically, we maximize the Mutual Information

(MI) when merging two VWC s, which is unsupervised. The maximization of Mutual

Information (MMI) has several available mechanisms [48] [91] [92]; we adopt the Information

Bottleneck [91]. The MMI based clustering has been successfully used for word clustering

where the words are grouped into semantic concept clusters (e.g. “pitching”, “score”,“teams”

etc. can be clustered into “baseball” concept, and “biker”, “wheel”, and “ride” may be

clustered into “motorcycle” concept). This is effective due to the fact that words related to

a particular concept have higher co-occurrence in documents. Similarly, each cluster of video-

words achieved by MMI method tends to correspond to a group of semantically related video

words. For instance, one particular cluster may contain the cuboids related to the “raising

the hands” motion in different actions.

The VWC s are somewhat analogous to hidden topics in pLSA. However, there are sig-

nificant differences between them. First of all, pLSA is a generative model, which employs

hidden variables, while MMI clustering does not use hidden variables. Secondly, pLSA as-

sumes conditional independence (i.e., given the latent variable, the document and word are

independent), which is not required in MMI clustering. Besides, pLSA is used as a clustering
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method in [59]. The number of topics (clusters) normally is set to be the number of cate-

gories. Wong et al. [111] set the number of topics to be three times the number of categories.

Nevertheless, our approach aims to automatically discover the optimal number of VWC s,

such that the action can be represented by a compact yet discriminative model.

Although BOV has achieved very good performance, it ignores any spatial or temporal

information between the video-words. The cuboids representing motion of the parts of a

human body have a strong correlation to each other due to the fact that they belong to the

same body. Figure 3.4 shows some examples of spatial distribution of the cuboids. Wong et

al. [111] extended some successful shape models from object recognition to their 3D action

recognition. However, they still ignore the temporal information. [109] introduces a temporal

subsequence mining method in order to capture the temporal correlation of the video-words.

However, the performance is a little worse than their SVM baseline. In our work, we apply

the correlogram, which has been successively applied for image and scene classification [110].

The modified correlogram is able to somewhat cope with the translation, rotation, and scale

problem. Additionally, we explore the spatiotemporal pyramid approach in order to capture

both spatial and temporal information.

The major steps of the training phase in our framework are described in Table 3.1. The

videos are feed into the system, and an appropriate number of cuboids (3D interest points)

are extracted from each video. K-means algorithm is applied to get the large number of

video-words. Then MMI clustering automatically discovers a compact representation from

the initial codebook of video-words and efficiently captures the correlation. Furthermore,

we use spatial correlogram and spatiotemporal pyramid models for capturing structural

information. Finally, we use an SVM as a classifier to train and test these models.
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Figure 3.1: Illustration of the procedure of representing an action as a bag of video-words
(histogram of bag of video-words).
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Objective: Action recognition using the learnt optimal number of
VWC s and their structural information.

• Extracting Cuboids. Apply separate linear filters in spatial
and temporal directions, and select the local maxima.

• Learning Codebook. Quantize the cuboids into N video-words
using k-mean algorithm based on the appearance similarity.

• Compressing Codebook. Apply MMI clustering to find the
optimal number of video-word clusters.

• Capturing Structural Information. Extract translation, ro-
tation, and scale invariant spatial correlogram and spatial tem-
poral pyramid.

• Training SVM models. Training using feature vectors ex-
tracted as described above.

Table 3.1: Major steps for the training phase of our framework

3.2 Bag of Video-words Model

Figure 3.1 illustrates the procedure of bag of video-word modelling. The procedure is very

straightforward. First, detect interest points in the action video. Two widely used feature

detectors are 3D Harris corner detector [45] and 1D Gabor filter (convoluting with time) [93].

Second, extract cuboids around each detected feature point, and then represent each one as

a descriptor. Next, construct the vocabulary using k-means clustering. This is also called

feature quantization. Finally, an action video is represented by the histogram of the video-

words. With the histograms, action recognition or indexing can be conducted.

3.2.1 Feature Detection and Representation

As we can see from Figure 3.1, an action video is treated as a bag of features. In order

to acquire discriminative features, an effective feature detector is a must. Many feature

detectors are available for 2-D images; very few feature detectors, however, were designed for

43



3D video. Inspired by Harris-corner detector for spatial domain [19], Laptev and Lindeberg

[46] extend it to the space-time domain to discover 3-D corners. In practice, it can effectively

find the intensity changes in both space and time domains. In general, it generates very

sparse features. However, there are two points that should get our attention. One is that

rare features may affect the recognition performance as observed by Lowe [79]. Another

one is that there is no argument to prove whether the 3D corners are discriminative for

recognition. Therefore, we adopt another spatiotemporal interest points detector proposed

by Dollar [93]. This detector produces dense feature points, and performs better on action

recognition tasks [59,93,111].

Instead of using a 3D filter on the spatiotemporal domain, it applies two separate linear

filters respectively to spatial and temporal dimensions. A response function can be repre-

sented as follows:

R = (I(x, y, t) ∗ gσ(x, y) ∗ hev(t))
2 + (I(x, y, t) ∗ gσ(x, y) ∗ hod(t))

2, (Eq. 3.1)

where gσ(x, y) is the spatial Gaussian filter with kernel σ, which is the spatial smoothing

kernel, and hev and hod are a quadrature pair of 1D Gabor filters applied along the time

dimension. They are defined as,

hev(t; τ, ω) = −cos(2πtω)e−t2/τ2

hod(t; τ, ω) = −sin(2πtω)e−t2/τ2

,

where set ω = 4/τ . They give strong responses for temporal intensity changes. The interest

points are detected at locations where response is locally maximal. This detector can detect

features not only for periodic actions such as “running” and “walking”, but also for any other

motions with spatially distinguishing image characteristics. Hence, the detected features may

include space-time corners.
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Around each interest point, a cuboid is extracted with spatiotemporal size covering the

range within which the feature is detected. To measure the similarity between two cuboids,

a descriptor is needed, such that the similarity can be measured by the Euclidean distance

between the descriptors. Dollar et al. [93] propose several types of feature descriptors, such

as the spatial and temporal gradients or their histograms, windowed optical flows or their

histograms, etc. The dimensionality of the descriptor is reduced by PCA. In our work, the

flattened gradient descriptor is used.

3.2.2 Action Descriptor

With the feature descriptors extracted from the action videos, the similarity between two

action videos can be estimated by matching their descriptors. However, this must be compu-

tationally expensive and sensitive to occlusion. Instead of direct matching, we can quantize

each feature descriptor s, s ∈ Rd into the predefined discrete video-word v in the vocabulary

V by nearest neighbor. The predefined vocabulary is learned from a collection of training

cuboids extracted from a subset of training videos by clustering like k-means algorithm. All

the cuboids that are quantized into the same video-word are deemed to be matched. Hence,

this is the pre-computed coarse matching. Now, an action video can be represented by the

histogram of the video-words in it. This is an analogy to the bag of words idea in the area of

document analysis [23] [114]. To compare two action videos, we can use Euclidean distance,

KL-divergence, or Histogram Intersection to measure the dissimilarity or similarity.

However, there are still three unanswered questions for the bag of video-words problem.

First, how large of a vocabulary is appropriate for recognition? This is the problem of

vocabulary resolution. In the following section, we can answer this question to some extent.

Second, can video-words be semantically meaningful? The MMI clustering can make it

happened. Finally, how do we integrate structure information into the model? This is also

explored in the following sections.
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3.3 Clustering of Video-words by MMI

Consider two discrete jointly distributed random variables X and Y , where X ∈ X =

{x1, x2, ..., xn} and Y ∈ Y = {y1, y2, ..., ym}. In our work, X represents a set of video-words,

and Y is a set of action videos. We can simply build a histogram of the video-words to model

each action video yi. Once we normalize the histograms, the similarity of two action samples

can be measured by their distance between two conditional distributions p(x|y). However, the

size of X is difficult to choose. If the vocabulary size is too small, it may cause over-clustering

with higher intra-class distortion. Therefore, it is common to choose an appropriately large

value for the vocabulary. But that may cause a sparse histogram and introduce noise for

recognition. So, we seek to find a more discriminative and yet compact representation of

X, say X̂ which groups the video-words with higher co-occurrence relationships together,

and also preserves the information about Y . Our criteria for X̂ is to maximize the mutual

information I(X̂; Y ) under the constraint of lower value of the mutual information I(X̂; X).

This is the idea of Information Bottleneck [92].

3.3.0.1 Mutual Information

Given two discrete random variables X and Y , the Mutual Information (MI) between them

is defined as:

I(X; Y ) =
∑

y∈Y,x∈X

p(x, y)log
p(x, y)

p(x)p(y)
, (Eq. 3.2)

where p(x, y) is the joint distribution of X and Y , p(x) and p(y) are probability distributions

of X and Y respectively. MI tells how much information of variable X is contained in variable

Y . Using Kullback-Leibler divergence, it also can be expressed as:

I(X, Y ) = DKL(p(x, y) ‖ p(x)p(y)), (Eq. 3.3)
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where DKL computes the distance between two distributions. In the context of this paper,

X and Y respectively represent video-words and actions.

3.3.0.2 MMI clustering Algorithm

Our goal is to find an optimal mapping of the video-words X, say C(X) into a more com-

pressed representation X̂ such that the MI between X̂ and Y , say I(X̂; Y ), is as high as

possible, given the constraint on the MI between X and X̂, say I(X̂; X). I(X̂; X) signifies

how compact the new representation X̂ is. Obviously, a lower value gives a more compact

representation, and the most compact representation will correspond to the merging of all

video-words into one single cluster. However, that representation may not be discriminative,

because it does not give any information regarding Y from X̂. Therefore, we also need to

keep a higher value of I(X̂; Y ), which gives the discrimination of the new representation or

quality of the clustering. There is a tradeoff between the compactness and discrimination.

Given the mapping p(x̂|x), this problem can be mathematically expressed as:

max(I(X̂; Y )− λ−1I(X̂; X)), (Eq. 3.4)

where λ−1 is the Lagrange multiplier. The solution of formula Eq. 3.4 gives three self-

consistent equations on p(x̂|x), p(y|x̂), and p(x̂). The details of the solution of this mini-

mization problem are given in [92]. When λ = 0, the solution of Eq. 3.4 assigns all x to

one cluster, and when λ → ∞, it gives a solution for hard clustering as follows: p(x̂|x) = 1

if x ∈ x̂, otherwise p(x̂|x) = 0; p(y|x̂) = 1
p(x̂)

∑|x̂|
i=1 p(xi, y) and p(x̂) =

∑|x̂|
i=1 p(xi). If one

specified clustering C(X) always has I(C(X); Y ) ≥ I(C ′(X); Y ) where C ′(X) is an arbitrary

mapping, C(X) is one of the optimal solutions.

This problem can be solved by a greedy algorithm based on a bottom-up pair-wise merg-

ing procedure [91]. The algorithm starts with a trivial partition, where each element of X

is a singleton cluster. In order to keep I(X̂; Y ) as high as possible, at each step we greedily
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merge two components into one, which has minimal loss of mutual information I(X̂; Y ). Let

x̂1 and x̂2 be two candidate clusters to be merged; the cost of this merge is defined as the

loss of MI due to the merge, which is expressed as:

∆I(x̂1, x̂2) = I(X̂bef ; Y )− I(X̂aft; X), (Eq. 3.5)

where I(X̂bef ; Y ) and I(X̂aft; Y ) denote the MI before and after the merging step respectively.

x is a video-word which is represented by a normalized vector with its frequency in the

training videos; specifically, it is a vector of p(y|x) with y ∈ Y . Similarly, every cluster has

a “prototype”, say p(y|x̂). Assume x̂1 and x̂2 are merged into x̂∗; the new “prototype” is

updated as:

p(y|x̂∗) =
p(x̂1)

p(x̂∗)
p(y|x̂1) +

p(x̂2)

p(x̂∗)
p(y|x̂2), (Eq. 3.6)

where p(x̂∗) = p(x̂1) + p(x̂2). The prototype here is like the centroid of a cluster. Now the

loss of MI can be derived from Eq. 3.5 and Eq. 3.6 as:

∆I(x̂1, x̂2) = I(X̂bef ; Y )−
∑

y

p(x̂∗)p(y|x̂∗)logp(y|x̂∗)
p(y)

= I(X̂bef ; Y )−
∑

y

log
p(y|x̂∗)
p(y)

∑
i=1,2

p(x̂i)
∑
i=1,2

p(x̂i)

p(x̂∗)
p(y|x̂i)

= I(X̂bef ; Y )−
∑

y

log
p(y|x̂∗)
p(y)

∑
j=1,2

(
p(x̂i)

p(x̂∗)

∑
i=1,2

p(x̂i))

=
∑

y,i=1,2

(p(x̂i)p(y|x̂i)log
p(y|x̂i)

p(y)
− p(x̂i)p(y|x̂i)log

p(y|x̂∗)
p(y)

)

=
∑

y,i=1,2

p(x̂i)DKL(p(y|x̂i)||p(y|x̂∗)).

(Eq. 3.7)

As we see, ∆I(x̂1, x̂2) is the weighted distance of two original “prototypes” to the merged

“prototype”. Also, we can consider the loss of MI due to the merging of clusters x̂1 and x̂2

as the distance between x̂1 and x̂2. At each step, we greedily merge the most closest ones.

The algorithm is summarized as follows:
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(i) Initiate C(X) ≡ X, which means regard each point as a singleton cluster.

(ii) At each step, compute the distance (actually ∆I(x̂1, x̂2)) between each pair of elements

using formula Eq. 3.7.

(iii) Pick the pair which gives the minimum loss of MI ∆I(x̂1, x̂2).

(iv) Continue the merging operation until the loss of MI ∆I(x̂1, x̂2) is larger than the

predefined threshold ε or number of clusters.

In summary, the motivation to learn the optimal number of clusters of video-words is

twofold. The compact features with lower dimensionality are efficient and effective to learn.

Besides, compact features are easier to encode with spatiotemporal structure information.

Here, we apply two steps to achieve this. We first use k-means algorithm to cluster the

cuboids into video-words. Since the criterion for k-means is based on appearance similarity,

cuboids belonging to one video-word are visually similar. Further, we group the video-words

into some more compact but discriminative clusters via MMI clustering.

3.4 Spatiotemporal Structural Information

Bag of video-words approach ignores the spatial and temporal structural information of the

features. In our work, we explore two approaches to capture this information, namely spatial

correlogram and spatial temporal pyramid matching. This section describes the modified

correlogram. It represents the correlation of two features at a certain relative distance, so it

is translation and somewhat scale invariant.

Assume n local cuboids, denoted as P = {p1, p2, ..., pn}, are extracted from an action

video A, and quantized into m video-words or VWC s V = {v1, v2, ..., vm}. So a cuboid

is represented by a triple pi = (xi, yi, v(pi)), where (xi, yi) (the time dimension is ignored

here) is the centroid of the cuboid and v(pi) is the function mapping a cuboid to a video-

word. We also quantize the distance into K distance levels D = {D1, D2, ..., DK}, where
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Di = [di1 di2] ([x1 x2] denotes an interval). By defining Di < Dj if di2 ≤ dj1, we further

assume D1 < D2 < ... < DK . The distance between two cuboids p1 and p2 is defined as a

function d(p1, p2), which could be the L∞-norm or Euclidean distance. Consequently, the

correlogram of two labels vi and vj with distance interval Dk is defined as a probability R,

R(Dk, vi, vj) = Pr
(
v(p2) = vj|v(p1) = vi, d(p1, p2) ∈ Dk

)
, (Eq. 3.8)

where p1, p2 ∈ P , 1 ≤ i, j ≤ m and 1 ≤ k ≤ K. From the correlogram of two video-words

vi and vj, we can know the probability of finding a cuboid p2 with label vj at Dk distance

away from the given cuboid p1 with label vi.

In practice, the computation of the correlogram of two labels is very straightforward.

Consider a patch p: we define T (Dk, p) as a local co-occurrence table of patch p with 1× L

dimensions, where each dimension denotes one label. This table captures the number of

occurrence of each label li at distance Dk from patch p. Next, we normalize the co-occurrence

table by sum of all the dimensions and get T̂ (Dk, p). Finally, we can approximate the

correlogram of label vi and all the labels at some distance Dk as,

R̂(Dk, vi) =

|Svi |∑
p∈Svi

T̂ (Dk, p)

|Svi
| , (Eq. 3.9)

where Svi
denotes the set of cuboids with label vi and |Svi

| is its cardinality. Actually, this is

an averaging procedure. The j-th dimension of R̂(Dk, vi) gives the correlogram R̂(Dk, vi, vj)

of labels vi and vj at distance Dk. Hence, the correlogram R̂(Dk) is an L × L matrix.

Assume R1 and R2 respectively represent correlgorams of action videos A1 and A2, then the

similarity between them is computed as,

S(R1,R2) =
K∑

k=1

L∑
i,j=1

min(R1(Dk, vi, vj),R2(Dk, vi, vj)).
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As the correlogram gives the local correlation of two VWC s , it is translation and rotation

invariant. However, it may not be scale invariant due to the quantization of distance. Instead

of using fixed absolute distance quantization, we use the relative distance quantization. Given

a video, we get a bounding box around the object with diagonal length of Lsub
d . Then the

relative distance quantization can be computed as:

Drel
k = Dabs

k

Lsub
d

Lfrm
d

, (Eq. 3.10)

where Lfrm
d denotes the diagonal length of the frame.

