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ABSTRACT

Computer vision algorithms have played a pivotal role in commercial video surveillance sys-

tems for a number of years. However, a common weakness among these systems is their inability

to handle crowded scenes. In this thesis, we have developed algorithms that overcome some of

the challenges encountered in videos of crowded environments such as sporting events, religious

festivals, parades, concerts, train stations, airports, and malls. We adopt a top-down approach by

first performing a global-level analysis that locates dynamically distinct crowd regions within the

video. This knowledge is then employed in the detection of abnormal behaviors and tracking of in-

dividual targets within crowds. In addition, the thesis explores the utility of contextual information

necessary for persistent tracking and re-acquisition of objects in crowded scenes.

For the global-level analysis, a framework based onLagrangian Particle Dynamicsis proposed

to segment the scene into dynamically distinct crowd regions or groupings. For this purpose, the

spatial extent of the video is treated as a phase space of a time-dependent dynamical system in

which transport from one region of the phase space to another is controlled by the optical flow.

Next, a grid of particles is advected forward in time through the phase space using a numerical

integration to generate a “flow map”. The flow map relates the initial positions of particles to

their final positions. The spatial gradients of the flow map are used to compute a Cauchy Green

Deformation tensor that quantifies the amount by which the neighboring particles diverge over the
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length of the integration. The maximum eigenvalue of the tensor is used to construct a forward

Finite Time Lyapunov Exponent (FTLE) field that reveals the Attracting Lagrangian Coherent

Structures (LCS). The same process is repeated by advecting the particles backward in time to

obtain a backward FTLE field that reveals the repelling LCS. The attracting and repelling LCS

are the time dependent invariant manifolds of the phase space and correspond to the boundaries

between dynamically distinct crowd flows. The forward and backward FTLE fields are combined

to obtain one scalar field that is segmented using a watershed segmentation algorithm to obtain the

labeling of distinct crowd-flow segments. Next, abnormal behaviors within the crowd are localized

by detecting changes in the number of crowd-flow segments over time.

Next, the global-level knowledge of the scene generated by the crowd-flow segmentation is

used as an auxiliary source of information for tracking an individual target within a crowd. This is

achieved by developing ascene structure-based force model. This force model captures the notion

that an individual, when moving in a particular scene, is subjected to global and local forces that

are functions of the layout of that scene and the locomotive behavior of other individuals in his

or her vicinity. The key ingredients of the force model are three floor fields that are inspired by

research in the field of evacuation dynamics; namely,Static Floor Field(SFF),Dynamic Floor

Field (DFF), andBoundary Floor Field(BFF). These fields determine the probability of moving

from one location to the next by converting the long-range forces into local forces. The SFF

specifies regions of the scene that are attractive in nature, such as an exit location. The DFF,

which is based on the idea of active walker models, corresponds to the virtual traces created by

the movements of nearby individuals in the scene. The BFF specifies influences exhibited by
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the barriers within the scene, such as walls and no-entry areas. By combining influence from

all three fields with the available appearance information, we are able to track individuals in high-

density crowds. The results are reported on real-world sequences of marathons and railway stations

that contain thousands of people. A comparative analysis with respect to an appearance-based

mean shift tracker is also conducted by generating the ground truth. The result of this analysis

demonstrates the benefit of using floor fields in crowded scenes.

The occurrence of occlusion is very frequent in crowded scenes due to a high number of in-

teracting objects. To overcome this challenge, we propose an algorithm that has been developed

to augment a generic tracking algorithm to perform persistent tracking in crowded environments.

The algorithm exploits the contextual knowledge, which is divided into two categories consisting

of motion context(MC) andappearance context(AC). The MC is a collection of trajectories that

are representative of the motion of the occluded or unobserved object. These trajectories belong to

other moving individuals in a given environment. The MC is constructed using a clustering scheme

based on the Lyapunov Characteristic Exponent (LCE), which measures the mean exponential rate

of convergence or divergence of the nearby trajectories in a given state space. Next, the MC is used

to predict the location of the occluded or unobserved object in a regression framework. It is im-

portant to note that the LCE is used for measuring divergence between a pair of particles while the

FTLE field is obtained by computing the LCE for a grid of particles. Theappearance context(AC)

of a target object consists of its own appearance history and appearance information of the other

objects that are occluded. The intent is to make the appearance descriptor of the target object more

discriminative with respect to other unobserved objects, thereby reducing the possible confusion
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between the unobserved objects upon re-acquisition. This is achieved by learning the distribution

of the intra-classvariation of each occluded object using all of its previous observations. In addi-

tion, a distribution ofinter-classvariation for each target-unobservable object pair is constructed.

