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ABSTRACT

Action recognition classifies a given video among a set of action labels, whereas action localization

determines the location of an action in addition to its class. The overall aim of this dissertation is

action localization. Many of the existing action localization approaches exhaustively search (spa-

tially and temporally) for an action in a video. However, as the search space increases with high

resolution and longer duration videos, it becomes impractical to use such sliding window tech-

niques. The first part of this dissertation presents an efficient approach for localizing actions by

learning contextual relations between different video regions in training. In testing, we use the con-

text information to estimate the probability of each supervoxel belonging to the foreground action

and use Conditional Random Field (CRF) to localize actions. In the above method and typical ap-

proaches to this problem, localization is performed in an offline manner where all the video frames

are processed together. This prevents timely localization and prediction of actions/interactions -

an important consideration for many tasks including surveillance and human-machine interaction.

Therefore, in the second part of this dissertation we propose an online approach to the challenging

problem of localization and prediction of actions/interactions in videos. In this approach, we use

human poses and superpixels in each frame to train discriminative appearance models and per-

form online prediction of actions/interactions with Structural SVM. Above two approaches rely

on human supervision in the form of assigning action class labels to videos and annotating actor

bounding boxes in each frame of training videos. Therefore, in the third part of this dissertation

we address the problem of unsupervised action localization. Given unlabeled videos without an-

notations, this approach aims at: 1) Discovering action classes using a discriminative clustering

approach, and 2) Localizing actions using a variant of Knapsack problem.
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EXTENDED ABSTRACT

Action recognition involves classification of a given video in terms of a set of action labels, whereas

action localization determines the location of an action in addition to its class. Many of the existing

action localization approaches exhaustively search (spatially and temporally) for an action in a

video. However, as the search space increases with high resolution and longer duration videos,

it becomes impractical to use such sliding window techniques. The first part of this dissertation

presents an efficient approach for localizing actions by learning contextual relations, in the form

of relative locations between different video regions. We begin by over-segmenting the videos into

supervoxels, which have the ability to preserve action boundaries and also reduce the complexity

of the problem. Context relations are learned during training which capture displacements from all

the supervoxels in a video to those belonging to foreground actions. Then, given a testing video, we

select a supervoxel randomly and use the context information acquired during training to estimate

the probability of each supervoxel belonging to the foreground action. The walk proceeds to a new

supervoxel and the process is repeated for a few steps. A Conditional Random Field (CRF) is then

used to find action proposals in the video, whose confidences are obtained using SVMs.

In the above method and typical approaches to this problem, localization or recognition is per-

formed in an offline manner where all the frames in the video are processed together. This pre-

vents timely localization and prediction of actions and interactions - an important consideration for

many tasks including surveillance and human-machine interaction. Therefore, in the second part

of this dissertation we propose a person-centric and online approach to the challenging problem of

localization and prediction of actions and interactions in videos. In this approach, we estimate hu-

man poses in each frame and train discriminative appearance models using the superpixels inside

the pose bounding boxes. Since the pose estimation per frame is inherently noisy, the conditional

probability of pose hypotheses at current time-step (frame) is computed using pose estimations in
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the present frame and their consistency with poses in the previous frames. Next, both the super-

pixel and pose-based foreground likelihoods are used to infer the location of actors at each time

through a CRF enforcing spatio-temporal smoothness in color, optical flow, motion boundaries and

edges among superpixels. The issue of visual drift is handled by updating the appearance models,

and refining poses using motion smoothness on joint locations, in an online manner. For online

prediction of action (interaction) confidences, we propose an approach based on Structural SVM

that operates on short video segments, and is trained with the objective that confidence of an action

or interaction increases as time progresses.

Above two approaches rely on human supervision in the form of assigning action class labels to

videos and annotating actor bounding boxes in each frame of training videos. Therefore, in the

third part of this dissertation we address the problem of unsupervised action localization. Given

unlabeled videos without annotations, this approach aims at: 1) Discovering action classes and 2)

Localizing actions in videos. It begins by computing local video features to apply spectral clus-

tering on a set of unlabeled training videos. For each cluster of videos, an undirected graph is

constructed to extract a dominant set. Next, a discriminative clustering approach is applied by

training a classifier for each cluster and videos are iteratively selected from the non-dominant set

and complete video action classes are obtained. Annotations for training videos are obtained by

over-segmenting videos into supervoxels and constructing a directed graph to apply a variant of

knapsack problem. Knapsack selects supervoxels to generate action detections for each video.

Within each cluster of videos, similar action detections are selected to train our action classifier.

During testing, actions are localized using a similar Knapsack approach, where supervoxels are

grouped together and SVM, learned using videos from discovered action classes, is used to recog-

nize these actions.

We validate the above proposed approaches on several challenging action datasets and show the

action localization performance using standard metrics. Lastly, we also introduce UCF101 which
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is one of the largest dataset of human actions. It consists of 101 action classes, over 13k clips and

27 hours of video data.The database consists of realistic user-uploaded videos containing camera

motion and cluttered background.
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CHAPTER 1: INTRODUCTION

The cognitive abilities of humans enables them to perceive, comprehend, analyze, and interact

with objects in their surroundings. Among these skills, visual processing plays an important role

in understanding the dynamics of the real world. Thus, making us capable of recognizing objects,

faces and activities, as well as anticipating events in advance. The goal of computer vision and

machine learning is to help computers in learning to imitate human perception. Every day people

capture a large collection of videos and images using their cellphones, and share them on social

media e.g. YouTube, Facebook, Instagram or Flickr. Millions of surveillance cameras around the

world record billions of hours of video footage. With this large influx of Big Data, it has become

impractical for humans to view and distill useful information from the collected data. Therefore, it

is imperative that we develop algorithms for automatic analysis and understanding of videos.

The most challenging problems associated with automated analysis of videos are related to actions,

with a variety of computer vision approaches [6, 101]. One of the problems is action recognition

which entails classification of a given video in terms of a set of action labels. With the introduc-

tion of uncontrolled datasets, consisting of videos captured in realistic non-experimental settings

and longer durations such as those from YouTube [33, 71], action detection (or localization) has

emerged as a new problem where the goal is to determine the location of an action in addition

to its class. Action detection, which may refer to temporal detection [33] or spatio-temporal ac-

tion localization [12, 17, 30, 60], is especially difficult when background is cluttered, videos are

untrimmed or contain multiple actors or actions.

Recognizing and localizing actions has been fundamental to video understanding in computer vi-

sion. It is a challenging problem, which has a wide variety of applications from monitoring and

security in surveillance videos, to video search, action retrieval, multimedia event recounting [2]
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and human-computer interaction (HCI).

Many existing approaches [86, 95] learn an action detector on trimmed training videos and then ex-

haustively search for each action through the testing videos. However, with realistic videos having

longer durations and higher resolutions, it becomes impractical to use sliding window approach to

look for actions or interesting events [30, 46, 114]. Analyzing the videos of datasets used for eval-

uation of action localization such as UCF-Sports [71], JHMDB [32], and THUMOS [33] reveals

that, on average, the volume occupied by an action (in pixels) is considerably small compared to

the spatio-temporal volume of the entire video (around 17%, using ground truth). Therefore, it is

important that action localization is performed through efficient techniques which can classify and

localize actions without evaluating at all possible combinations of spatio-temporal volumes.

Existing offline action localization methods [30, 46, 81, 86, 95, 111] classify and localize actions

after completely observing an entire video sequence. The goal is to localize an action by finding

the volume that encompasses an entire action. Some approaches are based on sliding-windows [60,

86], while others segment the video into supervoxels which are merged into action proposals [30,

59, 81]. The action proposals from either methods are then labeled using a classifier. Essentially, an

action segment is classified after the entire action volume has been localized. Similarly, the videos

are processed for classification [26, 41], retrieval [61, 62] or localization [74] in an offline manner

for the case of interactions. Since offline methods have entire video and action segments at their

disposal, they can take advantage of observing entire motion of action instances, and for practical

purposes do not provide action detection in a timely manner. Similarly, there have been recent

efforts to predict activities by early recognition [43, 45, 47, 73]. However, these methods only

attempt to predict the label of the action without any localization. Thus, the important question

about where an action is being performed remains unanswered, which we tackle in this dissertation.

Current action localization approaches [20, 46, 94] heavily rely on strong supervision, in the form
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of training videos, that have been manually collected, labeled and annotated. These approaches

learn to detect an action using bounding box annotations and recognize using action class labels

from training data. Since supervised methods have the annotated ground truth at their disposal,

they can take the advantage of learning detectors and classifiers by fine-tuning over the training

data.

However, supervised algorithms have some disadvantages compared to unsupervised approaches,

due to the difficulty of video annotation. First, a video may consist of several actions in complex

cluttered background. Second, video level annotation in a supervised setting involves manually

labeling the location (bounding box), the class of each action in videos and the temporal boundaries

of each action, which is quite time consuming. Third, actions vary spatio-temporally (i.e., in height,

width, spatial location, and temporal length) resulting in various tubelet deformations. Fourth,

people may have different understandings of the temporal extent of an action, which results in

biases and errors. Collecting large amounts of accurately annotated action videos is very expensive

for developing a supervised action localization approach, considering the growth of video datasets

with large number of action classes [4, 18, 34, 38, 84]. On the contrary, training an unsupervised

system neither requires action class labels nor bounding box annotations. Given the abundance of

unlabeled videos available on the Internet, unsupervised learning approaches provide a promising

direction.

In this dissertation, we aim to address the problem of action localization in videos with its recog-

nized labels. We explore this problem in an offline vs. online and in a supervised vs. unsupervised

setting. We summarize the following important contributions.

• We propose an efficient approach for action localization by learning contextual relations in

the form of relative locations between different video regions (i.e. supervoxels). In a testing

video, we select a supervoxel and use this learned information to perform Context Walk. This
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generates a conditional distribution of an action over all supervoxels and is used to localize

an action. As a result, we significantly reduce the number of classifier evaluations, in sharp

contrast to the alternate sliding window approaches.

• We introduce a new problem of Online Action and Interaction Localization and propose

a novel person-centric approach that uses human pose estimation and superpixels in each

frame to compute foreground likelihoods. Then, the superpixel and pose-based foreground

likelihoods are used to infer the location of the actors at each time instant (frame) using

a Conditional Random Field. For online prediction, we propose a Structural SVM based

approach trained with the objective, that confidence of an action (interaction) should increase

with time.

• We address a new problem of Unsupervised Action Localization, which aims at: 1) Discover-

ing action classes, and 2) Localizing actions, given an unlabeled set of videos without bound-

ing box annotations. We propose a novel approach for action discovery, that uses Dominant

Sets and a discriminative clustering algorithm to iteratively select videos and obtain com-

plete video action clusters. For localizing actions we propose a Knapsack formulation that

enforces spatio-temporal constraints on supervoxels, to detect actions in a video.

• We introduce UCF101, a new action recognition and localization dataset. It contains 101

action classes, with over 13K video clips and 27 hours of video footage. We also generate

an action recognition baseline on this new dataset using standard bag of words approach.

1.1 Supervised Action Localization using Context Walk

The use of context has been extensively studied for object detection in images through modeling

the relationships between the objects and their surroundings [7, 14, 24], which significantly reduce

search space of object hypotheses. However, it is non-trivial to extend such approaches to actions
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in videos, since the temporal dimension is very different from the spatial dimensions. An image or

a video is confined spatially, but the temporal dimension can be arbitrarily long. The differences in

spatial and temporal dimensions also affects the optimal representation of actions in videos [86].

Cuboid, which is the 3D extension of a bounding box in images, is not appropriate for action

localization due to the following two reasons: (1) Actions have a variable aspect ratio in space and

time as they capture articulation and pose changes of actors. Furthermore, instances of repetitive

actions (such as running) can have different lengths depending on the number of cycles captured

in the video. (2) The nature of an action or simply the camera motion can cause an actor to move

spatially in a video as time progresses. In such a case, a cuboid would include large parts of the

background. Accordingly, the ground truth in action localization datasets consists of a sequence of

bounding boxes which change in size and move spatially with respect to time. Each such sequence

can be visualized as a rectangular tube with varying height, width and spatial location.

On the same grounds, the results of action localization will be more useful if they contain minimal

background, which cannot be achieved with cuboid or sliding window approaches [86, 89, 97,

114]. However, such a powerful representation of actions come with a cost. Generating tight

tubes around the actors makes the task of action localization even more challenging as the action

hypotheses not only depend on space and time, but also on tube deformations. An exhaustive

search over all possible combinations is wasteful and impractical. In Chapter 4, we formulate the

problem of action localization in such a way that the issues associated with cuboid and sliding

window approaches are circumvented and use context to significantly reduce the search space of

hypotheses resulting in fewer number of evaluations during testing.

For the proposed approach, we over-segment the videos into supervoxels and use context as a

spatial relation between supervoxels relative to foreground actions. The relations are modeled

using 3D displacement vectors which capture the intra-action (foreground-foreground) and action-

to-scene (background-foreground) dependencies. These contextual relations are represented by a
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graph for each video, where supervoxels form the nodes and directed edges capture the spatio-

temporal relations between them. During testing, we perform a context walk where each step is

guided by the context relations learned during training, resulting in a probability distribution of an

action over all the supervoxels.

There are a few approaches that reduce the search space to efficiently localize actions. To the best

of our knowledge, we are the first to explicitly model foreground-foreground and background-

foreground spatial relationships for action localization. The proposed approach requires only a

few nearest neighbor searches in a testing video followed by a single application of CRF that gives

action proposals. The action confidences of proposals are then obtained through SVM. This is in

contrast to most of the existing methods [86, 95], which require classifier evaluations several order

of magnitudes higher than the proposed approach.

1.2 Online Action and Interaction Localization

Predicting what and where an action or interaction occurs is an important and challenging com-

puter vision problem for automatic video analysis [16, 46, 95, 111]. It involves the use of limited

motion information in partially observed videos for frame-by-frame localization and label predic-

tion, and has varied applications in many areas. For human-computer or human-robot interaction,

it allows the computer to automatically localize and recognize actions and gestures as they occur,

or predict the intention of actors, thereafter creating appropriate responses for them. It is especially

relevant to the monitoring of elderly, where detection of certain actions, e.g. falling, must trigger

an immediate automated response and alert the care giver or a staff member. Moreover, this allows

their interactions with other people to be monitored and quantified for overall well-being.
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Online Action Localization = Action Prediction + Detection

Action Prediction vs. Time

Figure 1.1: This figure illustrates the problem of Online Action Localization that we address in
Chapter 5. The top row shows kick ball action being performed by a soccer player with frame
number shown in top-left of each frame. The goal is to localize the actor (shown with yellow
rectangles in top row) and predict the class label of the action (shown in red boxes in second
row) as the video is streamed. As can be seen in the bottom row, the confidence of kick ball
action increases and comes to the top as more of the action gets observed over time. This problem
contrasts with offline action localization where action classification and detection is performed
after the action or video clip has been observed in its entirety.

In visual surveillance, online localization and prediction can be used for detecting abnormal actions

such as assault or interactions of criminal nature, e.g., drug exchange and alert the human monitors

in a timely manner. In automated robot navigation or autonomous driving, the timely detection of

human actions in the environment will lead to requisite alteration in path or speed, e.g., a child

jumping in front of the car. In Chapter 5, we address the very problem of Online Action and

Interaction Localization, which aims at localizing actions (interactions) and predicting their class

labels in a streaming video (see Fig. 1.1).

In this work, for online action (interaction) localization and prediction, we propose to use the high
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level structural information using pose in conjunction with a superpixel based discriminative actor

foreground model that distinguishes the foreground actor from the background. The superpixel-

based model incorporates visual appearance using color and motion features, whereas the pose-

based model captures the structural cues through joint locations. Using both the foreground and

pose models we generate a confidence map, used to locate the action segments by inferring on a

Conditional Random Field in an online manner. Since the appearance of an actor changes due to

articulation and camera motion, we retrain foreground model as well as impose spatio-temporal

smoothness constraints on poses to maintain representation that is both robust and adaptive. As

soon as the human actors are localized at the current frame, we proceed to recognize and predict

the label of the action (interaction). There can be multiple approaches to perform online prediction,

since the windows over which the visual features are accumulated can be defined in various ways.

In [82], we use a hybrid of binary SVM and dynamic programming on short intervals to predict the

class labels in an online manner. However, this requires multiple classifiers to be trained for each

sub-action or segment of an action. We present an alternate approach that uses a Structural SVM,

trained with the objective that the score of the action (interaction) should increase as time passes

in clips containing positive training instances. Finally, we perform rigorous experiments on four

action and two interaction datasets, and introduce measures for consistent evaluation across both

actions and interactions.

The contributions of Chapter 5 can be summarized as follows: 1) We address the problem of

Online Action and Interaction Localization in streaming videos, 2) by using high-level pose esti-

mation to learn mid-level superpixel-based foreground models at each time instant. 3) We employ

spatio-temporal smoothness constraints on joint locations in human poses to obtain stable and ro-

bust action segments in an online manner. 4) The label and confidences for action (interactions)

segments are predicted using Structural SVM trained on partial action (interaction) clips, which

enforces the constraint that the confidence of positive samples increases monotonically over time.
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Input

• Multiple Video Action Classes
• No Video Labels
• No Annotations

Output

1. Video Action Clusters
2. Action Annotations
3. Action Localizations

Figure 1.2: We tackle the problem of unsupervised action localization without any action class
labels or bounding box annotations, where a given collection of unlabeled videos contain multiple
action classes. The proposed method discovers actions by discriminative clustering using dominant
sets and then applies a variant of knapsack problem to localize actions.

Finally, 5) we introduce an evaluation measure to quantify performance of action (interaction) pre-

diction and online localization and perform experiments on six action and interaction datasets with

a consistent evaluation framework.