3.5 Experiments and Discussion

We have applied our approach to two data sets: the KTH data set [45] and the IXMAS multi-

view data set [30]. The default experiment settings are as follows. From each action video

200 cuboids are extracted. All the results reported in this chapter are obtained using the

gradient-based feature descriptor. The initial vocabulary is generated by k-means algorithm,

where 5 randomly selected videos of actors are used for training. We use SVM with Histogram

Intersection kernel as the multi-classifier, and adopt the Leave One Out Cross Validation

(LOOCV) and 6-fold cross validation (CV) strategies on the KTH and IXMAS data sets

respectively. Specifically, we use 24 videos of actors as training and the rest of the videos

as testing for the KTH data set, and 10 actors as training for the multi-view data set. The

results are reported as the average accuracy of 25 runs on the KTH and 6 runs on IXMAS.

In the following, the initial vocabulary and the optimal vocabulary refer to video words and

VWC s respectively.
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Figure 3.2: (a)The classification performance comparison between the initial vocabulary
and the optimal vocabulary with different initial vocabulary sizes. (b) The performance
comparison between using MMI clustering and directly applying k-means algorithm. MMI
clustering reduces the initial dimension of 1,000 to the corresponding number.
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(a) (b)

Figure 3.3: (a) Confusion table for the classification using the optimal number of VWC s
(Nc=177, average accuracy is 91.31%). (b) Confusion table for the classification using the
VWC correlogram. The number of VWC is 60, and 3 quantized distances are used (average
accuracy is 94.15%).

3.5.1 Experiments on KTH data set

The KTH data set contains six actions. They are performed by 25 actors under four different

scenarios of illumination, appearance, and scale changes. In total, it contains 598 video

sequences.

3.5.1.1 Action recognition using orderless features

We investigate the gain of MMI clustering by comparing the classification performance be-

fore and after learning the optimal number of VWC s. Fig. 3.2(a) shows the performance

comparison between the initial vocabulary (before learning) and the optimal vocabulary (af-

ter learning) with different sizes of initial vocabulary. As we see, the optimal vocabulary

can consistently improve the performance when the size of the initial vocabulary is large.

This improvement is very significant. SVM is a strong classifier which can cope with higher

dimensional features. Hence, it is not easy to observe the gain of dimension reduction using
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SVM. It also shows that by increasing the size of the initial vocabulary the performance de-

creases in the case of k-means clustering, while using VWC s the performance even increases

slightly.

Instead of doing dimension reduction, we can directly get a lower dimension using k-

means clustering. Here, we also investigate the gain of MMI clustering compared to directly

applying k-means. We firstly create an initial vocabulary with size 1,000, which achieves

88.95% average accuracy. MMI clustering preserved 177 as the optimal number of VWC s,

with average accuracy of 91.31%. Furthermore, we performed eight different clusterings

with {20, 40, 60, 80, 100, 200, 400, 600} clusters using MMI clustering and k-means algorithm

respectively. Fig. 3.2 (b) shows the results. From the figure, we can see that MMI clustering

can improve the performance significantly when the number of clusters (Nc) is small. This

is due to better clustering or more compact data representation. K-means algorithm groups

the cuboids into video-words based on the appearance of the cuboids. When Nc is small, the

intra-cluster variance is large, which hurts the performance. However, when MMI clustering

groups the 1,000 video-words into new clusters, it tries to preserve the mutual information

between the video-words and the actions, such that the video-words in the same cluster may

have a strong correlation. Note that they are not necessarily similar in visual appearance.

Although in MMI clustering intra-cluster variance of appearance may be large, it can preserve

some meaningful concept correlations. Therefore, MMI clustering can still achieve better

classification performance, even with small Nc. By increasing Nc, the performance lines in

the figure will probably meet at some point. This phenomena makes sense, because MMI

clustering starts with an initial vocabulary of size 1,000, which is the result of k-means

algorithm. Hence, when Nc=1,000, there is no difference between them.

Another observation from our experiments is that the size of the training examples affects

the performance very little. We try different x-fold CV, where x={3, 5, 8, 12, 25} in our

experiments with Nc = 200, and we obtain the corresponding average accuracy {90.58, 89.97,

90.37, 90.67, 90.80}(%). Hence our LOOCV (25-fold CV) training scheme, which has about
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x-fold CV 3 5 8 12 25

Avg. Accu.(%) 90.58 89.97 90.37 90.67 90.80

Table 3.2: The number of training examples vs. the average performance.

570 training videos, is reasonable. In other words, the performance is not affected much by

changing of the number of training examples in our case.

In [59] and [111], the authors use pLSA to do unsupervised classification. More precisely,

it is pLSA clustering, which groups the videos to the topics (clusters), and each cluster is

assigned to one action. Given a test video, it will be assigned one major topic based on

the probability. In order to check the unsupervised classification capability of our approach,

we perform the double clustering scheme [91]. It has two phases. In the first phase, we

use MMI clustering to get the optimal number of video-words clusters (VWC s). Then in

the second phase, each video is represented by the VWC s, and we apply MMI clustering

again on the new representations of the action videos. This time, however, we only group

the videos. We pick the optimal number of VWC s of C = 177, and set the number of

“topics”(action clusters) to 10, which is slightly larger than the number of actions (six). Our

average accuracy is 84.13%, which is slightly better than 81.50% [59] (they use 6 topics) and

68.53% [111] (they choose 10 topics) by pLSA.

Fig.3.3 (a) shows the confusion table for the classification using the optimal number of

VWC s (Nc=177). From this table, we can see the “hand” related actions (“boxing”, “hand

clapping”, “hand waving”) are easily confused with each other. The “leg” related actions (e.g.

“jogging”,“running”, and “walking”) are also easy to get confused, especially for “jogging”

and “running”. In Fig. 3.5 we show two example testing videos from each category with

their corresponding VWC histograms to demonstrate discrimination of the distribution of

the learnt VWC s. Actions from the same category share similar VWC distribution. It is

also clear to see from the peaks of these histograms that some VWC s are dominating in

one action but not in the others. If we look into “jogging” and “running”, they might have
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Figure 3.4: The first row shows the examples of six actions. The following two rows respec-
tively demonstrate the distribution of the optimal 20 video-words clusters using our approach
and 20 video-words using k-means. We superimpose the 3D interest points in all frames into
one image. Different clusters are represented by different color codes. Note that our model
is more compact, e.g. see “waving” and “running” actions (Best viewed in color).

some overlap bins (e.g. bin no. 3 and 20). This is why “running” is easier to confused with

“jogging”, which is consistent to the observation from the confusion table 3.3. Furthermore,

from Fig. 3.4 we see the distribution of VWC s is more compact, while that of video-words

is more dispersive.

3.5.1.2 Classification using spatiotemporal structural information

To encode the spatiotemporal structural information of the cuboids, we have two options.

One way is to encode the structural information into video-words, then use the learning tools

( e.g., pLSA ) to train. For instance, pLSA-ISM [111] performs pLSA clustering on the

structural video-words by ISM model (actually, we can say that pLSA-ISM does dimension

reduction on the ISM model). We encode the structural information in a more straightfor-

ward way. Specifically, our model captures the structural information of the optimal VWCs

instead of the video-words. As we discussed, one benefit of performing MMI clustering on

the video-words is that we can capture more complicated structural information using the

compact and yet discriminative VWC s. When computing the correlgoram, we use a small
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Boxing Clapping Waving

Jogging Running Walking

Figure 3.5: Example histograms of the VWC s (Nc=20) for two selected testing actions from
each action category. These demonstrate that actions from the same category have similar
VWC distribution, which means each category has some dominating VWC s.
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dimension 20 40 60 80

VW(%) 68.09 77.42 81.27 83.94
VWC(%) 84.11 85.13 86.79 88.80

VW Correl(%) 82.28 84.92 86.61 85.45
VWC Correl(%) 87.09 90.47 94.16 91.29

STPM(%) 88.21 92.90 93.79 93.81

Table 3.3: The performance comparison between different models. VW and VWC re-
spectively denote video-words and video-word-clusters based methods, and VW Correl and
VWC Correl are their corresponding correlgoram models. STPM denotes the Spatiotempo-
ral Pyramid Matching approach. The dimension denotes the number of VW s and VWC s.

number of video words(VWs) or VWCs, and adopt three absolute quantized distance in-

tervals, say [8 16 32], from which we can estimate the relative distance by using Eq. 3.10.

Table 3.3 shows the performance comparison between the VW correlogram (VW Correl)

and the VWC correlogram (VWC Correl). As shown in the table, both VW Correl and

VWC Correl achieve a large improvement compared to the corresponding orderless models,

VW and VWC model. VWC Correl also outperforms VW Correl, which further verifies

that VWC s are more discriminative. When the dimension (the number of VWs or VWCs)

is larger than 60, we do not observe much performance improvement.

So far, very little work has been reported on exploiting temporal structure of the video-

words. Nowozin et. al. [109] represent the action as overlapping sub-clips and perform

subsequences mining and matching to capture the temporal information of video-words. We

extend the Spatial Pyramid Matching [107] to the time dimension. Specifically, we perform

action matching at multiple resolutions along the time dimension. We also quantize the

position of the points. In our model, we have 15-bins quantization for spatial information

and three pyramid levels in the time dimension. We show the results of Spatiotemporal

Pyramid Matching (STPM ) in Table 3.3. It also obtains better performance compared to

the VWC model.

58



Methods Accuracy (%) Structural Inf.

Our SVM VWCs 91.31 No
Our VWC Correl. 94.16 Yes
pLSA ISM* [111] 83.92 Yes
WX SVM [111] 91.6 Yes

pLSA [59] 81.50 No
Nowozin et. al. [109] 84.72 Yes

Dollar et. al. [93] 80.66 No
Schuldt et. al. [21] 71.71 No

Table 3.4: The performance of the different bag of video-words related approaches.
pLSA ISM is the major contribution of [111].

cam1 cam2 cam3 cam4

1,000 VWs 75.6 73.77 69.13 70.41

186 VWCs 76.67 73.29 71.97 72.99

cam1 cam2 cam3 cam4

Ave. Accuracy 72.29 61.22 64.27 70.59

(a) (b)

Figure 3.6: (a) Performance (%) comparison between the original 1,000 video-words and the
optimal 189 video-word-clusters. (b) Average accuracy (%) using three views for training
and single view for testing.

Although it is difficult to directly compare with other approaches due to different exper-

iment settings, we summarize all the results of the bag of video-words related approaches in

Table 3.4 as a reference.

3.5.2 IXMAS Multiview dataset

We also applied our approach to the IXMAS multi-view data set. It contains 14 daily-life

actions performed three times each by 12 actors. Thirteen action videos are selected in our

experiments. Most current approaches applied to this data set need some pre-processing

such as background substraction, or 3D model construction. We are the first to use the data

for the bag of video-words approach, which does not require background substraction. We

select four views, excluding the top view. We generate the vocabulary with 1,000 video-

words using k-means algorithm on four actors’ actions. Though it is difficult to directly
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Figure 3.7: The recognition performance when four views are used for training and a single
view is used for testing. The average accuracy is 82.8%

compare our approach with [30] and [35], we obtained competitive performance, noting that

our approach does not require 3D model construction.

Learning from four views: We adopt a 6-fold CV scheme, namely using 10 videos of

actors for learning and the rest for testing. In the testing phase, we designed two testing

schemes: recognition using single view and using multi-views. Our experimental setting is

similar to that of [30]. Fig. 3.6(a) gives the single view recognition accuracy comparison

between models learnt from the original 1,000 video-words and 189 VWC s. It shows that

the VWC achieves better results than the original video-words. In the following, all reported

results are achieved by using the optimal VWC s. Our average performance for each view
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Figure 3.8: The recognition performance when four views are used for training and single view is used for
testing.

outperforms that of [30], where {65.4, 70.0, 54.3, 66.0}(%) were reported as average accuracy

for four views, and they only tested on 11 actions. Fig. 3.8 plots the details of recognition

accuracy for each action.

In the recognition from multi-views, we adopt a simple voting method. Fig. 3.7 shows

the confusion table of the recognition using voting from four views. The average rate is

82.8%, which is slightly better than the one reported in [30] (81.27%) and [35] (80.6%). It is

quite interesting to note that our approach works much better on big motions, like “walk”,

“pick up” and “turn around”, yet it somewhat gets confused with small hand motions such

as “point”, “cross arms”, “wave hand”, and “scratch head”. A possible reason is that our

features are orderless, which means they do not have any view constraints between them.

The hand related actions share some basic motions which are difficult to distinguish by only

using the orderless features. For instance, “wave hand” is easily confused with “scratch

head”.

Learning from three views: We trained actions from three selected views, and tested

on the fourth view. Hence, there is no information from the fourth view when learning the
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models, which includes the vocabulary generation. Fig. 3.6 (b) lists the average accuracy of

this experiment. The results are still satisfactory. Furthermore, we tried one more compli-

cated experiments. We still train the models using three views, but when testing the model,

from the fourth view we only select the subjects which are not included in the training phase.

In this experiment, the learning process is totally blind to testing examples. The average

accuracy is {42.6, 38.08, 58.3, 62.48 }. The third and fourth views get better results, which

means the other three views can provide enough information when testing on this view. To

increase the performance, we conjecture more views are necessary.

3.6 Conclusion

In this chapter, we propose the MMI clustering approach to find the compact yet discrim-

inative VWC s. Since the bag of video-words ignores the spatial and temporal structural

information, we further use spatial correlogram and temporal pyramid match to make it up.

Our approach has been extensively tested on two public data sets: KTH and IXMAS multi-

view data sets, and we obtain very impressive performance on both data sets. In particular,

we are the first to apply the bag of video-words related approach on the multi-view data set,

and we get competitive results.
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CHAPTER 4: LEARNING SEMANTIC VISUAL-WORDS BY
CO-CLUSTERING FOR SCENE CLASSIFICATION

4.1 Introduction

In the previous chapter, we proposed a greedy algorithm to discover the optimal number of

visual-words (i.e., video-words in action recognition) by merging the initial visual-words in

pairwise. At each iteration, it picks up the merge that maximizes the mutual information

between video-word clusters X̂ and action videos Y . It works very well in practice. However,

it has no guarantees on the global loss function since it only minimizes the loss step by step.

On the other hand, it directly clusters visual-words based on their distribution on the videos

firstly, and then classifies the action videos based on their distribution on the new visual-word

clusters. One question is whether we can simultaneously cluster the action videos and the

visual-words such that the two clusterings can boost each other. We believe the information

of the action category can help solve the ambiguity of visual-words and vice versa. The

essence of the simultaneous clustering is that visual-words clustering induces the action

video clustering while the action clustering induces visual-words. In this chapter, we propose

to utilize the Maximization of Mutual Information (MMI) co-clustering approach [48] to

discover the cluster of visual-words for scene recognition. This provides us another option

to discover the semantic visual-word clusters, which are also called intermediate concepts in

this chapter.

In general, we can model a scene from the hierarchical viewpoint. On the bottom level, a

scene can be modelled as a statistical distribution of color of pixels or interest patches. Yet

beyond the low level, we can also describe a scene by the composition of objects such as cars,

buildings, and persons. The objects can be further described in terms of parts, e.g., a wheel

of a car, a window of a building, or a face of a person. The highest level could be the scene
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Figure 4.1: An illustration of hierarchical scene understanding.

as a whole. Figure 4.1 illustrates this idea with a scene image. Based on this interpretation

of a scene, one strategy to recognize a scene is to model it using the statistical information

from low level features. An alternate strategy to recognize a scene is to detect the objects

in the scene. However, detecting objects in complex scenes is difficult. Instead of object

detection, scene recognition can be done by checking the co-occurrence of large numbers

of visual parts. These visual part groups might represent a certain semantic concept (e.g.,

water, rock, sky) [65]. For instance, the occurrence of a collection of image patches of

“eye”, “chin”, and “forehead” may indicate a “face” or “person” in the image. Those highly

correlated image patches can be linked to some semantic concept by manual annotation as

paper [65] does. This can also be achieved automatically, such as the extraction of “hidden

concepts” or “hidden topics” in [4] [64] [76] [95]. In contrast to low-level feature modelling,

humans can obtain more semantic information from an image represented by intermediate

concepts.
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The proposed framework can also discover the semantic concepts by grouping the visual

words based on their co-occurrence. Those visual words clusters are called high-level fea-

tures, which are somewhat analogous to the hidden concepts. However, there are significant

differences between them. Firstly, pLSA is a generative hidden variable model, while MMI

co-clustering is not a hidden variable model. Secondly, pLSA assumes conditional indepen-

dence, i.e., given the latent variables the image and visual words are independent, which

is not required in MMI co-clustering. Besides, MMI co-clustering performs hard clustering,

and it simultaneously clusters both words and documents. Moreover, in practice we observed

that pLSA needs a considerable number of EM iterations to reach convergence.