Finally, the re-acquisition decision is made using both the MC and the AC.
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5.1 The figure illustrates the concept ofMotion and Appearance Context. The motion

context of a car, which in this example is circled in red, is defined by the cars that

have motion dynamics similar to that of the selected car. In this case, these cars

are circled in yellow. The cars circled in blue are not part of the motion context of

red car, because the blue cars have motion dynamics which are different from the

red car. Tracks corresponding to the yellow cars, which are used for predicting the

motion of the red car, are shown in the blue rectangle on the right. The appearance

context of the red car consists of the other cars which are currently unobservable.

These cars are shown in the green rectangle on the far right, where I have multiple

observations for each car. The yellow rectangle displays the observations of the red

car. The appearance context of the red car is then computed using intra and intra

class variations of the red car with itself and with the unobservable cars respectively.105

5.2 (a) Initially, carsa andb ared(t0) units apart. Over(∆t × N), in a series of time

steps fromt0 to tN , the two cars move until the distance between them becomes

d(tN) units. This divergence is quantified by LCE and can be calculated using

Equation5.3. (b) A portion of potential predictor trajectory (shown in the red

ellipse) is first normalized with respect to the predictand trajectory (shown with

the yellow ellipse). Next, at each time stepi, the Euclidian distance is computed

between the corresponding points of the two trajectories. To compute LCE, these

Euclidian distances are accumulated over the entire length of the trajectory using

Equation5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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5.3 The results of the predictor selection procedure. (a) Shows the set of trajectories

that have been observed so far in this scene. This set contains trajectories generated

from observed objects as well as trajectories that have been predicted in the past.

(b) Shows the predictand trajectory for which I want to select the predictors. (c)

Predictor selection result returned by our selection procedure. It is evident that our

procedure was able to select the objects whose motion dynamics are similar to the

predictand trajectory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Modeling of AC when the setP contains three cars,Oi, Oj andOk. The first col-

umn displays the observations (chips) of each of these cars until current timeT .

Then, each observation of the car is encoded in terms of an RGB color histogram,

as shown in the second column. Vectors of inter- and intra-class variations be-

tween these objects are computed by performing histogram intersection. Finally,

the mean and standard deviations of the values in these vectors are computed,

which summarize the inter- and intra-class variation information, as shown in the

fourth column.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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5.5 Visualization of the re-acquisition procedure. (a) The red circle represents the

search area around the new objectOi. The black portion represents the part of the

scene through which the trajectories are predicted using the MC (Section5.2.1).

There are four trajectories represented by the colors yellow, green, cyan, and blue.

The red portion of these trajectories represents the predicted portion. (b) Compu-

tation of Lyapunov exponent at the re-acquisition stage. The trajectory of the new

objectOi is represented by the pink track section. To compute the motion con-

straint, it is normalized with respect to the two predicted tracks that are within the

search area.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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5.6 Target re-acquisition for linear motion. The tracks of the cars are overlaid onto the

mosaic of the aerial sequence for better visualization. The top row shows a number

of frames from the video sequence. (a) Track sections belonging to the same car

are assigned different colors in the absence of prediction. (b) Our algorithm is

able to assign the same color (light brown) to the target car every time it reappears

in the FOV of the camera. Note that our target car leaves and re-enters the FOV

twice, and I was able to maintain the correct label. (c) Another scenario where

the target car performs a U-turn and becomes unobservable at three different time

instances during the course of tracking. The four tracklets belong to the same car,

but different colors are assigned in the absence of prediction. (d) Our algorithm

was able to assign the same color (green) to the car every time it reappears in the

FOV. In this scenario, the car moves along a non-linear trajectory, but the predicted

portion contains only the linear motion.. . . . . . . . . . . . . . . . . . . . . . . 125
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5.7 A target re-acquisition result where the tracks of the cars are overlaid onto the mo-

saic of the aerial sequence for better visualization. The top row shows a number

of frames from the video sequence. (a) Figure shows re-acquisition on a busy road

intersection, where cars are moving along different paths and in different direc-

tions. Tracks belonging to the same object were assigned different colors in the

absence of prediction. (b) Our algorithm was able to assign the same color to the

object as it reappeared on the other side of the overhead bridge. (c) Figure shows

re-acquisition for a non-linear motion case. Tracks belonging to the same object

were assigned different colors in the absence of prediction. (b) Our algorithm was

able to assign the correct label by accurately predicting the motion of the car along

the U-turn.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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the mean distance. (d)-(e) The estimation error in the case of non-linear motion.