1.3 Unsupervised Action Localization

The problem of Unsupervised Action Localization aims at localizing an action without the use of

ground truth in training videos (see Fig. 1.2). The training data for action localization usually pro-

vides: 1) action classes and 2) actor bounding boxes. In chapter six of this thesis, we automatically

discover action classes by discriminatively clustering a group of unlabeled videos. Our approach

begins by selecting a strongly coherent subset called a dominant set within each cluster, and trains

a classifier for each action cluster to iteratively assign an action class to all the videos. Next, using

these action classes we propose a Knapsack approach to action localization. In this approach, we

segment the video into supervoxels and in a combinatorial optimization framework we select the

supervoxels that belong to the actor performing the action.
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In summary, Chapter 6 makes the following contributions: 1) We address the problem of Unsuper-

vised Action Localization, 2) by proposing a discriminative clustering approach using dominant

sets to discover action classes. 3) We propose knapsack approach with graph-based temporal

constraints on supervoxels to obtain action localization in an unsupervised manner. 4) The lo-

calizations within each cluster of videos are jointly selected to train action classifiers and finally,

5) Structural SVM is used to learn the pairwise relations of supervoxels within foreground action

and foreground-background, which enforces that the supervoxels belonging to the action to be

simultaneously selected.

1.4 UCF101 Action Dataset

Action recognition and localization algorithms require benchmarking their performance on public

datasets. Majority of existing datasets have two disadvantages: 1) Low number of action classes

and 2) Videos recorded in an unrealistically controlled environment. Therefore, we propose a

human action dataset with 101 action classes and 13320 videos, collected from YouTube in an

unconstrained environment. These are challenging videos with camera motion, various lighting

conditions, partial occlusion and varying quality of video frames. This dataset consists of manually

annotated video action class labels, as well as frame level bounding box annotations for 24 human

action classes.

1.5 Dissertation Organization

The rest of the dissertation is structured as follows: In Chapter 2, we review existing literature on

action recognition and localization. In Chapter 3, we present a new human action dataset with 101

action classes. Chapter 4 proposes an efficient action localization approach by learning contextual
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relations in videos. Chapter 5 introduces a new problem of Online Action and Interaction Local-

ization using a novel person-centric approach. Chapter 6 addresses a new problem of Unsupervised

Action Localization containing two sub-problems of action discovery and localization.

11



CHAPTER 2: LITERATURE REVIEW

Action recognition in realistic videos has been an active area of research with several recent surveys

[6, 101] published on the subject. With significant progress in action recognition over the past few

years, researchers have now started focussing on the more difficult problem of action localization

[17, 27, 31, 60, 95, 106, 111]. This involves simultaneous detection and recognition of actions. The

detection can be spatial, by placing a bounding box over the actor in each frame or spatio-temporal,

which also requires determining the temporal extent of the action (i.e. starting and ending frame).

Until recently, majority of the published research in action localization has been focused towards

supervised learning. This requires lots of training videos, which have been manually labeled with

video action class and each frame has been annotated with actor bounding boxes. When an action

detector is learned using this training video set, it is applied on a testing video using an offline

algorithm. This assumes that the entire frames of a testing video are provided, and an exhaustive

sliding window/volume technique is applied to localize an action.

The focus of this dissertation is to solve the problem of action localization. Firstly, we propose a

supervised offline approach that avoids using costly exhaustive sliding window approach to localize

the action in an efficient manner (see Chapter 4). Next, we address the limitation of supervised

offline approaches by localizing actions in a supervised online and timely manner (see Chapter 5).

Finally, we also show that we don’t necessarily require ground truth for video action class labels

or bounding box annotations, by localizing actions in an unsupervised manner (see Chapter 6).

In this chapter, we cover existing literature for action localization, by reviewing supervised and

unsupervised action approaches. We begin with supervised offline approaches that require ground

truth for training and perform offline testing. These include approaches that use search based meth-

ods for action localization, and context for recognition. After that, we discuss online approaches
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for action prediction. Finally, we cover unsupervised action techniques that mainly involve action

clustering.

2.1 Supervised Action Analysis

Supervised action localization has been extensively studied in recent years [11, 17, 27, 31, 39, 51,

65, 79, 95, 102, 106, 110, 111, 112]. This section covers the works that use video action class labels

and bounding box annotations to train action classifiers and detectors in their proposed methods.

However, these methods can further be distinguished into 1) offline testing and 2) online testing.

In the following sub-sections we first cover offline approaches and then online methods.

2.1.1 Offline Action Localization

Offline localization has received significant attention in the past few years, both for actions [17,

27, 31, 106] as well as interactions [40, 72]. For actions, the first category of approaches uses

either rectangular tubes or cuboid-based representations to exhaustively search for an action us-

ing a sliding volume approach. Lan et al. [46] treated the human position as a latent variable,

which is inferred simultaneously while localizing an action. Yuan et al. [114] used branch-and-

bound with dynamic programming, while Zhou et al. [117] used a split-and-merge algorithm to

obtain action segments that are then classified with LatentSVM [19]. Wang et al. [95] tackle the

problem of action detection with poselet estimation. Oneata et al. [60] presented an approxima-

tion to Fisher Vectors for tractable action localization. Tran and Yuan [88] used Structural SVM

to localize actions with inference performed using Max-Path search method. Ma et al. [52] au-

tomatically discovered spatio-temporal root and part filters, whereas Tian et al. [86] developed

Spatio-temporal Deformable Parts Model [19] to detect actions in videos and use a sliding window

approach to handle deformities in parts, both in space and time. Recently, Yu and Yuan [112] pro-
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posed a method for generating action proposals obtained by detecting tubes with high actionness

scores after non-maximal suppression.

The second category uses either superpixels or supervoxels as the base representations [30, 59].

Such representation helps reduce the search space from pixel-level to superpixel or supervoxel

level. Jain et al. [30] recently proposed a method that extends selective search approach [90] to

videos, where they merge supervoxels using appearance and motion costs and produce multiple

layers of segmentation for each video. Soomro et al. [81] uses context walk with Conditional

Random Field (CRF) to segment actions. These supervoxel based methods use heuristics based on

low-level feature similarity to define supervoxel merging criteria. They neither consider temporal

connectedness nor spatial size of the actor within the action. Gkioxari and Malik [20] use selective

search [90] to generate candidate proposals for video frames, whose spatial and temporal (motion)

Convolutional Neural Network (CNN) features are evaluated using SVMs. The per-frame action

detections are then linked temporally for localization. There have been few similar recent methods

for quantifying actionness [12, 112], which yield fewer regions of interest in videos. For interaction

recognition in videos, Kong et al. [41, 42] learn high-level descriptions called interactive phrases

to express binary semantic motion relationships between interacting people. A hierarchical model

is used to encode interactive phrases based on latent SVM framework where interactive phrases are

treated as latent variables. Wu et al. [103] also decompose interaction video segments into spatial

cells and learn relationship between them. In Chapter 6, our knapsack approach is different from

the above supervoxel-based representations, in three key aspects: 1) it uses volume constraints to

enforce detected action to be consistent with human spatial size, 2) temporal constraints to ensure

that the detection is contiguous and well-connected, and 3) a discriminative selection criterion is

learnt using Structured SVM to model supervoxel pairwise relations.

Similar to these methods, the proposed approaches in this dissertation can delineate contours of

actions and interactions. Hence, our output is more precise than cuboids. In Chapter 4 we pro-
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pose an efficient approach that requires significantly fewer evaluations for localizing actions. We

achieve this by learning the relations between the background and foreground action supervoxels.

Supervoxels help to reduce the search space with fewer regions of interest in the testing videos.

Furthermore, our proposed approach generates fewer but class-dependent hypotheses (or candidate

locations), and the hypotheses for each action are the result of context walk where new observa-

tions depend on past observations.

Context has been used extensively for object detection [7, 14, 24]. Heitz and Koller [24] reduce

the number of false positives using context between background and objects. Similarly, Alexe

et al. [7] use context for object detection in images by learning relations betweens windows in

training images to the ground truth bounding boxes. There are several works that use context for

action recognition using different significations of the word ‘context’. Gupta and Davis [21] at-

tempted to understand the relationship between actions and the objects used in those actions. Han

et al. [22] also used object context for action recognition . However, both the methods assume

that detectors for multiple objects are available. Ikizler-Cinbis and Sclaroff [29] used a variety

of features associated with objects, actions and scenes to perform action recognition. They also

required person detection using [19]. Marszalek et al. [54] used movie scripts as automatic super-

vision for scene and action recognition in movies. Zhang et al. [115] extracted motion words and

utilized the relative locations between the motion words and a reference point in local regions to

establish the spatio-temporal context for action recognition. Sun et al. [85] presented a hierarchical

structure to model the context information of SIFT points, and their model consists of point-level,

intra-trajectory, and inter-trajectory relationships. Wu et al. [104] incorporated context through

spatio-temporal coordinates for action recognition.

Our proposed approach in Chapter 4 is inspired from Alexe et al. [7], and differs in several key as-

pects: (1) for precise detection of actions in videos, we cannot use windows or cuboids which can

contain significant amounts of background due to articulation, actor/camera movement and natu-
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rally from cyclic actions. Furthermore, due to inherent differences between images and videos and

the extra degree of freedom due to time, we segment the video into supervoxels to reduce the search

space of candidate hypotheses. (2) Instead of pixels in images, our proposed approach operates

on a graph where nodes represent supervoxels. (3) Since, we localize actions using supervoxels

instead of 3D windows, we have to infer action locations using a Conditional Random Field on the

graph created for the testing video. In summary, ours is the first work that explicitly relies on both

foreground actions and background for action localization with an emphasis on fewer number of

classifier evaluations.

2.1.2 Online Action Prediction

Online prediction aims to predict actions from partially observed videos without any localization.

Prediction is a multi-action classification, where methods typically focus on maximum use of tem-

poral, sequential and past information to predict labels and their confidences. Li and Fu [47]

predict human activities by mining sequence patterns, and modeling causal relationships between

them. Zhao et al. [116] represent the structure of streaming skeletons (poses) by a combination of

human-body-part movements and use it to recognize actions in RGB-D. Hoai and De la Torre [25]

simulate the sequential arrival of data while training, and train detectors to recognize incomplete

events. Similarly, Lan et al. [45] propose hierarchical ‘movemes’ to describe human movements

and develop a max-margin learning framework for future action prediction. Ryoo [73] proposed in-

tegral and dynamic bag-of-words for activity prediction, and divide the training and testing videos

into small segments and match the segments sequentially. In follow-up work, Ryoo and Aggar-

wal [74] treat interacting people as a group and recognize interactions in continuous videos by

computing group motion similarities. Similarly, Kong et al. [43] proposed to model temporal

dynamics of human actions by explicitly considering all the history of observed features as well

as features in smaller temporal segments. Yu et al. [113] predict actions using Spatial-Temporal
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Implicit Shape Model (STISM), which characterizes the space-time structure of the sparse local

features extracted from a video. Cao et al. [10] perform action prediction by applying sparse cod-

ing to derive the activity likelihood at small temporal segments, and later combine the likelihoods

for all the segments. For the case of interactions, Huang and Katani [28] predict the reaction in a

two-person setting by modeling it as an optimal control problem. Recently, there have been works

on online temporal detection [15, 48] without localization.

In contrast to these works, in Chapter 5 we perform both action prediction and localization in an

online manner in a streaming video, where action localization helps in action prediction and vice

versa.

2.1.2.1 Pose for Recognition

Low-level motion features, both hand-crafted [94] and deep learned [13, 96], have imparted signif-

icant gains to the performance of action recognition and localization algorithms. However, human

actions inherently consists of articulation which low-level features cannot model explicitly. The

compact and low-dimensional nature of high-level representations such as human poses might

make them sensitive and unstable for the task of action localization and recognition. Nonetheless,

human pose estimation has been successfully employed for action recognition in several works.

For instance, Majiwa et al. [53] implicitly capture poses through ‘poselet activation vector’ and

later use them for action recognition in static images. Xu et al. [107] detect poses through [108]

and couple them with independently computed local motion features around the joints for action

recognition. Wang et al. [93] also extended [108] to videos and represented videos in terms of

spatio-temporal configurations of joints to perform action recognition. Raptis and Cigal [68] rec-

ognize and detect interactions from videos by modeling poselets as latent variables in a structural

SVM formulation. Joint recognition of action and pose estimation in videos was recently proposed
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by Xiaohan et al. [105]. They divide the action into poses and their spatio-temporal parts, and

model their inter-relationships through And-Or graphs. Pirsiavash et al. [67] predict quality of

sports actions by training a regression model from spatio-temporal pose features, to scores from

expert judges. Poses were recently used for offline action localization by Wang et al. [95], who

detect actions using a unified approach that discovers action parts using dynamical poselets, and

the relations between them. Pose-based Convolutional Neural Network descriptor (P-CNN) [13]

was used for the task of action recognition, and the authors concluded that correct estimation of

human poses leads to significant improvements in action recognition.

Similarly, several works model and determine head orientation and upper body pose for recognition

and localization of interactions. Patron-Perez et al. [62] developed a per-person descriptor which

incorporates head orientation and the local spatio-temporal context around each person to detect

interactions. Vahdat et al. [91] represented each individual by a set of key poses and formulated

spatio-temporal relationships among them in their model. The frame-wise interaction model in

Patron-Perez et al. [61] combines local and global descriptors and incorporates visual attention of

people by modeling their head orientations. Although Hoai and Zisserman [26] do not detect poses

per se, they develop a technique to detect different upper body configurations each consisting of

multiple parts.

In contrast to these methods, in Chapter 5, we use pose in conjunction with low-level features and

mid-level superpixels to predict and localize actions (interactions) in an online manner. Our work

is at the cross roads of both online prediction and offline localization, in a unified framework for

both actions and interactions operable in partially observed videos.
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2.2 Unsupervised Action Analysis

Action localization so far in the literature has been handled in a supervised manner. Therefore, in

Chapter 6 we are the first to propose an unsupervised action localization approach. This approach

involves action clustering, annotation, and localization. There has been some recent work on Un-

supervised action clustering, which aims at grouping videos of similar human actions into separate

action classes without any action localization. These approaches use local features to compute

similarity among action videos. Wang et al. [98] extracts the coarse shape of human figures to

match pairs of action images using a linear programming approach. Savarese et al. [77] propose

spatio-temporal correlograms to encode temporal information into motion features, which are used

in an unsupervised generative model to learn action classes. Niebles et al. [57] use pLSA and LDA

to learn intermediate topics associated with actions to cluster them. Yang et al. [109] discover

sub-actions as motion primitives to construct a string matching similarity matrix for clustering.

Jones and Shao [36] present a Feature Grouped Spectral Multigraph (FGSM) approach, that uses

a spectral embedding on a feature graph to cluster actions. Liu et al. [49] use a hierarchical clus-

tering multi-task learning method for jointly grouping and recognizing human actions. Jones and

Shao [37] propose a Dual Assignment k-Means (DAKM) approach, which considers the contextual

relations between actions and scenes for human action clustering.

In contrast, in Chapter 6, we perform both action discovery as well as localization in an unsu-

pervised manner. Our action discovery method employs a discriminatively-learned similarity as

compared to standard low-level similarity metric (e.g. Euclidean), to iteratively cluster videos.
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CHAPTER 3: HUMAN ACTION DATASET

Benchmark datasets are important to objectively measure the performance of proposed action

recognition methods and establish a common ground for fair comparision with existing approaches.

The majority of action recognition datasets suffer from two disadvantages: (1) The number of their

classes is typically very low compared to the richness of performed actions by humans in reality,

e.g. KTH [78], Weizmann [8], UCF Sports [71], IXMAS [100] datasets includes only 6, 9, 9, 11

classes respectively. (2) The videos are recorded in unrealistically controlled environments. For

instance, KTH, Weizmann, IXMAS are staged by actors; HOHA [54] and UCF Sports are com-

posed of movie clips captured by professional filming crew. Recently, web videos have been used

in order to utilize unconstrained user-uploaded data to alleviate the second issue [44, 50, 56, 69].

However, the first disadvantage remains unresolved as the largest existing dataset does not include

more than 51 actions while several works showed that the number of classes play a crucial role in

evaluating an action recognition method [35, 69]. Therefore, we have compiled a new dataset with

101 actions and 13,320 clips which is nearly twice bigger than the largest existing dataset in terms

of number of actions and clips. HMDB51 [44] and UCF50 [69] were the largest ones with 6,766

clips of 51 actions and 6,681 clips of 50 actions, respectively, at the time of release of our dataset.

The UCF101 dataset is composed of web videos which are recorded in unconstrained environments

and typically include camera motion, various lighting conditions, partial occlusion, low quality

frames. Fig. 3.1 shows sample frames of 6 action classes from UCF101.
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Apply Eye Makeup Baby Crawling 

Haircut 

Playing Dhol 

Sky Diving Surfing 

Shaving Beard Cricket Shot Rafting 

Figure 3.1: Sample frames for 6 action classes of UCF101.

3.1 Dataset Details

Action Classes: UCF101 includes total number of 101 action classes which we have divided into

five types: Human-Object Interaction, Body-Motion Only, Human-Human Interaction, Playing

Musical Instruments, Sports.