Figure 6.1 shows the workflow of our framework for both learning and classification. Other

than using MMI co-clustering technique to automatically discover intermediate concepts, we

also investigate some spatial models to capture the spatial information of the features. We

form a vocabulary from a collection of local patches sampled from the training images using k-

means algorithm, which can efficiently group visually similar patches into one cluster (visual

word). Then we use MMI co-clustering to further cluster the visual words into intermediate

concepts in a unsupervised way. In order to capture the spatial information of the semantic

concepts in the scene, we exploit the Spatial Pyramid Matching (SPM) [107] and weighted

Spatial Concept Corellogram (SCC). Finally, we use SVM as a classifier to train and test

these models.

4.2 Co-clustering by Maximization of Mutual Information

In this section, we present details on how co-clustering of visual-words and images is per-

formed by maximizing the mutual information. Consider two discrete, jointly distributed

random variables X and Y , where X ∈ X = {x1, x2, ..., xn} and Y ∈ Y = {y1, y2, ..., ym}.
Here, X represents a set of visual-words in image classification, and Y is a set of images.
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Figure 4.3: The graphical explanation of MMI co-clustering. The goal of MMI co-clustering
is to find one clustering of X and Y that minimizes the distance between the distribution
matrices p(x,y) and q(x,y).
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In scene classification based on BOV modelling, the similarity of two images can be mea-

sured by their visual-words conditional distributions p(x|y). One critical procedure for BOV

modelling is to form vocabulary X via vector quantization using k-means algorithm, which

groups the local patches by their appearance similarity. If the vocabulary size is small, it may

cause over-clustering with higher intra-class distortion. Therefore, it is common to choose

an appropriate larger value for vocabulary size. However, this large size may introduce

information redundancy in the co-occurrence matrix.

So, we seek to find a more compact representation of X, say X̂, which is able to capture

the “semantic concepts”. This procedure is called “word clustering” in text classification.

One criteria for X̂ is to maximize the mutual information I(X̂; Y ). Since our original goal

is to cluster Y , we can simultaneously perform clustering on X and Y by maximization

I(X̂; Ŷ ).

4.2.1 Co-clustering Algorithm

Consider a training image data set Y with c categories, and its associated vocabulary X with

n visual-words ; we seek to simultaneously cluster Y into c categories Ŷ = {ŷ1, ŷ2, ..., ŷc}, and

X into w disjoint clusters X̂ = {x̂1, x̂2, ..., x̂w}. Actually, we can consider the clustering as

two mapping functions X̂ = CX(X) and Ŷ = CY (Y ). In order to evaluate the quality of

clustering, we utilize the following mutual information loss:

∆MI = I(X; Y )− I(X̂; Ŷ ). (Eq. 4.1)

Because I(X; Y ) is fixed for specified data collections, the optimal co-clustering actually

attempts to maximize I(X̂; Ŷ ), given the number of clusters c for Y , and w for X respectively.

It is straightforward to verify that the MI loss also can be expressed in the following form (

67



please refer to [48] for details) :

∆MI = DKL

(
p(x, y) ‖ q(x, y)

)
, (Eq. 4.2)

where q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ). This is the objective function when performing co-

clustering. The input to the co-clustering algorithm is the joint distribution p(x, y), which

records the probability of occurrence of a particular visual-words x in a given image y. The

aim is to determine clusters with distribution q(x, y), which is as close as possible to p(x, y).

The process is pictorially shown in Figure 4.3. For each new clustering X̂ and Ŷ , we first

compute the joint distribution matrix p(x̂, ŷ) as follows:

p(x̂, ŷ) =
∑

x∈x̂,y∈ŷ

p(x, y). (Eq. 4.3)

Then for x ∈ x̂ we compute the conditional distribution p(x|x̂),

p(x|x̂) =
p(x)

p(x̂)
, (Eq. 4.4)

where the marginal distribution p(x) =
∑

y∈Y p(x, y) and p(x̂) =
∑

ŷ∈Ŷ p(x̂, ŷ). For x /∈ x̂,

p(x|x̂) = 0. Similarly, we can get the conditional distribution p(y|ŷ). Consequently, the

quality of this specified clustering is evaluated by DKL

(
p(x, y) ‖ q(x, y)

)
.

The algorithm starts with randomly initial partitions C0
X and C0

Y . The number of clusters

for X and Y are specified as w and c respectively. At each iteration t of the algorithm, two

phases are involved:

(i) Clustering of X while keeping Y fixed. For each x, assign it to its new cluster, which

means Ct+1
X = argminx̂DKL

(
p(y|x) ‖ q(y|x̂)

)
where q(y|x̂) = p(y|ŷ)p(ŷ|x̂). Update the

probabilities based on the new X cluster.
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(ii) Clustering of Y while keeping X fixed. For each y, find its new cluster such that

Ct+2
Y = argminŷDKL

(
p(x|y) ‖ q(x|ŷ)

)
, where q(x|ŷ) = p(x|x̂)p(x̂|ŷ). Update the

probabilities based on the new Y cluster.

The iterations of the co-clustering stops when

∆tMI −∆t+2MI < ε (Eq. 4.5)

where ε is the threshold.

In summary, in order to assign intermediate concepts to each image patch, we apply

two steps. We first use k-means algorithm to cluster the image patches into visual-words.

Since the criterion for k-means is based on appearance similarity, patches belonging to one

visual-words are visually similar. Further, we group the visual-words into semantic clusters

(intermediate concepts) via MMI co-clustering. The number of intermediate concepts is

much less than that of visual-words. Our experiments show that we can do better scene

classification using intermediate concepts than using visual-words.

4.3 Spatial Correlogram Kernel Matching

Bag of features model represents an image I as a collection of local features. Generally, we

select image patches as the local feature, which are represented by SIFT descriptor. This

is a mapping procedure: I 7→ {(dk, xk)}k=1,...,m, where dk ∈ RD (i.e. D=128 for SIFT)

is the feature descriptor, and xk is the feature location. To compare two images, we can

directly perform feature matching [79], or we can integrate spatial constraints to remove the

outlier matched features [86]. Furthermore, bag of visual-words is introduced for fast image

matching. Instead of computing the distance between two descriptors in RD, it quantized the

space of RD by clustering a set of training image patches, such that each patch is labelled

69



with one of the vocabulary entries V = {v1, v2, ..., vN}. Then, image I is a collection of

triples {lk, xk, yk}k=1,...,m, lk ∈ V, and (xk, yk) is the patch location.

Bag of visual-words directly matches two images by conducting histogram intersection

between two image histograms of visual-words, which is treated as fast coarse image match-

ing. Similarly, we also can integrate spatial information to the visual-words. For instance,

without spatial location information, the patches from “sky”, “lake”, and “road” may be

assigned into the same visual-word since they have similar appearance (i.e., they are flat-

tened surface in gray images). However, we notice that the patches from different categories

may have different spatial distributions, such as “sky”, which is generally on the top of an

image. Spatial Pyramid Match (SPM) [107] exactly makes use of this property of the scene

images. It further integrate coarse location information into the visual-words, resulting in a

finer vocabulary.

The spatial information integrated in SPM, however, is not flexible. The resulting models

are not invariant to any transform, such as rotation or translation transform. In this section,

we propose the spatial correlgoram to integrate the relative spatial relationship between the

features. Therefore, it is invariant to some transforms such as translation and rotation.

4.3.1 Spatial correlgram

Given the image I 7→ P = {lk, xk, yk}k=1,...,m, each patch p is triple assigned with a label and

location. We also quantize the distance into K distance levels D = {D1, D2, ..., DK}, where

Di = [di1 di2] (In this chapter, [x1 x2] denotes an interval). We define Di < Dj if di2 ≤ dj1

for any 1 ≤ i, j ≤ K. Then we assume D1 < D2 < ... < DK . The distance between two

patches p1 and p2 is defined as a function d(p1, p2), which could be the L∞-norm distance

or Euclidean distance. Consequently the spatial correlogram of two labels vi and vj with

distance interval Dk can be defined as a probability R,

RDk
(vi, vj) = Pr

(
p1(l) = vi, p2(l) = vj|d(p1, p2) ∈ Dk

)
, (Eq. 4.6)
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where p1, p2 ∈ P , 1 ≤ i, j ≤ N and 1 ≤ k ≤ K. From the correlogram of two labels li and lj,

we can know the probability of finding a patch p2 with label lj at Dk distance away from the

given patch p1 with label li. Therefore, the correlogram represents the spatial distribution

of one label with respect to other labels. It provides a discriminative pattern of an image.

In practice, the computation of spatial correlogram of two labels is very straightforward.

Consider an image patch p, we define T (Dk, p) as a local co-occurrence table of patch p

with 1 × N dimensions, where each dimension denotes one label. This table captures the

number of occurrence of each label vi at distance Dk from patch p. Next we normalize the

co-occurrence table by sum of all the dimensions and get T̂ (Dk, p). Finally, we are able to

approximate the correlogram of label vi and all the labels at some distance Dk as,

R̂(Dk, vi) =

|Svi |∑
p∈Svi

T̂ (Dk, p)

|Svi
| , (Eq. 4.7)

where Svi
denotes the set of patches with label vi and |Svi

| is its cardinality, 1 ≤ i ≤ N ,

1 ≤ k ≤ K. Actually, this is an averaging procedure. The j-th dimension of R̂(Dk, vi)

gives the correlogram R̂(Dk, vi, vj) of label vi and vj at distance Dk. Hence, the correlogram

R̂(Dk) is an N × N matrix. Specially, when i = j, we call it autocorrelogram of label lj

with distance interval Dk. Considering all the K distance intervals, the dimension of the

correlogram R̂(I) is N ×N ×K, and the autocorrelogram is an K ×K matrix.

4.3.2 Spatial Correlogram Kernel

From the computation of the spatial correlogram, we can see the correlogram is a sort of

normalized local histogram (T (Di, p) is an occurrence table). So we can use histogram inter-

section function to match two images. Suppose I1 and I2 are two images with correlograms
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R1 and R2 respectively. Then the Spatial Correlogram Kernel (SCK) is defined as,

K(R1,R2) =
K∑

k=1

L∑
i,j=1

wk ×min(R1
Dk

(vi, vj),R2
Dk

(vi, vj)), (Eq. 4.8)

where wk is the weight assigned to the matches made at distance interval Dk. Thus, we can

assign higher weights to the matches found at smaller distances. Because c ×min(x, y) =

min(cx, cy) if c, x, y > 0, we can add these weights while computing the spatial correlogram.

Since SCK is positive and semi-definite, it satisfies the Mercers condition. This results from

the fact that min(:; :) is a Mercer kernel and that the set of Mercer kernels is closed under

summation.

We show an example to demonstrate the SCC modeling is more discriminative than BOC

modeling. Fig. 4.4 shows three synthetic images, with 100 patches and two concepts A and

B. The number of A patches is identical to that of B. Obviously, some models (e.g., BOV,

pLSA) can not distinguish the three images from each other, since they do not employ spatial

statistical information. However, using autocorrelogram of concept A or B, we are able to

identify them. From the autocorrelogram plot, the similarity between Image I and Image II

is higher than that of Image I and Image III.

4.4 Experiments

We have extensively applied our proposed approach to two diverse data sets: fifteen scene

categories [107] and the LSCOM (Large Scale Concept Ontology for Multimedia) data set

[77]. For both data sets, only gray level images are used. The default experiment setting

is listed as follows. We utilize dense features sampled using a regular grid with space M=8

pixels. The patch size is randomly sampled between scales of 10 to 30 pixels. SIFT descriptor

[79] is computed for each patch. We use a support vector machine (SVM) with Histogram

Intersection kernel as a classifier. For 15 scene categories, we choose the one-versus-all
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Figure 4.4: An example to show autocorrelogram of three synthetic images.

methodology for multi-class classification. The binary SVM classification is applied to the

experiments on LSCOM. All the experiments on 15 scene categories are repeated 5 times

with a different training data set, and the final results are reported as the average accuracy.

4.4.1 Classification of Fifteen Scene Categories

The fifteen scene categories are the same used by [107], which is union of the 13 scenes

reported in [76] and two additional scenes added by Lazebnik et al. In fact, the thirteen

categories contain 8 scenes originally reported in [7]. Each category has 212∼410 images.

The average image size is about 250 × 300. We use 50 randomly selected images from

each category to form the vocabulary of size Nv. Furthermore, we use MMI co-clustering to

discover Nc intermediate concepts from the vocabulary. We try several Nv, and finally fix
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Nv = 1, 500 which gives better performance. Then an image can be represented by visual-

words histogram (BOV model) or an intermediate concepts histogram (BOC model). In the

SVM classification phase, 100 images are randomly selected from each category as a training

set, and the rest are used for testing.

4.4.1.1 Classification using orderless features

We investigate the gain of MMI co-clustering (BOC model) compared to the k-means ap-

proach (BOV model) in two ways. One is to compare them using the same number of

clusters(Nc = Nv), and the other is to compare BOC with the original BOV with Nv=1,500.

(Original BOV means directly representing an image using bag of visterms from which

the intermediate concepts are created.) We conduct classification on the 15 scene cate-

gories using both BOV and BOC models by using different values of Nv or Nc from a set:

{20, 60, 80, 100, 200, 300}. Table 4.1 shows the results. Overall, BOC is able to improve the

performance between 3.16% to 16.07% compared to BOV; it works especially well when the

number of clusters is small. This is due to better clustering. K-means algorithm groups the

image patches into visual-words based on the appearance of the patches. When Nv is small,

the intra-cluster variance is larger, which hurts the performance. However, when group-

ing the 1,500 visual-words into semantic intermediate concept clusters, MMI co-clustering

tries to preserve the mutual information between visual-words and images, such that the

visual-words in the same cluster share certain common intermediate concepts, so they are

not necessarily similar in visual appearance. Although in MMI co-clustering, intra-cluster

variance of appearance may be large, it can preserve some meaningful concepts. Therefore,

MMI co-clustering can still achieve better classification performance even with small Nc.

The best performance for BOC is achieved when Nc = 200.

The classification accuracy is 76.38% when using BOV model with Nv = 1, 500, which

is slightly better than the best performance of BOC model. This is consistent with the
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Nc�Nv 20% 60 80 100 200 300

BOV 47.25 61.69 65.34 67.72 70.81 71.46
BOC 63.32 68.53 70.25 73.01 75.16 74.62

Table 4.1: The average accuracy (%) achieved using strong and weak classifiers.

results of Lazebnik et al. [107] and Quelhas et al. [95]. We conjecture that it may be due

to the dimension reduction achieved by the MMI co-clustering technique. While Bosch et

al. claimed in their paper [4] that compared to original BOV, pLSA, which is another

dimension reduction technique similar to our MMI co-clustering, performs better, we feel

that the gain in performance due to the dimension reduction depends on classifier type

and the performance of original BOV. The performance of BOV can vary with the patch

sampling [33] and the number of visual-words [87]. If the patch sampling and Nv have been

optimized, it is not easy to achieve higher accuracy with any dimension reduction techniques

because BOV representation does not contain much noise. Another reason may be due to

the performance of the specific classifier. Some weak classifiers like k-Nearest Neighborhoods

(KNN) perform poorly with high dimensional features. Therefore, when the dimension is

reduced, they are able to achieve better performance. However, some strong classifiers (i.e.

SVM) which are good at classification of high dimensional features, may not be able to

achieve better performance with dimension reduction because of certain information loss.

In order to verify our conjecture, we conducted two groups of experiments. Table 4.2

shows the results using different sampling space M . Here, multi-class SVM is used as a

classifier. The first row lists the results using BOV model with Nv=1,500, and the second row

shows the results using BOC model where the intermediate concepts are extracted from the

corresponding BOV codebook. When we increase the sampling space, the difference between

the performance of BOV and BOC decreases from about 3.6% to -1.33%. In particular, the

sampling setting in the third column is similar to the sampling in [4], and the performance

of BOC is better than BOV. In fact, large sampling space generates fewer sampling features.
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M = 4(%) M = 8(%) M = 10(%)

BOV(Nv=1,500) 78.32 76.38 69.81
BOC(Nc=200) 74.69 75.16 71.14

Table 4.2: The results achieved under different sampling space.

Nc \Nv 1500 40 60 80 100

SVM 76.38 64.60 68.53 70.25 73.01
KNN (K=12) 58.17 61.22 63.76 64.54 66.37

Table 4.3: The average accuracy (%) achieved using strong and weak classifiers.

Space with M=4 corresponds to more than 4,000 patches for each image, while space with

M=10 corresponds to only about 500 patches. Therefore, we feel that with a large number

of sampling patches, the BOV performs better. Our further experiments verified this. For

M=8 (each image has more than 1,000 patches), we randomly select about 200 patches from

each image to evaluate the performance. Then the results for BOV and BOC are 67.29%

and 69.21% respectively. Therefore, the number of patches sampled from the image affects

the comparison between BOC and original BOV.

We further investigated the performance of classification using different classifiers. Table

4.3 demonstrates the performance comparison of the SVM classifier and the KNN classifier

with Euclidian distance. In both cases, 100 randomly selected images from each category

were used for training. The first column with Nv=1,500 shows the BOV baseline, and the

following column shows the result of BOC with different Nc. It is very clear that the KNN

classifier does not work well for high dimensional data. Hence, the dimension reduction

technique can improve the performance very much. However, SVM is a strong classifier

which is able to handle high dimensional data. With reasonable Nc, the SVM can still

achieve competitive results. However, low dimensional features provides us much better

computational efficiency, which is very important for learning/classification of a large data

set like LSCOM.
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Finally we compared the performance of MMI co-clustering, pLSA, and IB. For all of

them, we use the default experiment setting. pLSA achieves the best performance of 71.24%

at Nc = 80. The best performance of IB is 72.49% when Nc = 150, while MMI co-clustering

can achieve 75.16% at Nc = 200. Also, in the experiments we observed that pLSA converged

after about 100 iterations, while MMI co-clustering can converge in less than 40 iterations.