(d) The track circled in red is the observed portion, while the remaining portion of
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CHAPTER 1

INTRODUCTION

The objective of this work is to overcome the challenges posed by high density crowded scenes.

Despite the concerted effort of the computer vision research community, intelligent surveillance

systems that process video feeds from real-world scenes like train stations, airports, city centers,

malls, concerts, rallies, sporting events, etc., have not yet attained the desirable level of applicabil-

ity and robustness. This is largely due to the algorithmic assumptions about thedensity of objects

in a scene that are often violated in the real world environment.

This thesis develops methods that address some of the critical aspects of handling a crowded

visual scene. It adopts a top down approach, and starts by performing a global level analysis that

automatically locates dynamically distinct crowd regions/ groupings present in the scene in terms

of crowd-flow segments. This global knowledge is then employed, not only to localize abnormal

behaviors in the crowd, but also to facilitate other related tasks such as the tracking of individuals

within the crowd. In addition, this thesis explores the utility ofcontext informationfor persistent

tracking and re-acquisition of objects in crowded scenes.

It is important to note that ‘crowded visual scene’ is a generic term that refers to any visual

scene that contains a high density of objects. These objects can be of a variety of types includ-

ing but not limited to people, cars, a school of fish etc. For example Figure1.1 (a) & (b) show

examples of ‘crowded visual scenes’ that contain crowds of people. In contrast, Figure1.1 (c) &
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(a) (b) (c) (d)

Figure 1.1: Few instances of crowded visual scenes containing objects of different modalities.

(a) & (b) Crowded visual scenes containing people. (c) Crowded visual scenes containing

cars. (d) Crowded visual scenes containing a school of fish.

(d) respectively show examples of ‘crowded visual scenes’ where cars and a school of fish are the

objects of interest. Although, the primary focus of this work is on the scenes that contain crowds

of people, results will be reported on scenes with other types of objects as well to emphasize the

generic nature of the techniques developed in this thesis.

1.1 Motivation

Large gatherings of people at locations such as train stations, airports, city centers, malls, trans-

portation terminals, concerts, political rallies, sporting events, religious festivals etc., pose signif-

icant challenges to public safety management officials from the scene monitoring point of view.

Often ateventsinvolving a large gathering, crowds of people move through confined spaces such
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(a) (b) (c)

Figure 1.2: Instances of events that involve thousands of people. (a) Participants in the yearly

New York City marathon. (b) A crowd at a train station. (c) A gathering of pilgrims circling

around the Kabba in Mecca.

as city streets, overhead bridges or narrow passageways. Some example scenarios of this type of

situation are illustrated in Figure1.2. Figure1.2(a) shows people participating in the yearly New

York City Marathon. Approximately 37,000 people participated in the 2005 event. Figure1.2(b)

displays a scene where the crowd is moving towards the exit at a busy train station. Similarly,

Figure1.2(c) shows a scene where thousands of pilgrims are circling around the Kabba in Mecca.

It is quite obvious that incident free management of such huge gatherings is a daunting task simply

due to the shear numbers of people involved in these events.

One way to reduce the incidence of any catastrophic event in situations involving large crowds

is through better coordination and remodeling of the expected bottleneck areas. However, numer-

ous events of stampedes in the recent past have shown that coordination between public safety

organizations and remodeling alone, cannot solve the problem of the management of large crowds.