UCF101 is an extension of UCF50 which included the following 50 action classes: {Baseball

Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breaststroke, Clean and Jerk, Div-

ing, Drumming, Fencing, Golf Swing, High Jump, Horse Race, Horse Riding, Hula Hoop, Javelin

Throw,, Juggling Balls, Jumping Jack, Jump Rope, Kayaking, Lunges, Military Parade, Mixing

Batter, Nun chucks, Pizza Tossing, Playing Guitar, Playing Piano, Playing Tabla, Playing Violin,

Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rock Climbing Indoor, Rope Climbing,

Rowing, Salsa Spins, Skate Boarding, Skiing, Skijet, Soccer Juggling, Swing, TaiChi, Tennis Swing,

Throw Discus, Trampoline Jumping, Volleyball Spiking, Walking with a dog, Yo Yo}. The color

class labels specify which predefined action type they belong to.
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Hula Hoop Juggling Balls Jump Rope 

Skate Boarding Pizza Tossing Nun Chucks Mixing Batter 

Yo Yo 

Apply Eye Makeup Blow Dry Hair Apply Lipstick Cutting In Kitchen Hammering 

Knitting Mopping Floor Shaving Beard 

Writing On Board 

Typing 

Brushing Teeth 

Soccer Juggling 

Walking with a Dog Swing Rope Climbing Push ups Trampoline Jumping Tai Chi Rock Climbing Indoor 

Jumping Jack Lunges 

Pull ups 

Blowing Candles Body Weight Squats Handstand Pushups Handstand Walking 

Wall Pushups 

Baby Crawling 

Military Parade Salsa Spin Band Marching Haircut Head Massage 

Playing Tabla Playing Piano Playing Guitar 

Drumming 

Playing Violin 

Playing Cello Playing Daf Playing Dhol 

Playing Flute Playing Sitar 

Bench Press Basketball 

Baseball Pitch 

Billiard Breaststroke 

Clean and Jerk Diving Fencing 

Golf Swing 

Rowing Punch Pommel Horse Pole Vault 

Kayaking Javelin Throw Horse Riding Horse Race High Jump 

Skiing 

Jetski Tennis Swing Throw Discus 

Volleyball Spiking 

Archery Balance Beam 

Basketball Dunk Bowling 

Front Crawl 

Frisbee Catch Floor Gymnastics Field Hockey Penalty Cricket Shot Cricket Bowling Cliff Diving 

Boxing-Speed Bag Boxing-Punching Bag 

Hammer Throw Ice Dancing 

Long Jump Parallel Bars Rafting Shotput 

Sky Diving Soccer Penalty Still Rings 

Biking 

Uneven Bars 

Table Tennis Shot Surfing Sumo Wrestling 

Figure 3.2: 101 actions included in UCF101 shown with one sample frame. The color of frame
borders specifies to which action type they belong: Human-Object Interaction, Body-Motion Only,
Human-Human Interaction, Playing Musical Instruments, Sports.
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Figure 3.3: Number of clips per action class. The distribution of clip durations is illustrated by the
colors.

The following 51 new classes are introduced in UCF101: {Apply Eye Makeup, Apply Lipstick,

Archery, Baby Crawling, Balance Beam, Band Marching, Basketball Dunk, Blow Drying Hair,

Blowing Candles, Body Weight Squats, Bowling,Boxing-Punching Bag, Boxing-Speed Bag, Brush-

ing Teeth, Cliff Diving, Cricket Bowling, Cricket Shot, Cutting In Kitchen, Field Hockey Penalty,

Floor Gymnastics, Frisbee Catch, Front Crawl, Hair cut, Hammering, Hammer Throw, Handstand

Pushups, Handstand Walking, Head Massage, Ice Dancing, Knitting, Long Jump, Mopping Floor,

Parallel Bars, Playing Cello, Playing Daf, Playing Dhol, Playing Flute, Playing Sitar, Rafting,

Shaving Beard, Shot put, Sky Diving, Soccer Penalty, Still Rings, Sumo Wrestling, Surfing, Table

Tennis Shot, Typing, Uneven Bars, Wall Pushups, Writing On Board}. Fig. 3.2 shows a sample

frame for each action class of UCF101.
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Total Time

Average Clip Duration

Figure 3.4: Total time of videos for each class is illustrated using the blue bars. The average length
of the clips for each action is depicted in green.

Clip Groups: The clips of one action class are divided into 25 groups which contain 4-7 clips

each. The clips in one group share some common features, such as the background or actors.

The bar chart of Fig. 3.3 shows the number of clips in each class. The colors on each bar illustrate

the durations of different clips included in that class. The chart shown in Fig. 3.4 illustrates the

average clip length (green) and total duration of clips (blue) for each action class.

The videos are downloaded from YouTube [3] and the irrelevant ones are manually removed. All

clips have fixed frame rate and resolution of 25 FPS and 320 × 240 respectively. The videos are

saved in .avi files compressed using DivX codec available in k-lite package [1]. The audio is

preserved for the clips of the new 51 actions. Table 3.1 summarizes the characteristics of the

dataset.
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Table 3.1: Summary of Characteristics of UCF101

Actions 101
Clips 13320

Groups per Action 25
Clips per Group 4-7

Mean Clip Length 7.21 sec
Total Duration 1600 mins

Min Clip Length 1.06 sec
Max Clip Length 71.04 sec

Frame Rate 25 fps
Resolution 320×240

Audio Yes (51 actions)

Naming Convention: The zipped file of the dataset (available at http://crcv.ucf.edu/

data/UCF101.php ) includes 101 folders each containing the clips of one action class. The

name of each clip has the following form:

v X gY cZ.avi

where X, Y and Z represent action class label, group and clip number respectively. For in-

stance, v ApplyEyeMakeup g03 c04.avi corresponds to the clip 4 of group 3 of action

class ApplyEyeMakeup.

3.2 Experimental Results

We performed an experiment using bag of words approach which is widely accepted as a standard

action recognition method to provide baseline results on UCF101.

From each clip, we extracted Harris3D corners (using the implementation by [54]) and computed
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162 dimensional HOG/HOF descriptors for each. We clustered a randomly selected set of 100,000

space-time interest points (STIP) using k-means to build the codebook. The size of our codebook

is k=4000 which is shown to yield good results over a wide range of datasets. The descriptors were

assigned to their closest video words using nearest neighbor classifier, and each clip was repre-

sented by a 4000-dimensional histogram of its words. Utilizing three train/test splits, a SVM was

trained using the histogram vectors of the training set. We employed a nonlinear multiclass SVM

with histogram intersection kernel and 101 classes each representing one action. For testing, a

similar histogram representation for the query video was computed and classified using the trained

SVM. This method yielded an overall accuracy of 43.9%; The confusion matrix for all 101 actions

is shown in Fig. 3.5.

The accuracy for the predefined action types are: Sports (49.40%), Playing Musical Instrument

(42.04%), Human-Object Interaction (36.62%), Body-Motion Only (37.64%), Human-Human In-

teraction (42.66%). Sports actions achieve the highest accuracy since performing sports typically

requires distinctive motions which makes the classification easier. Moreover, the background in

sports clips are generally less cluttered compared to other action types. Unlike Sports Actions,

Human-Object Interaction clips typically have a highly cluttered background. Additionally, the

informative motions typically occupy a small portion of the motions in the clips which explains

the low recognition accuracy of this action class.

We recommend a three train/test split (available at: http://crcv.ucf.edu/data/UCF101/

UCF101TrainTestSplits-RecognitionTask.zip ) experimental setup to keep consis-

tency of the reported tests on UCF101; the baseline results provided in this section were computed

using the same scenario. These train/test splits have been designed in a way to keep the groups sep-

arate, hence not sharing the clips from the same group in training and testing, as the clips within

a group are obtained from a single long video. Each test split has 7 different groups and their

respective remaining 18 groups are used for training.
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Figure 3.5: Confusion table of baseline action recognition results using bag of words (BOW)
approach on UCF101. The drawn lines separate different types of actions; 1-50: Sports, 51-60:
Playing Musical Instrument, 61-80: Human-Object Interaction, 81-96: Body-Motion Only, 97-
101: Human-Human Interaction.
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Table 3.2: Summary of Major Action Recognition Datasets

Dataset Number of Actions Clips Background Camera Motion Release Year Resource
KTH [78] 6 600 Static Slight 2004 Actor Staged

Weizmann [8] 9 81 Static No 2005 Actor Staged
UCF Sports [71] 9 182 Dynamic Yes 2009 TV, Movies

IXMAS [100] 11 165 Static No 2006 Actor Staged
UCF11 [50] 11 1168 Dynamic Yes 2009 YouTube
HOHA [54] 12 2517 Dynamic Yes 2009 Movies

Olympic [56] 16 800 Dynamic Yes 2010 YouTube
UCF50 [69] 50 6681 Dynamic Yes 2010 YouTube

HMDB51 [44] 51 6766 Dynamic Yes 2011 Movies, YouTube, Web
UCF101 101 13320 Dynamic Yes 2012 YouTube

The above experiment was also performed using a leave-one-group-out 25-fold cross validation

setup, giving an overall accuracy of 44.5%. By testing on one group and training on the rest, it was

made sure that the clips from a group are not divided between training and testing set.

3.3 Related Datasets

UCF Sports, UCF11, UCF50 and UCF101 are the four action datasets compiled by UCF in chrono-

logical order; each one includes its precursor. We made two minor modifications in the portion of

UCF101 which includes UCF50 videos: the number of groups is fixed to 25 for all the actions,

and each group includes up to 7 clips. Table 3.2 shows a list of existing action recognition datasets

with detailed characteristics of each. Note that UCF101 is remarkably larger than the rest.

3.4 Summary

We introduced UCF101, the most challenging dataset for action recognition compared to the ex-

isting ones. It includes 101 action classes and over 13K clips which makes it outstandingly larger
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than other datasets. UCF101 is composed of unconstrained videos downloaded from YouTube

which feature challenges such as poor lighting, cluttered background and severe camera motion.

We provided baseline action recognition results on this new dataset using standard BOW method

with overall accuracy of 43.9%.
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CHAPTER 4: ACTION LOCALIZATION THROUGH CONTEXT WALK

An action detector is typically learned on trimmed training videos, and during testing it is used

to exhaustively search through a video to localize an action, using a sliding window approach.

The search space spans the spatial dimensions of the frame and the temporal length of the video,

where the spatio-temporal action volume is scaled in each dimension to try all possible combi-

nations. Precise action localization also requires searching various tube (spatio-temporal volume)

deformations to accommodate human articulation during the action. In realistic videos (e.g. from

surveillance cameras), having longer duration and higher resolution, it becomes impractical to use

sliding window approach to look for actions and interesting events. We propose an efficient action

localization approach that learns contextual relations in the form of relative locations between dif-

ferent video regions. These learnt relations are used to perform a context walk in testing video to

reduce the search space and evaluate the classifier at significantly fewer locations.

In this chapter, we describe in detail our approach for action localization in videos. The proposed

approach begins by over-segmenting the training videos into supervoxels and computing the local

features in the videos. For each training video, a graph is constructed that captures relations from

all the supervoxels to those belonging to action foreground (ground truth) (see Fig. 4.1). Then,

given a testing video, we initialize the context walk with a randomly selected supervoxel and

find its nearest neighbors using appearance and motion features. The displacement relations from

training supervoxels are then used to predict the location of an action in the testing video. This

gives a conditional distribution for each supervoxel in the video of belonging to the action. By

selecting the supervoxel with the highest probability, we make predictions about location of the

action again and update the distribution. This context walk is executed for several steps and is

followed by inferring the action proposals through CRF. The confidences for the localized action

segments (proposals) are then obtained through Support Vector Machine learned using the labeled
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training videos (see Fig. 4.2).

4.1 Context Graphs for Training Videos

Let the index of training videos for action c = 1 . . . C range between n = 1 . . . Nc, where Nc

is number of training videos for action c. The ith supervoxel in the nth video is represented by

uin, i = 1 . . . In, where In is the number of supervoxels in video n. Each supervoxel either belongs

to a foreground action or the background. Next, we construct a directed graph Gn(Vn,En) for

each training video across all the action classes. The nodes in the graph are represented by the

supervoxels while edges eij emanate from all the nodes (supervoxels) to those belonging to the

foreground, i.e., supervoxels spatio-temporally contained within the ground truth tube.

C
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 G
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p

h
 (


)

(a) Training Videos 
for Action c

……

Video n

(b) Context Graphs (c) Supervoxel
Action Specificity

Video 1 G1 ( V1, E1 )

Gn ( Vn , En ) H … …

Figure 4.1: This figure illustrates the idea of using context in the form of spatio-temporal displace-
ments between supervoxels. (a) Given Nc videos for an action c which have been over-segmented
into supervoxels, we construct a context graph for each video as shown in (b). Each graph has
edges emanating from all the supervoxels to those that belong to foreground action (circumscribed
with dashed green contours). The color of each node in (b) is the same as that of the correspond-
ing supervoxel in (a). Finally, a composite graph (Ξ) from all the context graphs is constructed,
implemented efficiently using a kd-tree. (c) We also quantify ’supervoxel action specificity’ which
returns the likelihood of a particular supervoxel belonging to an action and use it in conjunction
with context to localize actions.
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Let each supervoxel u be represented by its spatio-temporal centroid, i.e., uin = (xin, y
i
n, t

i
n). The

features associated with uin are given by Φi
n = (1φ

i
n, 2φ

i
n, . . . , Fφ

i
n), where F is the total number

of features. Then, for a particular action c, the graphs Gn and features Φi
n,∀n = 1 . . . Nc are

represented by the composite graph Ξc which constitutes all the training information necessary

to localize an action during testing. The following treatment is developed for each action class,

therefore, we drop the subscript c for clarity and use it when necessary.

4.2 Context Walk in the Testing Video

For a testing video, we obtain supervoxels (∼ 200 − 300 per video) with each supervoxel and

its local features represented by v and Φ, respectively. Then, we construct an undirected graph

G(V,E) where V contains the supervoxels represented with spatio-temporal centroids, and E

contains edges between neighboring supervoxels. Our goal is to find a contiguous subsets of nodes

in this graph that form action proposals. We achieve this by making sequential observations based

on context. Given the composite graph Ξ, we traverse the supervoxels in testing video in a se-

quence, referred to as context walk. The sequence till step τ ≤ T is given by Sτv = (v1,v2, . . .vτ ),

and SτΦ = (Φ1,Φ2, . . . ,Φτ ). Each observed supervoxel during the walk independently proposes

candidate supervoxels which are later visited if they accumulate enough support during the course

of the walk. Next, we describe the procedure of generating such a sequence on a given testing

video.

The initial supervoxel v1 is selected randomly in the testing video. We find similar supervoxels

from the training data and project their displacement vectors to the selected supervoxel vτ in the

testing video. The following function ψ(.) with the associated parameters wψ generates a condi-

tional distribution over all the supervoxels in the testing video given only the current supervoxel

vτ , its features Φτ , and the composite graph Ξ, i.e.,
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ψ(v|vτ ,Φτ ,Ξ; wψ) = Z−1

Nc∑
n=1

In∑
i=1

∑
j|eij∈En

Hσ(Φτ ,Φi
n; wσ) ·Hδ(v,v

τ ,uin,u
j
n;wδ), (4.1)

where Hσ computes the similarity between features of current supervoxel in testing video Φτ ,

and all the training supervoxels (Φi
n). Hδ transfers displacements between supervoxels in training

videos to a supervoxel in the testing video. Both functions have weight parameters wσ and wδ,

respectively, and Z is the normalization factor. Theoretically, Eq. 4.1 loops over all displacement

vectors in all the training videos, and is computationally prohibitive. Therefore, we only consider

the nearest neighbors for the selected supervoxel during testing using kd-trees (one per action). In

Eq. 4.1, the function Hδ assigns a confidence to each supervoxel v in the testing video whether it

is part of the action or not. This is achieved by computing proximity of a supervoxel in the testing

video to the displacement vector projected onto the current supervoxel vτ . If ujn − uin defines the

displacement vector from the supervoxel uin to the foreground action supervoxel ujn, then Hδ is

given by:
Hδ(v,v

τ ,uin,u
j
n;wδ) = exp

(
− wδ‖v −

(
vτ + ujn − uin

)
‖
)
. (4.2)

Furthermore, the function Hσ in Eq. 4.1 is simply the weighted sum of distances between the

different features:

Hσ(Φτ ,Φi
n; wσ) = exp

(
−

F∑
f=1

(
wσfΓσf (fφ

τ , fφ
i
n)
))
, (4.3)

where Γσf with the associated weight parameter wσf defines the distance function for the f th

feature. For the proposed method, we used the following features: (i) 1φ = (x, y, t, s), i.e., centroid

of the supervoxel in addition to scale (or volume) s with each dimension normalized between 0

and 1 relative to the video, (ii) appearance and motion descriptor 2φ = d using improved Dense

Trajectory Features (iDTF) [94], and (iii) the supervoxel action specificity measure, as described

in Sec. 4.2.1.
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CRF (Eq. 4.7) + SVM 

v𝜏+1 (Eq. 4.5)

(b) Construct Spatio-
temporal Graph 

using all SVs

SV (v), SV Features (𝚽)

(a) Segment Video into 
Supervoxels (SVs)

(d) Update SVs 
Conditional Distribution 

using all NNs

(e) Select SV with 
highest confidence

(f) Repeat for T
steps

(g) Segment Action 
Proposals through CRF 

+ SVM Classification

G (V, E)

(Eq. 4.4)τΨ

v𝜏

H𝛿 (Eq. 4.2)

(c) Search NNs using SV 
features, then project 
displacement vectors

H𝜎 (Eq. 4.3) Ξ

v𝜏

𝐮&
' −𝐮&𝒊

Figure 4.2: This figure depicts the testing procedure of the proposed approach. (a) Given a testing
video, we perform supervoxel (SV) segmentation. (b) A graph G is constructed using the super-
voxels as nodes. (c) We find the nearest neighbors of the selected supervoxel (vτ ; initially selected
randomly) in the composite graph Ξ which returns the displacement vectors learned during train-
ing. The displacement vectors are projected in the testing video as shown with yellow arrows.
(d) We update the foreground/action confidences of all supervoxels using all the NNs and their
displacement vectors. (e) The supervoxel with the highest confidence is selected as vτ+1. (f) The
walk is repeated for T steps. (g) Finally, a CRF gives action proposals whose action confidences
are computed using SVM.
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At each step τ , we compute the non-parametric conditional distribution ψ(.) in Eq. 4.1 and use it

to update Ψ(.) in the following equation, which integrates the confidences that supervoxels gather

during the context walk:

Ψτ (v|Sτv,SτΦ,Ξ; w) = wαψ(v|vτ ,Φτ ,Ξ; wψ) + (1− wα)Ψτ−1(v|Sτ−1
v ,Sτ−1

Φ ,Ξ; w), (4.4)

where w are the parameters associated with Ψ. In the above equation, the conditional distribu-

tion Ψ is updated with exponential decay at the rate wα. Finally, the supervoxel with the highest

probability from Eq. 4.4 is selected to be visited in the next step of the context walk:

vτ+1 = arg max
v

Ψτ (v|Sτv,SτΦ,Ξ; w). (4.5)

Each video typically contains several hundred supervoxels. Although kd-tree significantly speeds

up the Eq. 4.1, the efficiency of nearest neighbor search can be further improved using feature

compression techniques [58].

