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ABSTRACT

With the increasing pervasiveness of digital cameras, the Internet, and social networking,

there is a growing need to catalog and analyze large collections of photos and videos. In this

dissertation, we explore unconstrained still-image and video-based face recognition in real-world

scenarios, e.g. social photo sharing and movie trailers, where people of interest are recognized and

all others are ignored. In such a scenario, we must obtain high precision in recognizing the known

identities, while accurately rejecting those of no interest.

Recent advancements in face recognition research has seen Sparse Representation-based

Classification (SRC) advance to the forefront of competing methods. However, its drawbacks,

slow speed and sensitivity to variations in pose, illumination, and occlusion, have hindered its

wide-spread applicability. The contributions of this dissertation are three-fold:

1. For still-image data, we propose a novel Linearly Approximated Sparse Representation-

based Classification (LASRC) algorithm that uses linear regression to perform sample se-

lection for l1-minimization, thus harnessing the speed of least-squares and the robustness of

SRC. On our large dataset collected from Facebook, LASRC performs equally to standard

SRC with a speedup of 100-250x.

2. For video, applying the popular l1-minimization for face recognition on a frame-by-frame

basis is prohibitively expensive computationally, so we propose a new algorithm Mean Se-

quence SRC (MSSRC) that performs video face recognition using a joint optimization lever-

aging all of the available video data and employing the knowledge that the face track frames

belong to the same individual. Employing MSSRC results in a speedup of 5x on average

over SRC on a frame-by-frame basis.

3. Finally, we make the observation that MSSRC sometimes assigns inconsistent identities to

the same individual in a scene that could be corrected based on their visual similarity. There-
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fore, we construct a probabilistic affinity graph combining appearance and co-occurrence

similarities to model the relationship between face tracks in a video. Using this relationship

graph, we employ random walk analysis to propagate strong class predictions among similar

face tracks, while dampening weak predictions. Our method results in a performance gain

of 15.8% in average precision over using MSSRC alone.
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CHAPTER 1: INTRODUCTION

With the increasing pervasiveness of digital cameras, the Internet, and social networking,

there is a growing need to catalog and analyze large collections of photos and videos. Popular

social networks, such as Facebook, allow users to place tags on photos to label people, encouraging

collaboratively organized photo albums amongst friends, a simple, yet tedious task for humans. It

is approximated that 350 million photos are uploaded to Facebook daily [1] and 100 hours of

video uploaded to YouTube every minute [2], in addition to the large catalog of movies available

on services like Apple iTunes, Google Play, and Amazon Instant, which easily translates to billions

of faces to tag. Because visual interest is largely determined by who appears in the image, labeling

identities is particularly important. Imagine millions of social network users needing to tag their

photos; further imagine watching a movie, home video, or YouTube video and wanting to find all

of the scenes with a particular person of interest. Such web-scale labeling problems present a real

challenge and fascinating opportunity for automation by face recognition.

Face recognition’s long history could be described best by its many datasets introduced

over the years that addressed key challenges at the time of collection. Early datasets such as

AT&T (ORL) [3], AR [4], Yale [5], FERET [6], and PIE [7] were collected in the laboratory to

control and explore solutions for illumination, expression, age, pose, and disguise. In such tightly

controlled environments, machine learning can match or surpass humans [8] and performance

is often very good at the risk of overfitting to overly structured situations. As face recognition

grew beyond the confines of laboratory settings, evaluations such as FRVT [9], FRGC [10], and

MBE [11] applied face recognition to real problems like mugshot and passport scanning, high

resolution imagery, 3D facial scans, and outdoor scenarios. Lately, face recognition research has

shifted towards realistic faces captured in more uncontrolled conditions. In particular, consumer

and Internet face recognition tasks have increased in popularity with “in-the-wild” datasets such

as LFW [12], PubFig [13], and various private Facebook galleries [14–16]. This has spurred the
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development of more robust algorithms, although humans still outperform the best approaches

[13]. On controlled scenarios, face identification performance is excellent (∼99.5%), as shown in

Sec. 3.3.2.1. Further, on more realistic data like LFW performance is high at 95.1%. However, in

both scenarios its good performance does not translate to web-scale recognition tasks. With the

expanding capability to share photos online, it is imperative to break from the reliance on standard

benchmark face datasets to more complicated, realistic datasets.

All face recognition tasks addressed by the aforementioned datasets fall into one of three

categories (Fig. 1.1): closed-universe face identification, open-universe face verification, and open-

universe face identification.

1. Closed-Universe Face Identification: Face recognition research, whether still-image or

video-based, generally works in a closed identification framework where it is assumed that

the classifier will only receive test images from subjects in the training model (Fig. 1.1(a)).

In other words, given a set of labeled training faces, what is the identity of a new face? This

task is closed-universe because no new faces will be unknown; thus, results are reported

as accuracy or error rates. This setting is the most common form of face recognition with

controlled datasets such as Extended Yale B, AR, MultiPIE, or FERET [14–30].

2. Open-Universe Face Verification: On the other hand, face verification techniques present

a more open framework that returns a prediction that a pair of images is the same or not

(Fig. 1.1(b)). In other words, is an input face’s claimed identity correct? Because people can

claim any identity, the verification task is open-universe. As popular datasets like LFW [12],

PubFig [13], GBU [31], BANCA [32], and XM2VTS [33], the task is referred to as pair-

matching.

3. Open-Universe Face Identification: However, more realistically, a complete open-universe,

face identification scenario is necessary for most system deployments (Fig. 1.1(c)). This

paradigm posits, given a labeled training gallery, (1) what is the probability that a new test
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face is known and (2) what is the most probable identity? Since new face identities are not

restricted, the task is referred to as open-universe.

Despite being the most realistic face recognition scenario, open-universe face identification is one

of the least-studied tasks.

(a) Closed-Universe Face Identifica-
tion

(b) Open-Universe Verification (c) Open-Universe Face Identification

Figure 1.1: Three common face recognition tasks. Closed-universe face identification assumes all
input face images are from a known class. Open-universe face verification simply assumes a pair
of input images are the same or not the same. Open-universe face identification assumes the input
test sample can be unknown.

Generally, web-scale tasks fall under open-universe face identification. For example, in a

social network context, only friends should be tagged within a photo while other faces should be

ignored or in the context of a movie, only known cast members or public figures should be tagged,

while all others should be annotated as background actors. Moreover, imagine a task often referred

to as the watch-list problem requires a security system to watch for a small, specific set of people of

interest while ignoring all others. As the Multiple Biometrics Evaluation 2010 [11] concluded, “In

practice, the open-set identification task is more difficult for biometric systems (and presumably
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for human operators) than the verification task.” The study further stated that in the watch-list

task, which is a subproblem of face identification, classification becomes increasingly difficult as

more identities are added to the list, similar to scaling from a specific set of actors in a movie to

the large number users in a social-network scenario. Most recently, there has been interest in the

object recognition community on open-universe recognition [34], however this development has

yet to reach wide-spread interest in the face recognition community. Increasing attention in the

research community at large and the difficulty of the problem highlight the necessity of evaluating

real-world, open-universe facial identification.

Existing studies in open-universe face identification are either small-scale [6] or private,

controlled, and tailored to specific application domains (mugshot and visa images) [9, 11]. There-

fore, in contrast to existing face recognition studies, this dissertation pursues the real-world, open-

universe face identification task, in which unknown identities must be rejected with high precision.

To address this task we collect two datasets one for still-image face recognition using Facebook

and another for video face recognition from YouTube. While exploring these datasets, we develop

three methods for open-universe face identification for still-image and video application domains:

1. We present Linearly Approximated Sparse Representation-based Classification (LASRC) for

fast classification or rejection of individuals in large-scale image databases.

2. We extend the Sparse Representation-based Classification (SRC) paradigm to the task of

video face recognition using Mean Sequence Sparse Representation-based Classification

(MSSRC) to accurately label known actors, while rejecting background actors.

3. We propose an Affinity-based Propagation technique that temporally and visually relates

face tracks in a video to further improve performance in recognition.

In the subsequent sections, we motivate these three methods and their strengths with respect to

their application domains.
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Figure 1.2: Still-Image Face Identification. We address the difficult problem of identifying a face
from an unconstrained image with a dictionary of faces from many people, while rejecting un-
known individuals.

1.1 Still-Image, Open-Universe Face Identification

In consumer-driven and Internet applications as depicted in Fig. 1.2, there are many unique

challenges in applying face recognition: the massive-scale nature of dozens or hundreds of faces

each for hundreds or thousands of people, the uncontrolled nature of illumination, age, pose, ex-

pression, a high variance in image quality, and noisy data due to human mislabeling. Although

there are several large-scale evaluations like FRVT [9], FRGC [10], and MBE [11] and verification

datasets such as GBU [31] and LFW [12], open-universe face identification remains a little-studied

problem in the research community at large, especially with respect to large-scale web and con-

sumer related photo tagging tasks, where we must identify specific people reliably while rejecting

all others as distractors.

With the expanding capability to share photos online, face identification becomes crucial

for the sharing and organization of images of interest. With existing research and datasets fo-
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cusing on closed-universe face identification and open-universe face verification, it is imperative

to break from the reliance on standard benchmark face datasets to more complicated, realistic

datasets. Therefore, unlike past face identification studies, we generated large-scale, real-world

datasets from Facebook emulating real photo-albums with user annotated face images for easy

benchmarking (http://face.enriquegortiz.com).

Furthermore, classification is a crucial stage of any face recognition algorithm, where the

goal is to match a query to its correct identity. Most recently, the ground-breaking work, Sparse

Representation-based Classification (SRC) [35], showed that the assumption that a novel test im-

age can be represented by a linear approximation of the training set can be used for classification.

Although SRC has maintained high accuracies, its need for well-aligned, normalized data and com-

putational complexity has received criticism, therefore its realistic application has been limited.

To address existing insufficiencies with SRC methods when scaling face identification to

web-scale applications, we propose a novel and efficient algorithm named Linearly Approximated

Sparse Representation-based Classification (LASRC). Inspired by these sparse methods [17, 35]

that scale poorly as the number of training images increase (often taking seconds or even min-

utes using the fastest algorithms on a gallery of 100,000 faces), we investigate how to reduce the

high computation times of `1-minimization techniques used to recover coefficient vectors relating

a test face to those in a dictionary. Starting with least-squares solutions, we find the interesting

result that imposing brute-force sparsity by thresholding low-magnitude coefficients can markedly

improve accuracy in large-scale datasets. We establish the key insight that there exists a corre-

lation between the high-magnitude components of `2 solutions and coefficients chosen by sparse

`1-minimization. Our method LASRC exploits the speed of `2 to quickly initialize a sparse solution

and serve as an approximation to `1-minimization, which accurately refines the solution. Further-

more, we show LASRC classifies 100-250 times faster than SRC with similar performance, is

comparable to SVMs with almost no training required, and outperforms realtime, state-of-the-art

algorithms in web-scale face recognition.
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Figure 1.3: Video Based Face Identification. We address the difficult problem of identifying a
video face track with a dictionary of still face images of many people, while rejecting unknown
individuals.

1.2 Video-based, Open-Universe Face Identification

Face Recognition has received widespread attention for the past three decades due to its

wide-applicability ranging from surveillance to photo album annotation. Only recently has this

interest spread into the domain of video, where the problem becomes more challenging due to the

person’s motion and changes in both illumination and occlusions. However, it also has the benefit

of providing many samples of the same person, thus providing the opportunity to convert many

weak examples into a strong prediction of the identity.

As video search sites like YouTube have grown, video content-based search has become

increasingly necessary. For example, a capable retrieval system should return all videos contain-

ing specific actors upon a user’s request. On sites like YouTube, where a cast list or script may

not be available, the visual content is the key to accomplishing this retrieval accurately. In this

dissertation, we explore the often little-studied, open-universe scenario in which it is important to
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recognize and reject unknown identities, i.e. we identify famous actors appearing in movie trailers

while rejecting background faces that represent unknown extras.

The main drawback of video-based face recognition is the availability of annotated video

face tracks. With the advent of social networking and photo-sharing, computer vision tasks on

the Internet have become increasingly intriguing and viable. This avenue is one little exploited by

video face recognition. Although large collections of annotated individuals in videos are not freely

available, collecting data of annotated still images is easily doable, as witnessed by datasets like

Labeled Faces in the Wild (LFW) [12] and Public Figures (PubFig) [13]. Due to wide availability,

we employ large databases of still images to recognize individuals in videos, as depicted in Fig. 1.3.

Existing video face recognition methods tend to perform classification on a frame-by-frame

basis and later combine those predictions using an appropriate metric. A straight-forward applica-

tion of `1-minimization in this fashion is very computationally expensive. In contrast, we propose

a novel method, Mean Sequence Sparse Representation-based Classification (MSSRC), that per-

forms a joint optimization over all faces in the track at once. Though this seems expensive, we

show that this optimization reduces to a single `1-minimization over the mean face track, thus

reducing a many classification problem to one with inherent computational and practical benefits.

Our proposed method aims to perform video face recognition across domains, leveraging

thousands of labeled, still images gathered from the Internet, specifically the PubFig and LFW

datasets, to perform face recognition on real-world, unconstrained videos. To do this we collected

101 movie trailers from YouTube and automatically extracted and tracked faces in the video to

create a dataset for video face recognition (http://vfr.enriquegortiz.com). We show

our method outperforms existing methods in precision and recall, exhibiting the ability to better

reject unknown or uncertain identities.
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Figure 1.4: Subgraph from the movie Date Night for the actor Steve Carrel, where each node
represents a face track. The edge weights are generated using our affinity metrics showing a strong
relationship between tracks of the same person (Steve Carrel) and a weak relationship with the
unknown actor (top right).

1.3 Affinity-based Video Face Recognition

In the last few years, there has been increased interest in face recognition in sitcoms [36,37].

These methods have focused on using additional context such as script text, audio, and clothing;

however, the employed face identification methods have not been very accurate. Moreover, their

end goal is person-identification, which in one sense is a more difficult task than standard face

recognition because it requires continued recognition even when there is no visible face data.

On the other hand, it is an easier task because the consistent contextual cues, i.e. hair style and

clothing, compensate for inaccurate face recognition performance. Instead of focusing on fusing

different contextual inputs, we focus on the difficult task of developing a highly precise method for

unconstrained video face recognition.

Most video-based face recognition methods, like our method MSSRC, if they retain any

temporal information, only consider the relationship between frames, thus ignoring any temporal
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or visual affinity between individual face tracks in the same video. In any given sitcom or movie

scene, many face tracks are produced for present actors. This result is sometimes due to poor

tracking, shot changes, or pose variations. Due to these same reasons, face predictions may be

noisy, where a face track may be classified correctly as one individual and a later track of the same

person identified incorrectly. Within these scenes, there is a reasonable assumption that the people

of interest do not change facial appearance much, therefore a strong relationship can be associated

between face tracks of the same person as shown in Fig. 1.4.

Given the key insight that algorithms tend to misclassify face tracks visually similar to

those correctly labeled, we propose an affinity-based method to share classification knowledge

throughout an entire video. To do this we first build an affinity graph relating every face track to

every other face track in a given video. Then we use random walks to propagate correct labels

and demote wrongly labeled face tracks to improve prediction results over the entire movie. We

construct the probabilistic affinity graph using the appearance and co-occurrence of predicted la-

bels, to smooth the label predictions of closely related face tracks via random walk analysis. In the

resolution of this dissertation, we show our method increases average precision and accuracy on

our unconstrained Movie Trailer Face Dataset and The Big Bang Theory Dataset.

1.4 Contributions

The purpose of this dissertation is to analyze the problem of open-universe face identifi-

cation in both video and still-imagery, a relevant, but little-studied problem in face recognition

research. We propose two novel algorithms Linearly Approximated Sparse Representation-based

Classification (LASRC) for still-image recognition and Mean Sequence Sparse Representation-

based Classification (MSSRC) for video-based recognition. Both methods have strengths in their

respective domains, but both perform exceptionally well in the task of rejecting unknown identi-

ties. Finally, we propose an Affinity-based Propagation scheme to correct noisy misclassifications
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to better identify known actors and reject unknown, background actors. Our contributions are

enumerated as follows:

1. Develop a novel algorithm, LASRC, for realtime, accurate, and web-scale, still-image face

identification.

2. Introduce a new algorithm, MSSRC, that performs video face recognition using a joint op-

timization leveraging all of the available video data and employing the knowledge that face

track frames belong to the same individual.

3. Propose an affinity-based propagation scheme for the accurate identification of known indi-

viduals and the rejection of unknowns in video via Random Walks.

4. Release two large, real-world face recognition datasets:

i. Facebook Face Dataset: consisting of feature descriptors for a new Facebook Face

Dataset from 800,000 faces images and a Facebook downloader tool for analysis of

large face datasets.

ii. Movie Trailer Face Dataset: consisting of 101 movie trailers from YouTube and 4,485

video face tracks.

Each of these points will be discussed in greater detail throughout the dissertation.