For instance on January 2005, 265 people lost their lives in a stampede near a temple in Maharash-
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tra, India. Another such event happened in the PhilSports Arena in Philippines on February 2006

where 74 spectators were killed. On another occasion, 270 and 251 pilgrims were killed at Jamarat

Bridge in Makkah in May 1994 and February 2004, respectively. This led to the redesigning of the

approach to the bridge and the exit points, but unfortunately on January 2006, 345 lives were again

lost at the same bridge due to a stampede. Since most of these gatherings are constantly monitored

by a network of cameras, I believe that computer vision algorithms can make a significant contri-

bution towards the management of large crowds. By analyzing and studying the behavior of the

crowd through a vision system, it is possible to work in consonance with the public safety officials

to ensure the safety of the public With the technological development in the field of computer vi-

sion in the past decade, one would assume that computer vision based algorithms should be able

to predict congested spots, abnormal flows, crowding, and any other out of ordinary situation in its

infancy, which will allow the human resources on the ground to take quick remedial action.

Tracking people in crowds, and inference about their individual and collective behavior, is

a problem that arises in a variety of different contexts. For instance, atlocationssuch as train

stations, airports, city centers, malls, transportation terminals, etc., security personal watching

the video-feed might be interested in tracking a few suspicious individuals within the crowd, to

keep an eye on their activities. An example scenario is demonstrated in Figure1.3, where during

the morning rush hour at Liverpool train station, the majority of the people are walking along

the red trajectories, but a person within the green ellipse is strolling suspiciously in the opposite

direction. In crowded situations it is quite common to lose track of target objects due to severe

occlusion arising from both the interaction of targets object with other members of the crowd and
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Frame 100 Frame 160 Frame 220

Figure 1.3: Three frames of the video showing morning rush hour at Liverpool train station.

The red trajectories are depicting the dominant direction along which the crowd is moving.

However, the individual in green ellipse is walking suspiciously in the direction opposite to

the dominant flow. A security personal will be interested in tracking this person among the

crowd to gather more information about his behavior.

the structure of the scene. Therefore, it would be necessary to have a repertoire of algorithms

that can help in overcoming these difficulties by using all the sources of information that can be

extracted from the given scene.

Another motivating factor for developing algorithms specifically for crowded scenes is the ab-

sence of automated surveillance systems for crowded situations. The main components of current

state of the art video surveillance systems often perform tasks such as the localization of mov-

ing objects; persistent tracking of targets; understanding of scene semantics; and application of

the scene semantics in conjunction with tracking data for the detection of abnormal events and

suspicious behaviors. However, a common weakness of these systems is their inability to handle

crowded scenes. As soon as the density of the objects in the scene increases, a degradation in their
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performance is usually observed. A quick glance at the research literature and industrial applica-

tions reveal that automated surveillance systems for crowded situations are almost non-existent.

Limited, if any, research effort has been spent in building computer vision systems that can model

high density crowded scenes and provide useful information for public safety officials. One obvi-

ous reason for the lack of effort in this direction is the complexity and challenges inherent in the

problem. I examine some of these challenges in the next section.

1.2 Challenges

Successful techniques for handling a crowded visual scene must address a variety of problems:

• Choice of Granularity : The mechanics of human crowds is complex as a crowd exhibits

both dynamics and psychological characteristics which are often goal directed. In addition,

a scene may contain a high or extremely high density crowd. This makes it very challenging

to come up with an appropriate level of granularity for modeling the dynamics of a crowd.

Should a pixel based model, individual based model or something in between be used? This

question needs to be answered for appropriate modeling of crowds in videos.

• Representation of Abnormal Behavior: Interactions between participants are indiscernible

in crowded scenarios, and therefore individual centric representation of abnormal behaviors

in crowds is implausible. In addition, an abnormal behavior or situation in a high density

crowded scene often spreads very quickly, which makes it even more challenging to develop
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a general appreciation of the abnormal situation by gleaning information from an individual’s

behavior.

• Few Pixels on Objects: In crowded situations, detection of individual objects becomes

extremely hard as the number of pixels on the object decreases with the increasing density

of the objects in the scene. The appearance information becomes further distorted due to the

constant interaction among individuals making up the crowd (Figure1.2(a) - (c)).

• Appearance Ambiguity: Ideally one would like to track all the visible objects through-

out the scene. However, ambiguous appearance information resulting from too few pixels

than desirable on the target objects makes it difficult to persistently track the objects. This

entails looking into other available sources of information to disambiguate the appearance

information.

• Effects of Terrain & Scene Features: Physical characteristics of a scene can act as sources

of occlusion resulting in the loss of observations of the target objects. However, if properly

handled, the characteristic features of the scene can be used as cues for the tracking and

reacquisition of objects.