4.2.1 Measuring Supervoxel Action Specificity

In a testing video, some supervoxels are distinct and discriminative towards one action while other

supervoxels might be discriminative for other actions. We quantify this observation using a simple

technique where we cluster all the descriptors (iDTF [94]) from the training videos of a particular

action c into kc = 1 . . . K clusters. Our goal is to give each supervoxel an action specificity score.

Let ξ(kc) represent the ratio of number of supervoxels from foreground (ground truth) of action c

in cluster kc to all the supervoxels from action c in that cluster. Then, given the appearance/motion

descriptors d, if the supervoxel belongs to cluster kc, its action specificity Hχ(vi) is quantified as:
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Hχ(vi) = ξ(kc) · exp
(‖di − dkc‖

rkc

)
, (4.6)

where dkc and rkc are the center and radius for the kth cluster, respectively.

4.2.2 Inferring Action Locations using 3D-CRF

Once we have the conditional distribution ΨT (.), we merge the supervoxels belonging to actions so

that resulting action proposals have contiguous supervoxels without any gaps or voids. For this, we

use a Conditional Random Field where nodes form the supervoxels while edges link neighboring

supervoxels. We minimize the negative log-likelihood over all supervoxel labels a in the video:

− log
(
Pr(a|G,Φ,ΨT ;wΥ)

)
=
∑
vi∈V

(
Θ
(
ai|vi,ΨT

)
+

∑
vj |eij∈E

Υ
(
ai, aj|vi,vj,Φi,Φj;wΥ

))
,

where vi and vj are the neighboring supervoxel nodes in the undirected graph G(V,E), connected

by the edge eij , and ai and aj are their respective supervoxel labels. wΥ is the associated parameter

with the function Υ(.). Θ(.) captures the unary potential and depends on the conditional distri-

bution in Eq. 4.4 after T steps and action specificity measure computed through Eq. 4.6, both of

which are normalized between 0 and 1:

Θ
(
ai|vi,ΨT

)
= − log

(
Hχ(vi) ·ΨT (vi)

)
. (4.7)

If Ωi and Ωj are the volumes of the ith and jth supervoxel, respectively, then the binary potential

Υ(.) between neighboring supervoxels with parameter wΥ is given by:

Υ
(
ai, aj|vi,vj,Φi,Φj;wΥ

)
= wΥΓd(d

i,dj)
(
| log(Ωi/Ωj)|+ |Ωi − Ωj|

)
, (4.8)

where Γd(.) measures the feature similarity between neighboring supervoxels.
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Once we have the actions segmented in the testing video, we use Support Vector Machine to obtain

the confidence for each action segment using the appearance/motion descriptors of all supervoxels

in each segment.

4.3 Experiments

We evaluate the proposed approach on three challenging action localization datasets: UCF-Sports

[71], sub-JHMDB [32, 95] and THUMOS’13 [33]. First, we provide experimental details about

the three datasets followed by detailed analysis of the performance and complexity of the proposed

algorithm.

Experimental Setup: For each video in the training and testing data, we obtain a supervoxel based

segmentation using [59]. This is followed by extraction of improved Dense Trajectory Features

(iDTF: HOG, HOF, MBH, Traj) [94]. Every supervoxel in the video is encoded using bag-of-words

(BoW) representation on iDTFs. For all our experiments, we use Top-20 nearest neighbors using

kd-trees with context walk executed for T = 5 steps. Once we obtain segments using CRF, an SVM

with histogram-intersection kernel is used to classify each action segment. We train a one-vs-all

SVM per action class using ground truth bounding boxes from training videos as positive samples,

while negative samples are randomly selected from the background and other action classes. Each

sample is a supervoxel based BoW histogram and we consider supervoxels as positive samples only

if they overlap (≥ 80%) with the ground truth. Features from all the supervoxels within the ground

truth are accumulated to form one representative descriptor for SVM training. Furthermore, since

we used normalized features, the parameters for ψ(.) did not require tuning and were set to 1, i.e.,

wδ = wσ1 = wσ2 = wσ3 = 1. The decay rate was set to wα = 0.5 and the weight for CRF was set

to wΥ = 0.1 using training data.
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Figure 4.3: This figure shows the average of maximum supervoxel overlap in every training video
of different actions as a function of segmentation level. Using the correct level from the hierarchy
reduces the number of potential supervoxels we have to handle while testing. This speeds up the
method without sacrificing performance.

Selecting Segmentation Level: Supervoxel methods [30, 59] generate different levels of a seg-

mentation hierarchy. Each level has a different number of segmented supervoxels and may or may

not cover an action. Searching for an action over the entire hierarchy is computationally inefficient

and can also significantly hurt the performance of localization if an incorrect level in the hierarchy

is selected. Manually choosing the correct level for a dataset is cumbersome since every action

has its own complexity characterized by variation in scale, background clutter, and actor/camera

movement. To automatically choose the right hierarchy level, we sample training videos from

each action, and within every level of the hierarchy we find the overlap of the supervoxels with

the ground truth bounding boxes. We take the maximum supervoxel overlap for each video and

average it for all training videos of an action at a particular level of the segmentation hierarchy.

Fig. 4.3 shows the average of maximum supervoxel overlap for each action at different levels of

the hierarchy. The overlap peaks at a certain level and reduces thereafter. The average maximum

supervoxel overlap varies for every action and selecting a unique level of segmentation for each

action using this technique helps in correctly localizing an action in testing videos.
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Figure 4.4: The ROC and AUC curves on UCF Sports Dataset [71] are shown in (a) and (b), respec-
tively. The results are shown for Jain et al. [30] (orchid), Tian et al. [86] (blue), Lan et al. [46] (am-
ber), Wang et al. [95] (green) and Proposed Method (red). (c) shows the AUC for THUMOS’13
dataset [33], for which we are the first to report results.

4.3.1 Experiments on UCF-Sports

The UCF Sports dataset [71] consists of 150 videos collected from broadcast television channels.

The dataset includes 10 action classes: diving, golf swing, kicking, etc. Videos in the dataset are

captured in a realistic setting with intra-class variations, camera motion, background clutter, scale

and viewpoint changes. We follow evaluation methodology of Lan et al. [46] using the same train-

test splits with intersection-over-union criterion at an overlap of 20%.

We construct a codebook (K = 1000) of iDTFs [94] using all the training videos. The quantitative

comparison with state-of-the-art methods using ROC and Area Under Curve (AUC) for overlaps

of 10%, 20%, 30%, 40%, 50% and 60% is shown in Fig. 4.4(a,b). The ROC curve highlights that

the proposed method performs better than the state-of-the-art methods [30, 46, 86, 95]. Although,

we evaluated the classifier on very few segments of supervoxels, we are still able to achieve better

results at an overlap of 20%. The comparison using AUC measure (Fig. 4.4(b)) also shows that we

are able to achieve comparable results for different overlaps. We accredit this level of performance

to avoiding background clutter and irrelevant camera motion through the use of context which
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allows the proposed method to ignore the potential false positive regions in the videos.

4.3.2 Experiments on THUMOS’13

THUMOS’13 action localization dataset was released as part of the THUMOS Challenge work-

shop [33] in 2013. This dataset is a subset of UCF-101 and has 3207 videos with 24 action classes

such as basketball, biking, cliff diving, etc. The dataset is quite challenging and is currently the

largest dataset for action localization. It includes several complex interactive actions such as salsa

spin, fencing, cricket bowling with multiple action instances in the same video. We are the first to

report action localization results on THUMOS’13. We also evaluated a competitive baseline using

iDTFs with BoW (K = 4000), and trained a one-vs-all SVM-HIK for each action. Given a test

video, we perform an exhaustive multi-scale spatio-temporal sub-volume search. The results are

shown in Fig. 4.4(c).

4.3.3 Experiments on sub-JHMDB

The sub-JHMDB dataset [95] is a subset of the JHMDB [32] dataset where all the joints for humans

in the videos have been annotated. Similar to [95], we use the box encompassing the joints as the

ground truth. This dataset contains 316 clips over 12 action classes: catch, climb stairs, golf,

etc. Jhuang et al. [32] have shown that this subset is far more challenging in recognizing actions

compared to the entire dataset. The probable reason is the presence of the entire human body which

exhibits complex variations in appearance and motion.

We used K = 4000 codebook centers for bag-of-words representation of the supervoxels. We

report our results in Fig. 4.5 using both ROC and AUC curves. At an overlap of 20%, we perform

better than the state-of-the-art and achieve competitive results at other overlapping thresholds.
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Figure 4.5: The ROC and AUC curves for sub-JHMDB dataset [32, 95] are shown in (a) and (b),
respectively. Green and black curves are from the method by Wang et al. [95] and their iDTF +
Fisher Vector baseline. Red curve shows the performance of the proposed method which is better
than [95].

Note that Wang et al. [95] also evaluated a competitive baseline over this dataset. This baseline

uses iDTF features with a Fisher Vector encoding (black curves in Fig. 4.5) to exhaustively scan

at various spatio-temporal locations at multiple scales in the video. Performing better than the

baseline in a far more efficient manner emphasizes the strength of the proposed approach and

reinforces that context does make a significant impact in understanding and predicting the locations

of actions.

4.3.4 Analysis and Discussion

In Table 4.1, we report the percentage AUC on UCF-Sports [71] and sub-JHMDB [95] datasets.

These numbers are computed at an overlap of 20% and show we perform competitively or better

than existing approaches.
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Table 4.1: Quantitative comparison of proposed approach with existing methods at 20% overlap.

Method UCF-Sports sub-JHMDB
Wang et al. [95] 47% 36%

Wang et al. (iDTF+FV) [95] - 34%
Jain et al. [30] 53% -
Tian et al. [86] 42% -
Lan et al. [46] 38% -

Proposed 55% 42%

Computational Efficiency: Our approach achieves competitive results compared to the state-of-

the-art methods on multiple datasets. However, in certain cases, some existing methods show

better accuracy at higher overlaps, but this does come with a price of evaluating classifiers at a

significantly higher number of locations. Note that, the BOW framework in our approach is only a

matter of choice and efficiency, and results are expected to improve further through Fisher Vectors

[60, 95].

Component’s Contributions: The proposed approach has several aspects that contribute to its

performance. We quantify their relative contributions to overall performance in Fig. 4.6, which

shows both the ROC and AUC curves computed on UCF-Sports dataset. The grey curves rep-

resent the output using just supervoxel action specificity (§4.2.1). Here, we assign confidences

using Eq. 4.6 to each supervoxel, followed by a fixed threshold. Each segment is considered as

an action segment and evaluated using the ground truth. Next, we incorporate context walk as

shown with green curves in Fig. 4.6. In this case, the confidence for supervoxels are obtained

using Eq. 5.10. The difference between grey and red curves highlights the importance of context

for action localization. Next, we show improvement in performance obtained by using CRF (Eq.

5.9) in blue curves, which helps in obtaining contiguous and complete action segments. Finally,

the performance obtained with all aspects of the proposed approach (including SVM) is shown

with red curves. The reason SVM gives a large boost is that the evaluation of action localization

simultaneously quantifies action classification. Correctly localizing the action but assigning it an
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incorrect label is treated as incorrect localization. Since each SVM is trained on both background

and negative samples from other classes, it significantly contributes to the correct classification

of the localized actions. Note that for non-linear kernels, the summation of scores from super-

voxels does not equal that of an action volume, thus, necessitating classification using an SVM.

Nevertheless, this is an inexpensive step since we require very few SVM evaluations.
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Figure 4.6: This figure shows the contributions of the fours aspects of the proposed approach to-

wards overall performance, in terms of ROC (left) and AUC of Precision-Recall curve as a function

of overlap threshold (right).

Action Contours: The proposed approach uses over-segmented supervoxels, therefore, it pro-

duces action segments which can be used for video segmentation as well. Since the local features

(iDTF) are based on motion, the segments are heavily dependent on the motion of actors. Such

results are an improvement over cuboid representation which can contain significant quantities of

background. Some qualitative results of the proposed approach with segmented actors are pre-

sented in Fig. 4.7.
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Figure 4.7: This figure shows qualitative results of the proposed approach (yellow contours) against
ground truth (green boxes) on selected frames of testing videos. The first four rows are from
UCF-Sports [71], next four are from sub-JHMDB [95], and then the next four rows are from
THUMOS’13 [33] datasets. Last two rows show two failure cases from sub-JHMDB dataset.

44



Since the proposed method uses supervoxels to segment the video, we are able to capture the entire

human body contours after CRF. These results show that supervoxels indeed help in obtaining fine

contours while reducing the complexity of the problem. However, there are certain cases where

the proposed approach fails as shown in the last two rows of Fig. 4.7. The action depicted on the

second last row shows the case where the action push was classified as walk, even though it was

localized correctly. The set of images on the last row shows incorrect localization of the action kick-

ball. For this particular case, the large motion of the actor resulted in a large number of supervoxels

on the lower body as compared to training videos. Many supervoxels had different distances (from

Eq. 4.2) as compared to the ones seen during training. This caused lower confidences for such

supervoxels resulting in only upper-body localization.

Complexity Analysis: We offer an analysis of the number of classifier evaluations of the proposed

approach on the number of supervoxels or subvolumes with two other state-of-the-art methods.

Table 4.2 shows Tian et al. [86] who learn a Spatio-temporal Deformable Parts Model detector

that is used to search for an action over width (X), height (Y), time (T) and different aspect ratios

(S) within the video. This requires enormous computations which can incur many false positives

as well. We also compare the effectiveness of the proposed approach to Jain et al. [30], who also

use supervoxels to reduce computation. Given N supervoxels at the lowest level, they apply an

agglomerative hierarchical clustering, which merges supervoxels at each level of the hierarchy

followed by an application of SVM classifier on each supervoxel. Compared to these approaches

we localize in constant time (context-walk with 5 steps and one inference through CRF followed

by an execution of SVM). Note that this table only shows the complexity of localizing the action,

assuming the features have been computed and models have been learnt in advance.
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Table 4.2: Number of classifier evaluations as a function of supervoxels / subvolumes in a video.

Method Evaluated Volumes Complexity
SDPM [86] XYTS O(n4)

Action Tubelets [30] N + (N-1) + . . . + 1 O(n2)
Proposed 5 (+ CRF) O(c)

4.4 Summary

We presented an efficient and effective approach to localize actions in videos. We use context to

make a series of observations on supervoxels, such that the probability of predicting the location

of an action increases at each step. Starting with a random supervoxel, we find similar supervoxels

from the training data, and transfer the knowledge about relative spatio-temporal location of an

action to the test video. This gives a conditional distribution over the graph formed by supervoxels

in the testing video. After selecting the supervoxel with highest probability, we repeat the steps.

The conditional distribution at the end of Context Walk over supervoxel graph is used in a CRF

to infer the number and location of action proposals. Finally, each of the proposals is evaluated

through an SVM. Due to both supervoxels and context, the proposed approach requires very few

classifier evaluations. In the next chapter, we address the limitations of offline action localization

approaches by addressing a new problem of online action localization in streaming videos.
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CHAPTER 5: ONLINE LOCALIZATION AND PREDICTION OF

ACTIONS AND INTERACTIONS

Visual surveillance and human-machine interaction applications require timely localization of ac-

tivities. In the event of an abnormal action of a criminal nature, an immediate automated response

or alert can be helpful to notify the authorities. Similarly, a pedestrian walking in front of an au-

tonomously driven car, can detect the human action (walking) to alter its path or come to a halt.

Offline approaches, as presented in Chapter 4, have the entire video at their disposal, to first detect

and then recognize the activity. Therefore, they can observe the entire motion of an activity and

search through a video to localize it. This makes them inapplicable for the above mentioned real-

life problems. Hence, in this chapter we propose to solve this new problem of Online Action and

Interaction Localization. In comparison, an online approach would use partially observed video,

and rely on limited motion information to detect the action in every frame, as well as predict the

action that possibly occurs in the near future.

This chapter focuses on two related problems of: 1) Online Localization and 2) Online Prediction

of Actions and Interactions. We begin by describing the technical details of Online Localization,

which uses Superpixel-based and Pose-based foreground likelihoods to infer location of the actor

using Conditional Random Field. We then describe two proposed approaches for Online Predic-

tion: (1) Binary-SVM with dynamic programming hybrid and (2) Structural SVM based approach.

Next, we perform our experimental evaluation on six challenging action and interaction datasets.