1.5 Organization of Dissertation

This dissertation is organized as follows: Chapter 2 describes the taxonomy of face recogni-

tion research and related work from both still-image and video-based face recognition. Next, Chap-

ter 3 derives our efficient algorithm LASRC for open-universe face identification and presents a

comparison of LASRC to many state-of-the-art of algorithms with large-scale, real-world datasets

collected from PubFig, LFW, and Facebook. Subsequently, Chapter 4 introduces a complete
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pipeline for video face recognition from tracking to recognition using our novel method MSSRC

for real-world, open-universe video face identification, which we test on difficult movie trailers

collected from YouTube. Next, Chapter 5 describes our method to smooth label predictions across

a movie using the affinity between face tracks. Finally, Chapter 6 summarizes the contributions

and findings of this dissertation followed by a discussion of future directions to explore.
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CHAPTER 2: BACKGROUND

Over the course of several decades, face recognition research has amassed a large breadth

of studies. Given our area of focus is open-universe face identification, we begin with an overview

of existing work in open-universe identification. Next we discuss the relevant datasets and works

first for still-image face recognition and then video face recognition. For a more general overview

of face recognition research, we refer the readers to [38, 39] for still-image and [38, 40] for video-

based face recognition.

2.1 Open-Universe Identification

Real-world tasks such as identifying famous people or labeling friends fall under open-

universe face identification, the most realistic application domain for face recognition on the web,

where the system must determine if the query face exists in the known gallery, and, if so, the most

probable identity. Thus, it is uncertain how the excellent results reported under closed-universe

assumptions [16,17,19,22,24,41] perform in open-universe scenarios. Likewise, verification tasks

are popular and have progressed significantly [12, 13, 42], although verification algorithms have

rarely been evaluated in identification tasks. Grother and Phillips [43] provide good insights by

exploring the relationship between verification and identification tasks, however they use several

simplifying assumptions that may not not be very applicable to web-scale face recognition: identity

predictions are independent per individual and the distribution of predictions can be approximated

via Monte-Carlo sampling. Thus it is unclear how and to what effectiveness verification algorithms

can be efficiently adapted to web-scale face identification; in fact, a recent National Institute of

Standards and Technology (NIST) report on face recognition [11] asserts identification-specific

algorithms can offer more accurate predictions and better scalability to large populations than

performing many verifications.
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Historically, NIST has run a series of face recognition evaluations since the 90s, including

explorations of open-universe face identification. Phillips et al. [6] first evaluate the controlled

FERET [6] dataset on open-universe identification with a greater than 90% correct identification

of known individuals with little variance as the false accept rate of unknown individuals increased.

Subsequently, the Face Recognition Vendor Test (FRVT) 2002 [9] evaluated the open-universe,

watch-list task on a mixture of visa images and a quasi-controlled collection, where the gallery

of known individuals is very small out of a large population of individuals. Finally, the Multi-

Biometric Evaluation (MBE) 2010 [11] expands previous evaluations to a much larger scale evalu-

ating both open-universe verification and identification. Although the image data is from mugshots,

passports, driver’s licenses, a much different image source than most consumer and web faces, the

results provide valuable insights, confirming FRVT 2002 results that the identification rate de-

creases as the population size increases.

Li and Weschler in [44] examine open-set face recognition using Transduction Confidence

Machines (TCM) with nearest neighbor on two small datasets (450 and 750 images) with con-

trolled, frontal face images. Both [45] and [46] use a multi-verification system for open-set identi-

fication, where a verifier or 1-vs-all SVM classifier is trained for each identity. Given the responses

from each verifier, a test face is labeled unknown if all verifiers give a negative response and the

most likely candidate is given a positive response. Our use of SVMs is similar, however we em-

ploy a looser rejection criterion where we reject based on a threshold. Most recently, Scheirer et

al. [34] explored the open-universe scenario in the object recognition community. They modify

SVM margins by introducing two metrics: (1) generalization to separate the planes to handle data

beyond the training data and (2) specialization to bring planes closer where an open-set risk mea-

sures the trade-off; however they test on small datasets so scalability to the large scale problems

we are addressing is uncertain.
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2.2 Still-Image Face Recognition

Still-image face recognition has a long history of research with several datasets exploring

many parameters. In this section, we detail several datasets controlled and uncontrolled (“wild”)

as well as the most relevant algorithmic works to our method.

2.2.1 Datasets

Traditionally, face recognition operates on faces captured in artificial environments where

conditions are carefully controlled or labeled (AR [4], Yale [5], and FERET [6]). More recently,

web-gathered LFW [12] and PubFig [13] datasets have gained popularity with face verification

tasks with an increased focus on large-scale evaluations such as GBU [31] and MBE [11]. We

summarize existing datasets in Tab. 2.1.

2.2.1.1 Controlled Datasets

Faces in highly controlled datasets such as Ext. Yale B [5] and the AR Face Database [4]

are very popular choices for face recognition evaluation. The Extended Yale B [5] dataset contains

38 subjects under 64 lighting conditions (Fig. 2.1(a)). The AR Face Database [4] contain 50 male

and 50 female subjects with images taken two weeks apart for each (Fig. 2.1(b)). The FERET

dataset [6] (Fig. 2.1(c)) explores variations in pose, expression, and even time. Although testing

on such datasets provides a good baseline for proof-of-concept, excellent results do not necessarily

ensure success on uncontrolled, real-world scenarios. Private datasets such as those used in FRVT

[9], FRGC [10], and MBE [11] are less controlled and much larger and realistic, being pulled from

law enforcement and visa sources.

15



(a) Ext. YaleB (b) AR (c) FERET

(d) Labeled Faces in the Wild

(e) PubFig (f) Facebook

Figure 2.1: Example faces highlighting the emergence of realism from controlled datasets (a-c) to
web-gathered datasets (d-f). (a) Extended Yale B [5] concentrates on illumination, (b) AR [4] on
disguises, and (c) FERET [47] on pose. (d) LFW [12] focuses on pair matching between famous
faces while (f) PubFig [13] has gathered many celebrity photos. (f) Our challenging yet realistic
Facebook dataset is naturally diverse in pose, illumination, occlusion, age, and even drawings.
Publishing consent was obtained.
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Table 2.1: A brief summary of a subset of popular and Internet-based face recognition datasets,
listing whether or not they are publicly available for download, the photographic source of the
images (captured in a lab, taken from law enforcement visas/mugshots, or the Internet), whether
or not the images were controlled (i.e. if the subjects were captured in a specific setting or in the
wild), for what task most papers use the dataset (closed universe identification, face verification,
or open universe identification), approximately how many faces per known identity there are, the
number of known identities in the dataset, the number of total faces, and the number of unknown
identities. †Some photos are taken outdoors in natural lighting. *Raw images not available for
privacy reasons, but feature descriptors are available.

Dataset Name Public Source Controlled Main Task
Faces/

ID
Known

IDs
#

Faces
Unknown

IDs
DOS/Natural [11] No Visas Yes Open ID 1 520k 625k 50k
DOS/HCINT [11] No Visas Yes Verification 3 37.4k 121k 30k
LEO [11] No Mugshots Yes Open ID 1 1.6M 2.4M 200k
SANDIA [11] No Lab Yes Verification 50 263 13.9k -
FERET [6] Yes Lab Yes Closed ID 12 1.2k 14k -
ATT (ORL) [3] Yes Lab Yes Closed ID 10 40 400 -
Ext. Yale B [5] Yes Lab Yes Closed ID 576 28 16.1k -
AR [4] Yes Lab Yes Closed ID 30 126 4k -
GBU [31] Yes Lab Semi† Verification 15 437 6.5k -
LFW [12] Yes Web No Verification 3 5.7k 13.2k -
MultiPIE [30] Yes Lab Yes Closed ID 2k 337 750k -
PubFig [13] Yes Web No Verification 300 200 58.8k -
Facebook [14] No Web No Closed ID 25 15.8k 439k -
Facebook [15] No Web No Closed ID 65 946 61.7k -
Facebook [16] No Web No Closed ID 100 100 10k -
PubFig+LFW (Ours) Yes Web No Open ID 175 200 58k 11k
Facebook (Ours) Semi* Web No Open ID 85 6.1k 803k 110k

2.2.1.2 Verification Datasets

Two datasets designed for face verification have become popular: the Good, the Bad, and

the Ugly (GBU) [31] and Labeled Faces in the Wild (LFW) [12]. Unlike identification tasks that

explicitly determine the identity of a face, in verification tasks, pairs of images are compared for

similarity to determine if the identity of the two people are the same or not. GBU has 65,000

photos of 437 identities divided into three partitions: easy (good), hard (bad), and very difficult

(ugly) faces to match. The division of faces into three partitions is particularly useful to evaluate
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algorithmic performance at different difficulty levels. The LFW dataset has 13,200 faces of over

five thousand celebrities and public figures, and has inspired an interest in face recognition applied

to real-world, “in-the-wild” photos.

2.2.1.3 Web-Gathered Datasets

As previously mentioned, seeking more realistic faces, two new datasets gathered from

Internet images using keyword searches of famous people have been introduced: the 13.2k image

Labeled Faces in the Wild (LFW) [12] dataset (Fig. 2.1(d)) and the 58.8k image Public Figures

(PubFig) [13] dataset (Fig. 2.1(e)). Researchers have also used social network faces [14–16], but

these datasets have not been released. The predominant use of LFW and PubFig is face verification

[12, 13,42], although small subsets have been used for closed-universe face identification [16, 24].

To adapt these datasets for testing open-universe face identification tasks, we first aligned all faces

with the LFW standard, funneling method of Huang et al. [48]. We created five datasets from the

200 identities of PubFig with a random 75%/25% train/test split. To incorporate the open-universe

aspect, all aligned LFW faces were added as distractors (except 138 overlapping identities). This

setup mimics a web-scale scenario of finding specific celebrities while ignoring all others faces.

Figure 2.2: A hierarchy of face identification algorithms discussed in this paper, grouped by broad
categories. Slow performing algorithms such as SRC or SVMs do not scale well, but can employ
fast approximations to make an initial guess that can be refined. Highlighted in gray, we propose a
novel linear regression approximation for SRC, named LASRC.
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2.2.2 Related Work

Since the scope of face recognition research is vast, we cover some recent advances in face

identification shown hierarchically in Fig. 2.2, focusing on least-squares and sparse representa-

tions as these methods have demonstrated remarkable success in controlled datasets (other notable

methods such as those based on attributes and similes [13] or V1-inspired features [16] do not fit

into the subset in Fig. 2.2 and are not considered).

When considering face identification algorithms suitable for large-scale deployment on

a social network or other realtime system with user interaction, several real-world requirements

become evident. (1) Algorithms must scale with low training times because any training taking

over a few minutes will feel unresponsive to end users, who expect new, added photos and identities

to be rapidly processed. (2) Fast classification rates of at least a few Hz are necessary for realtime

performance, otherwise users will be able to label faces faster than the system. (3) Identification

performance must be high while reliably rejecting unknown identities otherwise users may feel

the system is too unreliable. Many existing, popular face recognition, research algorithms suffer

in one or more of these areas when applied to web-scale scenarios. We evaluate the subsequent

related work with these requirements in mind.

Support Vector Machines: SVMs have fast classification and are very popular in recog-

nition tasks [24, 49, 50]. Wolf et al. [24] showed good performance on a small subset of LFW

with multi-feature SVMs. However, training one-vs-all SVMs with hundreds of classes and tens

of thousands of examples takes hours, even with large-scale algorithms such as LIBLINEAR [51],

which is a highly optimized version of linear SVMs, and the dense data patch for speed [49]. Fur-

thermore, limiting the training examples or tuning convergence parameters reduces classification

rates too low to be competitive. Lin et al. [50] introduced an Averaged Stochastic Gradient De-

scent (ASGD) method to train huge SVMs rapidly, but it requires more than 30 minutes for our

large datasets and yields accuracy well below LIBLINEAR. Thus, many current SVM approaches
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train too slowly to be well-suited for dynamic, large-scale face recognition on the Internet where

new photos are constantly uploaded and users expect rapid training of new faces and identities for

improved recognition.

Sparse Representation-based Classification (SRC): In the pioneering work on SRC,

Wright et al. [35] presented the principle that a given test image can be represented by a linear

combination of images from a large dictionary of faces. The key concept was that the test image

can be represented by a small subset of the large dictionary; therefore, the corresponding coeffi-

cient vector is sparse, or has only a few non-zero elements obtained with `1-minimization. Their

experiments showed SRC performed well on standard datasets with simple pixel representations

and is robust to varying degrees of pixel corruption, block occlusion, and certain disguises. How-

ever, SRC required perfectly aligned faces and classification was slow, needing seconds per face.

A large breadth of research in the area of `1-minimization exists. Early work cast the

problem as a linear program [52] and later accounted for small noise with a second-order cone

program (SOCP) [53]. Interestingly, both methods are initialized by the `2 solution. Several faster

algorithms have been developed: Gradient Projection for Sparse Representation (GPSR) [54], Ho-

motopy [55], and Augmented Lagrange Multiplier (ALM) [56], amongst others. GPSR finds the

solution by following the gradient direction via quadratic programming, Homotopy updates its ac-

tive set of candidate non-zero coefficients based on a decision criterion from the `2 solution, and

ALM casts the `1 problem as a Lagrange multiplier method in which infeasible points are given

a high cost and thus ignored. Other methods focus on greedy approximations like Orthogonal

Matching Pursuit (OMP) [57], which selects one new basis, or coefficient, at each iteration and

approximates the sparse solution faster than full `1-minimization, although the correct solution is

not guaranteed.

Improving SRC: Wagner et al. [17] furthered the SRC method by simultaneously aligning

and classifying a test image with respect to a pre-aligned training gallery, thus handling pose

variations in test images. Unfortunately, it is hard to find a well-aligned training set in real-world
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scenarios. To rectify this, Peng et al. in [58] combined low-rank and `1-minimization to perform

batch alignment of images. However, this low-rank optimization takes a long time with large

datasets even with recent optimizations for video [59]. Patel et al. [60] rectifies lighting and pose

via estimation and learns a person specific dictionary via K-SVD an approximation technique used

in OMP. They outperform standard SRC under varying illumination, pose, and occlusions. We

assume fast funneling [48] or eye-based alignment adequately addresses the variations in pose.

Yang and Zhang [19] found that holistic features like PCA and LDA used in [35] cannot

handle variations in illumination, expression, pose, and local deformations. Moreover, the occlu-

sion matrix introduced in [35] makes the `1-minimization problem computationally prohibitive.

They introduced a Gabor wavelet feature as well as a Gabor occlusion dictionary into SRC and

showed their method, GSRC, performs better on standard datasets with large degrees of pose and

occlusion variations. Also noting the usefulness of features, Chan and Kittler [29] used the Local

Binary Pattern (LBP) [61] histogram descriptor, finding local features provided more robustness to

misalignments than SRC on raw pixels. Likewise, Yuan and Yan [41] introduced a multi-task joint

sparse representation named MTJSRC that fuses multiple local features.

Speeding up SRC: While the convex, `1-minimization problem can be easily solved by

linear programming and other classical methods, the complexity remains too high for large, high-

dimensional dictionaries [19]. Observing that the `1-optimization procedure of SRC is very slow,

researchers have focused on speeding-up the process while maintaining robustness. Shi et al. [21]

combined an explicit hashing function to reduce data dimensionality while preserving important

structure information for `1-minimization via OMP. Differently, Nan and Jian [28] and Li et al. [27]

used a fast K nearest neighbor method (KNN) to select training samples local to the test image

for input to the `1-solver. They showed this KNN-SRC method performs well with a consider-

able speedup. Likewise, new correlation-based screening pre-processing rules such as the SAFE

rule [62] or the Sphere Test 3 [63] have been proposed to safely and rapidly eliminate training

samples before `1-minimization for increased speed.

21



Least-Squares Solutions: Instead of optimizing or approximating `1-minimization, other

researchers loosened sparsity constraints by imposing an `2-norm rather than an `1-norm. Bypass-

ing `1-optimization completely, very fast least-squares approaches can be used in coefficient vector

recovery. In [26], Naseem et al. proposed a nearest-subspace least-squares method named LRC

that can be extended with block-based recognition to handle occlusion. Similarly, Shi et al. [22]

questioned whether face recognition is really a compressive sensing problem and demonstrated

least-squares is comparable to SRC on controlled datasets. Zhang et al. [23] presented a regu-

larized `2-minimization (CRC RLS) that placed an additional constraint on the coefficient vector,

adding robustness to occlusion. Furthermore, Wang et al. [18] asserted that locality is more im-

portant than sparsity and discovers a coefficient vector from a weighted least-squares solution, or

Locally-constrained Linear Coding (LLC), performed on an image’s K nearest neighbors. More-

over, Xu et al. [64] propounded that there is a tradeoff between sparsity and stability in linear

solutions. Although studies have cast doubt on the advantages of sparsity for recognition, we show

that `2-based methods struggle when presented with open-universe, real-world data from Labeled

Faces in the Wild (LFW) [12], PubFig [13], and Facebook [14–16].

In summary, SRC methods for face recognition perform well with high robustness with

the drawbacks that they are 1) sensitive to pose variations and 2) slow to recover coefficient vec-

tors. Least-squares methods address the speed issue by removing the `1 constraint on the coef-

ficient vector, however exhibit increased sensitivity to variations in the data as we show later in

Sec. 3.5.3. Although `1 methods are slow, they exhibit robustness in discovering the correct iden-

tity of test faces. Our method combines the speed of least-squares to discover a subset of the initial

dictionary to feed into `1-minimization to discover the final identity of a given test face. In our

experimentation, we address minor variations in pose and illumination through the use of three

popular features (LBP, HOG, and Gabor). Furthermore, we demonstrate least-squares works well

for `1-approximation. Our combination of local features with `2and subsequent `1-minimization

provides the speed and robustness necessary to deal with real-world data.
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Table 2.2: A brief summary of a subset of popular and Internet-based video face recognition
datasets, listing whether or not they are publicly available for download, the photographic source
of the images (captured in a lab, sitcom (TV or Movie), or the Internet), whether or not the images
were controlled (i.e. if the subjects were captured in a specific setting or in the wild), for what
task most papers use the dataset (closed universe identification, face verification, or open-universe
identification), approximately how many faces per known identity there are, the number of known
identities in the dataset, the number of total faces, and the number of unknown identities. †Some
photos are taken outdoors in natural lighting.