This is consistent with the claim in [6] that in practice it takes a considerable number of of

EM iterations for pLSA to converge. The time complexity for co-clustering, pLSA, and IB

are O(t ·R · (c + k)), O(t ·R · k), and O(|I|3) respectively (where t is number of iterations, R

is number of nonzero entries, c is number of categories, k is number of intermediate concepts,

and I is number of training images). Therefore, IB is not suitable for large datasets [91].

In Fig. 4.5 we show two example testing images in some categories with their corre-

sponding concept histograms to demonstrate discrimination of BOC, and also demonstrate

the meaningfulness of intermediate concepts. It is clear to see from the peaks of these his-

tograms that some concepts are dominating in one scene category but not in the others.

4.4.1.2 Classification using intermediate concepts and their spatial information

In order to capture the spatial information, we implement two models: Spatial Pyramid

Matching (SPM) [107] and Spatial Concept Correlogram (SCC). For SPM, we repeatedly

divide an image into sub-blocks and compute local histogram of intermediate concepts for

each block. Finally, an image is represented by combining the local histograms from the

sub-blocks of the pyramid. The representative vector has high dimensions of 1
3
(4L − 1)Nc,

where L is the number of pyramid levels. In our experiments, we set L = 3. From Table

4.4, we can see that thanks to intermediate concepts, the SPM IC (SPM using intermediate

concepts) can improve the performance from about 2.79% to 4.28%, especially when the

number of clusters is smaller. Interestingly, we notice that when Nc = 80, the SPM IC can

achieve competitive performance to SPM V (SPM using visual-words) at Nv = 400 , while
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40 50 80 100 200 400

SPM V 75.24 76.14 77.62 77.81 80.27 80.46
SPM IC 79.52 80.19 80.93 81.33 83.19 83.25

Table 4.4: The performance (average accuracy %) of SPM using visual-words and intermedi-
ate concepts. SPM IC and SPM V denote SPM using intermediate concepts and visual-words
respectively.

40 60 80 100 200 400

BOC 65.48 68.53 70.25 73.01 75.16 74.21
SCC 65.97 69.71 72.40 74.39 77.76 78.15

BOC+SCC 71.10 73.06 75.18 78.33 81.49 81.72

Table 4.5: The average classification accuracy (%) obtained by various models (SCC, BOC,
and SCC+BOC).

the dimension is reduced by 5 times. The best performance achieved by SPM V is 80.46% 1

and 83.25% for SPM IC.

In our experiments, we consider autocorrelogram. When computing the SCC, we divide

the image into 2 by 2 blocks, and for each block, we compute its SCC. We set D1 = [1 64] and

D2 = [64 128] in term of pixels in x and y directions. Table 4.5 shows the classification results.

We can see the combination of SCC and BOC can achieve better performance over SCC and

BOC. Interestingly, correlatons reported in [110] performs much worse than BOV. However,

our SCC performs better. This might be due to the fact that our intermediate concepts

correlogram is computed on patches, and weighted with a different quantized distance. The

best performance for SCC+BOC is 81.72%, which is little worse than SPM IC, but better

than SPM V. The number of dimensions is 9Nc which is much lower than that of SPM IC.

Fig. 4.6 shows the confusion table for the 15 sceene categories using SCC+BOC approach.

It is clear from the confusion table that it is easy to distinguish “suburb”, “forest”, “street”,

“tall building”, and “coast” scenes. However, the performance for “bedroom”, “living room”,

and “kitchen” scenes is not as good.

1In [107] the best performance for SPM visterm is quoted as 81.4%.
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Figure 4.6: Confusion table of the best performance for the SCC+BOC model. The average
performance is 81.72%.
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Figure 4.7: Example key frames selected from LSCOM Data set
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4.4.2 Classification of LSCOM Dataset

The LSCOM data set [77], which includes more than 400 annotated categories, is a very

challenging data set and has has been explored by the TRECVID community for sev-

eral years [1]. This data set is more challenging, and it contains 61,901 key frames ex-

tracted from a variety of real TV news programs. Figure 4.7 shows some category exam-

ples. The size of the key frame is fixed to 240 × 352. In our experiments, the following

28 categories including scenes and objects are evaluated: airplane(522), animal(486), bas-

ketball(314), boat or ship(358), building(6,059), charts(511), clouds(876), weather(2,376),

crowd(724), desert(564), flag-US(480), maps(940), meeting(3,025), military(2,419), moun-

tain(827), road(3,836), studio(6,400), tennis(202), trees(3,462), urban(5,977), waterscape(1,584),

computer TV-screen(2,376), explosion or fire(1,020), industrial setting(239), car(4,116), fields(259),

office(1,364), and vegetation(5,150). In this experiment, we want to demonstrate how the

different classification approaches perform. Unlike the 15 scene categories, the key frames

may contain several overlapping high level concepts. For example, in one key frame, you

probably can see crowd, buildings, cars, or roads. Therefore, each key frame may be classi-

fied into multiple categories. We use binary SVM as the classifier (the key frames from one

category are positive, all the rest are negative). The average precision (AP) is adopted as

the performance measure. Assume that D retrieved key frames are ranked, R of them are

relevant (R < D), and then we can define the AP as follows:

AP =
1

R

D∑
j=1

Rj

j
∗ Ij, (Eq. 4.9)

where Ij = 1 if the jth shot is relevant, otherwise 0. Rj is the number of relevant key frames

in the top j retrieved key frames.

To form the vocabulary, we randomly selected 50 key frames from each category of the 28

categories and 500 key frames from categories other than the 28 categories. Finally, an Nv =
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BOV-O CC-BOC BOV-D pLSA-BOC

MAP 61.91% 59.48% 45.07% 55.77%

Table 4.6: The MAP for the 28 LSCOM categories achieved by different approaches. BOV-
O and BOV-D represent the BOV models with Nv = 3, 000 and Nv = 250 respectively.
CC-BOC and pLSA-BOC denotes the BOC model created by co-clustering and pLSA re-
spectively.

3, 000 vocabulary is achieved. Further, the “intermediate concepts” using MMI co-clustering

and pLSA are generated from the Nv = 3, 000 vocabulary. We tried different values of Nc,

and chose the value of Nc which gave us the best results. In the SVM learning/classification

phase, we randomly divided the data set into three parts: one half for training, 1/4 for

validation, and 1/4 for testing. Fig 4.8 shows the AP of each category. pLSA (pLSA-BOC)

only performs better than the MMI co-clustering (CC-BOC) for 3 categories. Compared to

the BOV with reduced dimension (Nv = 250), the CC-BOC always performs much better.

Besides, for most cases, the CC-BOC can achieve competitive results compared to original

BOV (Nv = 3, 000). However, the gain of CC-BOC is computational efficiency with lower

dimension when performing SVM learning and classification on a large data set. (e.g. it

takes about 23 hours to learn and test the 28 categories for BOV with Nv = 3, 000, while it

only takes about 6 hours for BOC with Nc = 250 on a 2.99GHz machine.) The advantage of

MMI co-clustering can be clearly noticed in Table 4.6, which demonstrates the Mean Average

Precision (MAP) of the 28 LSCOM categories using different approaches. Compared to BOV-

D, the benefit of MMI co-clustering is about 14.4% in terms of MAP, which further verifies

that MMI co-clustering can get more meaningful clusters. Even compared to pLSA, MMI

co-clustering performs about 4% better.
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4.5 Conclusion

In this chapter, we propose a novel approach for scene modelling. The proposed method

first extracts intermediate concepts from visual-words by using MMI co-clustering. Unlike

k-means clustering, MMI co-clustering can preserve the mutual information of visual-words

and images when clustering. Therefore, the more compact image representation can sig-

nificantly improve the performance of classification. Also, in order to capture the spatial

information of the intermediate concepts, the framework uses two spatial models, SPM and

SCC. Experiment results show that both of these models can improve the classification

accuracy significantly.
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CHAPTER 5: VISUAL RECOGNITION USING MULTIPLE
HETEROGENOUS FEATURES

5.1 Introduction

In the previous two chapters we proposed two approaches to learn the semantic vocabularies

for visual recognition by clustering in terms of minimizing the information loss function,

and very promising results were obtained. Both of them only explore the clustering of

homogeneous entities (e.g. clustering either visual words or images). Many problems in the

field of computer vision, however, require analysis of entities that convey inherently different

information, but are tied together due to explicit and implicit relationships between them.

Such relationships, including homogenous and heterogenous, if properly identified, can play

a crucial role in solving the problem at hand.

On the other hand, most existing approaches advocate the use of single features for

recognition. However, we believe that though theoretically sound, the notion that a single

feature will capture the range of complexity of visual recognition is pragmatically weak.

Therefore, we address the specific issue of using multiple features for object and action

recognition and propose a general framework for fusing information from complementary

features.

In order to optimally combine these features, we develop a framework that allows for

learning of explicit and implicit relationships between different classes of features in a princi-

pled manner. The framework is based on the concept of Fiedler Embedding [14], which is an

algebraic method that explicitly optimizes the closeness criteria and is similar to the Lapla-

cian Eigenmap [83]. It embeds diverse entities into a common Euclidian space, and thus

enables the use of simple Euclidian distances for discovering relationships between features.

For this purpose, the algorithm treats different entities as nodes in a graph, where weighted

edges between the nodes represent the strength of the relationship between entities. The
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graph is then embedded into a k-dimensional space, subject to the criteria that similar nodes

have Euclidean coordinates which are closer to each other. This is achieved by converting

this constraint into a minimization problem whose solution is the eigenvectors of the graph

Laplacian matrix.

The applicability of the framework is demonstrated on two tasks, namely object recogni-

tion and action recognition. In the object classification task, the entities consist of images,

interest points, contours, and region segments. By embedding features and images into a

common Euclidian space, we are able to discover homogenous and heterogenous relation-

ships among them which are not evident otherwise, and we have used these relationships

for improved object classification. The results are reported on the benchmark data set of

Caltech-6. In the action task, we propose the use of two types of features: The first feature

is a quantized vocabulary of spatiotemporal (ST) volumes (or cuboids) that are centered

around 3D interest points in the video. The ST volumes are inherently local in nature, and

therefore capture the local appearance and motion information. The second feature is a

quantized vocabulary of spin-images [69], which aims to capture the spatiotemporal infor-

mation of the actor by considering actions as 3D objects (x, y, t) [12]. The 3D object itself is

carved out by the contours of the individual performing the action. Note that the spin-image

based features have not been used for action recognition before, and ours is the first method

to explore their utility for this task. By embedding these entities into a common space, again

we are able to discover explicit and implicit relationships between these entities that can be

used for action recognition. The results are reported on the Weizmann data set [84] and

IXMAS data set [30].
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5.2 Fiedler Embedding

In this section, we present the details of the embedding procedure which is called Fielder

Embedding. It was first proposed in [14] for the task of information retrieval from a docu-

ment corpus. In this chapter we adapt this technique for image classification and learning of

scene semantics, and show that how it can be used for discovering the relationships between

disparate entities in a principled way. For image classification, this basically translates into

discovering relationships between images and features. We start by describing the mathe-

matical derivation of the embedding procedure, and for this purpose we use the nomenclature

used by [14]. Later on we will briefly discuss its connection with the LSA technique.

Let G = (V,E), where V is a set of vertices and E is a set of edges, represents a graph

consisting of nodes representing different classes of features as illustrated in Figure 5.1 (or

Figure 5.3). If two features i and j are related to each other, then we have an edge (i, j) with

a non-negative weight, wi,j, between them. The more similar the features are to each other,

the higher the weight. Our goal is to embed this graph into a low-dimensional Euclidian

space, so that vertices with a high weight between them become closer to each other in

this space. As a result, spatial proximity in this space can be used as a way to identify

vertices that are similar to each other even if they do not have a direct edge between them

(the implicit relationship). In posing this geometric embedding problem as an algebraic

minimization problem, we seek points in a k-dimensional space that minimize the weighted

sum of the square of the edge lengths. If pr and ps are locations of vertices r and s, then the

function can be written as,

Minimize
∑

(r,s)∈E

wr,s | pr − ps |2, (Eq. 5.1)
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Figure 5.1: An illustration of the graph containing multiple entities as nodes. This includes
images (red), SIFT descriptors (green), contours (purple) and regions (yellow). The goal of
our algorithm is to embed this graph in a k-dimensional space so that semantically related
nodes have geometric coordinates which are closer to each other. (Please print in color)

where wr,s represents the weight between the nodes r and s. Expanding the above we get

Minimize
∑

(r,s)∈E

wr,s|pr − ps|2 =
∑

(r,s)∈E

wr,s < pr − ps, pr − ps > (Eq. 5.2)

=
∑

(r,s)∈E

wr,s(prp
T
r + psp

T
s − prp

T
s − psp

T
r ). (Eq. 5.3)

If the graph has n vertices, and the target space has dimensionality k, then the positions

of the vertices can be represented by an n x k matrix X. The Laplacian matrix L of this
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graph can be described as:

L(i, j) =





−wi,j if eij ∈ E

∑
k w(i, k) if i = j

0 otherwise,

(Eq. 5.4)

where L is symmetric and positive semi-definite. Note that L is nothing but the negative of

the matrix of weights with diagonal values chosen to make the row-sums zero.

This will imply that pr or ps (r = 1, 2, ..., n and s = 1, 2, ..., n) is a k-dimensional vec-

tor indicating the coordinate of the vertex in the k-dimensional space. Further expanding

Equation 3, we get

Minimize (
s=n∑
s=2

w1,sp1p
T
1 −

t=n∑
t=2

w1,tptp
T
1 ) + (

s=n∑

s=1,s6=2

w2,sp2p
T
2 −

t=n∑

t=1,t6=2

w2,tprp
T
2 )

...

+ (
s=n∑

s=1,s6=n−1

wn−1,spn−1p
T
n−1 −

t=n∑

t=1,t6=n−1

wn−1,tptp
T
n−1)

+ (
s=n−1∑

s=1

wn,spnpT
n −

t=n−1∑
t=1

wn,tptp
T
n ),

where each term within a bracket belongs to the diagonal of the matrix LXXT . This means

that minimizing the above function is equivalent to minimizing the trace of LXXT , which in

itself is equivalent to minimizing the trace of XT LX due to the cyclic property of the trace

of square matrices. Thus, our final minimization problem in terms of matrices L and X is

Minimize Trace(XT LX), (Eq. 5.5)

(i) for i = 1, ..., k XT
i 1n = 0, (ii) XT X = ∆. (Eq. 5.6)

The first constraint makes the median of point sets in the embedding space to be at the

origin, while the second constraint avoids the trivial solution of placing all the vertices at
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the origin. In the above equation 1n is a vector of n ones while ∆ is a diagonal matrix of

δi which are some positive values. As shown in [14], the solution to the above minimization

is X = ∆1/2[Q2, ..., Qk+1], where Q is a matrix of normalized eigenvectors of L sorted in a

non-decreasing order based on the eigenvalues λi of L. This implies that the coordinates of

vertex i are just the ith entries of eigenvectors 2, ..., k + 1 of L. This solution is referred to

as the Fiedler embedding of the graph.

5.2.1 Fiedler Embedding and LSA

The Fiedler embedding can be related to the popular technique of Latent Semantic Analysis

(LSA), which is commonly used for exploring relationships between two types of entities,

for example, interest points and images. This relationship can be described in a graph

theoretic manner as follows: The LSA technique operates on a bi-partite graph where one

partition consists of interest points and the other partition consists of images. Let A to

refer to the Interest point-image matrix which is of size m × n, where m is the number of

interest points or visual words and n is the number of images. Then, LSA is performed

by computing the singular values decomposition (SVD) of A (A = UΣV T ). By retaining

the first k eigenvalues of Σ we generate a k rank approximation of A. This truncated SVD

can be considered as generating a k-dimensional embedding of SIFT descriptors and images.

However, in this case interest points and images have their separate k-dimensional spaces,

which implies that the interest point and the image coordinates are not related to each other.

In other words, interest points and images live in their own k-dimensional space; therefore,

Euclidian distances cannot be used to measure the strength of relationships between them.

The other difference to observe is that LSA can only handle a very limited type of graph

(i.e., bi-partite graphs), and therefore, is not extendable to the problems where more than

two entities are involved. It also limits the edges to be between the partitions and not among

the nodes in the partition, and therefore cannot handle a general graph with arbitrary edges
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(or relationships). On the other hand, Fiedler embedding does not impose such restrictions

and allows us to capture relationships between a richer set of features in a seamless fashion.

Furthermore, by embedding everything into a common k-dimensional space, it allows us to

compare features of different dimensions and types using Euclidian distances, which is an

added advantage over LSA.

5.3 Object Classification Framework

In this section, we present technical details of the object classification framework that is

built upon the Fiedler embedding procedure. As we know, extraction of rich features in

an image and determining the relationships is a challenging task. There can be numerous

relationships among the features, and some of them can be explicit while others are implicit.