Finally, we discuss and analyze the variance of localization and prediction performance as a func-

tion of time.
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(a) Input Stream 
of Video Frames

(b) Superpixel
Extraction

(d) Learn Superpixel
based Appearance Model

(e) Superpixel based 
Foreground Likelihood

(f) Pose Refinement

(g) Segment Action 
with CRF

(c) Pose Estimation

(h) Action Prediction 
using S-SVM

Figure 5.1: This figure shows the framework of the approach proposed in this chapter. (a) Given
an input video, (b) we over-segment each frame into superpixels and (c) detect poses using an
off-the-shelf method [99]. (d) An appearance model is learned using all the superpixels inside a
pose bounding box as positive, and those outside as negative samples. (e) In a new frame, the
appearance model is applied on each superpixel of the frame to obtain a foreground likelihood. (f)
To handle the issue of visual drift, poses are refined using spatio-temporal smoothness constraints
on motion and appearance. (g) Finally, a CRF is used to obtain local action proposals at each
frame, (h) on which actions (interactions) are predicted through Structural SVM.
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5.1 Online Localization of Actions and Interactions

The pipeline of our approach for localization is shown in Fig. 5.1. Given a testing video, we ini-

tialize the localization algorithm with several pose estimations in individual frames and refine the

poses using multiple spatio-temporal constraints from previous frames. Next, we segment the test-

ing video frames into superpixels. The features computed within each superpixel are used to learn

a superpixel-based appearance model, which distinguishes the foreground from the background by

training a discriminative classifier with superpixels within each pose bounding box as foreground

and the rest of superpixels as background. Simultaneously, the conditional probability of pose

hypotheses at current time-step (frame) is computed using pose confidences and consistency with

poses estimated in previous frames. The superpixel and pose-based foreground probability is used

to infer the location of actors at each frame through a Conditional Random Field enforcing spatio-

temporal smoothness in color, optical flow, motion boundaries and edges among superpixels. After

localizing actions (interactions) at each time-step (frame), we refine poses by imposing consistency

in locations and appearance of joints as well as scale of poses. Once the pose has been estimated

and refined at current time-step, the superpixel-based appearance model is updated to avoid visual

drift. This process is repeated for every frame in an online manner (see Fig. 5.1) and gives human

localization at every frame. Note that, the pose refinement only aids in estimating pose for current

frame, the poses of past frames remain unchanged as expected for an online approach.

After localization, the spatio-temporal tubes are then used for prediction and recognition of labels

at each frame, discussed later in Sec. 5.2. Thus, the pose estimation not only provides initialization

for the proposed discriminative appearance models, as it is more robust compared to human detec-

tion in action (interaction) videos due to articulation, it also allows computation of pose features

which we use use during label prediction (Sec. 5.2). Note that the pose estimations can consist of

any or multiple body configurations such as upper or full body, as well as multiple humans interact-
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ing or performing actions. To simplify the treatment in this section, we assume we are dealing with

a single actor or action, where the case of multiple actors is handled by solving the correspondence

problem first (e.g. using Hungarian Algorithm, in our case) followed by independent treatment of

each actor for localization and action prediction.

Let st represent a superpixel by its centroid in frame t and pt represent one of the poses in frame

t. Since our goal is to localize the actor in each frame, we use Xt to represent, a sequence of

bounding boxes (tube) in a small window of δ frames. Each bounding box is represented by its

centroid, width and height. Similarly, let St and Pt respectively represent all the superpixels and

poses at that time instant. Given the pose and superpixel-based observations till time t, S1:t and

P1:t, the state estimate Xt at time t is obtained using the following equation through Bayes Rule:

p(Xt|S1:t,P1:t) = Z−1p(St|Xt).p(Pt|Xt).

∫
p(Xt|Xt−1).p(Xt−1|S1:t−1,P1:t−1)dXt−1, (5.1)

where Z is the normalization factor, and the state transition model is assumed to be Gaussian

distributed, i.e., p(Xt|Xt−1) = N (Xt; Xt−1,Σ). Eq. 5.1 accumulates the evidence over time on

the superpixels and poses in streaming mode. The state which maximizes the posterior (MAP)

estimate in Eq. 5.1 is selected as the new state. An implication of Eq. 5.1 is that the state or

localization cannot be altered in the past frames, which makes online localization different from

the existing offline methods. Next, we define the pose and superpixel-based foreground likelihoods

used for estimating Eq. 5.1.

5.1.1 Superpixel-based Foreground Likelihood

Learning an appearance model helps in distinguishing the foreground actions (interactions) from

the background. Given foreground and background superpixels in the previous frames t−δ, . . . , t−

1, we group them into k = 1 . . . K clusters. Furthermore, let ζk define the ratio of foreground to
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background superpixels for the kth cluster through k-means. Then, the appearance-based fore-

ground score using color, φcolor, and flow, φflow, features in the superpixels is given by:

Hfg(st) = exp
(‖φcolor(st)− qk)‖

rk

)
· ζk + exp

(‖φflow(st)− µk‖
ρk

)
, (5.2)

where qk and rk are the cluster center and radius, respectively, whereas µk and ρk represent the

mean and variance of optical flow for the kth cluster.

In Eq. 5.2, the clusters are updated incrementally at each time-step (frame) to recover from the

visual drift using a temporal window of past δ frames. Note that, background superpixels (e.g.

grass in Fig. 5.1) within a pose bounding box are inevitably considered as foreground initially,

however the later segmentation through Conditional Random Field serves to alleviate this problem

finding a fine actor contour and separating foreground superpixels within the pose bounding box.

The ζk helps to compensate for this issue by quantifying the foreground/background ratio for each

cluster. Finally, the superpixel-based foreground likelihood in Eq. 5.1 is given as: p(St|Xt) =

αfg ·Hfg(st), where αfg is the normalization factor.

5.1.2 Pose-based Foreground Likelihood

We represent each pose pt graphically with a tree, given by T = (Π,Λ). The body joints π ∈ Π

are based on appearance connected by λ ∈ Λ edges capturing the structure of the pose. The joint j

with its location in pose pt is represented by πjt , consisting of its x and y locations. Then, the raw

cost (or negated detection score) for a particular pose pt is the sum of appearance and deformation

costs:

Hraw(pt) =
∑
j∈Πt

ψ
(
πjt
)

+
∑

(j,j′)∈Λt

χ
(
πjt ,π

j′

t

)
, (5.3)

where ψ and χ are linear functions of appearance features of pose joints, and the relative joint

displacements (deformations) w.r.t each other.
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(a) (b) (c)

Figure 5.2: This figure shows a visualization of the joint smoothness costs used in pose-based
foreground likelihood for (a) appearance smoothness of joints (Japp), (b) location smoothness of
joints (Jloc) and (c) scale smoothness of joints (Jsc).

We use a pre-trained pose detector to obtain pose hypotheses in each frame. In [82], we used

Flexible Mixture-of-Parts [108] for pose estimation, which optimizes over latent variables that

capture different joint locations and pose configurations. In this chapter, we report results using

Convolutional Pose Machines (CPM) [99] which uses deep learning. For CPM, the deformation

costs are embedded within joint costs in Eq. 5.3. Since the pose estimation in both methods works

on individual frames, it is inherently noisy and does not take into account the temporal information

available in videos. We impose the following smoothness constraints (as shown in Fig. 5.2 (a-c))

in the previous δ frames to re-evaluate poses in Eq. 5.3 for the current time-step.

Appearance Smoothness of Joints: Since the appearance of a joint is not expected to change

drastically in a short window of time, we impose the appearance consistency between superpixels

at joint locations:

Japp(pt) =

|Πt|∑
j=1

‖Hfg(ŝ
j
t)−Hfg(ŝ

j
t−1)‖, (5.4)

where ŝjt is the enclosing superpixel of the joint πjt .

Location Smoothness of Joints: Since human motion is naturally smooth, we ensure that displace-

ments in joint locations over time are small. This is achieved by fitting a 2D spline using piecewise
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polynomials to each joint j on the past δ frames, γjt . Then the location smoothness cost over all

joints is given by:

Jloc(pt) =

|Πt|∑
j=1

‖γjt − π
j
t‖. (5.5)

Scale Smoothness of Joints: Let jmin and jmax denote the vertical minimum and maximum for all

the splines γτ ,∀τ ∈ {t−δ, . . . , t}, i.e., the y-axis components of the bounding box circumscribing

all the splines fitted on joints. Furthermore, let j′min, j
′
max denote minimum and maximum for joints

in actual posesπt ∈ Πt. Then, the scale smoothness cost essentially computes the overlap between

the two heights:

Jsc(pt) = ‖(jmax − jmin)− (j′max − j′min)‖. (5.6)

The combined cost of a particular pose is defined as its raw cost plus the smoothness costs across

space and time, i.e.,

Hpose(pt) = Hraw(pt) + Japp(pt) + Jloc(pt) + Jsc(pt). (5.7)

The change in pose and appearance of an actor may cause visual drift. Similar to Sec. 5.1.1, we

use a temporal window of past δ frames to refine the pose locations. This helps in better prediction

of the highly probable foreground locations in current frame. We propose an iterative approach to

select poses in the past {t − δ, . . . , t} frames. Given an initial set of poses, we fit a spline to each

joint πjt . Then, our goal is to select a set of poses from t − δ to t frames, such that the following

cost function is minimized:

(∗pt−δ, . . . ,
∗pt) = arg min

pt−δ,...,pt

t∑
τ=t−δ

(
Hpose(pτ )

)
. (5.8)
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Algorithm 1 : Algorithm to refine pose locations in a batch of frames in Q iterations.
Input: Pt−δ, . . . ,Pt

Output: ∗pt−δ, . . . , ∗pt

1: procedure REFINEPOSES()
2: for τ = t− δ to t do
3: ∗pτ = arg min(Hraw(pτ ))
4: end for
5: for n = 1 to Q do
6: Fit a spline γj to each joint using locations
7: [∗πjt−δ, . . . ,

∗πjt ]
8: Compute Japp(pt) using Eq. 5.4
9: Compute Jloc(pt) using Eq. 5.5

10: Compute Jsc(pt) using Eq. 5.6
11: Find (∗pt−δ, . . . ,

∗pt) through Eq. 5.8.
12: end for
13: end procedure

This function optimizes over pose detection, and the appearance, location and scale smoothness

costs of joints (see Fig.5.1 (e)) by greedily selecting the minimum cost pose in every frame through

multiple iterations, such that the joints are spatially accurate and temporally consistent with the

motion of the action. In case of occlusions, the joint locations are projected using a linear motion

model into future frames. This procedure is summarized in Algorithm 1. Note that the poses in

previous frames of the batch are only refined simultaneously, however, the pose at the current time-

step is used by the algorithm. Finally, the pose-based foreground likelihood in Eq. 5.1 is given by

p(Pt|Xt) = exp(αpose ·Hpose(pt)), where αpose is the normalization factor.

5.1.3 Actor Segmentation using Conditional Random Fields (CRF)

Once we have the superpixel and pose-based foreground likelihoods in Eq. 5.1, we proceed to

infer the action segment and its contour using a history of δ frames. Although the action location

is computed online for every frame, using past δ frames adds robustness to segmentation. We form
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a graph with superpixels as nodes connected through spatial and temporal edges. Let variable

a denote the foreground/background label of a superpixel. Then, the objective function of CRF

becomes:

− log
(
p(at−δ, . . . , at|st−δ, . . . , st,pt−δ, . . . ,pt)

)
=

t∑
τ=t−δ

(
Θ
(
aτ |sτ ,pτ

)︸ ︷︷ ︸
unary potential

+ Υ
(
aτ , a

′
τ |sτ , s′τ

)︸ ︷︷ ︸
spatial smoothness

)

+
t−1∑

τ=t−δ

Γ
(
aτ , a

′
τ+1|sτ , s′τ+1

)︸ ︷︷ ︸
temporal smoothness

, (5.9)

where sτ is the superpixel and pτ is the pose in frame τ . The unary potential, with the associated

weights symbolized with α, is given by:

Θ
(
aτ |sτ ,pτ

)
= αfgHfg(sτ ) + αposeHpose(pτ ), (5.10)

and the spatial and temporal binary potentials, with weights β and distance functions d, are given

by:

Υ
(
aτ , a

′
τ |sτ , s′τ

)
= βcoldcol(sτ , s

′
τ ) + βhofdhof(sτ , s

′
τ ) + βµdµ(sτ , s

′
τ )

+ βmbdmb(sτ , s
′
τ ) + βedgededge(sτ , s

′
τ ), (5.11)

and

Γ
(
aτ , a

′
τ−1|sτ , s′τ−1

)
= βcoldcol(sτ , s

′
τ−1) + βhofdhof(sτ , s

′
τ−1) + βµdµ(sτ , s

′
τ−1), (5.12)

respectively. In Eqs. 5.11, and 5.12, βcoldcol(.) is the cost of color features in HSI color space,

βhofdhof(.) and βµdµ(.) compute compatibility between histogram of optical flow and mean of op-

tical flow magnitude of the two superpixels, respectively. Similarly, βmbdmb(.) and βedgededge(.)

quantify incompatibility between superpixels with prominent boundaries.
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5.2 Online Prediction of Actions and Interactions

For online recognition and class-label prediction of actions (interactions) in streaming videos, the

classifier has to be applied on-the-fly on short temporal intervals. In particular, training videos

of an action (interaction) class c are divided into M clips of equal-sized interval Ω. The average

segment for each action is saved as prior information, which during testing allows us to compute

features in intervals of the desired length. Next, we present a baseline approach using Support

Vector Machine and Dynamic Programming hybrid [82] which divides videos into short segments,

and trains a classifier independently for each segment. The online update of action confidences is

achieved through dynamic programming on segment scores. In this chapter, we present an alternate

approach which makes structured prediction by training a single classifier per action and modeling

temporal dependence between action segments. In this section, we present the formulation in terms

of linear classifiers for simplicity.

Let m index over temporal segments, i.e., m ∈ 1, . . . ,M and xi,m denote the mth segment and its

feature vector in video i. Next, we present the two approaches to recognize and predict the class

label at time t of a testing video.

5.2.1 Binary SVMs with Dynamic Programming Inference (DP-SVM)

First, we present a baseline for online prediction [82] in our localization framework. For training

binary SVMs for segments in an action (interaction) class c, we assume availability of N trimmed

positive and negative training videos. For linear SVM, we optimize the following objective func-
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tion,

min
1

2
‖wm‖2 + C

N∑
i=1

M∑
m=1

ξi,m

s.t. yi,m〈wm,xi,m〉 ≥ 1− ξi,m, ξi,m ≥ 0, ∀i,m (5.13)

where ξ represents slack variables, wm is the single weight vector obtained per segment, C controls

the trade-off between regularizer and constraints, and yi,m = 1, for desired m if i ∈ c and −1,

otherwise. Effectively, the training videos are divided into short intervals and an SVM is trained

for each interval m independently. While testing on videos, the classification is performed on

features accumulated on interval lengths learned from training videos. To exploit and preserve

the sequential information present in videos, this is followed by dynamic programming on the

short interval clips. At each step of the dynamic programming, the system effectively searches

for the best matching segment that maximizes the SVM confidences from past segments. This

method is applied independently for each class, and gives the confidence for that class. This shares

resemblance to Dynamic Bag-Of-Words [73] which used RBF kernel to compute score between

training and testing segments, and applied it on trimmed videos.

Let F (t, z) be the result of dynamic programming at time t assuming the current interval is z for a

particular class. The result of applying classifier on testing video o on features computed between

t − Ω and t is given by σ(〈wm,xo,t〉), where σ is the sigmoid function. If the testing video is

trimmed, then F (t, z) is computed using the following recursion:

F (t, z) = max
m

F (t− Ω, z −m) · σ(〈wm,xo,t〉), (5.14)

where m is the index for temporal segment. At each time instant, the maximum value at time t

gives the desired confidence for the class under consideration.
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5.2.2 Structural SVM (S-SVM)

Ideally the prediction confidence for the correct class should increase as more action (interaction)

in the video is observed over time. There is rich structure that can be derived from division of

actions into sub-actions, and modeling the spatio-temporal dependence between them. S-SVM

gives the ability to model these sub-actions as structured predictions. It also simplifies learning by

using a single S-SVM classifier for action prediction, instead of learning multiple Binary SVMs

and applying Dynamic Programming to accumulate scores (as in Sec. 5.2.1). Given testing video

segments, we then apply Structural SVM detector to each segment of the test video. For this case,

we redefine intervals w.r.t start time of an action (interaction), i.e., the start time of interval m

is 0 of the trimmed training video. We set the problem in a Structural Support Vector Machine

(S-SVM) with margin re-scaling construction, given by:

min
1

2
‖w‖2 + C

N∗M∑
i=1

ξi

s.t. 〈w,Ψi(xi,yi)−Ψi(xi,y)〉 ≥∆(yi,y)− ξi,

∀y ∈ Y \ yi, ξi ≥ 0,∀i (5.15)

where the joint feature map for input and output is given by Ψ(x,y) = x · sign(y), and Y =

{−1, 1, . . . ,M} is the set of all labels . In Eq. 5.15, ξ represents the slack variables for the soft-

margin SVM, which optimizes over the learned weight vector w and the slack variables ξ. The

constraint with the loss function ∆(yi,y) ensures that the score with the correct label yi is greater

than alternate labels. Since the number of constraints can be tremendous, only subset of con-

straints are used during the optimization. For each training sample, the label y which maximizes

〈w,Ψ(xi,y)〉 + ∆(yi,y) is found and the constraint which maximizes this loss is added into the
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subset, known as the most violated constraint. For both actions and interactions, the temporal

component of the loss is defined as:

∆(yi,yi′) =


|yi − yi′|, i ∈ c ∧ i′ ∈ c

M + ε, i ∈ c ∧ i′ /∈ c

ε, otherwise.