Dataset Name Public Source Controlled Main Task
Faces/

ID
Known

IDs
#

Faces
Unknown

IDs
MBGC/FOCS [65] Yes Lab Yes† Closed ID 3 61 197 -
Honda/UCSD [66] Yes Lab Yes Closed ID 2 35 75 -
Buffy [67] Yes Sitcom No Open ID 80 8 639 156
YouTube Celebrities [68] Yes Web No Closed ID 41 47 1910 -
YouTube Faces [24] Yes Web No Verification 0 3425 1595 -
Big Bang Theory [69] Yes Sitcom No Open ID 304 11 3344 415
MTFD (Ours) Yes Web No Open ID 7 210 1552 2933

2.3 Video-Based Face Recognition

In this section, we further explore datasets and the most related work as they relate to

video-based face recognition.

2.3.1 Datasets

Most controlled video datasets [70–72] have fallen out of use, with the exception of a few.

We summarize existing datasets in Tab. 2.2 with a special focus on web-gathered datasets. With the

existence of such a large video sharing website, gathering unconstrained videos from YouTube has

become very popular and easy. By searching for famous people, the YouTube Celebrities [68] and

YouTube Faces Datasets [24] were created. The YouTube Celebrities Dataset (Fig. 2.3(b)) consists

of 1,910 video clips of 47 actors and politicians for face identification and due to its novelty, it

has received much attention. The YouTube Face Dataset (Fig. 2.3(c)) on the other hand focuses

on the face verification task with 3,425 videos of 1,595 different people with an average of 2.15
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videos per person. Although, this dataset is large and from a sizable number of people, its low

number of videos per person makes it difficult to adapt for the face identification task. Following

the pioneering work of Everingham et al. [36], where the goal was to label all characters in the TV

show Buffy, several authors have begun to attack the same problem. Recently, Cinbis et al. [67]

released a new subset of the Buffy dataset (Fig. 2.3(a)) from episodes 9, 21, and 45 for a total

of 639 manually annotated face tracks. Finally, Baüml et al. [69] released the Big Bang Theory

Dataset (Fig. 2.3(d)) for identification within a sitcom. The Big Bang Theory dataset provides

the largest Faces to ID ratio, however our new Movie Trailer Face Dataset (MTFD) provides the

largest open-universe analysis by including the most unknowns and a larger number known IDs,

210 vs. 11 to be exact. Further, other studies have considered the unknowns as an actual class,

which underperforms the alternative of outright rejecting the unknowns.

2.3.2 Related Work

For a complete survey of video-based face recognition refer to [40]; here we focus on an

overview of the most related methods. Current video face recognition techniques fall into one of

four categories: key-frame based, temporal model based, image-set matching based, and context

based.

Key-frame based methods generally perform a prediction on the identity of each key-

frame in a face track followed by a probabilistic fusion or majority voting to select the best

match. Due to the large variations in the data, key-frame selection is claimed to be crucial in

this paradigm [73]. Zhao et al.’s [74] work is most similar to us in that they use a database with

still images collected from the Internet. They learn a model over this dictionary by learning key

faces via clustering. These cluster centers are compared to test frames using a nearest-neighbor

search followed by majority, probabilistic voting to make a final prediction. Chen et al. [75] present

a dictionary based method most similar to ours, however they focus on dictionary learning done on

a per face track basis, whereas we focus on the classification using a still-image gallery. Finally,
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Baüml et al. [69] do not use key-frames, but similarly perform probabilistic voting over all frames

in a track using a classifier trained via Maximum Likelihood Regression (MLR). We, on the other

hand, use a classification scheme that enhances robustness by finding an agreement amongst the

individual frames in a single optimization.

Temporal model based methods learn the temporal, facial dynamics of the face through-

out a video. Several methods employ Hidden Markov Models (HMM) for this end [68]. Most

related to us, Hadid et al. [76] use a still image training library by imposing motion information

upon it to train an HMM and Zhou et al. [77] probabilistically generalize a still-image library to

do video-to-video matching. Generally training these models is prohibitively expensive, especially

when the dataset size is large.

Image-set matching based methods allow the modeling of a face track as an image-set.

Many methods, like [78,79], perform a mutual subspace distance where each face track is modeled

in their own subspace from which a distance is computed between each. They are effective with

clean data, but these methods are very sensitive to the variations inherent in video face tracks. Lee

and Kriegman [79] attempt to address this by learning a subspace for each pose within a face track.

Other methods take a more statistical approach, like [67], which used Logistic Discriminant-based

Metric Learning (LDML) to learn a relationship between images in face tracks, where the inter-

class distances are maximized. LDML is very computationally expensive and focuses more on

learning relationships within the data, whereas we directly relate the test track to the training data.

Context based methods have been very popular due to their application to movies and

sitcoms. Several works [36, 37, 80] perform person identification, where they use all available in-

formation, e.g. clothing appearance and audio, to identify the cast rather than the facial information

alone. Authors in [81] used a small user selected sample of characters in the given movie to com-

pute a pixel-wise Euclidean distance to handle occlusion. While others, e.g. [82], use a manifold

for known characters which successfully clusters input frames. These methods have focused on

simple face recognition techniques, supplemented by context, but on the other hand we focus on
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improving the precision of the face recognizer. Moreover, our framework can easily be extended

to handle context in the second stage.

2.4 Affinity-based Face Recognition

Over the years, researchers have realized the benefit of using context whether it be the

co-occurrence of images or the temporal distance between face tracks to further improve recog-

nition performance. Several graph-based methods employ Markov models in an active-learning

paradigm in which a few samples are selected to be labeled by the user, then used to label the rest

of the data. Gallagher and Chen [83] create a Markov network where similarity edges are formed

between faces in different photos and dissimilarity edges between the others, with an edge weight

defined by appearance. This graph is then used in Loopy Belief Propagation to label all unlabeled

test samples. Kapoor et al. [84] combines Gaussian Processes to enforce label smoothness with

Markov Random Fields to encode the match and non-match structures, where matches are images

of the same individual (faces within a track) and non-matches are faces in the same shot. More

recently, Lin et al. [85] create a probabilistic, Markov framework using multiple contexts (faces,

events, and location) to improve recognition. The strengths of these methods lie in that they are

iterative methods that allow feedback from users and thus label the unlabeled data with few sam-

ples. However, our aim is to label many face tracks, therefore we develop a technique that smooths

the initial predictions across all tracks in one optimization. Also, [84] is the only one that uses

video and they do this by creating edges between frames of the same track, whereas our frame-

work allows us to create a single node per track therefore reducing the size of the graph and thus

computational complexity.

26



(a) Buffy (b) YouTube Celebrities

(c) YouTube Faces (d) Big Bang Theory

(e) Movie Trailers

Figure 2.3: Example faces from existing, realistic video face datasets. (a) Buffy is collected from
several episodes of the TV show “Buffy the Vampire Slayer”, (b) YouTube Celebrities is collected
from videos of celebrities on YouTube, (c) YouTube Faces is also consists of celebrities from
YouTube, but has many more clips and focuses on the problem of face verification, (d) Big Bang
Theory consists of 6 episodes from the TV show, and (e) Movie Trailers, our new dataset, consists
of 113 movie trailers.
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CHAPTER 3: STILL-IMAGE, OPEN-UNIVERSE FACE

IDENTIFICATION

Sparse Representation-based Classification is currently very popular due to its high accu-

racy, but its large computational complexity makes it ill-suited for large-scale face identification.

Therefore, in this chapter we explore how we can increase the speed of SRC for application to

the web-scale task of automatically tagging faces in photos. We show that by combining least-

squares for approximation with the robustness of `1-methods to find the final solution, as shown in

Fig. 3.1, we can obtain high performance without sacrificing too much speed. We further explore

the difficult task of rejecting unknown identities, desirable in real-world applications like tagging

photos on social networks, and evaluate several state-of-the-art algorithms with our new real-world

datasets collected from Facebook.

3.1 Linearly Approximated SRC for Face Identification

Our problem is the classic face recognition scenario where we want to classify a test image

y ∈ Rm given a database of C known subjects (classes). Assume the nj faces of subject j ∈

[1, . . . , C] are stacked into a matrix Bj = [b1, . . . , bnj
] as column vectors, therefore matrix B is

composed of all of the faces for all subjects B = [B1, . . . ,BC ] ∈ Rm×n, where m is the length

of the feature vector and n = n1 + · · · + nj is the total number of images. Assuming that test

image y can be represented as a linear combination of images of itself within the training set, we

can represent the problem as y = Bx, where x is a coefficient vector encoding the relationship of

y to the columns ofB.
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Figure 3.1: System pipeline depicting how LASRC classifies a new test face y given a set of
training facesB. After alignment and preprocessing, local features are extracted and concatenated,
linear regression is performed to select a pool of representative training samples Ω, and SRC with
`1-minimization is performed to calculate the most probable identity and confidence.

3.1.1 Least-Squares Solution

A typical solution is to use the traditional method for error minimization, least-squares, to

find an estimate of x, which casts the minimization as:

x̂`2 = arg min
x
‖y −Bx‖22, (3.1)

and is computed by the psuedoinverse as follows:

x̂`2 = (BTB)−1BTy. (3.2)
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The `2 solution is convenient as it is very fast to evaluate and the pseudoinverse can be precomputed

with Singular Value Decomposition (SVD) and cached. If the system is under-determined, a least-

norm formulation is used and has a similar pseudoinverse. Wright et al. [35] stated that x̂2 is dense

and therefore is not very informative. However, recent studies [22,23] show that `2 works well for

common datasets even though the measurements are noisy.

3.1.2 Sparse Representation-based Classification

Compressive sensing has been shown to outperform least-squares using only a subset of

available data [35]. Given test image y and training set B, we know that the images of the same

class to which y should match is a small subset of B. Therefore, the coefficient vector x should

only have non-zero entries for those few images from the same class and zeros for the rest. Im-

posing this sparsity constraint upon the coefficient vector x with small dense error ε to handle

noise/occlusion results in the following formulation:

x̂`1 = min
x,ε
‖x‖1 + ‖ε‖2 s.t. y = Bx+ ε, (3.3)

where the `1-norm enforces a sparse solution by minimizing the absolute sum of the coefficients.

The sparsity constraint results in the largest non-zero values being concentrated on the matching

training images corresponding to the correct class.

Wright et al. [35] identifies the test image y by determining the class of training samples

that best reconstructs the face from the recovered coefficients:

I(y) = min
j
rj(y) = min ‖y −Bjxj‖2, (3.4)

where the label I(y) of the test image y is the minimal residual or reconstruction error rj(y) and

xj is the recovered coefficients from the global solution x̂`1 that belong to class j. Confidence in

the determined identity is obtained using the Sparsity Concentration Index (SCI) proposed by [35].
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SCI is a measure of how distributed the residuals are across classes:

SCI =
C ·maxj ‖xj‖1/‖x̂`1‖1 − 1

C − 1
∈ [0, 1]. (3.5)

SCI ranges from zero (the test face is represented equally by all classes) to one (the test face is fully

represented by one class). Wright et al. [35] show that SCI is a better metric than the minimum

residual for rejecting distractor faces, which is particularly important in open-universe, real-world

environments.

3.1.3 Approximating SRC

A large drawback to SRC is the computational complexity required by `1-minimization,

which requires several seconds per image [17, 35] even on datasets with only a few hundred or

thousand training samples. Compared to least-squares which takes less than 100 ms for the largest

Facebook datasets, the fastest `1-solver, Homotopy [55], takes at least 5 seconds while more accu-

rate solvers take over a minute. Therefore, we developed a way to approximate `1-minimization.

The objective function v(x) of the Lagrangian formulation of the `1-minimization (3.3)

specified as a sequence of vector operations is as follows:

v(x) = ‖y −
n∑
i=1

aixi‖2 + λ

n∑
i=1

|xi|, (3.6)

in which we denote bi ∈ Rm as the i-th column of B, xi as the i-th element of coefficient vector

x, and λ as the sparsity controlling parameter. Assuming K sparsity where at most K values are

non-zero, for any i for which xi = 0 in (3.6), then ‖bixi‖2 = 0, |xi| = 0, and bi do not contribute

to v(x). Based on this observation, we rewrite the objective function as:

v(α) = ‖y −
K∑
i=1

ωiαi‖2 + λ

K∑
i=1

|αi|, (3.7)
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where ωi represents a column from a matrix Ω containing only columns contributing to the error

and α its corresponding coefficient values. Since the error estimation above is not dependent on

the zero entries of x, v(x) = v(α). With the new dictionary Ω and coefficient vector α, we can

reformulate the `1-minimization as:

α̂ = arg min ‖y − Ωα‖2 + λ‖α‖1 (3.8)

The new objective function v(α) is analytically identical to v(x), yet much faster to evaluate for

K � n. Since the `1 solution produced by the GPSR `1-solver [54] with τ = 0.01 is 97.6%

sparse, significant speed-ups are possible. However, `1-minimization is an iterative optimization

with a finite step-size so some difference in solution is expected. We measure the difference to be

4% on randomly generated data, but only 1.6% using 10,000 images from Facebook.

This formulation depends on knowing which coefficients of x will be non-zero in order

to form Ω, or equivalently, which training samples will be included in the sparse minimization.

Finding the exact contributing samples is no easier than `1-minimization, but we claim it is easier to

approximate. As discussed in Sec. 3.1.1, `2-minimization is very fast, convenient, and has proven

to be adequate for standard face recognition datasets. Furthermore, it is evident that although the

`2 solution is dense, the highest peaks are similar to the `1 solution and correspond to the training

images that match the identity of the test image, as we will show in Section 3.4. Moreover, as

previously noted the `2 solution is used to initialize several `1 solvers. We conclude that despite

`2 being noisier, it has a similar shape to `1 and is likely to serve as a good approximation. In

Sec. 3.4.2.1, we show that high-magnitude coefficients of least-squares have a high probability of

corresponding to non-zero coefficients in `1 solutions. This correlation is largely related to the fact

that both obtain global solutions on similar error functions with different norm constraints.
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3.1.4 Linearly Approximated SRC

Our proposed algorithm, Linearly Approximated SRC (LASRC), uses `2 solutions to ap-

proximate `1-minimization to gain the speed of least-squares and the robustness of SRC. In Fig. 3.1,

we show our complete system for face recognition. We focus on the classification stage, where we

perform linear regression approximation and SRC. We first rapidly compute the coefficient vector

x̂`2 with linear regression (3.2) using the pre-calculated pseudo-inverse (BTB)−1BT . Next, we

select the top K training samples fromB corresponding to the largest magnitude coefficients |x̂`2|

and create the approximated matrix Ω = as. We then use the smaller dictionary Ω as input to the

`1-solver to compute a new sparse vector α shown in (3.8). The most probable identity is found

using the minimal residual error rj(y) = ‖y − Ωjαj)‖2. Finally, we compute SCI as in (4.11) for

the probability that the given test image identity exists in the training database. In the hierarchy

shown in Fig. 2.2, our method is sparse using a least-squares approximation.

Algorithm 1 Linearly Approximated SRC (LASRC)
1. Input: Training gallery B ∈ Rm×n, test face y ∈ Rm×1, and sparsity controlling parameter
λ.

2. Normalize the columns ofB to have unit `2-norm
3. Compute linear regression using the pre-calculated pseudoinverse x̂`2 = (BTB)−1BTy
4. Select K samples from B corresponding to the largest coefficients in |x̂`2|, yielding subset

Ω
5. Solve the `1-minimation problem with approximated subset dictionary Ω ∈ Rm×K

α̂ = arg min ‖y − Ωα‖2 + λ‖α‖1

6. Compute residual errors for each class j ∈ [1, C]

rj(y) = ‖y − Ωjαj‖2

7. Compute SCI

SCI =
C ·maxj ‖αj‖1/‖α̂‖1 − 1

C − 1

7. Output: identity I(y) = arg minj rj(y), confidence P (I ∈ [1, C]|y) = SCI
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3.2 Facebook Dataset

As discussed in Chatper 2, traditionally, face recognition operates on faces captured in ar-

tificial environments where conditions are carefully controlled or labeled (AR [4], Yale [5], and

FERET [47]). More recently, web-gathered LFW [12] and PubFig [13] datasets have gained pop-

ularly with face verification tasks. Our interest is in large-scale, realistic face identification sce-

narios for personal photo collections where diversity is naturally-captured. Several works have

explored face identification with photos from Facebook [14–16], but only in the closed-universe

scenario. None have addressed the more important open-universe scenario where the algorithm

will encounter many background faces that should be rejected as non-friends. Focusing on the sce-

nario of automatically tagging friends in open-universe social networks, we created a new 800,000

face dataset (Fig. 2.1(f)) collected from tagged Facebook photos. Feature descriptors for this new

dataset and our downloader tool for Facebook photos, tags, face detection, matching, and align-

ment are available at http://face.enriquegortiz.com.