Our aim is to integrate the image data with multiple features involving explicit and implicit

relationships into a common space.

The main steps of the framework are: i) Learning visual vocabularies of interest points,

contours, and region segments, ii) Construction of the Laplacian matrix from the train-

ing corpus, and iii) Embedding and computation of entity relationships using the nearest

neighbor search. The algorithmic steps of the framework are described in the following table.
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Objective Given NI training images, embed entities (images, interest points, contours, and

regions) into a k-dimensional space such that the similarity between any two entities can be

measured by the Euclidean distance.

Algorithm

(i) Quantize visual information by learning visual vocabularies:

• Learn interest point vocabulary of size NP by using SIFT descriptors of patches

around interest points.

• Learn shape vocabulary of size NC by using contours.

• Learn region vocabulary of size NR by using region segmentation.

(ii) Construct an (NP +NC +NR) x NI Feature-Image co-occurrence matrix S by counting

the corresponding feature frequency in each training image.

(iii) Weight S by tf -idf to compute a weighted co-occurrence matrix S ′

(iv) Compute Laplacian matrix L:

• Image-Feature blocks of L are populated by directly using corresponding values

from S ′.

• Image-Image and Feature-Feature similarity blocks are populated by computing

Inner Product on matrix S ′

(v) Perform eigen-decomposition L = VTDV where V are the eigenvectors and D are the

eigenvalues sorted in the ascending order.

(vi) Construct a k-dimensional space: Pick k eigenvectors corresponding to k smallest eigen-

values excluding zeros U={u1, u2, ..., uK}. These eigenvectors act as the basis of the

k-dimensional space.

(vii) Entity Mapping: Position of an entity q in the k-dimensional space is computed as

D1/2UTq/‖q‖.
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(b)

(a)

(c)

(d)

Figure 5.2: The figure shows two visual words each from the interest point, contour and
region vocabularies. (a)-(b) Two words belonging to the interest point vocabulary. (c)-(d)
Two words belonging to the contour vocabulary. (e)-(f) Two words belonging to the region
vocabulary.

Interest Point Vocabulary: The interest point vocabulary is constructed by extracting

patches around the selected interest points and representing them using 128-dimensional

SIFT descriptor. The initial interest point detection is based on the curve based representa-

tion proposed by [101]. We start by applying the Canny edge detector to the images. Interest

points are selected by randomly sampling the edge pixels. The circular patches are extracted

from around the pixels which are then mapped to ellipses to make them affine invariant. The

patches are sampled at different scales uniformly from the interval specified by the minimum

and maximum allowable scale. Next, a 128 dimensional SIFT descriptor [79] is computed for

each patch. The SIFT descriptors are quantized into NP clusters using k-means clustering,

where the mean SIFT descriptor of each cluster is used as the representative interest point

for that cluster. In this chapter, we set NP = 2,000. Figure 5.2(a)-(b) shows two visual

words learned by this procedure.

Learning Contour Vocabulary: Extraction and clustering of contours is performed in a

semi-supervised manner by assuming that the bounding boxes of the target objects in the
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training corpus are known. We first detect image contours using the Canny edge detector,

where a contour segment C is considered as an edge chain which is an ordered sequence of

e edgels, i.e., C = {c(c1, c2)}. The similarity between two contours is computed using the

Chamfer Distance [9], which is considered a robust measure for contour similarity. Formally,

given two contours C = c, C ′ = c’, and the current position y at which similarity is to be

computed, the Chamfer distance between them can be evaluated as:

distance(C, C ′,y) =
1

|C|
∑
c∈C

minc’∈C′ ‖ (c + y)− c’ ‖, (Eq. 5.7)

where |C| is the cardinality of the set C. Intuitively, this measure can be considered as a

correlation between two contours, where one contour is shifted over the other to compute all

possible correlations.

Next, contour clustering is used to learn the representative contours of objects. For

this purpose we use agglomerative clustering to group contours into NC clusters. During

this procedure, we merge two clusters whenever the distance between them is less then a

predefined threshold of Thc = 0.2. Each cluster is represented by a mean contour called the

visual shape word. Finally, we map each contour segment in a given image to one of the

visual shape words. We compute the distance of one visual word to the image by substituting

the item C ′ in Equation Eq. 5.7 with I, which represents all the edge chains in the image

I. This step can be efficiently performed by first computing the distance transform of the

edge map of the image [8]. A visual word is considered to be present in the image when

the distance is under some threshold, ThI = 0.8. Figure 5.2(c)-(d) shows two visual shape

(contour) words learned by this procedure.

Learning Region Vocabulary: Region segmentation for images in the training corpus is

obtained by using the mean-shift segmentation algorithm. Each region segment is then rep-

resented by an 18-dimensional feature vector, which includes a 9 dimensional feature vector

representing the first three color moments in HSV space. The other 8 dimensions represent
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an 8-dimensional quantized edge orientation histogram, while the last dimension represents

the normalized area of the region segment. The region vocabulary is then constructed by

clustering the 18-dimensional feature vectors for all of the region segments into NR clusters

using a k-means clustering algorithm. For our experiments, we generated a region vocabulary

of size NR = 500. Figure 5.2(c)-(d) shows two region words learned by this procedure.

5.3.1 Constructing Feature Laplacian Matrix

For embedding, the input data is represented as a Laplacian matrix L, which is a symmetric

matrix of the weights between entities as described in Equation Eq. 5.4. For the scenario

at hand, we have four types of entities, namely images, interest points (represented by the

interest point vocabulary), contours (represented by the contour vocabulary), and region

segments (represented by the region vocabulary). Therefore the Laplacian matrix will have

the following block structure:

L =




D1 PT FT BT

P D2 HT JT

F H D3 QT

B J Q D4




, (Eq. 5.8)

where D1, D2, D3, D4, P , F , B, H, J , and Q, are the block matrices of image-image, inter-

est point-interest point, contour-contour, region-region, image-interest point, image-contour,

image-region, interest point-contour, interest point-region, and contour-region similarity, re-

spectively. The dimensions of these sub-matrices depend on the values of NI , NP , NC and

NR.

Note that ideally the entities (images, interest points, contours, regions) representing the

same semantic concept will come closer to each other in the k-dimensional space only if the

strength of relationship between them is evaluated using the same similarity measurement.

In practice, however, we measure the similarity between different types of entities using

different similarity measures. For instance, the image-image similarity can be evaluated in
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term of the histogram intersection of patches or contours. However, histogram intersection

cannot be used to measure the similarity between an image and a patch. The occurrence

frequency of a patch in an image might be a better similarity measure in this case. Thus,

the bottom line is that we can not compare how similar one image I1 is to an image I2

and a patch P1 using a single type of the similarity measure. This raises the concern that

since different similarity measures have different scales, it will become difficult to embed,

say images I1, I2, and interest point P1 into a common k-dimensional space since we will

not be able to know which of them should be closer to I1. The solution lies in the proper

normalization of these different similarity measures.

In our implementation, we use “Term Frequency-Inverse Document Frequency” (tf -idf)

to measure the similarities between images and features (interest points, contours, regions)

i.e., the values in matrices P , F and B. Suppose the size of a visual vocabulary is Nx

(subscript x can take on values P , C, and R), then an image can be represented by a

Nx-dimensional vector (t1, t2, ..., ti, ...tNx), where each element ti is this vector is computed

as

ti =
sid

sd

log
NI

si

. (Eq. 5.9)

Here, sid is the frequency of feature i in image d, sd is the total number of features in image

d, si is the number of features si in the entire data set, and NI is total number of images.

For image-image or feature-feature similarity (i.e., matrices D1, D2, D3, and D4), different

similarities were tried such as histogram intersection, cosine similarity, and inner product.

We observed that although histogram intersection and cosine similarity were able to group

similar images together, they were not able to group semantically similar images and features

together. On the other hand, the Inner Product method was able to map similar images

and features closer to each other in addition to mapping similar images together. We believe

the reason was that the histogram intersection and the cosine similarity gave disproportional

weights to the image-image or the feature-feature similarity as compared to the image-feature
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similarity. In order to verify the observation, we checked the mean value of image-image

blocks (D1), feature-feature blocks (D2, D3, D4) and the image-feature blocks (P , F , B, J ,

and Q) in the L matrix, and observed that the Inner Product achieved similar mean values

for all the blocks, implying that the weights in Image-Image, Image-Feature and Feature-

Feature similarity blocks are equal to each other. Therefore, using inner-product, the images

and features can be mapped to the targeted k-dimensional space in a proper fashion.

5.3.2 Embedding

Once the Laplacian matrix L is constructed, the Euclidian coordinates of each image and

feature are computed by performing eigen-decomposition of the Laplacian matrix. First, k

eigenvectors corresponding to k smallest eigen-values excluding zeros are selected. These

eigenvectors act as the basis of the k-dimensional space. The k-dimensional coordinate X of

each entity (image or feature) is computed as described in Step 7 of the algorithm described in

Section 5.3. Now, the semantic relationships between images and features can be computed

by performing clustering on the coordinate values X of each entity. We can do this because

now X is of the same dimension for all entities, irrespective of their input representation.

The discovered relationships are then used for improved object classification.

5.4 Action Recognition Framework

In this section, we describe our action recognition framework which utilizes the Fiedler

Embedding. In our work, we choose two types of features, Spatial-Temporal (ST) features

and Spin-Images. These features normally capture the strong variation of the data in spatial

and temporal directions that are caused by the motion of the actor. However, ST features

contain only the local appearance and motion information, and therefore ignore the shapes

of actors. To capture the holistic shape information, we consider actions as 3D objects in

(x, y, t) and compute their spin-images. Once the features are computed for the given action
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Figure 5.3: An illustration of the graph containing multiple entities as nodes. This includes
ST features (red), Spin-Image features (yellow) and action videos (green). The goal of
our algorithm is to embed this graph in a k-dimensional space so that similar nodes have
geometric coordinates which are closer to each other.

corpus, we can construct a graph whose nodes consist of the above mentioned entities, and

edges between the nodes capture the strength of relationship between the entities. The

graph is pictorially described in Figure 5.3. we use the Fiedler Embedding to discover the

relationships among features by projecting them into a common Euclidian space.

The framework is similar to that of object recognition. The main steps are: i) Learn-

ing of visual vocabularies from ST features and Spin-Images, ii) Construction of Laplacian

matrix from the training videos, iii) Embedding and grouping of features. The algorithmic

description of these steps is provided in Table 6.1.

5.4.1 Feature Extraction and Representation

We extract two types of features from the action videos: spatiotemporal features and spin-

image features. In this section, we focus on the spin-image features. As for the spatiotem-

poral features, please refer to chapter 3.
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Objective:Given Nv training action videos, embed all entities (ST features, Spin-
Image features, Videos) into a common k-dimensional space.

(i) Quantize visual information by learning visual vocabularies:

• Learn vocabulary of ST features of size Nst.

• Learn shape vocabulary based on spin-images of size Nsi.

(ii) Construct a (Nst+Nsi)∗Nv Feature-Action co-occurrence matrix, S, by counting
the frequency of features in each action video.

(iii) Weigh S by tf-idf to obtain a weighted co-occurrence matrix S ′.
(iv) Construct Laplacian matrix L as :

• Video-Feature similarity blocks of L are computed directly from the cor-
responding value from S ′.

• Video-Video and Feature-Feature similarity blocks are computed by using
the Inner Product of rows of matrix S ′.

(v) Perform eigen-decomposition of L such that L = VTDV where V is a set of
eigenvectors and D contains the eigenvalues sorted in ascending order.

(vi) Construct a k-dimensional space. Select k eigenvectors corresponding to the k
smallest eigenvalues, excluding the zeros, say U={u1, u2, ..., uk}, which is the
basis of the k-dimensional space.

(vii) Map entities: A video q is mapped to the k space as: D1/2UTq/‖q‖.

Table 5.1: Main steps of the action recognition framework.

Spin-Image Features: Spin-Images have been successfully used for 3D object recognition

[69]. However, it has not been used for action recognition before. For actions, the spin-images

can provide a more richer representation of how the local shape of the actor is changing with-

respect to different reference points. These reference points may correspond to different limbs

of the human body. For extracting the spin-images, we consider an action video as a 3D

object. There are two main steps of the procedure: 1) Generating Action Volume, and 2)

Spin-Image Extraction.

Generating the Action Volume: We create a 3D action volume by stacking the sequence

of contours of the actor. For this purpose, we first apply the background substraction

algorithm to get the contour Ct at frame t. To generate the 3D action volume, we find the
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Figure 5.4: Left: the (α, β) coordinates of a surface point relative to the orientated point O.
Right: the spin-image centered at O.

correspondences between points of two consecutive contours Ct and Ct+1 using the graph

theoretic approach proposed in [12]. Suppose L and R are two point sets corresponding to

Ct and Ct+1 respectively, and we create a bipartite graph with |L|+ |R| vertices. The weights

of the edges connecting L and R are estimated from three items: proximity, orientation

similarity, and shape similarity. Assume ci and cj are two vertices from L and R respectively.

The proximity dij between them is the L2 norm of their 3D coordinates (x, y, t). The

orientation similarity αij is the angle between the spatial norms of the vertices, and the

shape similarity ξij is estimated from the neighbors. Then the weights are computed as

wij = exp(−d2
ij

σ2
d

)exp(−α2
ij

σ2
α

)exp(−ξ2
ij

σ2
ξ

). (Eq. 5.10)

Extracting Spin-Images: Johnson et al. [69] introduced the spin-images for recognizing ob-

jects in complex 3D scenes. A spin-image (SI) is generated by projecting the mesh vertices

onto a tangent plane with respect to a reference surface point, called the orientated point.

The spin-image is an object centered feature, hence it is scale, rotation, and pose invariant.

Figure 5.4 illustrates the process of projecting a surface point onto a tangent plane with

respect to the orientated point O. All the surface points are indexed by the radius (α) from
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o and the depth (β) from the tangent plane of O. The projection function is expressed as,

α =
√
‖x− o‖2 − (n · (x− o))2, β = n · (x− o),

where x and o are the 3D coordinates of the surface point and the orientated point O. Hence,

all the 3D surface points are projected onto 2D plane. To produce a spin-image, we need to

quantize (α,β) and build a 2D histogram, which is called the spin-image. There are several

important parameters controlling the generation of the spin-image. The support length,

which defines the size of the spin-image, determines the locality of the spin-image. With a

larger support length, spin-image can capture the entire object shape, and a smaller support

length provides local shape information. Another important parameter is bin size, which

determines the discrimination of the spin-image. Larger bin size will cause all points to fall

into the same bin, while small size will separate the neighboring points. In this chapter, the

bin size is set as the average length of the mesh resolution. Besides, uniform sampling is

necessary for matching two shapes. Fig. 5.5 shows the action volumes and their selected

corresponding spin-images. Instead of attempting pairwise matching of spin-images to match

two actions, we use the bag of spin-images strategy. For this purpose, we first apply PCA

to compress the dimensionality of the spin-image, and then use K-means to quantize them.

We call the group of spin-images as a video-word. Finally, the action is represented by the

bag of video-words model.

5.4.2 Construction of the Laplacian Matrix

The input for Fiedler Embedding is the Laplacian Matrix L, which is a symmetric matrix

constructed according to equation Eq. 5.4. In our case, we have three types of entities which

are: ST features (ST), Spin-Image features (SI) and videos of actions. Therefore, L has the
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Figure 5.5: Some 3D (x,y,t) action volumes (the first column) with some of their sampled
spin-images (red points are the orientated points.).

following block structure: 


D1 ET F T

E D1 HT

F H D3




, (Eq. 5.11)

where D1,D2,D3,E, F , H, respectively, denote the block matrix of Video-Video, ST-ST,

SI-SI, Video-ST, Video-SI, and ST-SI. In principle, the relationship matrix can be expressed

by any measurement (e.g. similarity, co-occurrence).

Theoretically, Fiedler Embedding maps the entities into a common k-dimensional space

by evaluating the relationship values between the entities. Therefore, the entities which have

a stronger relationship might be placed at closer positions if the strength of relationship is

evaluated using the common measurement. In other words, semantically similar entities
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stay closer to each other in the k-dimensional space. In practice, however, we must measure

the similarity between different types of entities. For instance, the Video-Video similarity

can be evaluated in term of the histogram intersection of features. Compared to histogram

intersection, the frequency of occurrence is a much better measure for Video-ST or Video-SI

similarity. Therefore, we can not directly compare how similar one action video V1 is to

another action video V2 and Spin-Image SI1 using the same type of measurement. This

is because different measurements have different ranges. The solution lies in the proper

normalization of different measurements. Similar to object recognition, we also measure

the similarities between actions and features (ST features or Spin-Image features) by Term

Frequency-Inverse Document Frequency(tf − idf).

For video-video or feature-feature similarities (such as the blocks D1, D2, and D3), we

tried several different approaches e.g. Histogram Intersection, Cosine similarity, and Inner

Product. We observed that Histogram Intersection and Cosine can group similar actions

together, but they were unable to group similar actions and features together. However, the

Inner Product method can group the similar actions and features into the same cluster. We

conjecture that this may be due to Histogram Intersection and Cosine similarity assigning

disproportional weights to the video-video or feature-feature similarity, as compared to the

video-feature similarity. In order to verify our conjecture, we checked the mean value of video-

video block (D1), feature-feature blocks (D2 and D3), and video-feature blocks (E,F ,H) of

the L matrix. Inner Product achieved close mean value for the three types of blocks, so it can

treat the video-video, video-feature and feature-feature equally when assigning the weights.