(5.16)

The above loss function ensures that the confidence increases as the action (interaction) happens

in the testing video, i.e., the evaluation during a positive test instance, possibly over a long video,

yields a unique signature of confidence values that increases over time. This approach results in

one S-SVM per class, and can be applied indiscriminately to untrimmed videos. For interactions

an additional loss captures the relationship between actors. Once the weight vector w has been

learned, the score for a clip in the testing video is computed using arg maxy∈Y〈w,Ψ(x,y)〉.

Note that the performance of detection or prediction for action (interaction) localization depends

on the quality of localized tubes / cuboids, as the classifiers are only evaluated on such video

segments. This is in contrast to previous prediction methods [25, 43, 47, 73] which do not spatially

localize the actions (interactions).

5.3 Experiments

We evaluate our online action localization approach on six challenging datasets: 1) JHMDB, 2)

Sub-JHMDB, 3) MSR-II, 4) UCF Sports, 5) TV Human Interaction and 6) UT Interaction datasets.

We provide details for the experimental setup followed by the performance evaluation and analysis

of the proposed approach.

Features: For each frame of the testing video we extract superpixels using SLIC [5]. This is
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followed by extraction of color features (HSI) for each superpixel, as well as improved Dense

Trajectory features (iDTF: HOG, HOF, MBH, Traj) [94] within the streamed volumes of the video.

Each superpixel descriptor has a length of 512 and we set K = 20. The pose detections are

obtained using [99] and pose features using [32]. We build a vocabulary of 20 words for each pose

feature, and represent pose with a 180d vector.

Parameters and Distance Functions: We use Euclidean distance for dµ, chi-squared distance for

dhof and dcol, and geodesic distance for dmb and dedge. We unit-normalize the histograms before

computing distances in CRF, therefore, we set absolute values of all the parameters α and β to 1.

Evaluation Metrics: Since the online localization algorithm generates tubes or cuboids with as-

sociated confidences, the Receiver Operating Characteristic (ROC) curves are computed at fixed

overlap thresholds with the GT tubes. Following experimental setup of [46], we show ROC @ 20%

overlap. Furthermore, Area Under the Curve (AUC) of ROC at various thresholds gives an overall

measure of performance. Mean Average Precision (mAP) is also reported as it is not sensitive to

True Negatives unlike ROC. The proposed evaluation metrics are computed over all action and

interaction datasets for consistency. For MSR-II dataset, we also report results using Precision and

Recall curves typically used for this dataset.

Inspired from early action recognition and prediction works [73], we also quantify the performance

as a function of Observation Percentage of actions (interactions). For this evaluation method, the

localization and prediction for testing videos are sampled at different percentages of observed

video/action (0, 0.1, 0.2, . . . , 1). The ROC curve is computed at multiple overlap thresholds, and

AUC is computed under ROC curves at respective thresholds. Accuracy for the prediction task

is akin to classification and recognition. For instance, computing accuracy at 20% observation

percentage entails finding label which occurs most among all the frames between 0 − 20% of the

action video, followed by multi-label classification. In the case of untrimmed videos, evaluation
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of prediction accuracy is not straightforward. For that, we first report prediction accuracy as a

function of observation percentage within the temporal boundaries of ground truth actions (inter-

actions) - similar to the trimmed case. Second, we extract hundreds of clips from each video,

some of which contain ground truth actions, whereas others represent the background part of the

untrimmed video. Then, we compute prediction accuracy as a function of observation percentage

over each clip. This measure captures the false positives and offers more holistic evaluation on

untrimmed videos.

Note that, in online action (interaction) localization, the prediction and localization is performed

instantaneously at each frame in a streaming video, therefore once locations are detected and pre-

dictions are made, retroactive modifications or changes to results are not possible.

5.3.1 Datasets

JHMDB Dataset: The JHMDB [32] dataset is a subset of the larger HMDB51 [44] dataset col-

lected from digitized movies and YouTube videos. It contains 928 videos consisting of 21 action

classes. The dataset has annotations for all the body joints and has recently been used for offline

action localization [20]. We use a codebook size of K = 4000 to train SVMs using iDTF features.

sub-JHMDB Dataset: The sub-JHMDB dataset has all human body joints visible in each frame.

It contains a total of 316 videos over 12 action classes: catch, climb stairs, golf, kick ball, etc.

The presence of the entire human within each frame makes it more challenging to recognize and

localize the actions as compared to JHMDB dataset, due to high articulation of human body and

joints, and complex variations in appearance and motion compared to partial body actions [32].

A codebook size of K = 4000 was used for IDTF, and SVMs were trained with a bag-of-words

representation inside the ground truth action volumes.
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UCF-Sports Dataset: The UCF Sports [71, 83] dataset is collected from broadcast television

channels and consists of 150 videos. It includes a total of 10 action classes: diving, golf swing, kick-

ing, lifting, riding horse, skateboarding, etc. Videos are captured in a realistic setting with intra-

class variations, camera motion, background clutter, scale and viewpoint changes. We evaluated

our method using the methodology proposed by [46], who use a train-test split with intersection-

over-union criterion at an overlap of 20%. To train SVM, we use a codebook size of K = 1000 on

iDTFs using all the training videos.

MSR-II Dataset: The MSR-II dataset [114] consists of 54 untrimmed videos and 3 action classes:

Boxing, Handclapping and Handwaving. We follow the experimental methodology of [114], hav-

ing cross-dataset evaluation, where KTH [78] dataset is used for training and testing is performed

on MSR-II dataset. A codebook size of K = 1000 was used to train SVM on iDTFs. We show

quantitative comparison using Precision-Recall curves with state-of-the-art offline methods. How-

ever, for uniformity with other datasets we also report results using ROC and AUC curves.

TV Human Interaction (TVHI): The TVHI dataset [61, 62] is collected from 23 different TV

shows and is composed of 300 untrimmed videos. It includes 4 interaction classes: hand shake,

high five, hug and kiss, with 50 videos each. It also contains a negative class with 100 videos,

that have none of the listed interactions. The videos have varying number of actors in each scene,

different scales and abrupt changes in camera viewpoint at shot boundaries. For our experiments

we only use the 4 interaction classes (excluding negative class) for interaction localization. We use

the suggested experimental setup of two train/test splits. The localization performance is reported

using ROC and AUC curves.

UT Interaction: The UT Interaction dataset [74, 75] contains untrimmed videos of 6 interaction

classes: hand-shaking, hugging, kicking, pointing, punching, and pushing. Similar to [61], we add

being kicked, being punched and being pushed as interactions.
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H

(a) (b)

Figure 5.3: This figure shows online action (interaction) localization performance as a function
of observed action percentage on (a) MSR-II and (b) UT-Interaction datasets. In contrast to Fig.
5.4(d,f), there are two important differences. First, mean average precision (mAP) is reported
instead of multi-label prediction (classification). Furthermore, the evaluation is over untrimmed
videos, and includes background clips.

The dataset consists of two sets, where each set has 10 video sequences and each sequence having

at least one execution per interaction. Videos involve camera jitter with varying background, scale

and illumination. We follow the recommended experimental setup by using 10-fold leave-one-

out cross validation per set. That is, within each set we leave one sequence for testing and use

remaining 9 for training. We report the average localization performance of the proposed approach

using ROC @ 20% overlap and AUC curves.

5.3.2 Results and Analysis

Action (Interaction) Prediction with Time: The prediction accuracy (multi-label classification

over ground truth action (interaction) tube) is evaluated with respect to the percentage of action

(interaction) observed.
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Action Observation Percentage Action Observation Percentage

Action Observation Percentage Action Observation Percentage

Interaction Observation Percentage Interaction Observation Percentage

(c)

(a)

Figure 5.4: This figure shows action prediction accuracy as a function of observed percentage of
action or interaction for (a) UCF Sports, (b) JHMDB, (c) sub-JHMDB, (d) MSR-II, (e) TV Human
Interaction and (f) UT Interaction datasets. Prediction performance by the baseline Binary SVM
with Dynamic Programming approach is shown in blue, and that of Structural SVM with the red
curve. We compare the performance of our action prediction with MMED [25] (yellow curve) for
UCF Sports and Sub-JHMDB datasets.
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Fig. 5.4 shows the accuracy against time for (a) UCF Sports, (b) JHMDB, (c) sub-JHMDB, (d)

MSR-II, (e) TV Human Interaction and (f) UT Interaction datasets, while Fig. 5.3 shows mean

average precision evaluated on untrimmed videos of (a) MSR-II and (b) UT-Interaction datasets.

The results show that Structural SVM in general performs better than Binary SVM with Dynamic

Programming as it learns to predict higher confidence as more action is observed. It is evident that

predicting the class of an action based on partial observation is very challenging, and the accuracy

of correctly predicting the action increases as more information becomes available. However, the

curves for MSR-II (Fig. 5.4(e)) and UT Interaction (Fig. 5.4(g)) datasets do not reflect noticeable

change as more action (interaction) is observed. This is partially due to the reason that both these

datasets have very few classes (3 and 6, respectively), and there is little confusion among classes

from the onset of actions.

An analysis of prediction accuracy per action class is shown in Fig. 5.5 for (a) sub-JHMDB and

(b) TV Human Interaction datasets. Similarly Fig. 5.6(a) shows per-action results for UCF Sports.

A common theme among the results of all the datasets is that actions which have actors in upright

standing position are always easy to predict and localize compared to other actions. This is also

visible from the curves of kicking (UCF Sports), kick ball (sub-JHMDB) and hand shake, high

five (TV Human Interaction) which begin with a high prediction accuracy and drop slightly as

observation time period progresses, thus suggesting strong bias of classifier towards such actions

(interactions). For sub-JHMDB, high prediction accuracy actions include push and pull up, both

of which have humans in upright position making pose estimation easy, whereas jump is the most

difficult action to predict. An inspection of videos for this action reveals that most of the instances

were taken from parkour exhibiting high articulation and intra-class variation. For TV Human

Interaction dataset, hug is easy to predict whereas kiss is the most difficult due to its subtle motion

and high confusion with hug. For UCF Sports, high performing actions are kicking, walking and

running, all upright with smooth motion of legs. For this dataset, the most difficult action is swing
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side due to high articulation with most of the instances depicting swinging of the sportsperson from

the very first frame with different pose at the beginning of each action instance.

Finally, we also analyze the performance of DP-SVM and S-SVM in Fig. 5.6(b) which shows the

difference of prediction accuracy DP-SVM and S-SVM. Longer duration actions such as diving,

walking, running, riding horse gain significant boost in prediction accuracy, with average perfor-

mance increasing by about 12% over the baseline DP-SVM for this dataset.

Since each action has its own predictability, we also analyze how early we can predict each action.

We arbitrarily set the prediction accuracy to 30% and show the percentage of action observation

required for each action of JHMDB, sub-JHMDB and UCF Sports datasets in Table 5.1. Although

we set a reasonable prediction target, certain actions do not reach such prediction accuracy even

until the completion of the video. This highlights the challenging nature of online action prediction

and localization.

(a) (b)

Action Observation Percentage Action Observation Percentage

Figure 5.5: This figure shows per-action prediction accuracy as a function of observed action
(interaction) percentage for (a) sub-JHMDB and (b) TV Human Interaction datasets. The mean
accuracy for all actions (interactions) is shown with bold red curve.
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(a) (b)

Action Observation Percentage Action Observation Percentage

Figure 5.6: This figure shows per-action prediction accuracy as a function of observed action
percentage for UCF Sports dataset for (a) Structural SVM approach (Sec. 5.2.2) and (b) and its
difference with SVM and Dynamic Programming (Sec. 5.2.1). On average, S-SVM outperforms
DP-SVM.

Action (Interaction) Localization with Time: To evaluate online performance, we analyze how

the localization performance varies across time by computing prediction accuracy as a function of

observed action (interaction) percentage. Fig. 5.7 shows the AUC against time for different overlap

thresholds (10%− 60%) for (a) JHMDB, (b) sub-JHMDB, (c) MSR-II and (d) UCF Sports action

datasets. The AUC as a percentage of observed interaction percentage is shown for (e) TV Human

Interaction and (f) UT Interaction datasets as well. We compute the AUC with time in a cumulative

manner such that the accuracy at 50% means localizing an action from start till one-half of the video

has been observed. This gives an insight into how the overall localization performance varies as a

function of time or observed percentage in testing videos. These graphs show that it is challenging

to localize an action at the beginning of the video, since there is not enough discriminative motion

observed by the algorithm to distinguish different actions. Furthermore, our approach first learns an

appearance model from pose bounding boxes, which are improved and refined as time progresses.

This improves the superpixel-based appearance confidence, which then improves the localization,

and stabilizes the AUC. The curves also show that the AUC is inversely proportional to the overlap

threshold.
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Figure 5.7: This figure shows online action (interaction) localization performance as a function of
observed action percentage on (a) JHMDB, (b) sub-JHMDB, (c) MSR-II, (d) UCF-Sports, and as
a function of observed interaction percentage for (e) TV Human Interaction and (f) UT Interaction
datasets. Different curves show evaluations at different overlap thresholds: 10% (red), 30% (green)
and 60% (pink).
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Table 5.1: This table shows the the percentage of video observation required to achieve a prediction
accuracy of 30%. Results in the first two rows are from JHMDB, then from sub-JHMDB and the
last row is from UCF Sports dataset. Actions with missing values indicate that they did not reach
a prediction accuracy of 30% until video completion.

JHMDB
Actions

Shoot
Ball

Shoot
Gun Pull up Golf Clap

Climb
Stairs

Shoot
Bow

Brush
Hair Pour Push Walk

Video (%) 1% 1% 16% 19% 25% 26% 28% 32% 32% 36% 36%

JHMDB
Actions Sit

Swing
Baseball Run Stand Catch Jump Pick

Kick
Ball Throw Wave

Video (%) 40% 40% 48% 60% - - - - - -

sub-JHMDB
Actions

Kick
Ball Pullup Golf Push Walk Pick

Climb
Stairs

Shoot
Ball Run Catch Jump

Swing
Baseball

Video (%) 1% 17% 18% 18% 20% 24% 41% 48% 60% - - -

UCF Sports
Actions Kicking Lifting Walking

Golf
Swing

Riding
Horse Run Diving

Swing
Bench

Skate
Boarding

Swing
Side

Video (%) 1% 1% 1% 15% 15% 15% 22% 36% 37% 61%

There are two interesting observations that can be made from these graphs. First, for the JHMDB,

sub-JHMDB and MSR-II datasets in Fig. 5.7(a,b,c), the results improve initially, but then deterio-

rate in the middle, i.e. when the observation percentage is around 60%. The reason is that most of

the articulation and motion happens in the middle of the video. Thus, the segments in the middle

are the most difficult to localize, resulting in drop of performance. Second, the curves for UCF

Sports in Fig. 5.7(d) depict a rather unexpected behavior in the beginning, where localization im-

proves and then suddenly worsens at around 15% observation percentage. On closer inspection,

we found that this is due to rapid motion in some of the actions, such as diving and swinging (side

view). For these actions, the initial localization is correct when the actor is stationary, but both

actions have very rapid motion in the beginning, which violates the continuity constraints applica-

ble to many other actions. This results in a drop in performance, and since this effect accumulates

as observation percentage increases, the online algorithm never attains the peak again for many

overlap thresholds despite observing the entire action.
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Figure 5.8: This figure shows action localization results of the baseline Binary SVM with Dy-
namic Programming (DP-SVM) and Structural SVM (S-SVM) approaches, along with existing of-
fline methods on four action datasets (JHMDB, UCF Sports, sub-JHMDB and MSR-II). (a) shows
AUC curves for JHMDB, while (b) and (c) show AUC and ROC @ 20%, respectively, for UCF
Sports dataset. AUC and ROC @ 20% overlap are shown in (d) and (e) for sub-JHMDB dataset,
finally AUC for MSR-II dataset is shown in (f). The curve for S-SVM method is shown in red
and DP-SVM is shown in blue, while other offline localization methods including Lan et al. [46],
Tian et al. [86], Wang et al. [95], van Gemert et al. [92], Jain et al. [30] [31], Gkioxari and Ma-
lik [20], Chen and Corso [11], Weinzaepfel et al. [102] and Soomro et al. [81] are shown with
different colors. Despite being online, the proposed approach performs competitively overall com-
pared to existing offline methods.
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Figure 5.9: This figure shows action localization results on MSR-II dataset. The precision/recall
curves are drawn for three actions: (a) boxing, (b) Hand clapping and (c) hand waving. We perform
competitively to many existing offline methods. Red curve shows the proposed S-SVM approach,
while blue curve shows the results of the baseline DP-SVM method.

Comparison with Offline Methods: We also evaluate the performance of our method against

existing offline state-of-the-art action localization methods. Fig. 5.8(a) shows the results of the

proposed S-SVM method, on JHMDB dataset, in red and the baseline DP-SVM in blue, while that

of [20] in cyan. The difference in performance is attributed to the online vs. offline nature of the

methods, as well as the use of CNN features by [20]. Quantitative comparison on UCF Sports

using AUC and ROC @ 20% is shown in Fig. 5.8(b) and (c) respectively. Fig. 5.8 also shows the

results of S-SVM and DP-SVM over all datasets where S-SVM outperforms DP-SVP highlighting

the importance of structured prediction. The biggest gain in performance is visible in sub-JHMDB

dataset, as shown by the AUC and ROC curves in Fig. 5.8(d) and (e), where despite being online

S-SVM outperforms existing state-of-the-art methods.