3.2.1 Dataset Construction

Using our provided tools, researchers can build very similar, yet customizable datasets from

Facebook.

Face Collection: Similar to Stone et al. [14] and Becker and Ortiz [15], we collected 24.6

million photos with a total 29.2 million tags, representing 2.9 million unique people from a total

of 83,000 Facebook users. The high-performance SHORE face detection system [86,87] was used

to detect 48.3 million frontal faces with a rotation range of approximately ±35◦ at a rate of 20 Hz.

From 3,000 ground-truth face and tag matches, we modeled the probability that a tag represents a

nearby face based on distance and orientation. Using a false alarm rate (FAR) of 1%, 17.4 million

face matches were extracted and aligned by a similarity transform based on SHORE-reported eye

positions.
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Table 3.1: Facebook (FB) and PubFig+LFW (PF) datasets detailing the training identities per
dataset and the number of dataset repetitions. Reported training, test, and distractor faces per
dataset are averaged.

Name Ids Reps Train Test Distractor

FB256 256 8 22.0k 7.2k 4.5k
FB512 512 4 42.4k 13.9k 9.0k
FB1024 1024 2 88.6k 29.0k 18.8k

PF 200 5 35.5k 11.6k 11.7k

Including Distractors: For many photos, distractor (unknown) faces exist in the back-

ground. For each test face, we collected tagged, non-friend faces also in the photo and labeled

them as distractors. As listed in Tab. 3.1, there are similar numbers of test and distractor faces.

Thus, our dataset exactly models the real-life scenario and allows evaluation of the face identifica-

tion algorithms’ ability to reject unknown faces under the open-universe scenario.

Dataset Statistics: To best mimic real-world usage, we randomly placed Facebook users

into groups of 256, 512, and 1024 identities to simulate users with varying numbers of friends.

For thorough evaluation, we sample multiple repetitions of each group with no overlap amongst

any identities or photos. Only users with at least 20 photos were kept as they are more likely to

be tagged and represent more than 75% of the collected faces. We collected all the photos a user

had been tagged in and used the oldest 75% faces as training and the remaining most recent 25%

photos as testing, which most closely models the real-world.

3.2.2 Evaluation Criterion

For photo-tagging algorithms in social networks, we evaluate using precision and recall

curves, recall at 95% precision, and computational cost. Because accuracy is not particularly

informative in an open-universe scenario, where there are distractors, we propose using precision,
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which encodes the ratio of correct identifications to the number of returned identifications, and

recall, which is a ratio of coverage over the known test data [88]. Intuitively, the PR curves tell

us at a given threshold how much data of interest do we label and how well we do on that data.

Often Average Precision (AP) or F-scores are used to summarize PR curves, but we feel that recall

at 95% precision better reflects real-world performance as this corresponds to the percentage of

detected faces that can be labeled with only one mistake in 20 predictions. Since fast classification

and training times are necessary in such dynamic, real-world situations, it is important to report

train and test times.

3.2.3 Dataset Bias

Torralba and Efros [89] emphasized the importance of minimizing the selection, capture,

and negative set biases of new datasets. Unlike LFW and PubFig images, our Facebook dataset

does not suffer from a keyword-based selection bias as we automatically extracted faces from

crowd-annotated personal photos. However, selection is biased towards younger people given so-

cial network demographics. In contrast to the professional photographer bias of LFW and PubFig,

Facebook’s capture bias is predominantly skewed towards everyday, consumer quality photos. Tra-

ditionally, classification is handled as a binary problem where you must label a positive class of

interest amidst a negative class consisting of a very large range of classes it is not, where coverage

of all classes is very difficult. The negative set bias in our scenario is minimized due to the large

sampling range offered by data collection via Facebook. More importantly, our dataset has a large

negative set in the form of a realistic set of distractors from non-friend background faces.

3.3 Feature Representations

Using local features to augment classification is a widely used technique [24,61,90]. How-

ever, due to underlying assumptions of pixel-wise linearity, least-squares and sparse methods have
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primarily focused on raw pixels [17,22,23,35]. On the other hand, Chan and Kittler [29] and Yang

and Zhang [19] reported that using features increased accuracy by 20-40% when misalignments or

pose variations were present. Furthermore, there is evidence that multi-feature sparse methods can

be successful in object recognition [41].

3.3.1 Feature Selection and Extraction

Due to real-world pose variations, even after alignment, we use three popular features:

Gabor wavelets [90], Local Binary Patterns (LBP) [61], and Histogram of Oriented Gradients

(HOG) [91]. Inclusion of more features aids recognition slightly, but with loss in time.

Before feature extraction, all images are first normalized by subtracting the mean, removing

the first order brightness gradient, and performing histogram equalization. Gabor wavelets were

extracted with one scale λ = 4 at four orientations θ = {0◦, 45◦, 90◦, 135◦} with a tight face crop

at a resolution of 25x30 pixels. A null Gabor filter includes the raw pixel image (also 25x30) in

the descriptor. In agreement with [25], we found looser crops work better for histogram-based

features. The standard LBPU2
8,2 (uniform circular patterns of 8 pixels and a radius of 2) and HOG

descriptors are extracted from 72x80 loosely cropped images. Each features has a histogram size

of 59 and 32 over 9x10 and 8x8 pixel patches, respectively. All descriptors were scaled to unit

norm, dimensionality reduced with PCA to 512 dimensions each, and zero-meaned.

3.3.2 Performance

For reporting results, we use both controlled datasets (Sec. 2.2.1.1) and the Facebook

datasets (Sec. 3.2). Times are from a 2.3 GHz machine (single-threaded).

3.3.2.1 Controlled Datasets

To better understand feature performance, we present results on controlled datasets (Sec.

2.2.1.1), including both the originally reported accuracies and our results when running the same
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algorithms on a 1995 length vector concatenated from Gabor, LBP, and HOG. For Ext. Yale B, we

randomly selected 32 images per subject for training, leaving 32 for testing. This random selection

is repeated 10 times. For the AR Face Database we selected seven images from Session 1 for

training and seven images from Session 2 two weeks later for testing. Using standard experimental

protocols and the same database setups as [19–21, 27, 35, 41], our results are directly comparable

to previously reported accuracies. Tab. 3.2 clearly illustrates two important conclusions. First,

higher-dimensional local features powerfully aid all algorithms. Secondly, since most algorithms

achieve a 99.5% or higher accuracy with features, we conclude face recognition on small, same

day, and moderately controlled illumination datasets is largely a solved problem. Finally, to explore

robustness against pose, 1400 faces from 198 identities from the FERET dataset [6] with pose

variations of θ = {−25◦,−15◦, 0◦, 15◦, 25◦} were used in the same manner as [19]. Fig. 3.2(a)

uses the FERET pose dataset (Sec. 2.2.1.1) to compare SRC [35] with raw pixels, GSRC [19] with

Gabor features, and LASRC with local features. A single feature aids recognition by 20%, but

multiple features with LASRC boosts accuracy up to 50% compared to raw pixels.

3.3.2.2 Facebook Dataset

Repeating similar experiments with Gabor, LBP, and HOG features on our large-scale, real-

world Facebook datasets, we investigate in Fig. 3.2(b) the individual contributions of each feature

to LASRC as dimensionality is varied from 96 to 3072. Because linear approximation is so efficient

and a small sample selection K greatly speeds `1-minimization, LASRC classifies in under 150

ms even on the largest Facebook dataset with 3072 dimensions. Raw pixels plateau first at 47%

with 200 dimensions while features such as LBP, Gabor, and HOG peak at 59% between 400-800

dimensions. Finally, a representation of multiple features combined achieves peak accuracy of 67%

at 1536 dimensions (512 from each feature), 20% over raw pixels. Similar to the closed-universe

accuracy in Fig. 3.2, we see a large increase in open-universe performance with more features.
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Table 3.2: Accuracy on controlled datasets as originally published vs. performance using our
three feature representation (Gabor, HOG, LBP). Most algorithms achieve >99.5% with features.
aReported from [35]. bAccuracy interpolated from graph. cNot using a raw pixel representation.

Extended Yale B AR Face Dataset

Algorithm Reported
Acc (%)

Feature
Acc (%)

Reported
Acc (%)

Feature
Acc (%)

NN a 90.7 92.1±0.7 89.7 98.7
SVMa [24] 97.7 99.8±0.1 95.7 99.6
SVM-KNN [92] - 99.7±0.1 - 98.1
SRC [35] 98.1 99.7±0.1 94.7 99.9
MTJSRCb,c [41] 99.5 99.7±0.1 - 99.7
LLC [18] - 99.7±0.1 - 99.9
OMP [21] 96.4 99.6±0.1 96.9 100.0
KNN-SRC [28] 88.0 99.7±0.1 - 99.9
LRC [26] - 98.7±0.4 - 98.9
L2 [22] 98.9 99.8±0.1 95.9 99.9
CRC RLS [23] 97.9 99.8±0.1 93.7 100.0
LASRC (Ours) - 99.7±0.1 - 99.9
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Figure 3.2: Performance of LASRC with Features. (a) Performance on FERET pose dataset (b)
Accuracy on Facebook dataset with various features and varying dimensionality. (c) Precision and
recall curves on Facebook for feature representations with m = 1536 dimensionality.
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3.3.3 Effect of Occlusion in Real-Life

One of the well known advantages of linear representations such as SRC is their ability to

robustly handle occlusions, noise, and disguise via the creation of an occlusion dictionary [22,35].

Since occlusions are clearly evident in real-world faces, we resized Facebook images to 15x13

and used a 195x195 identity matrix as an occlusion dictionary. Compared to SRC on raw pixels,

SRC with an occlusion dictionary yields an improvement of 0.5% in accuracy and 1.1% increase

in recall at 95% precision. We conclude that an occlusion dictionary helps performance, but much

less than features. This is unsurprising as [22, 35] used all unoccluded faces for training and all

occluded faces for testing, which is rarely the case in real-world scenarios. Furthermore, occlusion

dictionaries assume raw pixel representations or linear Gabor filters [19], so a general solution

for histogram features such as LBP and HOG is still an open research problem. Because features

increase accuracy by 15-25% (Fig. 3.2(b)) while occlusion dictionaries only help by 0.5%, we

choose to focus on multi-feature representations.
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Figure 3.3: Effect of recall at 95% precision by varying the size of the dataset (mean number of
minimum training faces for all Facebook datasets) across multiple algorithms.
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3.3.4 Effect of Dataset Size in Real-Life

Although our proposed approach targets very large, web-scale datasets in environments

where users of social media upload and share many photos, it is worthwhile to investigate perfor-

mance on casual users who only infrequently upload photos. To simulate scenarios where individu-

als may have only a few photos for training, we randomly subsampled each user’s photo collection

in the Facebook dataset by 50%, 25%, and 10%. Fig. 3.3. shows the performance as dataset size

is varied across a selection of algorithms; notice LASRC remains competitive to existing methods,

even in scenarios where some users have only 3 training faces available.

3.4 Sparsity and Locality Analysis

Lately there has been controversy between the relative effectiveness of least-squares [22,

23, 26, 64] vs. sparse [17, 35, 41] solutions. Furthermore, some works advocate the use of locality

[18,18,28] for approximation. Since LASRC uses `2 solutions to approximate `1 sparse solutions,

we explore how these algorithms perform in large-scale, open-universe scenarios with respect to

sparsity and locality.

3.4.1 Sparsity

By selecting only a small pool of K training samples for `1-minimization, LASRC yields

an extremely sparse solution. Typical sparsity for GPSR `1-minimization with λ = 0.01 is about

97%; whereas LASRC is 99.7 - 99.9% sparse with K = 64. However, [22, 23] claim that sparsity

is not needed in face recognition, prompting us to ask important questions:

• What `1-solver should LASRC use?

• How do non-sparse, least-squares solutions perform in realistic, open-universe scenarios?

• Is `1-minimization necessary for LASRC?
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• How fast are `1, `2, and LASRC algorithms?

3.4.1.1 Algorithms for `1-minimization

To answer the first question, a variety of `1-minimization techniques could be used [93].

Tab. 3.3 evaluates popular approaches to `1-minimization within LASRC, which seeks a sparse

representation between relatively few samples in a high dimensional space. All algorithms were

run with λ = 0.01, tol = 10−6, and all other parameters set to their defaults. While several

algorithms perform similarly, we selected GPSR [54] as a good compromise.

3.4.1.2 Least-Squares Performance

On controlled datasets, [22,23,26] used least-squares to achieve results comparable to SRC

with orders of magnitude speed benefits. However, they operate with completely balanced datasets

with an equal number of training samples per class. Since `2 solutions are dense with all training

images contributing to the residual error computation, least-squares methods are more sensitive

to imbalances in image distribution. Realistic datasets such as LFW, PubFig, and Facebook are

naturally unbalanced, so least-squares approaches yield poor accuracy and even poorer precision

and recall performance (Tab. 3.3). Existing works [22, 23, 26] fail to address this issue, so we

attempted to give least-squares algorithms a competitive edge by balancing the datasets. As shown

in Tab. 3.3, least-squares balanced to a max of 100 randomly-selected training images per identity

increases accuracy by 10% and recall at 95% precision by 12%. However, it still underperforms

LASRC.

3.4.1.3 Imposing Sparsity on `2 Solutions

Although balancing the dataset for maximum accuracy significantly improves performance,

it is perplexing that least-squares seemingly contradicts the findings of [22,23] with 7% less accu-

racy and 20% lower recall than LASRC. Are LASRC’s performance benefits coming from sparsity
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or `1-minimization? To investigate, we propose a hypothetical Thresholded L2 algorithm that im-

poses sparsity on `2 solutions by thresholding low magnitude coefficients to zero. Thresholded L2

is identical to LASRC’s approximation step except it bypasses the second `1-minimization step to

isolate the effect of sparsity.

For analysis, we varied sparsity from 0% to 99.9% and the balancedness of the Facebook

dataset from unbalanced (all images with variable faces per person) to completely balanced (25

training faces per person). The results graphed in Fig. 3.4 provide several key insights. First,

simple sparsity does not appreciably increase recall and in fact decreases accuracy when datasets

are completely balanced, which agrees with [22, 23]. Second, what is surprising is that even the

crude, brute-force imposition of sparsity by Thresholded L2 can increase performance of both

accuracy and recall significantly in the unbalanced cases. The results in Fig. 3.4 suggest that least-

squares [22,23] with local features are not ideal for naturally unbalanced, open-universe data such

as Facebook as even very simple sparse methods can better take advantage of extra user photos

available for training to provide superior performance.

In short, our results suggest that least-squares [22, 23] with local features are not ideal

for naturally unbalanced, open-universe data such as Facebook. In fact, even very simple sparse

methods like Thresholded L2 are superior. Sophisticated `1-minimization methods of imposing

sparsity can further increase recall to outperform least-squares by 12-32% (Tab. 3.3).

3.4.1.4 LASRC vs. Least-Squares Speed

A puzzling result from Tab. 3.3 is that LASRC (GPSR) classifies faster than least-squares

(L2) even though LASRC includes the same `2 step in addition to `1-minimization. The reason

for this discrepancy is that least-squares calculates residuals (4.10) for all classes whereas LASRC

only calculates residuals for classes represented by the K = 64 selected training samples. In fact,

the difference between L2 and Thresholded L2 shows that calculating residuals takes over half of

the classification time. Thus with a fast `1-solver, LASRC can be 2 times faster than least-squares
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on our largest FB dataset with 1024 identities.

3.4.2 Locality

Recognizing the value of sparsity, but unable to accept the slow performance of even the

fastest `1-solvers [93], Nan and Jian [28] and Li et al. [27] both proposed locality approximations

to SRC. KNN-SRC [28], selects a small subset of nearby training samples for `1-minimization to

greatly speed up SRC. LLC [18] replaces the `1-minimization step with a weighted least-squares

emphasizing locality. Similarly to KNN-SRC, SVM-KNN [92] trains a local SVM to classify each

test sample. Refer to Fig. 2.2 for a hierarchy of algorithms. Screening rules of [62, 63] are based

on correlation of the test sample with training samples, which has an equivalence to Euclidean

distance when samples are normalized and thus performs within 0.1% of KNN-SRC.

Table 3.3: Evaluation of least-squares and `1-solvers with LASRC (K = 64). Results reported on
Facebook datasets with mean accuracy, mean recall at 95% precision, and mean classification time
per test face. aConfidence calculated from residuals instead of SCI.

Algorithm Recall
(%)

Accuracy
(%)

Time
(ms/face)

L2a [22] 22.4 49.3 55.3
L2 (balanced, max 100)a [22] 34.5 59.2 52.7
Thresholded L2 41.9 63.3 21.2

LLCa [18] 46.1 61.5 38.1
KNN-SRCa [28] 48.5 63.3 31.6
LRCa [26] 28.4 57.2 43.4

LASRC (Homotopya [55]) 50.5 65.1 61.1
LASRC (l1magic [94]) 44.6 63.3 29.3
LASRC (L1 LS [95]) 53.4 66.6 79.1
LASRC (GPSR [54]) 54.5 66.5 31.7
LASRC (ALM [56]) 54.4 66.5 35.2
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Figure 3.4: Thresholded L2 performance on Facebook as sparsity and balancedness is varied.
(a) Accuracy increases with sparsity for unbalanced datasets (b) Sparsity increases recall at 95%
precision for all but the completely balanced case.