Thus, the action videos and features are more accurately mapped to the k-dimensional space

using the Inner Product.
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Figure 5.6: Clustering of entities in the k-dimensional embedding space. The entities are
three images categories D1, D2, and D3, and five feature types T1, T2, T3, T4, and T5. The
synthetically generated co-occurrence table between features and images is shown on the left
side. While the graph represents the assignments of feature types and image category to the
clusters in the 3−dimensional embedding space.

5.5 Experiments and Discussion

In this section, we present systematic performance analysis of the proposed framework along

three lines: First, the algorithm is verified on a synthetically generated data set. Second,

we apply the proposed approach on the widely used Caltech-6 data set and demonstrate

the qualitative and quantitative results against a number of baselines. Third, we apply our

algorithm on the task of action recognition.

5.5.1 Synthetic Data Set

The goal of performing experiments on a synthetically generated data set is to show that our

proposed framework is capable of grouping semantically similar entities into common clusters

in the k-dimensional embedding space. The synthetically generated data set has three image

categories, represented by D1, D2, and D3; and five types of features, represented by T1,

T2, T3, T4, and T5. Each feature type has a different distribution for each image category.

In addition, each feature type has a vocabulary of size 80, which means the total number of

features in the data set are 400, while each image category consists of 100 images. To carry

out the embedding, the first step is to construct Feature-Image co-occurrence table as follows:
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To populate the co-occurrence table, each feature type is considered dominant in a particular

image category, where the frequency of features is considered to be generated by a Gaussian

distribution. The mean and variance of the distribution are kept the same for all feature

types. This step returns a co-occurrence table which looks like the one shown in Figure

5.6(a). Next, we construct the Laplacian matrix L based on this co-occurrence table. For

this data set, cosine similarity is used to measure the image-image relationship, by using the

corresponding columns of the co-occurrence table as vectors in the cosine similarity measure.

The feature-feature similarity is computed in the same way, except that the corresponding

rows of the co-occurrence table are used as vectors in the cosine similarity measure. However,

the image-feature similarity is evaluated by normalizing the co-occurrence values themselves.

Next, the proposed framework is applied to map all entities (images and features) into

a common k-dimensional space by computing the eigenvectors of L, and computing the

Euclidian coordinates of each entity from these eigenvectors. The value of k was set to

3 for this purpose. Clustering is then performed on the 3−dimensional coordinates of all

mapped entities, and they are grouped into 6 clusters. The interpretation of the clustering

results can be explained through the use of Figure 5.6. Here, Figure 5.6(a) shows the initial

400 x 300 feature-image co-occurrence table. It can be observed that the dominant types

of features for categories D1,D2, and D3 are {T3, T4}, {T1, T2}, and {T5}, respectively.

The corresponding graph in Figure 5.6(a) shows the mapping of feature types and image

categories to one of the 6 clusters in the 3-dimensional embedding space. A symbol (T1 : 3)

means that all the features in T1 are assigned to cluster 3, while a symbol (D1 : 5, 2) means

that images from category D1 are either assigned to cluster 5 or cluster 2. A glance at these

mappings shows that the results are exactly the same as predicted by the ground truth. For

example, we have a mapping (T4 : 2, 5), which means the features of type T4 are either

assigned to cluster 2 or cluster 5. Since T4 is dominant in the image category D1, the

images from D1 should also either fall into cluster 2 or cluster 5 for the embedding space to

be semantically meaningful. This is exactly what is done by our algorithm. Similarly, feature
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types {T1, T2} and images D1 are related to each other as reflected by the co-occurrence

table; therefore, the embedding procedure should bring them closer to each other. Again

this is reflected by the same cluster label, that is, cluster 3, assigned to all three entities.

This emphasizes the fact that the Euclidian space that we are constructing is meaningful

and can be used to discover homogenous and heterogenous relationships.

5.5.2 Caltech Data Set: Object Recognition

The second set of experiments is conducted on the widely used Caltech-6 data set. The aim

is to show the efficacy of our framework against a number of well chosen baselines, which

will emphasize the importance of discovering homogenous and heterogenous relationships

between entities for improved classification. We have used four object categories for our

experiments: faces (450 images), car rear (526 images), airplanes (1074 images), and motor-

bikes (826 images). We have learnt an interest point vocabulary of NP = 2, 000 visual words

by randomly selecting 100 images from each category. The contour vocabulary is learnt by

randomly selecting 50 images from each category with known bounding boxes around the

target object. Only the contours that have a length larger than 60 pixels are selected for

clustering using the procedure described in Section 5.3. This resulted in NC = 158 contour

clusters. For each cluster, we picked the contour which has the smallest distance to all the

members of the cluster as the representative contour of the cluster. The region vocabulary

of size NR = 500 is constructed by using the same images that are employed for learning

the interest point vocabulary. Next, 100 images are selected randomly from each category

as training images for constructing the co-occurrence table. Using this table we computed

the Laplacian matrix and eventually the k-dimensional embedding coordinates of all images

and features.
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Figure 5.7: Qualitative results when the query is a feature and the output is a set of images.
(a)-(b) Query: Interest point, Output: Ten nearest images. (c)-(d) Query: Contour, Output:
Ten nearest images. (e)-(f) Query: Region, Output: Ten nearest images.
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5.5.2.1 Qualitative Results

The purpose of this experiment is to verify the semantic meaningfulness of the constructed

embedding space. In addition, we demonstrate the unique strength of our proposed frame-

work: it can map semantically similar entities to the same cluster in the k-dimensional

embedding space, irrespective of the type of the entity. This is done by selecting a query

entity and then returning nearby entities from the k-dimensional embedding space using

Euclidian distances. If the embedding space is meaningful, then the returned nearby entities

should have a relationship with each other.

A number of output combinations over entities are possible for each query entity. In the

first result shown in Figure 5.7, we only return the nearby images. For instance, in Figure

5.7(a), the query entity is an interest point (from the learnt visual vocabulary) shown in the

center rectangle. This interest point is representing the tip of the nose of the airplane. The

10 nearest images to this interest point from the k-dimensional space are shown around the

interest point. It can be observed that all of the images are airplane images, although the

distance was computed for other objects (motorbike, car rear, faces) as well. This tells us

that in the embedding space we are able to map semantically related images and interest

points to nearby regions. Therefore, we can use Euclidian distances to compute strength of

relationships between them. Since all the retrieved images belong to the airplane class, it

also means that the query interest point is only dominant in the airplane class. Another

result of interest point based query is shown in Figure 5.7(b) with very similar interpretation

of the results.

Next, we used contour as a query entity and again returned the 10 nearest images from

the embedding space as shown in Figure 5.7(c) and (d). In Figure 5.7, the retrieved images

belong to the face and motorcycle classes, which means this type of contour is shared by these

two classes of objects. This is evident from the structure of the contour which is capturing

the shape of the face around the chin area as well as wheel of a motorcycle. However, the
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query contour in Figure 5.7(d) is representing the shape of the rear of a car; therefore, all the

retrieved images are from the car rear class. Both of these results further show the strength

of the framework, where one only has to use a single contour or an interest point to retrieve

relevant images based on Euclidian distances. This is very useful in the presence of occlusion

or partial object views. Moving on, in Figure 5.7(e) and (f) we used regions as a query entity

(a)

(d)

(b)

(e)

(f)

(c)

Figure 5.8: The results of different combinations of the query-result entities. (a) Query:
Interest Point, Output: Five nearest interest points and contours. (b) Query: Contour,
Output: Five nearest interest points and regions. (c) Query: Regions, Output: Five nearest
interest points, contours, and regions. (d) Query: Image, Output: Five nearest interest
points and contours. (e) Query: Image, Output: Five nearest interest points, contours, and
regions. (f) Query: Image, Output: Five nearest images.
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and returned nearest images from the embedding space. The query region in Figure 5.7(e) is

mostly representing the area around the rim of the wheel or on the side of the human face;

therefore, the nearest images in the k-dimensional space belong to the face and motorbike

classes. In Figure 5.7(f), the query region clearly belongs to face; therefore, all the retrieved

images are from the face class.

Since after embedding we have all entities (interest points, contours, regions, images) in

the same space, we can retrieve any combination of these entities for the given query entity.

The next result, shown in Figure 5.8, is aimed at demonstrating this strength, where for each

query we retrieve the five nearest entities (interest points, contours, regions). In each result

(Figure 5.8(a)-(f)), the query entity is shown on the left side with a blue rectangle around it,

while the retrieved entities are shown within a yellow rectangle. In Figure 5.8(a), we used an

interest point from a face as a query and returned the 5 nearest interest points and contours

from the k-dimensional space. It can be visually observed that the features returned by our

algorithm are very meaningful for the face class. We are able to return this heterogenous

combination of features, because we are embedding everything into a common, semantically

meaningful space. Figure 5.8(b)-(c) shows some other possible combinations of query-result

entity types. In Figure 5.8(d)-(f), we used image as a query entity and returned different

feature types as the output entities, using the same procedure. In all cases, the returned

features and images are very meaningful. In summary, the qualitative results demonstrated

in this section prove that the semantically similar objects are closer to each other in the

constructed k-dimensional space.

5.5.2.2 Quantitative Results

In this set of experiments, we tested the quantitative performance of our proposed frame-

work on the task of object classification. We used a number of baselines to quantify the
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Figure 5.9: Figure summarizes results of different experiments. (a) A comparison of BOW
approach with our method by using only the interest point features. (b) A comparison of
BOW approach with our method by using both interest point and contour features together.
(c) A comparison of BOW approach with our method by using all three features. (d) A
comparison of Fielder embedding with LSA by using all three feature types. (e) A comparison
of performance of our framework for different values of embedding dimension using only
the interest point features. (f) A comparison of contributions of different features towards
classification. 111



improvements obtained by our algorithm. In general, the experiments are conducted with

different configurations of feature types and embedding dimensions.

In the first experiment, we compared the classification performance of the original bag of

words (BOW) method with our approach. In the original BOW, raw frequency of features

(words) is used as the image representation, while our approach constructs a weighted BOW

by using the the meaningful groupings returned by the embedding procedure as follows:

Suppose we have a feature frequency representation of an image t = (t1, t2, ..., ti, ...tNx),

where Nx is the size of the feature vocabulary. We define a function f(i, j) which returns the

j-th nearest neighbor of the i-th feature from the k-dimensional space using the Euclidian

distance. Using this function, we compute the weight for the i-th bin of t (which is the

frequency of i-th feature) as follows:

t′i =
1

K

∑
j=1:K

tf(i,j), (Eq. 5.12)

where we use K=5 (here K is the total number of nearest neighbors). The process is repeated

for all bins to get the complete weighted histogram for the image. Once the weighted

histogram is constructed for each image, we train a Nearest Neighbor classifier by using 100

images as the training images from all 4 categories. A separate Nearest Nearest Neighbor

classifier is learnt using the un-weighted feature frequency histograms by using the same 100

images as the training images. The performance of the two classifiers is compared by using

all the remaining images as the test images. A detail analysis of the results is presented

next.

The first result shown in Figure 5.9(a) is obtained by using only the interest point fea-

tures, which means we have a 2, 000 dimensional histogram for each image. For discovery of

meaningful groupings, interest points and images are embedded into a k = 100 dimensional

space. The average accuracy of 90.2% obtained by our method is much better than the

accuracy of original BOW, which is 78.8% in this case. This is indicative of the fact that
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the constructed embedding space is semantically meaningful, and therefore, helpful in dis-

covering groupings, which eventually make the weighted histogram more discriminative. In

this particular result, the improvement for the airplane category is remarkable (from 35.9%

to 71.5%). The reason is that original frequency histograms have a lot of noise in them due

to extensive clutter present in the airplane images. The source of the clutter is the airport

background which is present in most of the images. However, our method is able to overcome

this noise because it takes into consideration the semantic similarity of each interest point

with all the airplane images, before deciding on its embedding coordinate. An interest point

generated from clutter will not be able to have a high semantic similarity with all or most

of the airplane images; therefore, its embedding coordinate will be far off from the airplane

images and true interest points belonging to the airplane category. Thus, it will not be

able to effect the weighting of the histogram. This observation is further vindicated by the

result in Figure 5.9(b), where we used interest points as well as contours. Since contours are

extracted by using the bounding boxes around the target category, the clutter does not have

a strong influence anymore on the original BOW histogram. Therefore, the difference in the

improvement is small as compared to Figure 5.9(a). Figure 5.9(c) shows the results obtained

by using all three features at the same time. Again, our approach is able to outperform the

original BOW approach. It can be observed that in all three cases (Figure 5.9(a)-(c)) our

results are much better than the original BOW approach, which is indicative of the fact that

the weighting based on the semantically meaningful neighborhood in the embedding space

is helping.

In order to further verify the contribution of homogenous and heterogenous relationships

among features, we performed an experiment where the k-dimensional embedding coordi-

nates of the images are used for constructing the Nearest Neighbor classifier. We used the

value of k = 100, while 100 images are used as training images for learning the nearest neigh-

bor classifier. The results are shown in Figure 5.9(f). It can be observed that the use of more

features is helpful in getting better accuracy, thus verifying our initial intuition that the use
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of homogenous and heterogenous relationships between complementary features should be

exploited. Since our framework provides a principled way of combining feature, the addition

of more features can be carried out in an elegant fashion.

Next, we compared the performance of our framework with LSA. We used all the features

to construct a 100-dimensional embedding space, and then constructed a nearest neighbor

classifier by using the Euclidian coordinates of the training images. The first 100 eigenvectors

are kept for LSA, and the nearest neighbor classifier is learnt by using the projections of

training images onto these 100 eigenvectors. The results are shown in Figure 5.9(d), where

our framework improved over the LSA based classification by 1.9%. We believe the reason

for improvement is that our framework considers a richer set of relationships between images

in terms of features when placing them in the embedding space. Note that, although the

difference in terms of percentage seems small, the matter of fact is that this improvement is

obtained by correctly classifying the hardest examples. Moreover, our framework has more

to offer in terms of the relationships that one can discover among diverse sets of features

in an elegant manner since, everything now lies in the same space. Another useful aspect

of our framework is that one can use only a single interest point (contour or region) for

object detection by computing its distance to the images of the training class that lie in the

same space. This is very useful, in presence of occlusion or partial object views. On the

other hand, LSA will not be able to directly carry out this partial matching, as features and

images lie in their separate spaces. Finally, we studied the effect of different values of k on

the classification performance using all the feature types. The same experimental setup is

used as described for the previous experiments. The results are shown in Figure 5.9(e). The

classification performance increases as we increase the value of k. We believe the reason for

this is that a higher dimensional space allows a more flexibility to the minimization procedure

when deciding about the coordinates of each entity. The best performance is achieved at

k=100, beyond which we do not observe significant increase in the performance.
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5.5.3 Weizmann Data Set: Action Recognition

This data set contains 10 actions performed by 9 different persons. There are total of

92 video sequences. On this data set, our approach shows improvement over the baseline

method which uses a single type of feature. The default parameters for feature extraction

are as follows. For ST features, we extracted 200 interest cuboids from each video with σ = 1

and τ = 2. Then, we used k-means algorithm to generate the code books with sizes 200

and 1,000. For Spin-Image features, we uniformly sample 1,000 orientated points from each

action volume. The k-means algorithm is applied again to quantize the feature vectors. We

created two vocabularies with 600 and 1,000 video-words each. Finally, all the classification

experiments were carried out by using K-Nearest Neighborhood (KNN) classifier with K=5.

We used leave-one-out cross-validation scheme, so we had 10 runs for each experiments, and

the average accuracy is reported.

Qualitative Results. The qualitative results shows the strength of Fiedler Embedding

which has the capability to embed semantically similar entities (e.g. action videos, spin-

image features, ST features) to one close cluster in the k-dimensional space. Figure 5.10

visually shows the results of the queries using different types of entities. In Figure 5.10

(a)-(c), the queries consisted of features (video-words, shown by blue rectangles), and results

of the query consisted of the four nearest action videos (nearest in the Euclidian sense) from

the embedding space. For each video-word, the percentages of the feature source (called the

purity of the video-word) are also listed, which expresses the category specific property of

the video-word. For instance, “wave2:99%, wave1:1%” means most of the features in this

video-word are from action “wave2”, therefore semantically it is related to “wave2”. Fig.

5.10 (d)-(f) demonstrate three queries using features, where the returned results consist of

the other nearest features from the embedding space. From Fig. 5.10 (f), we can note that

the features of the action “run” are confused with the action “jump”. In Fig. 5.10 (g) and

(h), we performed queries using action videos. From the results, we infer that the action
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Figure 5.10: Figure shows different combinations of query-result that we used for qualitative
verification of the constructed k-dimensional space. Each rectangle represents one entity (e.g.
action video or a video-word (a group of features)). In (a)-(c), the features in blue which
are from one video-word are used as query, and the 4 nearest videos in yellow from the k-
dimensional space are returned. Under each video-word, the category component percentage
is also shown (e.g. “wave2: 99%, wave1:1%“ means 99% of features in this video-word are
from “wave2” action). In (d) and (e), we respectively used ST features and Spin-Image
features as query, and retrieved the nearest features in the k-dimensional space. In (f) and
(g), two action videos are used as query, and the nearest features are returned.
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(a)

(b)

Bend Jack Jump Pjump Run Side Walk Wave1 Wave2 Average

Original Bag of Words 100.0 100.0 44.4 88.9 80.0 66.7 100.0 88.9 88.9 84.2

Weighted Bag of Words 100.0 100.0 55.6 100.0 80.0 100.0 100.0 88.9 88.9 90.4

Bend Jack Jump Pjump Run Side Walk Wave1 Wave2 Average

Original Bag of Words 100.0 100.0 11.1 88.9 80.0 11.1 66.7 88.9 100.0 71.9

Weighted Bag of Words 100.0 100.0 44.4 88.9 90.0 55.6 100.0 100.0 100.0 86.5

Figure 5.11: The comparison of the BOW approach with our weighted BOW method.