For MSR-II dataset, we evaluate action localization and prediction using 1) precision/recall curve

to draw comparison with existing methods as shown in Fig 5.9 for the three different actions: (a)

boxing, (b) hand clapping and (c) hand waving, as well as through 2) AUC performance in Fig. 5.8

(f) for consistent evaluation with other datasets. The average precision per action is given in Table

5.2.
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Figure 5.10: This figure shows interaction localization results on two interaction datasets. ROC @
20% overlap and AUC curves for TV Human Interaction dataset are shown in (a) and (b), and for
UT Interaction dataset in (c) and (d). In this figure, S-SVM shown in red and DP-SVM (baseline)
in blue.
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Figure 5.11: This figure shows qualitative results for pose refinement. Results show a comparison
of raw poses (top row) and refined poses (bottom row) for (a) Kicking and (b) Walking.
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Table 5.2: This table shows the average precision for MSR-II dataset on three different actions: (a)
Boxing, (b) Handclapping and (c) Handwaving.

Method Boxing Handclapping Handwaving
Cao et al. [9] 17.5 13.2 26.7

Tian et al. [86] 38.9 23.9 44.4
Jain et al. [30] 46.0 31.4 85.8

Wang et al. [95] 41.7 50.2 80.9
Chen and Corso [11] 94.4 73.0 87.7
Proposed (DP-SVM) 37.3 28.3 42.9
Proposed (S-SVM) 75.3 43.4 71.3

Table 5.3: This table shows the video mean average precision (mAP) for UCF Sports, JHMDB,
Sub-JHMDB, TV Human Interaction and UT Interaction datasets.

Method
UCF

Sports JHMDB
Sub

JHMDB TVHI
UT

Interaction
Saha et al. [76] - 71.5 - - -

Peng and Schmid [65] 94.8 73.1 - - -
Weinzaepfel et al. [102] 90.5 60.7 - - -
Gkioxari and Malik [20] 75.8 53.3 - - -

DP-SVM 65.4 50.2 43.6 38.5 17.0
S-SVM 70.3 51.9 49.3 42.8 20.3

Generally, interaction datasets have either been used for classification [74], activity prediction [73]

or video retrieval [62]. We are the first to evaluate online localization on these datasets. To keep

evaluation metrics uniform, we present our performance on localization and prediction of human

interactions in Fig. 5.10 using ROC and AUC curves for TV Human interaction (a,b) and UT

interaction (c,d). We also report mean Average Precision (mAP) for all datasets in Table 5.3.

Pose Refinement: Pose-based foreground likelihood refines poses in an iterative manner using

spatio-temporal smoothness constraints. Our qualitative results in Fig. 5.11 show the improvement

in pose joint locations on two example videos..
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Figure 5.12: This figure shows qualitative results of the proposed approach for JHMDB, sub-
JHMDB and UCF Sports datasets, where each action segment is shown with yellow contour and
ground truth with green bounding box.
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Figure 5.13: This figure shows qualitative results of the proposed approach for MSR-II, TV Human
Interaction and UT Interaction datasets, where each action segment is shown with yellow contour
and ground truth with green bounding box.
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Action Segments: Since we use superpixel segmentation to represent the foreground actor, our

approach outputs action segments. Our qualitative results in Fig. 5.12, 5.13 show the fine contour

of each actor (yellow) along with the ground truth (green). Using superpixels and CRF, we are able

to capture the shape deformation of the actors.

5.4 Summary

In this chapter, we introduced a new prediction problem of online action and interaction local-

ization, where the goal is to simultaneously localize and predict action (interaction) in an online

manner. We presented an approach which uses representations at different granularities - from

high-level poses for initialization, mid-level features for generating action tubes, and low-level

features such as iDTF for action (interaction) prediction. We also refine pose estimation in an

online manner using spatio-temporal constraints. The localized tubes are obtained using CRF, and

prediction confidences come from the classifier. We showed that the Structural SVM (S-SVM) for-

mulation outperforms the dynamic programming with SVM (DP-SVM) hybrid. The intermediate

results and analysis indicate that such an approach is capable of addressing this difficult problem,

and performing competitive to some of the recent offline action localization methods. In the next

chapter, we tackle the problem of action localization in an unsupervised manner. Supervised ap-

proaches require manual annotations of video level labels and frame-level bounding boxes, which

can be quite time consuming and impractical with large number of videos. Hence, we propose to

localize actions without any ground truth action class labels and annotations.
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CHAPTER 6: UNSUPERVISED ACTION DISCOVERY AND

LOCALIZATION

The approaches mentioned so far in the previous chapters (Chapter 4 and 5), address the problem

of action localization in a supervised manner. They use manually labeled training videos, where

bounding boxes are used to learn detectors, and action class labels are used to train classifiers,

to localize and recognize an action, respectively. However, such efforts are time consuming and

require hours of manual work to label the location (bounding box), class, and temporal boundaries

of each action in a video. In addition, each action has its own complexity in terms of spatio-

temporal deformations (i.e. in height, width, spatial location and temporal length). Also, the

understanding of the temporal extent of an action is subjective, which may vary from person to

person, and can lead to unwanted biases and errors. Given, such challenges and the abundance

of unlabeled videos available on the Internet, unsupervised learning can provide a solution to the

mentioned problems.

This chapter deals with two important topics: 1) Unsupervised Action Discovery and 2) Unsu-

pervised Action Localization. We first present our discriminative clustering based action discovery

approach. Then, we propose a novel Knapsack approach with spatio-temporal constraints, to select

supervoxels in a video for action localization. This methodology involves joint action selectivity

for training action classifiers and learns pairwise relations of supervoxels using Structural SVM.

Next, we perform experimental evaluation on three challenging action datasets and show that our

proposed unsupervised approach gives comparable performance to existing state-of-the-art super-

vised methods.
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6.1 Action Discovery through Discriminative Clustering

In our proposed approach, we first aim to discover action classes from a set of unlabeled videos.

We start by computing local feature similarity between videos to apply spectral clustering. Then,

within each cluster, we construct an undirected graph to extract a dominant set. This subset is used

to train a Support Vector Machine (SVM) classifer within each cluster and discriminatively selects

videos from the non-dominant set to assign to one of the clusters in an iterative manner (see Alg.

2).

Let the index of unlabeled training videos range between n = 1 . . . N , whereN is the total number

of videos. Given this set of videos V = {V1,V2, . . . ,VN}, our goal is to discover video action

classes. We initiate by obtaining a set of K clusters C1 . . . CK using spectral clustering [55],

where Ck ⊆ V , ∀k = 1 . . . K. Since, the initial clusters can be noisy as they are computed using

a low-level similarity metric (e.g. χ2), we propose a data-driven approach to discriminatively

refine each of these initial clusters. In this iterative approach, we select a subset Ξk ⊆ Ck, called

dominant set [63, 64], from each cluster Ck. Dominant set clusters are known to maintain high

internal homogeneity and in-homogeneity between items within the cluster and those outside it.

For completeness, we present the basic definition and properties of dominant set next. For each

cluster Ck we construct an undirected edge-weighted graph with no self-loops Gk(Vk,Ek, ωk),

whose vertices correspond to videos, edges represent neighborhood relationships, weighting the

video similarity (using C3D deep features [87]), and ω : E → R∗+ is the (positive) weight function.

The graph Gk is represented using a weighted adjacency (similarity) matrix, which is non-negative

and symmetric Ak = aijk , where aijk = ωk(i, j) if (i, j) ∈ Ek, and aijk = 0 otherwise. As there are

no self-loops in Gk, the main diagonal of Ak is zero.

78



Algorithm 2 Algorithm to Discover K Action Classes
Input: Action Discovery Video Set V
Output: Action Clusters C1 . . . CK

1: procedure DISCOVER ACTION CLASSES(V)
2: C1 . . . CK ⇐ spectral clustering(V) . Cluster V Videos using Ng et al. [55]
3: Ξ1 . . .ΞK ⇐ dominant sets(C1 . . . CK) . Find Dominant Sets for all K Action Clusters
4: Λ⇐

⋃K
k=1 Ξ̃k . Group Non-Dominant Sets from all K Action Clusters

5: C1 . . . CK ⇐ Ξ1 . . .ΞK . Initialize all clusters to Dominant Sets
6: do
7: for k = 1 to K do
8: Ωk ⇐ svm train(Ck,

⋃K
k′=1,k′ 6=k Ck′) . Train Classifier on each Action Cluster

9: Cnew
k ⇐ select top(Ωk,Λ, η) . Test on video set Λ to select top η videos for each

cluster
10: Ck ⇐ Ck ∪ Cnew

k . Update all K Clusters by adding newly classified videos from
set Λ

11: end for
12: Λ⇐ Λ\

⋃K
k=1C

new
k . Remove newly selected videos from test set Λ

13: while Λ 6= ∅ . Loop until all videos have been assigned to one of the clusters
14: return C1 . . . CK
15: end procedure

Let Ξk ⊆ Vk be a non-empty set, i ∈ Ξk and j /∈ Ξk, we define the function φk(i, j), which

measures the relative similarity, using χ2 similarity matrix, between vertices i and j with respect to

the average similarity between vertex i and its neighbors in Ξk as φk(i, j) = aijk − 1
|Ξk|

∑
i′∈Ξk

aii
′

k .

For each vertex i ∈ Ξk we recursively define its weight, with regard to Ξk, as follows:

ωΞk
(i) =


1, if|Ξk| = 1∑

j∈Ξk\{i} φΞk\{i}(j, i)ωΞk\{i}(j), otherwise,
(6.1)

and the total weight of Ξk is defined by W (Ξk) =
∑

i∈Ξk
ωΞk(i). A non-empty subset of vertices

Ξk ⊆ Vk such that W (J) > 0 for any non-empty J ⊆ Ξk, is said to be a dominant set if:

1. ωΞk(i) > 0, for all i ∈ Ξk

2. ωΞk∪{i}(i) < 0, for all i /∈ Ξk.
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These dominant sets are obtained for each action cluster, Ck, using a continuous optimization

technique known as replicator dynamics [63, 64], arising from evolutionary game theory. As

shown in Algorithm 2, we group non-dominant sets into Λ and initialize clusters to dominant sets.

Then, iteratively we train a one-vs-all linear SVM classifier Ωk for each cluster, using videos from

the same cluster as positive examples and videos from the remaining clusters as negative examples.

In each iteration, we test the classifier on Λ to select top η videos for each action and add them to

their respective clusters, until the set Λ is empty.

6.2 Spatio-temporal Annotation of Training Videos using Knapsack

Given discovered action classes from our discriminative clustering approach, our aim is to annotate

the action within each training video in every cluster. We begin by oversegmenting a video into

supervoxels, where every supervoxel either belongs to the foreground action or the background.

Our goal is to select a group of supervoxels that collectively represent an action. We achieve this

goal by solving the 0-1 Knapsack problem: Given a set of items (supervoxels), each with a weight

(volume of a supervoxel) and a value (score of a supervoxel belonging to an action), determine the

subset of items to include in a collection, so that the total weight is less than a given limit and total

value is as high as possible. This combinatorial optimization problem would select supervoxels in

a video based on their individual scores, hence resulting in a degenerate solution, where selected

supervoxels are not spatio-temporally connected throughout the video. Therefore, we propose a

variant of knapsack problem with temporal constraints that enforces the annotated action to be

well-connected and the weight limit ensures the detected volume is the size of an actor in the

video. Since, the solution to the knapsack problem results in a single action annotation, we solve

this problem iteratively to generate multiple annotations, while they satisfy the given constraints

(see Fig. 6.1).
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Figure 6.1: This figure shows the proposed knapsack approach in this paper. (a) Given an input
video we extract supervoxel (SV) segmentation. (b) Each supervoxel is assigned a weight (spatio-
temporal volume) and a value (score of belonging to the foreground action). (c) A graph Gn

is constructed using supervoxels as nodes. (d) Temporal constraints are defined for the graph
to ensure contiguous selection of supervoxels from start (σ) to end (τ ) of action. (e) Knapsack
optimization is applied to select a subset of supervoxels having maximum value, constrained by
total weight (volume of the action) and temporal connectedness. (f) The knapsack process is
repeated for more action annotations. (g) Annotations represented by action contours.
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Let a video Vn be defined as a set of supervoxels Vn = {v1
n,v

2
n, . . . ,v

M
n }, where vυn, υ = 1, . . . ,M

is the υth supervoxel in nth video andM is the total number of supervoxels in each video. The fea-

tures associated with supervoxel vυn are given by xυn = {1x
υ
n . . . Rxυn}, where R is the total number

of features. Next, we construct a Directed Acyclic Graph (DAG), Gn(Vn,En) for each training

video n, with supervoxels as nodes and edges connecting spatio-temporal neighbors. Graph Gn is

a temporally forward flowing graph, that starts connecting supervoxels from the beginning of the

video, to their temporal successors, until the end of the video. The adjacency matrix Zn defining

the graph Gn is as follows:

Zn(υ, υ′) =


1, if vυn ∈ NGn(vυ

′
n ) & fstart(v

υ′
n ) > fstart(v

υ
n) & fend(v

υ′
n ) > fend(v

υ
n)

0, otherwise,
(6.2)

whereNGn(.) captures the spatio-temporal neighborhood of a supervoxel, fstart is the starting and

fend is the ending frame of a supervoxel.

Knapsack aims at selecting a contiguous and most valuable subset of nodes in this graph that form

an action. Next, we define the value and weight of its items, as well as the temporal constraints.

Knapsack Value: Let the value of each supervoxel be defined by its score of belonging to the

foreground action, πυn. Each supervoxel in a video contains discriminative information towards an

action, our aim is to assign every supervoxel an action distinctness score, which consists of: 1)

Humanness, 2) Saliency [23] and 3) Motion Boundary [94].

Given a video Vn, we use Faster-RCNN [70] to generate a set of human detection bounding boxes

Bn = {B1
n . . .BFnn } along with their scores Γn = {Γ1

n . . .Γ
Fn
n }, where Bfn, f = {1 . . . Fn} is the

set of bounding boxes in f th frame of a video Vn ∈ V and Fn is the total number of frames. For
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each bounding box bBfn ∈ Bfn, the human detection score is given by bΓ
f
n ∈ Γf

n. The humanness

score for every supervoxel vυn is defined as:

Shm(vυn,Bn,Γn) = ρ−1

Fn∑
f=1

arg max
b

bΓ
f
n

(
fv

υ
n ∩ bBfn
| fvυn|

)
, (6.3)

where ρ is the normalization factor, fv
υ
n is the segmented region in frame f and |.| is its area. This

function computes the weighted average overlap of a supervoxel region with its best overlapping

bounding box in each frame.

We define the action distinctness as a combination of humanness, saliency and motion boundary

as follows:

Π(vυn,Bn,Γn,x
υ
n) = γhmShm(vυn,Bn,Γn) + γsalSsal(v

υ
n,x

υ
n) + γmbSmb(v

υ
n,x

υ
n), (6.4)

where Ssal(.) and Smb(.) are the functions to compute supervoxel saliency and motion boundary,

respectively. The associated weights in Eq. 6.4 are symbolized by γ. Finally, the supervoxel value

is given by πυn = Π(vυn,Bn,Γn).

Knapsack Weight: The weight of a supervoxel is defined by its spatio-temporal volume θυn. We

aim to select supervoxels that occupy a combined volume similar to that of an action. Hence, the

total weight limit is defined as:

Θn = O−1

Fn∑
f=1

O∑
b=1

| bB
f
n|, (6.5)

where O is the number of bounding boxes in each frame.

Temporal Constraints: We enforce temporal constraints to enable the algorithm in selecting su-
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pervoxels that are spatio-temporally connected. These constraints are defined on our DAG, to

ensure that a supervoxel is selected only if at least one of its temporal predecessor is also selected.

These set of constraints are defined by the rows of the matrix Hn = I−ZT
n , where I is the identity

matrix and Zn is from Eq. 6.2. Fig. 6.1(d) shows the rows of Hn, whose sum should be less than

or equal to zero for the selected supervoxels.

We associate with each supervoxel vυn ∈ Vn a binary label variable uυn, which is 1 if vυn belongs to

the foreground action and 0 otherwise. In addition to theM supervoxel variables, we introduce two

dummy variables: 1) source (uσn) and 2) sink (uτn), that connect to the supervoxels in the first and

last frame of a trimmed video, respectively. This ensures that the solution spans the entire length

of the video. We solve the following Binary Integer Linear Programming (BILP) optimization to

localize an action:

maximize
un

M+2∑
m=1

πmn umn subject to
M+2∑
m=1

θmn umn ≤ Θ,

umn ∈ {0, 1}, uσn = 1, uτn = 1, Hnun ≤ 0. (6.6)

This function optimizes over supervoxels to select the set of supervoxels having maximum value,

while satisfying temporal order and the weight limit.

Action Annotations: Since, each knapsack solution gives an annotated action, we recursively

generate multiple annotations pqn =
⋃M
υ=1 vυn, ∀uυn 6= 0, where q = {1 . . . Qn} and Qn is the

total number of action annotations in video Vn, by excluding the selected supervoxels from Vn in

each iteration.
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6.2.1 Joint Annotation Selection

Action annotation using iterative knapsack approach can result in multiple action annotations per

video, however due to complex background clutter, not all annotations may belong to the fore-

ground action, due to false positives. Hence, we leverage multiple videos in a cluster Ck, to jointly

select the annotations that belong to the common action class. The selected final action annotations

per video, will be used to train a Support Vector Machine classifier and localize actions in testing

videos.

We associate with each action annotation pqn a binary label variable rqn, which is 1 if pqn contains

the common action and 0 otherwise. We denote rn to be a Qn dimensional vector by stacking rqn.