The goal of approximating SRC is to select a small subset of training samples for `1-

minimization so that classification time is greatly reduced while maintaining performance similar

to SRC. KNN-SRC [27,28] proposes nearest neighbor approximation based on the assumption that

a Euclidean distance metric will select faces of the same class as the test face. However, we claim

samples in `1-sparse solutions are not necessarily local under this metric; therefore it is better to

select training samples that would be chosen by `1-minimization, which can be approximated with

linear regression (least squares). To evaluate this claim, we examine recovered coefficients for a

typical test image from an FB512 dataset in Fig. 3.5. All methods exhibit a peak at the correct

class, so Fig. 3.5(b) shows a zoomed in view of the correct class. Notice LASRC with linear

regression weighs samples more similarly to SRC (`1) than KNN-SRC or `2.

3.4.2.1 KNN vs. Linear Regression Approximation

For a quantitative evaluation of the best metric of locality to approximate `1-minimization,

we created dictionaries of randomly generated synthetic samples with the same parameters as
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Yang et al. [93]. For 10,000 test samples (randomly generated from the dictionary with noise),

we calculated the energy or overlap of samples selected by nearest neghbor and linear regression

with the full sparse solution found by `1-minimization as we varied K. Fig. 3.6(a) shows that

linear regression captures the energy of the `1-minimization solution with much fewer samples

than nearest neighbor. Repeating the same experiment with 10,000 samples from real Facebook

data confirms that linear regression approximates `1-minimization better than nearest neighbor

(Fig. 3.6(b)).
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Figure 3.5: Recovered coefficients from a Facebook test face for (a) all training samples and (b)
zoomed in only on the training samples from the correct class (corresponding to the peak in (a)).
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Figure 3.6: Percent of `1-solution selected by approximation algorithms (weighted by coefficient
magnitude) from 10,000 test samples drawn from (a) random synthetic data and (b) a Facebook
dataset.

3.4.2.2 Locality Speed Optimizations

To ensure fair speed comparisons between locality metrics, both KNN and linear regression

were optimized. Linear regression was optimized as a single multiplicationB+y of the test sample

y with the pre-calculated pseudoinverse B+. Performing KNN naively is slow, but we optimized

it by omitting the square root, expanding the term ‖(Bi − y)‖2 into ‖Bi‖2 + ‖y‖2 − 2‖BT
i y‖2,

vectorizing the n dot products BT
i y into a single matrix multiplication BTy, and pre-calculating

‖Bi‖2. For further speedups, p test samples denoted as Y = [y1, ...,yp] can be batch multiplied as

B+Y or 2‖BTY ‖ to take advantage of memory caching. Because many photos are often uploaded

at once as an album, we feel processing several test samples simultaneously is reasonable. We used

a batch size of p = 16, which yielded a 4-5X speedup for both algorithms as seen in Fig. 3.7(a).

3.4.2.3 Locality Performance on Facebook

We evaluated locality approximating methods of SVM-KNN, KNN-SRC, LLC, and LASRC

on Facebook data as K was varied (we omit OMP because it is too slow). In a closed-universe sce-

nario reported in Fig. 3.7(b), LASRC achieves the best accuracy. As expected, KNN-SRC begins

47



to converge with LASRC as K approaches the total number of faces n, when both become SRC.

Although accuracy is informative, Fig. 3.7(c) shows classification time vs. recall at 95% precision

in an open-universe scenario for a more realistic comparison. We also investigated using SCI vs.

residuals for the probability of a distractor and concluded that SCI aids LASRC while degrading

KNN-SRC’s performance. In all cases, LASRC performs faster and with higher recall than all

other locality-approximating methods.

3.5 Comparison to State-of-the-Art

To evaluate the holistic performance of LASRC against current state-of-the-art algorithms

on a large scale, we used realistic PubFig+LFW (Sec. 2.2.1.3) and Facebook (Sec. 3.2) datasets.

We differentiate between non-realtime algorithms, which are often higher performing, but too

slow to be useful in real-world scenarios (either during training or classification), and realtime

algorithms, which are much faster but often not as accurate. Refer to Fig. 2.2 for a hierarchy of

tested algorithms.

3.5.1 Non-realtime Algorithms

Four algorithms from Tab. 3.2 suffer from slow training or classification times: SVMs,

SRC, OMP, and MTJSRC. We omit algorithms such as GSRC [19] because they cannot use mul-

tiple features. For the baseline SRC algorithm, we test with two `1-solvers: Homotopy [55] and

GPSR [54]. We tuned Homotopy for speed with a lower tolerance tol = 10−3. We optimized

GPSR for B = 16 batched operation (Sect. 3.4.2.2) and tuned for maximum recall with λ = 0.05

(λ = 0.01 yields higher accuracy, but lower recall with slower classification times). To validate the

applicability of SRC in real-world situations, we also compare against the popular SVM approach

using the large-scale, one-vs-all LIBLINEAR [51] algorithm optimized with dense data support for

faster training [49] and a slack value of c = 1. Wolf et al. [24] demonstrated a One-Shot Similarity
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Score (OSS) kernel boosts accuracy with few training images; however, we find a linear SVM

works just as well for large datasets. MTJSRC [41], a late fusion, multi-feature SRC approach,

was tuned for two iterations for best performance. OMP was performed with K = 64 and batch

optimized with p = 16 (same as LASRC, KNN-SRC, and LLC).
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Figure 3.7: Analysis of locality approximating algorithms. (a) Both nearest neighbor and linear
regression see speed benefits from batch calculations because of caching effects. (b) Accuracy on
Facebook as K increases. (c) Recall at 95% precision vs. classification time as K increases. For
LASRC and KNN-SRC, confidence calculated with SCI and residuals R are shown. SRC is shown
as a straight line for reference (actual K or classification time are too high to show on the graphs).
*SRC tuned for max recall rather than accuracy with λ = 0.05 so LASRC is able to achieve higher
accuracy in (b) (SRC with λ = 0.01 yields max accuracy, but is too computationally expensive).
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3.5.2 Realtime Algorithms

The remaining eight algorithms from Tab. 3.2 are more suited to realtime operation: NN,

SVM-KNN [92], LLC [18], KNN-SRC [28], LRC [26], L2 [22], CRC RLS [23], and LASRC

(Ours). Except for SVM-KNN, all realtime algorithms classify multiple test samples at once with

a batch parameter of B = 16 (Sec. 3.4.2.2). SVM-KNN uses the LibSVM library [96] to train

a probabilistic, one-vs-all SVM with a pre-computed linear kernel for maximum speed. The lo-

cality approximating value K = 64 is used for SVM-KNN, LLC, KNN-SRC, and LASRC. For

better performance with LRC, L2, and CRC RLS, we balanced the datasets by random selection

to a maximum of 100 and 200 training faces per identity for Facebook and PubFig+LFW, respec-

tively. KNN-SRC and LASRC both use λ = 0.01 for the GPSR [54] `1-minimization algorithm,

although we use the minimum residual as confidence for KNN-SRC and SCI to reject distractors

for LASRC.

3.5.3 PubFig+LFW and Facebook Performance

Using the real-world datasets from Sec. 2.2.1.3 and 3.2, we compare LASRC performance

to other algorithms in both closed-universe and open-universe scenarios.

3.5.3.1 Closed-Universe Accuracy

As reported in Tab. 3.2, almost all algorithms achieved 99.5% or higher accuracy in small,

controlled datasets. Although not our focus, we repeat a similar closed-universe comparison with

large-scale, realistic datasets. Tab. 3.4 shows mean accuracy with standard deviations for PubFig

(LFW is only used in open-universe scenarios) and Facebook (with 256, 512, and 1024 friend

datasets). It is interesting to note that accuracies are significantly more varied and much lower,

reaching a maximum of only 67-82%. On Facebook, SVMs achieve best accuracy with SRC

(GPSR) trailing by 2.0-2.4%. On PubFig, SRC surpasses SVMs by 1.6%, likely because SRC
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can better exploit the many more training samples per identity. Among the realtime algorithms,

LASRC takes the lead by 2.0-4.4%. Additionally, LASRC achieves similar performance to SRC

with only a 0.5-1.3% difference. We conclude that SRC is competitive with SVMs and LASRC

best approximates SRC in closed-universe scenarios.

Table 3.4: PubFig+LFW (200 classes). Recall at 95% precision (open-universe), Accuracy (closed-
universe), and classification time per test face (two significant figures only) for PubFig+LFW and
three sizes of Facebook datasets. Red highlighted entries indicate non-realtime times. ‡ Tuned
for maximum precision and recall without downsampling. †Tuned for speed with λ = 0.01, tol =
10−3. *Tuned for maximum recall with λ = 0.05.

Algorithm Recall (%) Accuracy (%) Time (ms)

N
on

-R
ea

lti
m

e SVM (Liblinear [51])‡ [24] 58.5 80.2 1
SRC (Homotopy [55])† [35] 72.2 72.2 1800
SRC (GPSR [54])* [35] 73.9 81.8 4300
OMP [57] 63.9 79.3 1500
MTJSRC [41] 44.3 70.1 1300

R
ea

lti
m

e

NN 38.2 65.8 16
SVM-KNN [92] 62.5 73.2 31
LLC [18] 66.0 77.8 22
KNN-SRC [28] 67.9 78.8 35
LRC [26] 48.3 70.9 30
L2 [22] 58.0 76.8 21
CRC-RLS [23] 54.9 73.5 23
LASRC (Ours) 72.6 81.3 27

3.5.3.2 Open-Universe Precision and Recall

Since face recognition algorithms must reject unknown identities in real-world environ-

ments, accuracy in a closed-universe is a poor metric for performance. We present more repre-

sentative results in the form of open-universe PR curves in Fig. 3.8 and recall at 95% precision

in Tab. 3.4 for PubFig+LFW and Facebook datasets. SRC exceeds all other non-realtime algo-

rithms at high precision, besting even non-realtime SVMs by 5.1-15.4% and demonstrating sparse

approaches can perform very well in real-world situations. Sparsity-enforcing KNN-SRC, LLC,

and LASRC algorithms surpass the dense, least-squares approaches of LRC, L2, and CRC RLS by
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>10%, confirming the usefulness of sparsity in open-universe scenarios. LASRC again surpasses

all other realtime algorithms by 4.8-6.5%. LASRC’s excellent performance is especially evident

in Fig. 3.8 where it is the only realtime method to achieve a PR curve similar to non-realtime

algorithms, such as SRC and SVMs. More precisely, LASRC can classify over half of all seen

faces with 95% precision, a recall rate that exceeds SVMs by 1.6-14.1%. Further, we completely

outperform the non-realtime algorithms of OMP, MTJSRC, and Homotopy.
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Figure 3.8: Precision and recall curves for (a) PubFig+LFW and (b) Facebook. Of all the realtime
algorithms, only LASRC achieves comparable performance to non-realtime methods (denoted with
*) such as SRC and SVMs.

3.5.3.3 Training and Classification Times

One of the greatest advantages of LASRC is its scalability to large datasets while maintain-

ing rapid classification at a mean rate of 30 Hz over all PubFig+LFW and Facebook datasets. On

the largest Facebook dataset with over 90k training faces, LASRC classifies faster than all other

realtime methods except NN. Furthermore, training time is under a minute except for the FB1024

datasets where it peaks at 2.1 minutes. While SVM classification is extremely fast, LASRC can
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train 95 times faster while still achieving similar or better recall at 95% precision. It is important to

note that SVM training time can be reduced by limiting the maximum number of iterations; how-

ever by doing this, we found precision and recall dropped steeply while training time remained

much higher than LASRC. Likewise, using 10,000 randomly subsampled negative examples for

each class in the one-vs-all SVM reduced training by 4 times, but also significantly reduced recall

by 9-16%. Even with these speedups, LASRC still trains 25 times faster than SVMs. Therefore,

we present results with LIBLINEAR’s default maximum number of iterations and without any

subsampling. While LASRC only approximates SRC’s performance, we feel a 2.1% mean drop in

recall at 95% precision is worth reducing classification from 4-11 s to 22-44 ms, a 100-250 times

speedup. Fig. 3.9 depicts the timeline for realtime methods.

Table 3.5: Facebook (256, 512, and 1024 classes). Recall at 95% precision (open-universe), Ac-
curacy (closed-universe), and classification time per test face (two significant figures only) for
PubFig+LFW and three sizes of Facebook datasets. Red highlighted entries indicate non-realtime
times. ‡ Tuned for maximum precision and recall without downsampling. †Tuned for speed with
λ = 0.01, tol = 10−3. *Tuned for maximum recall with λ = 0.05.

Facebook (256 classes) Facebook (512 classes) Facebook (1026 classes) All

Algorithm
Recall

(%)
Acc.
(%)

Time
(ms)

Recall
(%)

Acc.
(%)

Time
(ms)

Recall
(%)

Acc.
(%)

Time
(ms)

Max Train
Time (min)

N
on

-R
ea

lti
m

e SVM (Liblinear [51])‡ [24] 54.1 73.1 1 50.9 69.5 3 50.0 67.4 6 124.7
SRC (Homotopy [55])† [35] 41.4 59.7 1300 36.9 54.3 2600 34.8 50.8 5400 0.0
SRC (GPSR [54])* [35] 59.2 71.1 2400 56.4 67.3 5400 34.8 50.8 5400 0.0
OMP [57] 51.3 68.3 890 49.5 63.1 1600 55.2 65.0 11000 0.0
MTJSRC [41] 30.5 58.9 840 23.9 51.2 1800 48.7 59.8 2800 0.0

R
ea

lti
m

e

NN 17.9 51.8 11 14.1 46.4 21 12.7 43.4 44 0.0
SVM-KNN [92] 50.5 62.6 31 45.1 56.8 42 42.0 52.6 61 0.0
LLC [18] 49.4 66.1 24 45.1 80.2 24 43.7 57.6 56 0.0
KNN-SRC [28] 51.7 67.8 55 47.8 62.8 67 46.0 59.3 90 0.0
LRC [26] 31.3 60.8 19 27.9 56.6 38 25.9 54.3 72 0.2
L2 [22] 41.5 65.3 23 34.0 58.8 44 27.9 53. 91 1.2
CRC-RLS [23] 45.0 63.9 24 36.2 57.4 46 30.6 52.5 95 2.0
LASRC (Ours) 57.7 69.8 22 54.3 66.1 29 51.6 63.7 44 1.3
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Figure 3.9: Timeline of all steps in the entire face recognition system. All times reported with a
single core of a 2.27 GHz machine.

3.6 Summary

In this chapter, we present a novel Linearly Approximated SRC (LASRC) algorithm that

excels at large-scale, realistic face identification tasks in open-universe scenarios where unknown

and distractor faces must be rejected. Combining the speed of least-squares with the robustness of

sparse representations, LASRC improves upon SRC with only one extra, easily-tunable parameter

K. By selecting a small pool of K training samples for `1-minimization via a linear regression

approximation, classification time is greatly reduced with only a small loss in recall. We exten-

sively evaluate traditional, sparse, and least-squares algorithms with respect to sparsity and locality

under real-world scenarios on two very large and diverse face datasets: (1) a combination of Pub-

Fig and LFW and (2) a new Facebook dataset. While popular algorithms may be less-suited to

dynamic, web-scale scenarios because of slow training times (SVMs) or slow classification (SRC),

LASRC represents a good compromise that both trains and classifies rapidly while retaining good

recall and precision. LASRC exhibits the advantages of SRC with at least 100x faster classifica-

tion and achieves better performance than other fast sparse methods. Furthermore, our approach

compares well to SVMs while training orders of magnitude more rapidly, even against state-of-the-

art algorithms designed for speed and tuned for fast, approximate training. Finally, our approach

outperforms many recent real-time algorithms in speed, accuracy, and recall.
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CHAPTER 4: VIDEO-BASED, OPEN-UNIVERSE FACE

IDENTIFICATION

Video face identification is an obvious, yet difficult, extension of still-image face recogni-

tion techniques. In this chapter, we present our complete system including face tracking, feature

extraction, and identification for video face recognition. Most interestingly, we extend the Sparse

Representation-based Classification (SRC) framework to the recognition of video face tracks and

show that this seemingly difficult task reduces to a simple formulation. We show this result mathe-

matically followed by experiments comparing several methods using existing datasets and our new

Movie Trailer Face Dataset (MTFD) collected from YouTube.

4.1 Video Face Identification Pipeline

In this section, we describe our end-to-end video face recognition system as depicted in

Fig. 4.1. First, we detail our algorithm for face tracking based on face detections from video. Next,

we chronicle the features we use to describe the faces and handle variations in pose, lighting, and

occlusion. Finally, we derive our optimization for video face recognition that classifies a video

face track based on a dictionary of still images.

4.1.1 Face Tracking

Our method performs the difficult task of face tracking based on face detections extracted

using the high-performance SHORE face detection system [87] and generates a face track based

on two metrics. To associate a new detection to an existing track, our first metric determines the

ratio of the maximum sized bounding box encompassing both face detections to the size of the
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larger bounding box of the two detections. The formulation is as follows:

dspatial =
w ∗ h

max(h1 ∗ w1, h2 ∗ w2)
, (4.1)

where (x1, y1, w1, h1) and (x2, y2, w2, h2) are the (x, y) location and the width and height of the

previous and current frames respectively. The overall width w and height h are computed as

w = max(x1 + w1, x2 + w2) − min(x1, x2) and h = max(y1 + h1, y2 + h2) − min(y1, y2).