“pjump” is easier to recognize than the action “side”. This is mainly because the video-

words for action “pjump” have higher “purity” than those of “side”. On the other hand,

the action “side” might be confused with the action “run”. The quantitative results in Fig.

5.12 further verifies this observation. In short, the qualitative results demonstrate that the

constructed embedding space is meaningful, and provides us an insight into the relationships

of the features.

Quantitative Results. In the following set of experiments, we show the quantitative results

of our action recognition and compare them with the baselines. In order to show that the

feature grouping is meaningful in the k-dimensional space, we compared the performance

of classification using the original bag of video-words (term frequency) to that of weighted

bag of video-words (weighted term frequency) representation of the video. The weighted

bag of video-words is constructed by using the meaningful feature groupings returned by

our embedding. Equation Eq. 5.12 gives the details for re-weighting the term frequency.

Figure 5.11 shows the performance comparison between the original BOW model and our

weighted BOW. In (a) and (c) we show the performance obtained using vocabulary of size

Nsi = Nip = 200 and Nsi = Nip = 1, 000 respectively. For the 1,000 dimensions case, our

approach can improve 12% over the baseline. This is due to the fact that the constructed

embedding space is semantically meaningful, and therefore it helps us discover the feature

grouping that will eventually make the weighted BOW more discriminative.
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(a) (b)

Figure 5.12: (a) Confusion table for Fiedler embedding with k=20. (b) Confusion table for
LSA with k=25.
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Figure 5.13: The variation of embedding dimension affects the performance. All experiments
are carried out on Nsi = Nip = 1, 000.

In order to further verify the contribution of the relationships of different types of features,

we embed “ST features” and “Spin-Image features” into two separated spaces, and also

embed both into the common space. Fig.5.14 (a) and (b) show two sets of experiments carried

on Nsi = Nip = 200 and Nsi = Nip = 1, 000 respectively. It is obvious that multiple features

can improve the performance by about 12%-24%. The reason is because the embedding

procedure is discovering the explicit or implicit relationship between different type of features.

118



Bend Jack Jump Pjump Run Side Walk Wave1 Wave2 Average

ST features 100 88.9 55.6 77.8 60 44.4 44.4 44.4 44.4 62.2

Spin-Image features 88.9 55.6 44.4 88.9 90 33.3 88.9 77.8 100 74.2

ST + Spin-Image features 100 100 88.9 100 70 44.4 88.9 88.9 100 86.8

Bend Jack Jump Pjump Run Side Walk Wave1 Wave2 Average

ST features 100 100 44.4 100 60 11.1 44.4 88.9 66.7 68.4

Spin-Image features 88.9 100 33.3 77.8 100 33.3 88.9 55.6 77.8 72.8

ST + Spin-Image features 100 100 77.8 100 70 66.7 100 88.9 100 89.3

(a)

(b)

Figure 5.14: The contributions of different features to the classification. (a)Nsi = Nip = 200,
k=20,30 and 20 for ST features, Spin-Image features and the combination respectively.
(b)Nsi = Nip = 1, 000, k=20,70 and 20 for ST features, Spin-Image features and the combi-
nation respectively.

Next, we compared the performance of Fiedler Embedding based classification with the

LSA. We used both features with vocabulary size of Nsi = Nip = 1, 000. Fiedler Embedding

achieves the best average accuracy of 89.26% when k=20, and LSA obtains 85.11% at k = 25.

Fig.5.12 (a) and (b) show the confusion tables of Fiedler embedding and LSA respectively.

Compared to the performance (71.9%) of directly concatenating two types of features (the

original BOW is shown in Fig5.11(b)) , the advantage of Fiedler embedding is obvious. In

our experiments, we also observed that the variation of dimension k of the embedding space

affects the performance. Fig.5.13 plots the performance variation against various choices of

the dimension.

5.6 Conclusion

In this chapter we have proposed a unique way of looking at the relationships between

different types of entities that one comes across in number of computer vision applications.

This is done by treating different entities as nodes in a graph, where weighted edges between

the nodes represent the strength of the relationship between entities. The graph is embedded

into a k-dimensional space, subject to the criteria that similar nodes should have Euclidian
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coordinates which are closer to each other. Once all the entities are embedded into the

same space, the relationships between them can be discovered by using simple Euclidian

distances. We demonstrated the applicability of the proposed framework on problems of

object classification and action recognition. The unique strength of the our framework is that

it allows one to discover relationships between a wide range of entities of different dimensions

and types, and it is general enough to handle a variety of computer vision problems.
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CHAPTER 6: LEARNING SEMANTIC VOCABULARIES
USING DIFFUSION DISTANCE

6.1 Introduction

In the previous chapter, we verify that Fiedler Embedding is able to disclose the semantic

relationships amongst varied entities. This results from the fact that it embeds the entity

graph into one common k-dimensional space by minimizing the geometric distance amongst

the entities. However, it is not able to explicitly measure the similarity or dissimilarity

between two vertices (features or entities) on the graph. Moreover, it is not capable of

conducting multi-scale analysis on the feature graph. In this chapter, therefore, we define

the diffusion distance as an explicit metric to measure the similarity between two features.

This diffusion distance is defined as a Markov random walk on the graph. Since it uses

multiple walk paths between two vertices to measure the distance instead of the shortest

path, it is able to reflect the connectivity between any pair of vertices. To some extent, the

connectivity relationship indicates the geometric structure of the graph. Diffusion distance

is derived from diffusion maps (DM) [102], which embeds the manifold points into a lower-

dimensional space while preserving the intrinsic local geometric data structure.

The diffusion process begins by organizing the data points into a weighted graph (where

the weight between two feature points is the feature similarity), which is a good way to

represent the complex relationships between the feature points. Once we normalize the

weight matrix and also make it symmetric and positive, we can further interpret the pairwise

similarities as edge flows in a Markov random walk on the graph. In this case, the similarity

is analogous to the transition probability on the edge. Then, utilizing the spectral analysis on

the Markov matrix of the graph, we can find the dominant k eigenvectors as the coordinates

of the embedding space and map the feature points to the low-dimensional space while

121



preserving their local geometric structures. In addition, by adjusting the time of the Markov

chain, DM can be used to employ multi-scale analysis on the data. This multi-scale analysis

is similar to Pyramid Match Kernel (PMK) [70], which performs matching under different

resolutions of the feature space. If we consider the embedding process as clustering, DM

embeds semantically similar features into the same cluster (i.e., some concept). The size of

the cluster or the range of the concept is defined by the diffusion time. A larger diffusion time

corresponds to a bigger cluster, which means a larger range of concept. For instance, “sport”

is on a larger scale than “baseball” and “football”, and “baseball” is on a larger scale than

“team”. With the multi-scale data analysis, we can match the data under different scales.

In fact, DM is one of the techniques used for manifold dimension reduction like PCA,

ISOMAP [82], Laplacian Eigenmaps [83], etc. In many applications, the distances between

feature points that are far apart are meaningless, so preserving the local structure is sufficient

for the embedding. Unlike DM, PCA and ISOMAP are global techniques that do not preserve

local geometric information of the feature space. In addition, PCA is unable to handle

nonlinear manifold data points. Since the diffusion distance derived from DM uses all the

paths between two points to compute the distance, it is more robust to noise than the geodesic

distance (shortest path distance) used by ISOMAP. DM is very similar to Eigenmaps-based

approaches. However, since the embedding coordinates are weighted eigenvectors of the

graph Laplacian, DM has an explicit distance measure induced by a nonlinear embed-ding

in the Euclidean space. Eigenmaps representation does not have any explicit metric in the

embedding space. Additionally, DM can employ multi-scale analysis on the feature points

by defining different time values of the random walk. In our work, we represent the mid-level

features using Pointwise Mutual Information (PMI) [94], which is employed to measure the

correlation of two variables, i.e. features and images or videos. We can consider mutual

information as the expectation of PMI.

Figure 6.1 depicts the major steps for constructing a semantic visual vocabulary using

diffusion maps. There are four components: extracting raw features, quantizing raw features
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 Seman!c Vocabulary Construc!on 

(k-means, high-level features)  

Raw Feature 

Extrac!on 

Feature Quan!za!on (k-

means, midlevel features)  

Midlevel Feature Embedding     

(DM, embedded midlevel features) 

Figure 6.1: Flowchart of learning semantic visual vocabulary

into mid-level features using k-means, embedding mid-level features, and constructing visual

vocabulary using k-means. We extract local patches from images or videos and represent

them with the corresponding descriptors. These raw features are quantized into an initial vi-

sual vocabulary using k-means based on their appearance similarity. We call these quantized

features mid-level features. Then each mid-level feature is represented by a vector, where

each element corresponds to PMI of the feature with a particular image or a video. Next, the

mid-level features are embedded into a lower-dimensional semantic space using DM. Since

the distance between any two feature points is measured by the diffusion distance, we can

further apply k-means with diffusion distance to construct the final semantic visual vocab-

ulary. We have tested the diffusion framework on the KTH action data set [21], our own

YouTube action data set [54] and the fifteen scene data set [107]. Very inspiring results have

been obtained on them.

6.2 Diffusion Maps

In this section, we cover the background material related to diffusion maps embedding which

follows the description in [102] and [104].

6.2.1 Diffusion distances in a graph

Graph-based data representation is an effective way to capture the structure information of

the data. The distance between two nodes is often defined as the shortest path separating

them, which is also called geodesic distance. However, it is sensitive to noise and lack

123



of structure information of the data. The diffusion distances defined in this section can

overcome these shortcomings.

We can construct a graph G(Ω,W) with n nodes on the mid-level feature set Ω, where

W = wij(xi, xj) is its weighted adjacent matrix, which is symmetric and positive. The

definition of wij (xi, xj) is totally application-driven, but it needs to represent the degree of

similarity or affinity of two feature points. In our case, suppose that the mid-level features

are on a manifold. We can start with a Gaussian kernel function, leading to a matrix with

entries,

wij(xi, xj) = e(−‖xi−xj‖2/(2σ2)), (Eq. 6.1)

where σ2 indicates the variance of the Gaussian. This graph G with W represents our

knowledge of the local geometric relationships between the mid-level features. Then, we

define a Markov random walk on the feature graph G using the dynamical systems theory.

It is intuitive that if two nodes are closer (more similar), they are more likely transmitted to

each other. Therefore, we can treat the normalized edge weight as the transition probability

between them. As a result, we form Matrix P(1) = p
(1)
ij by normalizing matrix W such that

its rows add up to 1:

p
(1)
ij = wij/(

∑

k

wik). (Eq. 6.2)

Therefore, each entry of P can be considered as the transition kernel of the Markov chain

on G. In other words, p
(1)
ij defines the transition probability from node i to j in a single

time step and P defines the entire Markov chain. P(1) reflects the first-order neighborhood

geometry of the data. We could run random walk forward in time to capture information

on larger neighborhoods by taking powers of the matrix P. The forward probability matrix

for t time steps P(t) is given by [P(1)]t. The entries in P(t) represent the probability of going

from i to j in t time steps.
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In such a framework, a cluster is a region in which the probability of escaping this region

is low. The higher the t, the higher the probability weight can be diffused to other points

which are further away. This means the quantities in P(t) reflect the intrinsic geometry of

the data set defined via the connectivity of the graph in a diffusion process and the diffusion

time t plays the role of a scale parameter in the data analysis. Generally, larger diffusion

time means lower data resolution representation.

Subsequently, we define the diffusion distance D using the random walk forward proba-

bilities p
(t)
ij to relate the spectral properties of a Markov chain (its matrix and its eigen values

and eigenvectors) to the geometry of the data.

[D(t)(xi, xj)]
2 =

∑
q∈Ω

(p
(t)
iq − p

(t)
jq )2

ϕ(xq)(0)
, (Eq. 6.3)

where ϕ(xq)
(0) is the unique stationary distribution which measures the density of the data

points. It is defined by ϕ(xq)
(0) = dq∑

j dj
, where dq is the degree of node xq defined by

dq =
∑

j pqj. Note that pairs of data points with high forward transition probability have a

small diffusion distance. In other words, the diffusion distances will be small between two

points if they are connected by many paths in the graph. This notion of proximity of points

in the graph reflects the intrinsic geometry of the set in terms of connectivity of the data

points in a diffusion process. The idea behind the diffusion distance is that it is computed on

many paths through the graph. Compared to the shortest path method, diffusion distance

take into account all the evidence relating xi to xj , so it is more robust to noise.

6.2.2 Diffusion Maps Embedding

Using the spectral theory of the random walk, matrix P has n eigenvectors and eigenvalues

such that:

P(t)vs = λsvs(s = 0, 1, ..., n− 1). (Eq. 6.4)
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It can be proved that the diffusion distance can be computed using eigenvectors v and

eigenvalues λ of P,

[D(t)(xi, xj)]
2 =

n−1∑
s=1

(λt
s)

2(vs(xi)− vs(xj))
2. (Eq. 6.5)

The distance can be approximated with the first k eigenvectors. We only need a few terms

in the above sum for certain accuracy because of the decay of the eigenvalues. The diffusion

distance can then be approximated with relative precision δ using the first k nontrivial

eigenvectors and eigenvalues according to,

[D(t)(xi, xj)]
2 ≈

k∑
s=1

(λt
s)

2(vs(xi)− vs(xj))
2, (Eq. 6.6)

where λt
k > δλt

1. If we use the eigenvectors weighted with λ as coordinates on the data,

D(t) could be interpreted as the Euclidean distance in the low-dimensional space. Hence, we

introduce diffusion map embedding, and the low-dimensional representation is given by

Πt : xi 7→ {λt
1v1(xi) λt

2v2(xi) ... λt
kvk(xi)}T . (Eq. 6.7)

The diffusion map Πt embeds the data into a Euclidean space in which the distance is

approximately the diffusion distance,

[D(t)(xi, xj)]
2 w ||Πt(xi)− Πt(xj)||2. (Eq. 6.8)

The scaling of each eigenvector by its corresponding eigenvalue leads to a smoother

mapping in the final embedding, since higher eigenvectors are attenuated. The mapping

provides a realization of the graph G as a cloud of points in a lower-dimensional space,

where the re-scaled eigenvectors are the coordinates. The dimensionality reduction and the

weighting of the relevant eigenvectors are dictated by both the diffusion time t of the random
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Objective: Given n points {xi}n
i=1 in a high dimensional space Ω,

embed all points into a k-dimensional space.

(i) Construct a graph G with n nodes: add an edge between nodes i
and j if i is one of the N nearest neighbors of j.

(ii) Construct the weight matrix W: if nodes i and j are connected,
the edge weight wij is computed using Equation Eq. 6.1.

(iii) Create Markov transition matrix P: normalize matrix W using
Equation Eq. 6.2 such that its rows add up to 1.

(iv) Compute Markov transition matrix P(t) at diffusion time t.

(v) Perform eigen-decomposition on P(t), and obtain eigenvalues λs

and eigenvectors vs, such that P(t)vs = λsvs.

(vi) Embedding data by DM as Eq. 6.7.

Table 6.1: Procedure of diffusion maps embedding.

walk and the spectral fall-off of the eigenvalues. Diffusion maps embed the entire data set

in a low-dimensional space in such a way that the Euclidean distance is an approximation

of the diffusion distance. We summarize the procedure of DM in Algorithm 6.1.

6.2.3 Robustness to Noise

As aforementioned, the diffusion distance is robust to noise and small perturbations of the

data. This results from the fact that the diffusion distance reflects the connectivity of nodes

in the graph. In other words, the distance is computed from all the paths between two nodes

s.t. all the “evidences” are considered. Although one of the paths may be affected by the

noise, it has little weight on the computation of diffusion distance. However, the geodesic

distance that is used in ISOMAP only considers the shortest path between two points, so it

is sensitive to noise. Therefore, diffusion distance is more robust than geodesic distance to

noise. In the following paragraphs, we want to verify this fact on a synthetic spiral and the

real action data set. We generated 1,000 instances of two-dimensional spiral with Gaussian

noise (see Figure 6.2 (a)). As for each instance of spiral, we construct a graph by connecting
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KTH Data

(a) (b) (c)

(d) (e) (f)

Figure 6.2: Demonstration of robustness to noise. (a) Two dimensional spiral points. (b-c)
The distribution of the diffusion distance and geodesic distance between points A and B. (d)
KTH data set. (e-f) The distribution of the diffusion distance and geodesic distance between
two points on KTH data set.

any two points whose Euclidean distance is less than a threshold σ. When constructing the

adjacency matrix W, wij is computed using Equation Eq. 6.1 for the connected points. In

order to ensure the connectivity of the graph, wij is set to a small number for any two non-

connected points. We picked two fixed points A and B from all instances, and computed

the diffusion distance and geodesic distance between them. Figure 6.2 (b) and (c) shows

the distribution of the distances on all the trials. From it we can easily see the geodesic

distance has much larger standard deviation than the diffusion distance. This shows that

geodesic distance is more sensitive to the noise as compared to the diffusion distance. We

further verified the robustness of diffusion distance on the KTH data set. We selected two

mid-level features (A and B) that have the maximum Euclidean distance in an initial visual

vocabulary with 1,000 visual words (mid-level features). Then we added Gaussian noise to
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the rest of features, and repeated this procedure 500 times. For each trial, we constructed

a graph as we described in section 6.2. The distributions of the diffusion distances and

geodesic distances between mid-level features A and B are shown in Figure 6.2 (e) and (f).