Under the assumption that each video Vn has only one annotation that contains the common action,

we solve the following Binary Integer Quadratic Programming (BIQP) optimization, which min-

imizes the distance between all action annotations across videos, under the constraint of selecting

the most similar action annotation from each video:

minimize
rn

rTnUrn −Prn,

subject to rn ∈ {0, 1}, ∀Vn ∈ V :

Qn∑
q=1

rqn = 1,

(6.7)

where U is the χ2 action distance matrix and P is the action annotation prior. For each action

annotation pqn, vector P contains the concatenated action prior score Φq
n =

∑M
υ=1 π

υ
n, ∀uυn 6= 0.

Since the quadratic function in Eq. 6.7 is non-convex, we make it convex by taking the normalized

laplacian [80] of U, Ũ = I −D−
1
2 UD−

1
2 , where D is the diagonal matrix containing row sums
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of U and I is the identity matrix. We also relax the binary constraints of rn to linear constraints,

allowing it to take any value between 0 and 1, making it a convex optimization problem to be

solved using standard techniques.

6.3 Unsupervised Action Localization

Given the automatically obtained action class labels and annotations for every training video, we

learn a SVM action classifier to localize actions in testing videos. Next, we propose to use these

annotations to discriminatively learn supervoxel unary and pairwise relations to compute action

distinctness in Knapsack.

6.3.1 Training Action Classifiers

Knapsack approach to action annotation selects supervoxels by maximizing the sum of individual

scores to annotate actions. These scores in Eq. 6.4 measure supervoxel distinctness based on their

local features in an unsupervised manner. However, these scores are neither learnt discriminatively

nor do they use information from neighboring relations in the graph Gn(Vn,En), to help select the

best supervoxels. We propose to learn unary and pairwise scores from selected action annotations

(see Sec. 6.2.1) in the training data.

SVM for Unary Learning: We learn a discriminative SVM classifier by using supervoxels within

selected action annotations (in Eq. 6.7) as positive examples and the rest as negative examples.

Structural SVM for Pairwise Learning: Let vυ
′
n ∈ NGn(vυn) belong to the neighborhood of vυn.

We gather such pairwise relations from training videos and their annotations (in Eq. 6.7) to propose

a Structural Support Vector Machine (S-SVM) formulation with margin re-scaling construction,
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which captures the relations between foreground-background as well as within foreground action

using structured labels, as follows:

minimize
w

1

2
‖w‖2 + λ

N∗M∑
l=1

ξl,

subject to 〈w,Ψl([xlxl′ ],yl)〉 − 〈w,Ψl([xlxl′ ],y)〉 ≥∆(yl,y)− ξl,

∀y ∈ Y \ yl, ξl ≥ 0,∀l, (6.8)

where ξ represents the slack variables, w is the learned weight vector, [.] is the concatenation of

the feature vectors, Y = {−1, 0, 1} is the set of all labels and Ψ(x,y) = x · sign(y) is the joint

feature function for a given input and output sample. The constraint with the loss function ∆(yl,y)

ensures that the score for the correct label yl is higher than other labels. This can result in large

number of constraints, therefore only a subset of constraints are used, known as the most violated

constraints, by finding the label y which maximizes 〈w,Ψ([xlxl′ ],y)〉 + ∆(yl,y). The labels in

Eq.6.8 are defined as:

Y =


−1, vl /∈ κ ∧ vl

′
/∈ κ

0, vl ∈ κ ∧ vl
′
/∈ κ

1, otherwise,

(6.9)
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where κ =
⋃N
n=1

⋃Q
q=1 pqn. The loss function in Eq.6.8 is defined as:

∆(yl,yl′) =


|yl − yl′|, vl /∈ κ ∧ vl

′
/∈ κ

ζ + ε, vl ∈ κ ∧ vl
′
/∈ κ

ε, otherwise,

(6.10)

This loss function ensures that a pair of supervoxels get maximum score if they belong to the

annotated action and minimum if either of them belongs to the background. A prediction function

is learned ψP : X 7→ Y that scores a pair of supervoxels in the testing video as:

ψP([xtxt′ ]) = arg max
y∈Y

〈w,Ψt([xtxt′ ],yt)〉. (6.11)

6.3.2 Testing using Knapsack Localization

In a testing video Vs, we compute supervoxels Vs = {v1
s . . .v

T
s }, where t = {1 . . . T} and extract

their features xs to build a DAG, Gs(Vs,Es). Next, we apply knapsack approach (see Sec. 6.2 as

used in training videos) along with SVM classifier, learned from automatically discovered video

action class labels and annotations, to localize the action by solving the optimization in Eq. 6.6.

Since, we are able to learn the unary and pairwise relatons between supervoxels from action an-

notations in training videos, we use the following updated function to compute supervoxel action

distinctness:
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Π(vts,Bs,Γs,x
t
s) = γhmShm(vts,Bs,Γs) + γsalSsal(v

t
s,x

t
s) + γmbSmb(v

t
s,x

t
s)

+ γUΥU(vts,x
t
s) + γPΥP(vts,x

t
s,Gs), (6.12)

where ΥU(.) and ΥP(.) are the unary and pairwise functions, respectively. The weights in Eq. 6.12

are symbolized by γ. The pairwise function is an accumulation of neighboring relations ΥP(vts,x
t
s,Gs) =

%−1
∑NGn (vts)

t′=1 ψP([xtxt′ ]), where % is a normalizing constant.

6.4 Experimental Results and Analysis

We evaluate our Unsupervised Action Discovery and Localization approach on five challenging

datasets: 1) UCF Sports [71, 83] 2) JHMDB [32], 3) Sub-JHMDB [32] 4) THUMOS13 [33], 5)

UCF101 [84]. We provide the experimental setup, evaluation metrics, and an analysis of quantita-

tive and qualitative results.

Experimental Setup: For the videos in training we extract C3D deep learning features [87] to

cluster them into action classes with η=2. For action localization, we extract improved dense tra-

jectory features (iDTFs) [94] for all videos. This is followed by supervoxel segmentation [59],

which are encoded using Fisher [66] representation of iDTFs, with 256 Gaussians. Knapsack lo-

calization is classified using one-vs-all SVMs trained on action classes discovered by our approach.

The parameters for knapsack value in Eqs. 6.4 and 6.12 do not require tuning as we use normalized

scores i.e. (γhm = γsal = γmb = γU = γP = 1). We used IBM CPLEX to solve BILP and BIQP

optimizations.

Evaluation Metrics: Lan et al. ’s [46] experimental setup is used to report localization results with

Area Under Curve (AUC) of ROC (Receiver Operator Characteristic) at varying overlap threshold

with the ground truth.
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Table 6.1: This table shows action discovery results using C3D on training videos of: 1) UCF
Sports 2) Sub-JHMDB, 3) JHMDB, 4) THUMOS13 and 5) UCF101. We also show comparison
of C3D [87] and iDTF [94] features on UCF Sports.

UCF
Sports

Sub
JHMDB JHMDB

THUMOS
13 UCF101

iDTF C3D

K-Means 31.5 51.1 39.3 37.2 46.7 45.4
K-Medoids 26.4 57.8 36.6 34.2 52.1 33.0
S&M [80] 40.5 57.2 38.7 37.9 54.4 6.5
DS [64] 25.9 46.3 24.5 12.1 50.1 5.6
SC [55] 53.1 69.6 46.1 45.6 77.2 51.6
DAKM [37] 58.4 73.6 47.6 45.2 82.5 37.1
Proposed 65.7 90.1 57.4 53.7 88.3 61.2

Unsupervised Action Discovery: The proposed action discovery approach is tested on the training

videos of five datasets. The results for clustering accuracy using the evaluation metrics used in [37]

are reported in Table 6.1. Clustering on all datasets has been performed using C3D features, except

for UCF Sports where we also report results using iDTF features for comparison. The number of

clusters for each dataset are set to the number of action classes. We compare the performance of

our approach with: K-Means, K-Medoids, Shi and Malik (S&M) [80], Dominant Sets (DS) [64],

Spectral Clustering (SC) [55] and the state-of-the-art DAKM [37] clustering methods. As can be

seen from the table, our approach gives superior performance on all five datasets. It is evident that

unsupervised clustering of human actions is a challenging problem and known techniques such as

K-Means, K-Medoids and NCuts [80] don’t perform well. Significant improvement over Dominant

Sets [64] and Spectral Clustering [55] highlights the strength of the proposed iterative approach,

which we attribute to the ability of dominant sets to select a subset of coherent videos to train SVM

and discriminatively learn to cluster actions. We observe highest performance on UCF Sports,

which has the presence of distinct scenes and motion in the dataset, as compared to JHMDB and

UCF101, that have complex human motion, independent of scene, and large intra-class variability.
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Table 6.2: This table shows comparison of localization performance with weakly-supervised ap-
proach [52] on UCF Sports.

Actions Dive Golf Kick Lift Ride
Ma et al. [52] 44.3% 50.5% 48.3% 51.4% 30.6%

Proposed (Weakly) 59.4% 59.9% 37.7% 59.5% 14.1%

Actions Run Skate Swing-B Swing-S Walk Average
Ma et al. [52] 33.1% 38.5% 54.3% 20.6% 39.0% 41.0%

Proposed (Weakly) 50.0% 57.9% 50.0% 44.6% 43.4% 47.7%

Unsupervised Action Annotation: We independently evaluate the quality of annotations to local-

ize actions, by assuming perfect action class labels to propose a weakly-supervised approach. We

show the strength of our Knapsack annotation approach by performing significantly better (∼ 7%)

than published state-of-the-art weakly-supervised method of Ma et al. [52] in Table 6.2.

Unsupervised Action Localization: We show localization performance using AUC curves for

(a) UCF Sports (b) JHMDB, (c) sub-JHMDB and (d) THUMOS13 in Fig. 6.2. The difference

in performance is attributed to the supervised vs. unsupervised nature of the methods. The re-

sults highlight that the proposed method performs competitive to the state-of-the-art supervised

methods, that use video level class labels as well as ground truth bounding box annotations. In

comparison we don’t use any such information, and with our action discovery approach and knap-

sack for localization, we are able to perform better than some of the supervised methods [46, 86] on

UCF Sports dataset. Supervised baseline results have been reported by Wang et al. [95] on Sub-

JHMDB and Soomro et al. [81, 82] on UCF Sports, JHMDB and THUMOS13 datasets. These

baselines have been computed by exhaustively generating bounding boxes and connecting them

spatio-temporally. Then, a classifier trained on ground truth annotations and iDTF features is ap-

plied for recognition. We outperform these baselines on all datasets in an unsupervised manner and

at higher overlap thresholds. Our qualitative results are shown in Fig. 6.4, with action localiza-
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tion (yellow) and ground truth (green bounding box). In case of low-contrast and slow-motion the

underlying supervoxel approach merges the actor with the background, therefore, when knapsack

limits the localization to a specific actor volume, the proposed approach fails to localize as shown

in Fig. 6.4.

(a) (b)

(c) (d)

Figure 6.2: This figure shows AUC of the proposed Unsupervised Action Localization approach,
along with existing supervised methods on (a) UCF Sports, (b) JHMDB, (c) Sub-JHMDB and (d)
THUMOS13. The curves for the [P]roposed method is shown in red and supervised [B]aseline in
black, while other supervised localization methods including [L]an et al. [46], [T]ian et al. [86],
[W]ang et al. [95], [G]kioxari and Malik [20], [J]ain et al. [30], [S]oomro et al. [81, 82] are pre-
sented with different colors. For UCF Sports we also report our proposed ([P]-i) localization
approach by learning a classifier on action discovery using iDTF [94] features.
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(a) (b)

Figure 6.3: This figure shows the contribution of (a) Joint Annotation Selection (Eq. 6.7) and (b)
individual components in computing action distinctness score for Knapsack value (Eq. 6.12) using
AUC on UCF Sports. It includes [M]otion Boundary, [S]aliency, [H]umanness, [P]airwise S-SVM,
[U]nary SVM and a combination of All i.e. M+S+H+U+P.

Feature Comparison: We show a comparison of the proposed action discovery approach using

C3D and iDTF features in Table 6.1. The proposed approach performs significantly better using

either features. C3D provides higher accuracy as they are semantically separable and provide

better generalization over iDTF. Please note that although C3D features are extracted by supervised

training on Sports1M dataset [87], we stress that these features are unsupervised relative to our

experimental datasets, as no video action class label information nor bounding box annotations,

from these datasets, have been used for feature training. Furthermore, we extend our comparison

of features to Unsupervised Action Localization on UCF Sports (see Fig. 6.2 (a)). The results show

similar localization performance of proposed approaches ([P] with C3D and [P]-i with iDTF),

indicating the efficiency of Knapsack method for action detection.

Component’s Contribution: The proposed approach has several steps that contribute to its per-

formance. We quantify the relative contributions of each step in Fig. 6.3, which shows the AUC

curves computed on UCF-Sports. In the absence of bounding box annotations, we use knapsack

to annotate actions in training videos. However, annotations may include false positives, resulting
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in a poorly trained classifier. Therefore, the Annotation Selection approach jointly selects action

annotations in training videos that belong to the common action class within a cluster, to improve

testing performance as shown in Fig. 6.3(a). Fig. 6.3(b) shows the contribution of each compo-

nent in action distinctness score (Eq. 6.12), where pairwise learning using Structural SVM gives

the best individual performance, capturing the supervoxel relations within a video to localize the

action.

Computation Cost: Knapsack complexity is: O(Mlog Θ
M

). Total time for UCF Sports dataset:

Action Discovery in Alg.2 (∼2min), Knapsack in Eq.6.6 (∼1min) and Joint Annotation Selection

in Eq.6.7 (∼1.1min), using an unoptimized MATLAB code running on an Intel Xeon E5645@2.4

Ghz/40GB RAM.
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Figure 6.4: This figure shows qualitative results for the proposed approach on UCF Sports, Sub-
JHMDB, JHMDB and THUMOS13 datasets (top four rows). Last row shows failure case from
JHMDB dataset. The action localization is shown by yellow contour and ground truth bounding
box in green.
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6.5 Summary

In this chapter, we automatically discovered video action class labels and annotations to address

the new problem of Unsupervised Action Localization. The presented approach discovers action

classes, by using a discriminative clustering approach, where it iteratively selects videos to improve

clustering. Actions are annotated using novel knapsack optimization for supervoxel selection.

This optimization uses volume constraints to enforce the combined selection of supervoxels to

be consistent with human spatial size and temporal extent of the action. Additionally, temporal

constraints in this optimization ensure that the action is contiguous and spatio-temporally well-

connected. Lastly, in testing videos we use a similar knapsack approach to detect actions and

recognize them using SVM classifier learnt from our discovered labels and annotated actions.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

This dissertation addresses the problem of action localization in videos. Action detection methods

rely on sliding window approach to localize actions, which is time consuming and impractical.

However, the use of context information has helped reduce search space, as highlighted in Chapter

4. Timely, prediction and localization of actions (interactions) is shown in Chapter 5, using a

person-centric foreground likelihood approach. Lastly, to save the manual effort of annotating

videos, an unsupervised action localization approach is described in Chapter 6.

An efficient and effective approach to localize actions in videos is presented in Chapter 4. The

approach starts with a random supervoxel and finds similar supervoxels from the training data to

transfer the relative spatio-temporal location of an action to the video. Generating a conditional

distribution over the sueprvoxel graph in the testing video, the next supervoxel is selected with the

highest probability. This Context Walk is repeated for several steps, increasing the probability of

predicting the action at each step. CRF is used to infer the location of the action and SVM is used

to evaluate the action proposal. The use of supervoxels and context helps evaluate the classifier at

fewer locations.

A new problem of predicting and localizing actions (interactions) is introduced in Chapter 5. A

multi-level action representation is used in this approach, which includes: high-level poses, mid-

level features for action tubes, and low-level iDTF features for prediction. Pose estimation is

refined in an online manner using spatio-temporal constraints. CRF is used to localize action tubes

and action is predicted using a Structural-SVM and dynamic programming with SVM approach.

The approach performs competitive to the existing offline state-of-the-art methods.

Supervised approaches require tedious manual annotations of video action labels and bounding

boxes. Therefore, we solve the problem of unsupervised action localization in Chapter 6. The pre-
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sented approach discovers action classes, using a discriminative clustering approach, and actions

are localized, using a modified knapsack approach to select supervoxels using spatio-temporal

constraints.

We also introduce a challenging UCF101 dataset for action recognition and localization. The

dataset collected from YouTube, consists of 101 action classes, with over 13k video clips. The

videos are unconstrained with challenges such as poor lighting, cluttered background, severe cam-

era motion and multiple instances of an action.

For future research, we highlight some extensions and areas of research that can improve the

performance of the proposed approaches:

The supervoxels in Chapter 4 and the superpixels in Chapter 5 are evaluated independently to

assign an actionness score, in a testing video. However, the superpixel (or supervoxel) merging

criteria can be learnt from training data. In a testing video, a spatio-temporal graph can be used to

determine combinatorially, which set of superpixels (or supervoxels) should be grouped together.

This can further reduce the search space as only selected superpixels (supervoxels) would fit the

merging criteria.

The online localization of actions (interactions) predicts the label at the current frame. However

it doesn’t predict how the action would unfold in future frames. It would be interesting to use a

generative model that can reconstruct future frames based on the training data, as well as the video

streamed until the current time step.

The unsupervised action localization approach in Chapter 6 uses an unlabeled, un-annotated set

of videos to discover and localize actions. However, the underlying assumption is that the total

number of possible actions is known and each video has to belong to one of these action classes.

It would be worthwhile to explore the problem of unsupervised action discovery and localization
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from noisy videos, where the goal is to robustly cluster actions by removing any outlier action

classes. This would provide a more realistic setting and has application towards anomaly or abnor-

mal action class detection.
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