Intuitively, this metric encodes the dimensional similarity of the current and previous bounding

boxes, intrinsically considering the spatial information.

The second tracking metric takes into account the appearance information via a local color

histogram of the face. We compute the distance as a ratio of the histogram intersection of the RGB

histograms with 30 bins per channel of the last face of a track and the current detection to the total

summation of the histogram bins:

dappearance =
n∑
i=1

min(ai, bi)/
n∑
i=1

ai + bi, (4.2)

where a and b are the histograms of the current and previous face. We compare each new face

detection to existing tracks; if the location and appearance metric is similar, the face is added to

the track, otherwise a new track is created. Finally, we use a global histogram for the entire frame,

encoding scene information, to detect scene boundaries, in other words the end of a scene, and

impose a lifespan of 20 frames of no detection to output existing tracks.

4.1.2 Feature Extraction

The features here are the same as those described in Section 3.3.1, however we reduce

dimensionality using PCA to 1536 dimensions for each feature, as we found this resulted in better

performance in the case of video face recognition.
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Figure 4.1: Video Face Identification Pipeline. With a video as input, we perform face detection
and track a face throughout the video clip. Then we extract, PCA, and concatenate three features,
Gabor, LBP, and HOG. Finally, we perform face recognition using our novel algorithm MSSRC
with an input face track and dictionary of still images.

4.1.3 Mean Sequence Sparse Representation-based Classification (MSSRC)

Given a test image y and training set B, from Chapter 3, we know that the images of the

same class to which y should match is a small subset of B and their relationship is modeled by

y = Bx, where x is the coefficient vector relating them. Therefore, the coefficient vector x

should only have non-zero entries for those few images from the same class and zeros for the rest.

Imposing this sparsity constraint upon the coefficient vector x results in the following formulation:

x̂`1 = arg min
x
‖y −Bx‖22 + λ‖x‖1, (4.3)

where the `1-norm enforces a sparse solution by minimizing the absolute sum of the coefficients

and λ specifies how much weight is given to this norm.

The leading principle of our method is that all of the images y from the face track Y =
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[y1,y2, . . . ,yM ] belong to the same person. Because all images in a face track belong to the

same person, one would expect a high degree of correlation amongst the sparse coefficient vectors

xj∀j ∈ [1 . . .M ], where M is the length of the track. Therefore, we can look for an agreement on

a single coefficient vector x determining the linear combination of training images B that make

up the unidentified person. In fact, with sufficient similarity between the faces in a track, one

might expect nearly the same coefficient vector to be recovered for each frame. This provides the

intuition for our approach: we enforce a single coefficient vector for all frames. Mathematically,

this means the sum squared residual error over the fames should be minimized. We enforce this

constraint on the `1 solution of Eqn. 4.3 as follows:

x̃`1 = arg min
x

M∑
m=1

‖ym −Bx‖22 + λ‖x‖1 (4.4)

where we minimize the `2 error over the entire image sequence, while assuming the coefficient

vector x is sparse and the same over all of the images.

Focusing on the first part of the equation, more specifically the `2 portion, we can rearrange

it as follows:

M∑
m=1

‖ym −Bx‖22 =
M∑
m=1

‖ym − ȳ + ȳ −Bx‖22 (4.5)

=
M∑
m=1

(‖ym − ȳ‖22 + 2(ym − ȳ)T (ȳ −Bx) + ‖ȳ −Bx‖22),

where ȳ =
∑M

m=1 ym/M . However,
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M∑
m=1

2(ym − ȳ)T (ȳ −Bx) = 2

(∑M
m=1 ym −M ȳ

)T
(ȳ −Bx)

= 0(ȳ −Bx) = 0. (4.6)

Thus, Eq. 4.6 becomes:

M∑
m=1

‖ym −Bx‖22 =
M∑
m=1

‖ym − ȳ‖22 +M‖ȳ −Bx‖22, (4.7)

where the first part of the sum is a constant. Therefore, we obtain the final simplification of our

original minimization:

x̃`1 = arg min
x

M∑
m=1

‖ym −Bx‖22 + λ‖x‖21

= arg min
x
M‖ȳ −Bx‖22 + λ‖x‖1

= arg min
x
‖ȳ −Bx‖22 + λ‖x‖1 (4.8)

where M , by division, is absorbed by the constant weight λ. By this sequence, our optimization

reduces to the `1-minimization of x for the mean face track ȳ.

This conclusion, that enforcing a single, consistent coefficient vector x across all images

in a face track Y is equivalent to a single `1-minimization over the average of all the frames in

the face track, is key to keeping our approach robust yet fast. Instead of performing M individual

`1-minimizations over each frame and classifying via some voting scheme, our approach performs

a single `1-minimization on the mean of the face track, which is not only a significant speed up, but
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theoretically sound. Furthermore, we empirically validate in subsequent sections that our approach

outperforms other forms of temporal fusion and voting amongst individual frames.

Finally, we classify the average test track ȳ by determining the class of training samples that

best reconstructs the face from the recovered coefficients similar to single image face recognition

discussed in the previous chapter. First we compute the class probabilities:

p(lc|ȳ) = 1− rc(ȳ)∑
c rc(ȳ)

, (4.9)

where rc = ‖ȳ −Bcxc‖ is the reconstruction error and xc are the recovered coefficients from the

global solution x̃`1 that belong to class c. The most likely class is then the most probable class:

l = max
c
p(lc|ȳ). (4.10)

Confidence in the determined identity is obtained using the Sparsity Concentration Index (SCI),

which is a measure of how distributed the residuals are across classes:

χ =
C ·maxj ‖xj‖1/‖x̃‖1 − 1

C − 1
∈ [0, 1], (4.11)

ranging from 0 (equally represented all classes) to 1 (fully represented by one class).

4.2 Movie Trailer Face Dataset

Existing datasets do not capture the large-scale identification scope we wish to evaluate.

The YouTube Celebrities Dataset [68] has unconstrained videos from YouTube, however they are

very low quality and only contain 3 unique videos per person, which they segment. The YouTube

Faces Dataset [24] and Buffy Dataset [67] also exhibit challenging scenarios, however YouTube

Faces is geared towards face verification, same vs. not same, and Buffy only contains 8 actors; thus,

both are ill-suited for the large-scale face identification of our proposed video retrieval framework.
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Algorithm 2 Mean Sequence SRC (MSSRC)

1. Input: Training gallery B, test face track Y = [y1,y2, . . . ,yM ], and sparsity weight pa-
rameter λ.

2. Normalize the columns ofB to have unit `2-norm.

3. Compute mean of the track ȳ =
∑M

m=1 ym/M and normalize to unit `2-norm.

5. Solve the `1-minimation problem

x̃`1 = arg min
x
‖ȳ −Bx‖22 + λ‖x‖1 (4.3)

6. Compute class probabilities

p(lc|ȳ) = 1− rc(ȳ)∑
c rc(ȳ)

(4.9)

7. Output: identity l and confidence χ

l = max
c
p(lc|ȳ) (4.10)

χ =
C ·maxj ‖xj‖1/‖x̃‖1 − 1

C − 1
(4.11)

4.2.1 Dataset Construction

Face Collection: We built our Movie Trailer Face Dataset using 101 movie trailers from

YouTube from the 2010 release year that contained celebrities present in the supplemented Pub-

licFig+10 dataset. These videos were then processed to generate face tracks using the method

described above.

Including Distractors: Movies contain many background, unknown actors, therefore dur-

ing tracking they are automatically captured. Including these distractors, allows us to evaluate how

well algorithms perform in terms recognizing known individuals, while rejecting unknowns.

Dataset Statistics: The resulting dataset contains 4,485 face tracks, 65% consisting of un-

known identities (not present in PubFig+10) and 35% known, a small sample is shown in Fig. 4.2.
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The class distribution is shown in Fig. 4.3 with the number of face tracks per celebrity in the movie

trailers ranging from 5 to 60 labeled samples. The fact that half of the public figures do not appear

in any of the movie trailers presents an interesting test scenario in which the algorithm must be

able to distinguish the subject of interest from within a large pool of potential identities.

Figure 4.2: Face track samples from our Movie Trailer Face Dataset (MTFD). From top to bottom,
Paul Rudd, Steve Carrell, Tina Fey, and Sean William Scott.
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Figure 4.3: The distribution of face tracks across the identities in PubFig+10.
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4.2.2 Evaluation Criterion

Just as with the still-image experiments, precision and recall present a good way to show

the trade-off between labeling a portion of the data while maintaining high recognition, especially

in the presence of unknown individuals.

4.2.3 Dataset Bias

Torralba and Efros [89] emphasized the importance of minimizing the selection, capture,

and negative set biases of new datasets. Selection bias refers to the kinds of images or source

of the images, e.g. nature, Internet search, etc. Similarly to the PubFig images, we suffer from

a keyword-based selection bias since we only extract faces from 2010 trailers we searched for

on YouTube, however it is ameliorated by the fact that we automatically extract faces from these

videos keeping both those that are known in PubFig and not. The selection is also biased towards

public figures for both PubFig and the Movie Trailer Face datasets that are professionally imaged in

most instances. The capture bias references the tendency of photographs to take pictures the same

way. For example, since our faces are from movie trailers, although directors may have stylistic

differences, the shots taken may be consistent across different movies. The negative set bias refers

to what is considered outside of focus or as Torralba and Efros put it, “the rest of the world”.

Traditionally, classification is handled as a binary problem where you must label a positive class of

interest amidst a negative class consisting of a very large range of classes it is not, where coverage

of all classes is very difficult. The negative set bias is minimized due to the large sampling range

offered by data collection via the internet. Furthermore, the Movie Trailer Face dataset has a large

negative set of unknown actors that are simply not in PubFig or are unknown background actors.
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4.3 Experiments

In this section, we first compare our tracking method to a standard method used in the lit-

erature. Then, we evaluate our video face recognition method on three existing datasets, YouTube

Celebrities, YouTube Faces, Buffy, and our new Movie Trailer Face dataset. We also evaluate

several algorithms, including MSSRC (ours), on our new Movie Trailer Face Dataset, showing the

strengths and weaknesses of each and thus proving experimentally the validity of our algorithm.

Table 4.1: Face Tracking Results. Our method outperforms the KLT-based [36] method in terms
of MOTA by 2%.

Method
Video KLT [36] Ours

‘The Killer Inside’
MOTP 68.93 69.35
MOTA 42.88 42.16

‘My Name is Khan’
MOTP 65.63 65.77
MOTA 44.26 48.24

‘Biutiful’
MOTP 61.58 61.34
MOTA 39.28 43.96

‘Eat Pray Love’
MOTP 56.98 56.77
MOTA 34.33 35.60

‘The Dry Land’
MOTP 64.11 62.70
MOTA 27.90 30.15

Average MOTP 63.46 63.19
MOTA 37.73 40.02

4.3.1 Tracking Results

To analyze the quality of our automatically generated face tracks, we ground-truthed five

movie trailers from the dataset: ‘The Killer Inside’, ‘My Name is Khan’, ‘Biutiful’, ‘Eat, Pray,

Love’, and ‘The Dry Land’. Based on tracking literature [97], we use two CLEAR MOT metrics,

Multiple Object Tracking Accuracy and Precision (MOTP and MOTA), for evaluation that better
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consider issues faced by trackers than standard accuracy, precision, or recall. The MOTA tells

us how well the tracker did overall in regards to all of the ground-truth labels, while the MOTP

appraises how well the tracker performed on the detections that exist in the ground-truth.

Although our goal is not to solve the tracking problem, in Tab. 4.1 we show our results

compared to a standard face tracking method. The first column shows a KLT-based method [36],

where the face detections are associated based on a ratio of overlapping tracked features, and the

second shows our method. Both methods are similarly precise, however our metrics have a larger

coverage of total detections/tracks by 2% in MOTA with a 3.5x speedup. Results are available

online.

Table 4.2: YouTube Faces Results. Results for top performing video face verification algorithm
MBGS and our competitive method MSSRC. Note: MBGS results are different from those pub-
lished, but they are the output of default settings in their system.

Method Accuracy ± SE AUC EER
MBGS [24] 75.3 ± 2.5 82.0 26.0
MSSRC (Ours) 75.3 ± 2.2 82.9 25.3

4.3.2 YouTube Faces Dataset

Although face identification is the focus of this thesis, we evaluated our method on the

YouTube Faces Dataset [24] for face verification (same/not same), to show that our method can

also work in this context. To the best of our knowledge, there is only one paper [98], that has done

face verification using SRC, however it was not in the context of video face recognition, but that of

still images from LFW. The YouTube Faces Dataset consists of 5,000 video pairs, half same and

half not. The videos are divided into 10 splits each with 500 pairs. The results are averaged over

the ten splits, where for each split one is used for testing and the remaining nine for training. The

final results are presented in terms of accuracy, area under the curve, and equal error rate. As seen
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in Tab. 4.2, we obtain competitive results with the top performing method MBGS [24], within 1%

in terms of accuracy, and MSSRC even surpasses it in terms of area under the curve (AUC) by just

below 1% with a lower equal error rate by 0.7%. We perform all experiments with the same LBP

data provided by [24] and a τ value of 0.0005.

Table 4.3: YouTube Celebrities Results. We outperform the best reported result by 6%.

Method Accuracy (%)
HMM [68] 71.24
MDA [99] 67.20
SANP [100] 65.03
COV+PLS [101] 70.10
UISA [102] 74.60
MSSRC (Ours) 80.75

4.3.3 YouTube Celebrities Dataset

The YouTube Celebrities Dataset [68] consists of 47 celebrities (actors and politicians)

in 1910 video clips downloaded from YouTube and manually segmented to the portions where the

celebrity of interest appears. There are approximately 41 clips per person segmented from 3 unique

videos per actor. The dataset is challenging due to pose, illumination, and expression variations,

as well as high compression and low quality. Using our tracker, we successfully tracked 92% of

the videos as compared to the 80% tracked in their paper [68]. The standard experimental setup

selects 3 training clips, 1 from each unique video, and 6 test clips, 2 from each unique video, per

person. In Tab. 4.3, we summarize reported results on YouTube Celebrities, where we outperform

the state-of-the-art by at least 6%.
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Table 4.4: Buffy Dataset. We obtain a slight gain in accuracy over the reported method.

Method Accuracy (%)
LDML [67] 85.88
MSSRC (Ours) 86.27

4.3.4 Buffy Dataset

The Buffy Dataset consists of 639 manually annotated face tracks extracted from episodes

9, 21, and 45 from different seasons of the TV series “Buffy the Vampire Slayer”. They gener-

ated tracks using the KLT-based method [36] (available on the author’s website). For features, we

compute SIFT descriptors at 9 fiducial points as described in [67] and use their experimental setup

with 312 tracks for training and 327 testing. They present a Logistic Discriminant-based Metric

Learning (LMDL) method that learns a subspace. In their supervised experiments, they tried sev-

eral classifiers with each obtaining similar results. However, using our classifier, there is a slight

improvement (Tab. 4.4).

Table 4.5: Movie Trailer Face Dataset. MSSRC outperforms all of the non-SRC methods by at
least 8% in AP and 20% recall at 90% precision.

Method AP (%) Recall (%)

NN 9.53 0.00
SVM 50.06 9.69
LDML [67] 19.48 0.00
MLR [69] 45.98 4.62
L2 36.16 0.00
SRC (First Frame) 42.15 13.39
SRC (Voting) 54.88 23.47
MSSRC (Ours) 58.70 30.23
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4.3.5 Movie Trailer Face Dataset

In this section, we present results on our unconstrained Movie Trailer Face Dataset that

allows us to test larger scale face identification, as well as each algorithms ability to reject unknown

identities. In our test scenario, we chose the Public Figures (PF) [13] dataset as our training gallery,

supplemented by images collected of 10 actors and actresses from web searches for additional

coverage of face tracks extracted from movie trailers. We also cap the maximum number of training

images per person in the dataset to 200 for better performance due to the fact that predictions are

otherwise skewed towards the people with the most examples. The distribution of face tracks

across all of the identities in the PubFig+10 dataset are shown in Fig. 4.3. In total, PubFig+10

consists of 34,522 images and our Movie Trailer Face Dataset has 4,485 face tracks, which we use

to conduct experiments on several algorithms.

4.3.5.1 Algorithmic Comparison

The tested methods include NN, LDML, SVM, MLR, L2, SRC, and our method MSSRC.

For the experiments with NN, LDML, SVM, MLR, L2, and SRC, we test each individual frame of

the face track and predict its final identity via probabilistic voting and its confidence is an average

over the predicted distances or decision values. The confidence values are used to reject predictions

to evaluate the precision and recall of the system. Note all MSSRC experiments are performed with

a λ value of 0.01. We present results in terms of precision and recall as defined in [36].

Tab. 4.5 presents the results for the described methods on the Movie Trailer Face Dataset

in terms of two measures, average precision and recall at 90% precision. NN performs very poorly

in terms of both metrics, which explains why NN based methods have focused on finding “good”

key-frames to test on. LDML struggles with the larger number of training classes vs. the Buffy

experiment with only 19.48% average precision. The L2 method performs surprisingly well for

a simple method. Similarly, MLR struggles at ignoring unknowns, but performs close to SVMs
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in terms of average precision. We also tried Mean L2 with similar performance. The SVM and

SRC based methods perform very closely at high recall, but not in terms of AP and recall at 90%

precision with MSSRC outperforming SVM by 8% and 20% respectively. In Fig. 4.4, the SRC

based methods reject unknown identities better than the others.
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Figure 4.4: Precision vs. Recall for the Movie Trailer Face Dataset. MSSRC rejects unknowns or
distractors better than all others.