Although the distribution of geodesic distance is better than that of the synthetic spiral, we

can still see that diffusion distance has smaller standard deviation than geodesic distance,

which further verifies that diffusion distance is more robust.

6.2.4 Feature Extraction

In this section, we briefly describe the methods to extract raw features (i.e., motion features

for action recognition and SIFT features for scene classification), and then how to generate

and represent the mid-level features.

Motion features for action recognition: We use the spatiotemporal interest point de-

tector proposed by Dollar et al. [93]. Compared to the 3D Harris-Corner detector [46], it

produces dense features that can improve the recognition performance in most cases. It

utilizes 2-D Gaussian filter and 1-D Gabor filters in spatial and temporal directions respec-

tively. A response value is given at every position (x, y, t). It produces high responses to

the temporal intensity change points. The interest points are selected at the locations of

local maximal responses, and 3D cuboids are extracted around them. For simplicity, we

use the flat gradient vectors to describe the cuboids with PCA being utilized to reduce the

descriptor dimension (e.g. 100 dimensions in our paper), which we call the gradient PCA

(gPCA) descriptor.

SIFT features for scene classification: It has been shown that the dense features can

achieve a better classification rate than sparse interest point features for the scene classifi-

cation [33] [76] problem. In this chapter, we utilize dense features sampled using a regular

grid with space M=8 pixels. The patch size is randomly sampled between scales of 10 to 30

pixels. SIFT descriptor [79] is computed for each patch.
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Mid-level feature representation: Once we extract the raw features (low-level features),

we use k-means clustering to quantize these gPCA features or SIFT features into C clusters,

which are the mid-level features forming the initial vocabulary. In general, a larger C value

can obtain better performance. We choose C equals to 1,000 and 2,000 for the action data

set and scene data set respectively. In order to construct the semantic vocabularies based on

the mid-level features, we use PMI to represent the mid-level features. Suppose we have Nt

number of training images or videos, we compute the PMI between a training image/video

x and mid-level feature y as,

pmi(x; y) = log(
fxy∑

ε fεy

∑
ω fxω

), (Eq. 6.9)

where fxy = cxy

Nt
, cxy is the number of times feature y appears in image or video x. Then we

can represent the mid-level feature y in terms of an Nt dimensional feature vector, and the

distance between any two features y1 and y2 can be computed using equation Eq. 6.1.

6.3 Experiments and Discussion

We tested our approach on the KTH action data set, our own YouTube action data set, and

the fifteen scene data set. SVM with Histogram Intersection kernel is chosen as the default

classifier. For the action data set, we perform the leave one out cross validation (LOOCV)

scheme, which means 24 actors or groups are used for training and the rest for testing. For

the fifteen scene data set, we randomly selected 100 images from each category for training,

and the rest for testing.
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(a)

(b)

(c)

Figure 6.3: (a) and (b) shows the influence of diffusion time and sigma value, respectively,
on the recognition performance. The three curves correspond to three visual vocabularies of
size 100, 200, and 300 respectively. The sigma value is 3 in (a) and the diffusion time is 5 in
(b); (c) The comparison of recognition rate between mid-level and high-level features.
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(a)

(b)

Figure 6.4: (a) Comparison of performance between different manifold learning schemes.
(b) Comparison of performance between DM and IB
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(a)

(b)

(c)

Figure 6.5: (a) Confusion table of KTH data set when the size of the semantic visual
vocabulary is 100. The average accuracy is 92.3%. (b) Performance comparison between
DM and other manifold learning schemes on the YouTube action data set. (c) Confusion
table of the YouTube data set when the size of semantic visual vocabulary is 250. The
average accuracy is 76.1%. 133
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Figure 6.6: The decay of the eigenvalues of Pt on YouTube data set when sigma is 14.

6.3.1 Experiments on KTH data set

The KTH data set contains six actions: boxing, clapping, waving, jogging, walking, and

running. They are performed by 25 actors under four different scenarios. In total it con-

tains 598 video sequences. All the following experiments are conducted on 1,000 mid-level

features. As we discussed, the DMs provide a method to represent the data at different

resolutions by using varied diffusion times. Generally, high data resolution can be obtained

at smaller diffusion times. Therefore, the diffusion time t can affect the performance of the

visual vocabulary. The three curves in Figure 6.3 (a) illustrate the influence of t on the

action recognition rates when the size of the semantic visual vocabulary (Nv) is 100, 200,

and 300 respectively (here, the sigma value is 3 for all of them). It seems that higher recog-

nition accuracy is obtained at a smaller t value when the sigma is fixed. In fact, when t is

larger, the data resolution is lower, which may decrease the quality of the visual vocabulary.

Additionally, the sigma value of Equation Eq. 6.1 also affects the recognition rate. Figure

6.3 (b) shows its influence on the recognition performance when fixing the diffusion time

t=5. The sigma value affects the recognition accuracy by influencing the decay speed of
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Figure 6.7: Some examples of mid-level and high-level features with their corresponding
real image patches. Each row lists one mid-level or high-level feature followed by its image
patches. The three mid-level features are selected from 40 mid-level features. The four high-
level features are selected from 40 high-level features generated by DM from 1,000 mid-level
features.

the eigenvalues of matrix mathbfP (t). In general, larger sigma values perform worse when

diffusion time is fixed. In the following experiments, all the results are reported with the

tuned (better) parameters.

In order to verify that our learnt semantic visual vocabulary (high-level features) is more

discriminative than the mid-level features, we compared the recognition rate obtained by

using high-level and mid-level features under the same size. The high-level features are

learnt from the 1,000 mid-level features using DM. The reported recognition rates are the

best ones achieved with different diffusion times and sigma values. Figure 6.3 (c) shows the

comparison. It is clear that high-level features can achieve much better performance than

mid-level features. Particularly, the recognition rate (88.9%) with 50 features is comparable
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to that of 400 mid-level features. In addition, when the number of features is larger than

100, the recognition rate is over 90%, and the increase is slow with the growing number of

features. It means the recognition rate is not sensitive to the number of features, which is

not the case with the mid-level features. This verified the aforementioned fact that the learnt

high-level features are semantically meaningful. They can largely improve the recognition

efficiency without decreasing the performance for a large data set.

We believe the features lie on some manifolds, therefore we can apply the manifold

learning technique to embed them into a low-dimensional space while maintaining the data

structure. We conducted a group of experiments to compare some other manifold techniques

(e.g. PCA, ISOMAP, Eigenmap) to DM. We have briefly discussed the difference between

them in the introduction. All of them firstly embed the mid-level features into a 100-

dimensional space, and then apply k-means to the mid-level features to obtain N clusters

(high-level features). The results are shown in Figure 6.4 (a) (all the techniques have been

tuned to have better parameters). We can see the DM can achieve varied improvements from

about 2% to 5% in terms of recognition rate, as compared to others. Both DM and ISOMAP

define an explicit metric in the embedding space (i.e., diffusion distance and geodesic distance

respectively). The experiments further confirm that diffusion distance is more robust than

geodesic distance.

As we know, the semantic high-level features are learnt by applying k-means clustering on

the embedded mid-level features. Another way to show the effectiveness of DM embedding is

to compare the recognition rate of high-level features learnt by embedded mid-level features

to that of original mid-level features without embedding (k-means is used as a clustering for

both). The results are shown in Table 6.2. The improvements are varied from 2.7% to 4.0%.

We believe PMI can capture the relationship between a particular mid-level feature and

videos as well as other mid-level features. This is further verified by the experiments shown

in Table 6.3. We conducted two groups of experiments. Both of them use DM to embed
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Vocabulary Size (Nv) 50 100 200 300

Embedded features 88.8% 92.3% 91.3% 91.3%
Original features 84.8% 88.3% 88.6% 88.3%

Table 6.2: Performance comparisons between two vocabularies learnt from mid-level features
with and without DM. embedding.

Vocabulary Size (Nv) 50 100 150 200 250

PMI 88.8% 92.3% 90.8% 91.3% 91.1%
Frequency 85.8% 88.3% 88.6% 89.8% 88.3%

Table 6.3: Performance comparison between two different midlevel feature representations:
PMI vs. Frequency. embedding.

features into a lower-dimensional space. The difference is that one of them uses PMI to

represent the mid-level features and the other directly uses frequency to represent them.

It is very interesting to check the confusion table when the best average accuracy is

obtained; see Figure 6.5 (a). “Jogging” obtains a 90% recognition rate, which is better

than most existing approaches [72]. However, “running” is easily misclassified as “jogging”.

The overall average accuracy of 92.3% is much better than the average accuracy of 89.3%

obtained by directly using the 1,000 mid-level features for classification. It is also a little bit

better than some existing BOF-based approaches [47] [111].

6.3.2 Experiments on YouTube data set

Since the KTH data set is relatively simple, we collected a more complex and challenging

data set based on YouTube videos and our personal video collections. Since we do not have

control over the video capturing process, the data set has the following properties: 1) a mix

DM ISOMAP PCA EigenMap

Average Accuracy 74.9% 73.5% 73.3% 73.1%

Table 6.4: Best results of different manifold learning techniques.
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of still cameras and moving cameras, 2) cluttered background, 3) variation in object scale, 4)

varied viewpoint, 5) varied illumination, and 6) low resolution. This action data set contains

8 categories: volleyball spiking (v spiking), trampoline jumping (t jumping), soccer juggling

(s juggling), horseback-riding (h riding), diving, swinging, golf-swinging (g swinging), and

tennis-swinging (t swinging). Most of them share some common motions such as “jumping”

and “swinging”. We organize the video sequences into 25 relatively independent groups,

where separate groups are either taken in different environments or by different photogra-

phers. The data set contains 800 video sequences in total. Figure 1.6 shows some examples

of the YouTube data set.

We extracted about 200 to 400 cuboids from each video, and then used k-means to obtain

1,000 mid-level features. All the experiments were conducted on these features. Figure 6.5

(b) demonstrates the performance comparison between DM and other manifold learning

methods. It shows the DM gives a more stable recognition rate than other approaches with

varied vocabulary sizes. The best result obtained was 76.1% in accuracy, which is at least

about 2.4% higher than the best results obtained by others. We show its details in the

confusion table in Figure 6.5 (c) for the best results. We can see that lots of actions are

misclassified as “t jumping” and “v spiking”. The reason may be that these two actions are

not uniform and share many action units with other action categories. We also noticed the

best result of 76.1% is competitive to the result of 75.1% obtained by directly using the 1,000

mid-level features for recognition.

Figure 6.6 shows the decay of the eigenvalues of P(t) when the sigma value is 14. For

diffusion time t=2, the top 70 eigenvectors can the most significant ones, and for t=4, the top

10 are the most significant ones. We noticed when t is larger, very few (i.e., 20) eigenvectors

can achieve good performance.

138



6.3.3 Experiments on Scene data set

We further verified our framework on the fifteen scene data set [107]. We learnt 2,000 mid-

level features using k-means. Table 6.4 lists all the best results we obtained using different

manifold learning. It is quite interesting to look at some visualized mid-level features and

high level features shown in Figure 6.7. The visualized center patches are achieved by

averaging all the patches belonging to the mid-level or high-level features. In our experiments,

we noticed that all the mid-level features obtained by k-means are visually smooth like M1,

M2, and M3 in the figure. This is due to the patches of a given mid-level feature having similar

appearance. While looking at the high-level features, they appear to be more meaningful.

For instance, in Figure 6.7 H1 might represent mostly parts of the buildings, H2 might

represent foliage in forest, suburb, and open country scenes, and H3 might represent parts

of the windows or doors in “living room”, “kitchen”, and “bedroom” scenes.

6.4 Conclusion

In this chapter, we propose a novel approach for generic visual vocabulary learning. We first

learnt the mid-level features (the initial visual vocabulary) using k-means, then use the DM

to embedding the mid-level features into low-dimensional space while maintaining the local

relationships of the features. These embedded mid-level features are further clustered to

reconstruct a semantically meaningful visual vocabulary. We tested our approach on three

complicated data sets. The results verify that the learnt semantic visual vocabularies ob-

tained stable performance compared to the mid-level features learnt by k-means. In addition,

we also compared DM with other manifold learning techniques. In most cases, the DM can

perform better, especially for the action data set.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

In this work, we have explored the problem of learning semantic features from the raw

features for visual recognition, including object/scene recognition and action recognition. A

bag of raw features is extracted from the examples, and further quantized into visual words.

Then any instance can be represented by the histogram of the visual words, which is the so-

called bag of visual words model for visual representation. Although it is successful in visual

recognition, this visual representation still suffers several drawbacks. First, its performance

is sensitive to the visual vocabulary size. Computationally expensive cross-validation is a

must to dig out the appropriate quantization granularity. This limitation is partially due to

its second drawback, which is that the visual words are not semantically meaningful. Finally,

it loses the spatial distribution of the features, which is critical for further improvement on

recognition. In order to overcome these limitations, we proposed four approaches to acquire

effective semantic features from the a vast amount of raw features. We analyzed the problems

from two aspects, i.e., feature clustering via maximization of mutual information and feature

projection using manifold learning. We summarize the major contributions in the following

section.

7.1 Summary of Contributions

(i) Action recognition via maximization of mutual information.

• A criterion of achieving better tradeoff between compactness and discrimination.

• An algorithm to automatically discover the optimal number of semantic features

(cluster of visual words).

• Application of the bag of visual words to multi-view action recognition for the

first time.
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• Representation of actions in terms of bag of semantic features.

• Representation of actions in terms of spatiotemporal correlgoram to capture the

structure of feature geometric distribution.

(ii) Scene recognition using co-clustering.

• An algorithm to simultaneously cluster images and visual words to obtain seman-

tic features.

• An introduction of the novel concept of intermediate concepts.

• Representation of a scene in terms of bag of concepts. (BoC).

• An effective scene matching approach of spatial correlgoram match kernel (SCMK)

to capture spatial information on features.

(iii) Object/action recognition using Fiedler Embedding.

• A novel framework to embed all features into the same semantic space.

• A novel action representation in terms of spin-images to capture the shape of

actions.

• A new approach to use the feature’s relationship to improve visual recognition in

terms of weighted bag of visual words.

(iv) Learning semantic vocabulary using diffusion distance.

• Introduction of the novel diffusion distance to measure the similarity between two

features.

• An novel framework to learn semantic visual vocabulary.
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7.2 Future Work

The approaches proposed in this work can be improved in many ways. We describes some

attempts in the following subsections.

7.2.1 Refine the output of information bottleneck

The algorithm we applied in this work is an agglomerative information bottleneck. Although

it works very well in our experiments, it still suffers some limitations. For example, it is

computationally expensive. In addition, as it is a greedy method, it can not guarantee the

optimal solution. However, its clustering results can be further improved by the sequential

information bottleneck. The basic idea of this variation is similar to k-means algorithm. It is

able to reach a “stable” solution. So we can use agglomerative IB to obtain a better number

of clusters, and then use sequential IB to refine the clusters.

7.2.2 Semi-supervised method

Whether using feature clustering via maximization of mutual information or feature pro-

jection by manifold learning, video (image)-VisualWords co-occurrence matrix is a critical

data structure providing the semantic information of the visual words. Neither of them use

the supervised information explicitly. Since in the classifier training phase we have labelled

training instances, we can use these labels to improve the semantic features. One example is

co-clustering. We can provide labels to the co-clustering method, and it can use the labels

as an initial clusters of videos. It can also compare the video cluster with the true labels at

each iteration.

Another example is diffusion maps. The visual words similarity is computed on the

distribution of visual words on videos. However, when we construct the initial vocabulary

using k-means, we can preserve the label information of each cuboids in one visual words.

Hence, it is easy to obtain the category percentage in each single visual words, which can
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provide semantic information of the visual words from another aspect. Then the similarity

between two visual words can also computed on the category percentage of the visual words.

Gaussian Kernel is the right tool to combine different measurements.

7.2.3 multi-scale matching

As we can see, diffusion maps has the capability to perform multi-scale analysis on the data

by defining varied time steps. However, we only use one level of information to construct

the vocabulary. It is worth to exploit how to combine the information provided by different

time steps. Thus, we can match instances in multiple scales.

7.2.4 Efficient shape model

Although we have proposed to use spatial correlogram match kernel and spatiotemporal

pyramid match kernel, there is still lots of room for us to explore the geometric relationship

between the features in location. One potential solution is to apply conditional random field

(CRF), which able to capture the feature relationship in space.
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