The straightforward application of SRC on a frame-by-frame basis and our efficient method

MSSRC perform within 4% of each other, thus experimentally validating that MSSRC is compu-

tationally equivalent to performing standard SRC on each individual frame. Instead of computing

SRC on each frame, which takes approximately 45 minutes per track, we reduce a face track to

a single feature vector for `1-minimization (1.5 min/track). Surprisingly, MSSRC obtains better

recall at 90% precision by 7% and 4% in average precision. Instead of fusing results after classi-

fication, as done on the frame by frame methods, MSSRC benefits in better rejection of uncertain
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predictions. In terms of timing, the preprocessing steps of tracking runs identically for SRC and

MSSRC at 20fps and feature extraction runs at 30fps. For identification, MSSRC classifies at 20

milliseconds per frame, whereas SRC on a single frame takes 100 milliseconds. All other methods

classify in less than 1ms, however with a steep drop in precision and recall.
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Figure 4.5: Effect of Varying Track Length. We see that performance levels out at about 20 frames
(close to the average track length). MSSRC outperforms SVM by 8% in average in terms of AP.

4.3.5.2 Effect of Varying Track Length

The question remains, do we really need all of the images? To answer this question we

select the first m frames for each track and test the two best performing methods from the pre-

vious experiments: MSSRC and SVM. Fig. 4.5 shows that at just after 20 frames performance

plateaus, which is close to the average track length of 22 frames. Most importantly, the results

show that using multiple frames is beneficial since moving from using 1 frame to 20 frames re-

sults in a 5.57% and 16.03% increase in average precision and recall at 90% precision respectively

for MSSRC. Furthermore, Fig. 4.5 shows that the SVM’s performance also increases with more

frames, although MSSRC outperforms the SVM method in its ability to reject unknown identities.
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Figure 4.6: Classification as a function of PCA dimension. As the dimensionality increases, the
accuracy begins to plateau at about 1024 for SVM and 512 for MSSRC.

4.3.5.3 Effect of Dimensionality Reduction

Fig. 4.3.5.2 shows the effect of dimensionality reduction on three algorithms, NN, SVM,

and MSSRC. Increasing the number of dimensions benefits the SVM method the most, with all

methods plateauing around 1536 dimensions for each feature. We cannot increase this any further

since it is the maximum dimensionality of HOG’s selected parameters.

4.3.6 Combining MSSRC with LASRC

An obvious extension of our method MSSRC is to combine our approximation method pre-

sented in the previous chapter to speedup computation. This extension is straightforward requiring

adding the least-squares approximation and selecting the dictionary elements corresponding to the

largest coefficient values. In this section, we explore the effect of varying the approximation value,

which determines how many dictionary elements to keep to pass to the `1-approximation.
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We vary the approximation value from 128 to all dictionary elements and record perfor-

mance in terms of average precision, recall at 90% precision, and test time per track as shown in

Tab. 4.6. With a small approximation value of 128, performance is very poor, however with an

approximation value of 10,000 (1/3 of the data), there is a small performance loss of 1-2% in terms

of average precision and recall at 90% precision with a 3x speedup.

Table 4.6: Effect of varying approximation value on speed after combining LASRC and MSSRC.

Approx. Value AP (%) Recall (%) Test Time (s/track)
128 41.6 13.0 1.0
256 44.1 16.4 1.3
512 46.6 17.0 1.6

2056 50.8 21.2 4.8
8224 55.8 27.0 40.0

10000 57.0 28.6 69.0
ALL 58.7 30.2 211.0

4.4 Summary

In this chapter, we presented a fully automatic end-to-end system for video face recogni-

tion, which includes face tracking and identification leveraging information from both still images

for the known dictionary and video for recognition. Our simple, yet efficient face tracking algo-

rithm compares well to an existing popular method with a 3.5x speedup. We proposed a novel al-

gorithm Mean Sequence SRC, MSSRC, that performs a joint optimization using all of the available

image data to perform video face recognition. We finally showed that our method outperformed

the state-of-the-art on real-world, unconstrained videos in our new Movie Trailer Face Dataset.

Furthermore, we showed our method especially excels at rejecting unknown identities outperform-

ing the next best method in terms of average precision by 8%. Video face recognition presents a

very compelling area of research with difficulties unseen in still-image recognition.
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CHAPTER 5: AFFINITY-BASED VIDEO FACE IDENTIFICATION

Although, MSSRC provides state-of-the-art performance, as shown in the previous chap-

ter, several misclassifications still exist. As shown in Fig. 5.1, in a scene from the popular sitcom

“The Big Bang Theory” the character “Bernadette” is classified correctly by MSSRC, but later in

the scene the character is misclassified. Given global knowledge, i.e. the relationship between face

tracks, a confident classification could help correct weak misclassifications. In this Chapter, we

describe our two-stage method to perform more consistent recognition. Stage 1 performs classifi-

cation as described in the previous chapter. Stage 2 encodes the visual relationship, classification

similarity, and label co-occurrence, to describe the relationship between each face track. Given

the affinity of the face tracks within a video sequence, we use Random Walks to smooth the initial

predictions by propagating strong correct classifications and dampening weak misclassifications.

(a) Earlier in Scene (b) Later in Scene

Figure 5.1: The Big Bang Theory Labeling Error. In this scene of The Big Bang Theory, there is
a correct labeling of Bernadette, followed by a jump cut and misclassification of a similar looking
face track of Bernadette as Raj.

73



5.1 Affinity-based Propagation Method

In this section, we describe our affinity-based propagation method. This technique assumes

initial class predictions and confidences provided by MSSRC shown in Eqn. 4.10 and Eqn. 4.11

respectively. As previously mentioned, our method first constructs an affinity graph relating every

face track based on appearance, classification similarity, and label co-occurrence. Our method then

propagates these predictions using an affinity graph and random walk analysis as shown in Fig. 5.2.
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Figure 5.2: Affinity-based propagation takes initial predictions from our algorithm MSSRC and
uses the affinity between face tracks in a video to smooth the initial predictions and converge on
the final corrected labels.

5.1.1 Face Track Affinity

When creating a relationship among face tracks within a video, we must first consider what

information the face tracks provide. The most obvious and powerful is the appearance information

because we know that within a video the appearance of a person will remain more or less consistent.

Next, we employ the coefficient vector denoting a face track’s relationship to the images in the

dictionary obtained via SRC, since similar face tracks should correspond to similar images in the
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dictionary. Finally, the predictions computed by the face recognizer provide useful information

in that we know the occurrence and co-occurrence of the assigned labels. Combining these three

relationships provides a strong description of how information should be shared throughout a given

video.

Appearance Affinity: For the appearance graph we use the Matched Background Similar-

ity (MBGS) [24], which has been effective in the face verification task (same vs. not same). The

MBGS metric computes a set-to-set distance between two face tracks Y 1 and Y 2 using a back-

ground set of images B. First, the K nearest neighbors of Y 1 to B are used as a negative set to

train an SVM with Y 1 as the positive set. Next, the trained model is used to classify the frames

from track Y 2 on which we compute the mean prediction score. We do the same for the second

face track Y 2 and then compute the final score as an average of the two. Using this metric we can

compute the pairwise appearance similarity between each face track:

da(i, j) = MBGS(Y i,Y j,B). (5.1)

Intuitively, this metric answers the question do the face tracks look more like each other or the

background set.

Coefficient Affinity: Given the output of the SRC-based method, if two face tracks are

similar, we know that they should have a similar coefficient vector, i.e. they should be reconstructed

by similar images in the training dictionary. Therefore, we employ the cosine distance between

coefficient vectors to compute another pairwise similarity:

dc(i, j) =
xi · xj
‖xi‖‖xj‖

(5.2)

where xi and xj are the coefficient vectors of face tracks i and j respectively computed by SRC.

Co-Occurrence Affinity: Finally, we consider the co-occurrence similarity of the labels

of the two face tracks. Using the label predictions, we compute the frequency of each label in a

75



given trailer and use these to compute the Normalized Google Distance [103] as follows:

do(i, j) =
max(log f(li), log f(lj))− log f(li, lj)

logG−min(log f(li), log f(lj))
, (5.3)

where f(li) and f(lj) are the frequencies of the predicted labels from tracks i and j respectively,

f(li, lj) is the frequency of the two labels occurring togethers, and G is the total number of pre-

dictions. We can handle f(li, lj) in two ways. 1) We assume it is zero, since no face track should

receive two labels or 2) we can take the top k predictions from the classifier and compute frequen-

cies and co-occurring frequencies based on these values. In our experimentation, both assumptions

yielded near identical results, therefore we stick with (1) for simplicity, which reduces to a nor-

malized co-occurrence.

5.1.2 Affinity Fusion

The computation of the aforementioned similarity metrics (Appearance, Coefficient, and

Co-Occurrence) allows us to construct an affinity relationship between face tracks by fusing all

three. We first convert our affinities into probabilities utilizing the standard sigmoid function and

combine them using a weighted mean as follows:

d(i, j) = αa exp (da(i, j)/σa) + αc exp (dc(i, j)/σc) (5.4)

+αo exp (do(i, j)/σo),

where σ’s and α’s are the fusion weighing and smoothing parameters respectively, thus forming

the elements of similarity matrix D.
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5.1.3 Random Walk Over Label Affinities

Random walk techniques are popular in the retrieval domain [104] and semi-supervised

learning [105] because of their wide applicability. Random walks can be understood as the like-

liness of transitioning from node i to node j by means of a probabilistic walk between the most

likely nodes in a graph. In our scenario, the nodes are the face tracks and the transition probability

we wish to model is the likelihood that pairs of nodes are of the same person. We compute the

transition probability between face tracks by normalizing the similarity matrixD by the row sum:

a(i, j) =
d(i, j)∑
k d(i, k)

, (5.5)

where d(i, j) is the similarity between nodes i and j as defined above in Eqn. 5.4, forming affinity

matrixA.

Given the transition probability matrix A obtained via normalization of similarity matrix

D, we can define the propagation of labels across the nodes resulting in a sharing of information

with related face tracks (nodes). Such a propagation scheme requires that the label probabilities

of highly related nodes be increased and inversely weak labels must be decreased. Let us first

consider the binary case in which we have the probability of each node belonging to the known

positive class. We can then formulate the label propagation as a weighted sum of the original

prediction and the surrounding node probabilities based on their class probability and affinity to

the node of interest. Therefore, we can iteratively propagate the class probabilities across the face

tracks until an agreement is achieved. The resulting formulation is as follows:

pt(i) = ω
∑
j

pt−1(j)a(i, j) + (1− ω)p0(i), (5.6)

where pt−i(j) is the predicted class probability from the previous iteration, a(i, j) is the probability

of transition between nodes i and j, p0(i) denotes the initial probability of the current node of
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interest j, and ω specifies how much of the current and previous probabilities to keep. Given that

we want to propagate the labels for every node, we can rewrite Eqn. 5.6 in matrix form:

pt = ωApt−1 + (1− ω)p0, (5.7)

where p0 is the initial class probability of the nodes provided by MSSRC.

It can be shown that the iterative method has a unique solution p∗ following the derivation

in [104, 105]. To do this, we evaluate the limit over Eqn. 5.7 given that the initial labeling is p0:

p∗ = lim
n→∞

(ωA)np0 + (1− ω)
t−1∑
i

(ωA)ip0 (5.8)

Knowing that p(i, j) ≥ 0 and
∑

j p(i, j) = 1, we can extrapolate from the Perron-Frobenius

Theorem that the spectral radius ofA is ρ(A) ≤ 1. Since 0 < ω < 1, we can say:

lim
t→∞

(ωA)t−1 = 0.

Then knowing that the following limit is a geometric series, we obtain:

lim
t→∞

t−1∑
i=0

(ωA)i = (I − ωA)−1,

where I is the identity matrix. Therefore, the sequence {pt} converges to:

p∗ = (1− ω)(I − ωA)−1p0. (5.9)

Given the solution p∗, we can determine class association for each node.

For the multi-class scenario, we replace p0 with the matrix P 0 containing the class proba-
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bilities for each node, which results in:

P ∗ = (1− ω)(I − ωA)−1P 0. (5.10)

Therefore, the labels for each class are determined as follows:

li = max
c≤C

P ∗ic, (5.11)

where i is the node or face track of interest, c is the current class, and C is the number of classes.

Similarly, for the SRC-based method we propagate the confidence in the prediction χ for

each node:

χ∗ = (1− ω)(I − ωA)−1χ0, (5.12)

where the resulting values provide an accurate rejection criterion.

Table 5.1: The Big Bang Theory Dataset. MSSRC performs comparatively to the best reported
results, but when combined with affinity-based propagation it outperforms the state-of-the-art by
4%.

Method BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BBT Avg.

MLR+MRF (Reported) 95.18 94.16 77.81 79.35 79.93 75.85 83.71
MSSRC 94.47 89.56 82.84 81.58 81.05 84.37 85.65
MSSRC+Affinity 95.19 90.53 86.00 84.21 83.11 85.91 87.49

5.2 Experiments

In this section, we explore how well our affinity-based propagation method works on two

difficult datasets, one from the TV sitcom “The Big Bang Theory” and the other from movie

trailers. Exploring The Big Bang Theory dataset allows us to see how well our method labels the
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known cast throughout entire episodes from the sitcom, which are much longer than the movie

trailers we analyze. However, the Movie Trailer Face Dataset allows us to consider the scenario

where there are many unknowns to reject, unlike the The Big Bang Theory. In both scenarios,

recognition benefits from affinity-based propagation.

Algorithm 3 Affinity-based Propagation

1. Input: Face Tracks [Y1, . . . , YN ], Training gallery B, Initial Predictions P 0 and confidences
χ0.

2. For each face track pair compute affinities:

da(i, j) = MBGS(Y i,Y j,B) (5.1)

dc(i, j) =
xi · xj
‖xi‖‖xj‖

(5.2)

do(i, j) =
max(log f(li), log f(lj))− log f(li, lj)

logG−min(log f(li), log f(lj))
(5.3)

3. Fuse affinity metrics:

d(i, j) =
∑

k={a,o,c}

αk exp (dk(i, j)/σk) (5.4)

5. Normalize affinity for random walk:

a(i, j) =
d(i, j)∑
k d(i, k)

(5.5)

6. Propagate class prediction probabilities and confidences:

P ∗ = (1− ω)(I − ωA)−1P 0 (5.10)

χ∗ = (1− ω)(I − ωA)−1χ0 (5.12)

7. Output: confidences χ and identities:

li = max
c≤C

P ∗ic (5.11)
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5.2.1 The Big Bang Theory

The Big Bang Theory dataset [69] consists of 3,759 face tracks across the first six episodes

of the first season of the popular show. There are a total of 11 actors that are known and one

additional “unknown” label. The training data is collected by using a weakly supervised technique

matching a video’s speaker with the name in the script. Here we evaluate performance using

accuracy, where all of the unknown characters are considered as one class. The best reported

method combines Maximum Likelihood Regression (MLR) and Markov Random Fields (MRF)

for an average performance over all of the episodes of 83.7% as shown in Table 5.1. We also

show MSSRC’s performance, where we use the residual errors as a threshold to label unknowns.

We use the weakly-labeled samples for each individual episode as the dictionary, except for the

characters Raj and Howard where we use examples from all episodes to balance the dictionary.

Using MSSRC, we are able to get a 2% increase and adding affinity-based propagation we get a 4%

improvement over the state-of-the-art. We find that the increase due to affinity-based propagation

is 2% over MSSRC since most misses are due to “unknowns” and characters that have very few

examples in the dictionary.

5.2.2 Movie Trailer Face Dataset

We now explore our Move Trail Face Dataset following the same experimental setup de-

scribed in the previous chapter. In Fig. 5.3, we show a graphical analysis of the movie “Date Night”

before and after label propagation. In this sample it is evident that the graphs are divided into two

distinct groups representing the two main characters in each movie. Furthermore, before propa-

gation there is substantial confusion in the center of the graph where all of the “unknown” actors

are concentrated with a few misclassifications within the two main character clusters. After label

propagation, the misclassifications within the main character clusters are corrected, especially ev-

ident when zooming in on Tina Fey (Fig. 5.4). Moreover, confidence within the central region is
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correctly weakened so that in the end there is less confusion.

For repeatability, the affinity propagation parameters for the different schemes are reported

in Tab. 5.2. For all experiments, σa = 1, σc = 1, and σo = 1 as not much improvement was

found by changing the smoothing parameter. All other parameters are obtained using a greedy

parameter search, where the α’s determine contribution from different affinities, K defines how

many nearest neighbors each affinity graph uses, and the ω’s defines how much the propagation

scheme weighs the surrounding face track contribution versus the original class probabilities. For

the fusion schemes, we optimize for accuracy, maximum average precision, and recall at high

precision individually, emphasizing different goals. For example, if we are in a closed-universe

scenario, accuracy over known individuals in the training dictionary is more important. However,

if we are in an open-universe scenario in which we want to maximize rejection of unknowns with

very accurate annotation, then maximizing precision is more important.

In Table 5.3, we show the baseline result for MSSRC followed by the result of applying

affinity-based propagation using the individual similarity metrics and their fusion. Compelling

results occur during the fusion of the different affinity metrics, we optimize the parameters for

three different criterions: 1) Accuracy, 2) Average Precision, and 3) Recall at High Precision.

Accuracy: Maximum accuracy models a closed-universe where all of the face tracks are

of known identities in the dictionary. Best results occur by propagating the initial predictions with

an increase of about 34% accuracy. Optimizing for high accuracy, however, negatively impacts

recall at high precision shown in Fig. 5.5 by 12.9% at 95% precision to 18.5% at 90% precision.

Average Precision: Pursuing maximum average precision models an open-universe, where

we want a balance between classifying known identities well while rejecting unknowns with good

precision. Optimizing for average precision using MSSRC results in an increase of 12.6%. Its

benefit is evident by the teal line in Fig. 5.5 that shows an increase over the baseline (MSSRC) and

shows it gives the best compromise in terms of average precision and accuracy compared to the

other fusion schemes, outperforming all curves except at the lower recall values (below 40%).
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(a) Date Night Before Propagation

Unknown

Steve Carell*

Tina Fey*

James Franco*
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Matt Damon

(b) Date Night After Propagation

Figure 5.3: Date Night Before and After Propagation. Accuracy increases from 73.6 to 88.7% and
88.6 to 94.3% in average precision. (*Cast Members)
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Tina Fey*

Key:

Keira Knightley

Cindy Crawford

Unknown

(a) Before Propagation

Tina Fey*

Key:

(b) After Propagation

Figure 5.4: Subgraph from the movie Date Night for the actress Tina Fey where each node is a face
track. Within groups 1 and 2, denoted by red, dashed ellipticals in Fig. 5.4(a), there are errors in
labeling nodes that should have been labeled Tina Fey. After affinity-based propagation, the errors
are corrected as shown in Fig 5.4(b).

High Precision: Optimizing for recall at high precision as showcased by the red line in

Fig. 5.5 provides a substantial increase over the baseline method, however does not outperform the

Max AP scheme in overall precision. The results show that over 30% of the data can be labeled

at greater than 95% precision and 37% of the data can be labeled at 90% precision via graph

propagation, which is an increase of 11% and 7% respectively.

Tab. 5.2 also summarizes the relative contribution of each individual affinity metrics. The

coefficient and appearance affinities attain similar results lagging behind max accuracy fusion by

approximately 9% and max average precision fusion by less than 2%. Interestingly, if the goal

is maximum AP, then using only the coefficient similarity is a viable option because it is quicker

to compute than the appearance similarity and only results in about 2% drop over fusing all of

the affinities. The coefficient affinity outperforms appearance by 9% recall at 95% precision. The
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results for individual affinities are directly comparable to fusion while maximizing average pre-

cision. Fusion excels when maximizing accuracy and recall at high precision, where maximizing

accuracy results in an increase of at least 9% over the individual affinities and 6% at high precision

when maximizing recall at high precision.

Table 5.2: Affinity-Based Propagation Propagation Parameters. These are the resulting parameters
after optimizing for different metrics: average precision, accuracy, and recall at high precision.
The K parameter defines how many nearest-neighbors to use for graph construction, ω parameter
defines how much to weighing surrounding node contribution versus its initial label, and the αs
define how much to weigh the three different affinity metrics.

Parameters K ω αa αc αo

MSSRC N/A N/A N/A N/A N/A
Appearance 5 0.7 1 0 0
Coefficient 10 0.7 0 1 0
Co-Occurrence All 0.3 0 0 1
Fusion (Max Acc) 5 0.9 0.6 0.4 0
Fusion (Max AP) 5 0.8 0.6 0.3 0.1
Fusion (High Prec) 15 0.5 0.5 0.3 0.2

Table 5.3: Affinity-Based Propagation Results. We obtain a peak increase of 34.5% in accuracy
and 12.6% in average precision.

Metrics Acc. AP R@90P R@95P
MSSRC 50.52 58.70 30.23 20.48
Appearance 75.36 70.02 31.14 16.45
Coefficient 75.62 69.40 31.34 25.42
Co-Occurrence 66.71 63.35 26.01 21.33
Fusion (Max Acc) 84.98 60.51 11.77 7.61
Fusion (Max AP) 77.18 71.30 31.14 16.51
Fusion (High Prec) 62.81 67.26 37.52 31.79
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Figure 5.5: Affinity-based Propagation Precision and Recall Curves. Every affinity metric and
fusion scheme provide different benefits over the baseline using no propagation. Appearance and
coefficient affinities perform comparatively, where fusion optimized for high precision provides
the best balance between all metrics.

5.3 Summary

In this chapter, we presented our method for affinity-based propagation. Observing that

many misclassified face tracks in scenes were similar to other correctly classified tracks, we deter-

mined that having a global perspective would aid recognition performance. Our technique builds

an affinity graph using the appearance and co-occurrence similarities to model the relationship

between face tracks in a scene. Using this relationship graph, we employ random walk analysis

to propagate strong class predictions among similar face tracks, while dampening weak predic-

tions. In the experiments, we obtain state-of-the-art performance on the Big Bang Theory dataset

and convincingly show that for our difficult Movie Trailer Face Dataset affinity-based propagation

helps to more consistently label tracks correctly with increased performance in terms of accuracy

and average precision.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In this dissertation, we explore the difficult task of open-universe face identification, where

the goal is to not only recognize faces precisely, but also reject unknown individuals. This objective

best describes web-scale applications like those found for auto-tagging photo albums and movies,

where a specific set of people are of interest. In the case of social-sharing sites, a user may only be

interested in images of his/her friends, while in a movie there are many background actors that are

not well known and of little interest. For the task of open-universe face identification, we present

several novel solutions and analyze the problem in depth.

Noting that the popular method Sparse Representation-based Classification (SRC) for still-

image face identification is computationally expensive and thus ill-suited for web-scale deploy-

ment, we propose a new method Linearly Approximated Sparse Representation-based Classifica-

tion (LASRC). We make the observation that knowing the zero coefficients ahead of time would

greatly accelerate the search for the optimal, sparse coefficient vector. Observing that the `2-

approximation produces a noisy version of the sparse coefficient vector with a similar structure,

we combine the speed of least-squares to select a small subset of the training dictionary to pass

along to the `1-approximation. In our experiments, we find that for large datasets collected from

Facebook the approximated subset can be as small as 64 elements, with a speedup of at least 100x

over standard SRC methods, and nearly identical performance in terms of accuracy, precision, and

recall. Along with these combined benefits, we conclude that LASRC combined with local features

results in a top contender for web-scale face identification.

Subsequently, we move from still-image to video face identification. We propose a com-

plete end-to-end system from face tracking to video face identification. Our proposed face tracker,

performs comparatively well to another popular detection based tracker with a 5x speedup. Next,

we extend the Sparse Representation-based Classification (SRC) framework to video face recogni-

tion. A naı̈ve application of SRC on a frame-by-frame basis for a video face track is too computa-
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tionally expensive to be feasible, therefore we propose Mean Sequence SRC (MSSR) that performs

a single joint optimization using the entire face track. This optimization interestingly reduces to

the `1-minimization over the mean vector. Our method outperforms the next best method in terms

of average precision by 8% and a 5x speedup over frame-by-frame SRC. Further, by combining

LASRC and MSSRC we obtain a 3x speedup over MSSRC alone with a degradation of only 2%

in average precision.

Finally, our method, MSSRC, treats each face track in a video independently, not sharing

any information. In the resolution of this dissertation, we propose to augment MSSRC with a

graph-based relationship to share information across the face tracks in a given video. This exten-

sion corrects misclassifications in which the classifier fails due to large pose or other variations by

sharing the information with a closely related and correctly classified neighbor. Our affinity-based

propagation method improved the state-of-the-art performance by ˜4% on the Big Bang Theory

dataset. On our dataset, Movie Trailer Face Dataset (MTFD), there is a substantial increase in

performance with a peak increase of 34.5% in accuracy and 12.6% in average precision depending

on the optimization metrics.

6.1 Future Work

In the future, better sample selection for the training set, a more sophisticated method of re-

jecting distractors, and tighter integration with `1-minimization algorithms could benefit LASRC.

Recent research in the object recognition community has benefited from dictionary selection [106,

107], where key photos are retained in the gallery, while others that are not useful are dropped.

For faster performance, one could reduce dimensionality during the linear regression step and re-

duce `1-minimization iterations for speed without significantly impacting performance. Similarly,

multi-threading or GPU acceleration would likely speed up LASRC by several times. GPU accel-

eration would be especially beneficial when batch labeling albums of photos. For better accuracy,
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new feature representations could be explored. More specifically, features that are explicitly de-

signed for spare representation could result in a substantial speedup and further increase in the

recognition rate. In situations where many training faces per subject or frontal faces are not avail-

able, more evaluation is needed, i.e. dictionary learning techniques that only use a single example

for training or methods to extrapolate a frontal face from profile views.

In regards to video face recognition, one possible future work would explore the effect of

selecting key-frames, or less noisy frames, i.e. dropping noisy, occluded or poorly aligned, faces

could boost performance. Instead of key-frames, another option would be to find representative

means of the test data. In our current setup we use mostly frontal faces, however relaxation of the

face detection parameters would capture non-frontal faces. Using multiple means would help in the

case of extreme pose where it would be difficult to impose a single reconstruction from the training

data. Possibly one could have multiple dictionaries, one for each pose type, ranging from frontal

to profile, which would eliminate the need for perfect face alignment and allow the recognition

across different views. Furthermore, there is a whole area of domain transfer [108, 109], which

would be advantageous in discovering a relationship between the still-image training gallery and

video face tracks. Basically, several unconstrained features, like the lighting and sensor type, are

very different between the still-images and videos, therefore a good mapping between the two

domains would be beneficial. Finally, future work should look at combining the `1-minimization

and affinity-based propagation stages into a single optimization framework, as we believe they can

aid each other in finding the optimal solution in one single step.

89



LIST OF REFERENCES

[1] D. Henschen, “Facebook On Big Data Analytics: An Insider’s View,” 2013.

[2] Google, “YouTube Statistics,” 2013.

[3] A. T. L. Cambridge, “The Database of Faces.”

[4] A. R. Martinez and R. Benavente, “The AR Face Database,” tech. rep., Computer Vision

Center (CVC), 1998.

[5] A. Georghiades, D. Kriegman, and P. N. Belhumeur, “From Few to Many: Generative Mod-

els for Recognition Under Variable Pose and Illumination,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 23, no. 6, pp. 643–660, 2001.

[6] P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET Database and Evalua-

tion Procedure for Face Recognition Algorithms,” ELSEVIER Image and Vision Computing,

vol. 16, no. 5, pp. 295–306, 1998.

[7] T. Sim, S. Baker, and M. Bsat, “The CMU Pose, Illumination, and Expression Database,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, pp. 1615–1618, 2003.

[8] A. O’Toole, P. Phillips, F. Jiang, J. Ayyad, N. Pénard, and H. Abdi, “Face Recognition

Algorithms Surpass Humans Matching Faces Over Changes in Illumination,” IEEE Trans.

on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp. 1642–1646, 2007.

[9] P. Phillips, P. Grother, R. Micheals, D. BlackBurn, E. Tabassi, and M. Bone, “Face Recog-

nition Vendor Test 2002,” NIST, vol. 6965, 2003.

[10] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and

W. Worek, “Overview of the Face Recognition Grand Challenge,” in Conf. on Computer

Vision and Pattern Recognition, vol. 1, pp. 947–954, IEEE, 2005.

90



[11] P. J. Grother, G. W. Quinn, and P. J. Phillips, “Report on the Evaluation of 2D Still-Image

Face Recognition Algorithms,” NIST, vol. 7709, 2011.

[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled Faces in the Wild: A

Database for Studying Face Recognition in Unconstrained Environments,” tech. rep., Uni-

versity of Massachusetts, Amherst, 2007.

[13] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar, “Describable Visual Attributes for Face

Verification and Image Search,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 33, no. 10, pp. 1962–1977, 2011.

[14] Z. Stone, T. Zickler, and T. Darrell, “Autotagging Facebook: Social Network Context Im-

proves Photo Annotation,” in Conf. on Computer Vision and Pattern Recognition Workshop,

pp. 1–8, IEEE, 2008.

[15] B. Becker and E. Ortiz, “Evaluation of face recognition techniques for application to Face-

book,” in Automatic Face & Gesture Recognition, pp. 1–6, IEEE, 2008.

[16] N. Pinto, Z. Stone, T. Zickler, and D. Cox, “Scaling Up Biologically-Inspired Computer Vi-

sion: A Case Study in Unconstrained Face Recognition on Facebook,” in Conf. on Computer

Vision and Pattern Recognition, pp. 35–42, IEEE, 2011.

[17] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, H. Mobahi, and Y. Ma, “Towards a Practical

Face Recognition System: Robust Alignment and Illumination by Sparse Representation,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, no. 34, pp. 372–386, 2011.

[18] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-Constrained Linear Coding

for Image Classification,” in Conf. on Computer Vision and Pattern Recognition, pp. 3360–

3367, IEEE, 2010.

91



[19] M. Yang and L. Zhang, “Gabor Feature based Sparse Representation for Face Recognition

with Gabor Occlusion Dictionary,” in European Conf. on Computer Vision, pp. 448–461,

2010.

[20] J. Huang and M. Yang, “Fast Sparse Representation with Prototypes,” in Conf. on Computer

Vision and Pattern Recognition, pp. 3618–3625, IEEE, 2010.

[21] Q. Shi, C. Shen, and H. Li, “Rapid Face Recognition Using Hashing,” in Conf. on Computer

Vision and Pattern Recognition, pp. 2753–2760, IEEE, 2010.

[22] Q. Shi, A. Eriksson, A. van den Hengel, and C. Shen, “Is Face Recognition Really a Com-

pressive Sensing Problem?,” in Conf. on Computer Vision and Pattern Recognition, pp. 553–

560, IEEE, 2011.

[23] L. Zhang, M. Yang, and X. Feng, “Sparse Representation or Collaborative Representation:

Which Helps Face Recognition?,” in Int’l. Conf. on Computer Vision, pp. 471–478, IEEE,

2011.

[24] L. Wolf, T. Hassner, and Y. Taigman, “Effective Unconstrained Face Recognition by Com-

bining Multiple Descriptors and Learned Background Statistics,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 33, no. 10, pp. 1978–1990, 2011.

[25] J. R. del Solar, R. Verschae, and M. Correa, “Recognition of Faces in Unconstrained Envi-

ronments: A Comparative Study,” Journal on Adv. in Signal Processing, vol. 2009, pp. 1–19,

2009.

[26] I. Naseem, R. Togneri, and M. Bennamoun, “Linear Regression for Face Recognition,”

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32, pp. 2106–2112, 2010.

[27] C. Li, J. Guo, and H. Zhang, “Local Sparse Representation Based Classification,” in Int’l.

Conf. on Pattern Recognition., pp. 649–652, 2010.

92



[28] Z. Nan and Y. Jian, “K Nearest Neighbor Based Local Sparse Representation Classifier,” in

Chinese Conf. on Pattern Recognition, pp. 1–5, IEEE, 2010.

[29] C. Chan and J. Kittler, “Sparse Representation of (Multiscale) Histograms for Face Recogni-

tion Robust to Registration and Illumination Problems,” in Int’l. Conf. on Image Processing,

pp. 2441–2444, IEEE, 2010.

[30] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-PIE,” ELSEVIER Image

and Vision Computing, vol. 28, no. 5, pp. 807–813, 2010.

[31] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J. O’Toole, D. S. Bolme, J. Dun-

lop, Y. M. Lui, H. Sahibzada, and S. Weimer, “An Introduction to the Good, the Bad, &

the Ugly Face Recognition Challenge Problem,” in Automatic Face & Gesture Recognition,

pp. 346–353, IEEE, 2011.

[32] E. Bailly-Baillire, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler, J. Marithoz, J. Matas,

K. Messer, V. Popovici, F. Pore, B. Ruiz, and J.-P. Thiran, “The BANCA Database and

Evaluation Protocol,” in AVBPA, vol. 2688 of Lecture Notes in Computer Science, pp. 625–

638, Springer, 2003.

[33] K. Messer, J. Kittler, M. Sadeghi, S. Marcel, C. Marcel, S. Bengio, F. Cardinaux, C. Sander-

son, J. Czyz, L. Vandendorpe, S. Srisuk, M. Petrou, W. Kurutach, A. Kadyrov, R. Paredes,

B. Kepenekci, F. Tek, G. Akar, F. Deravi, and N. Mavity, “Face Verification Competition

on the XM2VTS Database,” in AVBPA, vol. 2688 of Lecture Notes in Computer Science,

pp. 964–974, Springer, 2003.

[34] W. Scheirer, A. Rocha, A. Sapkota, and T. Boult, “Towards Open Set Recognition,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 35, no. 99, pp. 1757–1772, 2012.

93



[35] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face Recognition via

Sparse Representation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 31,

no. 2, pp. 210–227, 2009.

[36] M. Everingham, J. Sivic, and A. Zisserman, “Taking the Bite Out of Automated Naming of

Characters in TV Video,” ELSEVIER Image and Vision Computing, vol. 27, no. 5, pp. 545–

559, 2009.
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