1.3 Nomenclature

Many terms that are employed to describe phenomenon related to crowded visual scenes in this

thesis are used in a some what loose manner in the literature. So to avoid confusion, I first provide

definitions/explanation of the terms:
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• The termCrowded Visual Sceneis used to refer to a video stream that contains a high density

of objects. The density itself is divided into three categories, namely: moderate, high, and

extremely high.

• Segmentation- the task of dividing a given crowded visual scene into dynamically distinct

crowd regions/groupings.

• Flow Segment- corresponds to a crowd region that moves in a coherent fashion in terms of

user defined constraints. Each flow segment represents motion information which is global

in nature and also has an associated physical interpretation for the given scene.

• The termAbnormal EventandAbnormal Behaviorare used interchangeably, referring to a

region of the scene where the behavior of the crowd is different from its learnt patterns.

• Context- refers to the contextual knowledge present in the crowded scene. It will be preceded

by word ‘appearance’ or ‘motion’ to emphasize the modality of the context.

• Scene Structure- is composed of the characteristics of a scene which can be ‘physical’ or

‘virtual’ in nature. The physical characteristics correspond to scene features such as physical

barriers, walls, entry & exit points etc. While the virtual characteristics correspond to the

scene information such as virtual barriers separating different crowd groupings, distance to

the exit locations, dominant paths etc.

8



• Occlusion- refers to inter-object occlusion resulting from the interactions of objects among

themselves, and intra-object occlusion resulting from the interactions of objects with the

scene.

1.4 Contributions

In this thesis, I have developed crowd-flow segmentation, abnormal event detection, target tracking

and target reacquisition algorithms for crowded visual scenes. Unlike the traditional methods of

processing a surveillance video, I start by performing a global level analysis to generate a rep-

resentation of the scene which captures both the dynamics of the crowd and the structure of the

scene. The global level analysis eliminates the need for low level change detection algorithms, and

individual object localization/tracking. In particular, this is achieved by developing a crowd-flow

segmentation framework which employs Lagrangian particle dynamics to uncover the spatial or-

ganization of the crowd. The segmentation information is then used to detect any temporal change

in the behavior of the crowd enabling the localization of abnormal events/behaviors. Next, the

crowd segmentation information is used in conjunction with the scene structure to develop a track-

ing algorithm that can be used to track an individual object of interest within the crowd. For this

purpose, the structure of the scene is encoded in terms of ‘floor fields’, which are used to constrain

the likely locations that an object can pursue while moving in the scene. Finally, I propose a target

reacquisition algorithm that is employed to reduce the incidence of broken trajectories resulting

from frequent occlusions in the crowded scenes. The proposed re-acquisition algorithm makes use
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of the contextual information by building the appearance and motion context of the target object,

which is subsequently used for re-acquiring the object when it re-appears.

After summarizing our contributions, I shall next introduce the crowd segmentation, abnormal

event detection, target tracking, and re-acquisition approaches in more detail.

1.4.1 Crowd-Flow Segmentation

The first algorithm developed in this thesis performs crowd flow segmentation of the video depict-

ing a crowded scene, and uses it for the detection of any abnormal event taking place in the crowd.

It starts by treating the spatial extent of the video as the phase space of a non-autonomous (or time

dependent) dynamical system, where transport/motion from one region of the phase space to the

other is controlled by the optical flow. The idea is that the optical flow of a general scene will

help in revealing the regions of qualitatively different dynamics in the phase space of the dynam-

ical system (which is a video in this case). These different regions will reflect the distinct crowd

groupings emerging from the spatio-temporal interactions of the members of the crowd with each

other and with the physical world.

At the heart of our approach is the idea ofLagrangian Particle Dynamicswhich is used to

uncover the spatial organization of the crowd. Traditionally Lagrangian Particle Dynamics refers

to examining a cloud of particles as it mixes and is transported under the action of a time de-

pendent optical flow field. The implication of using multiple optical flow fields to examine the

temporal behavior of particles is that it helps in assimilating/integrating the motion information

over longer durations of time. This is important for the analysis of complex temporal behaviors
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or structures exhibited by a moving crowd. Next, the key theoretical notion that I use is the ex-

istence ofLagrangian Coherent Structures (LCS)[5] in the phase space, which are the invariant

manifolds of a time dependent dynamical system. Roughly speaking, Coherent Structures are sep-

aratrices/material lines that influence the kinematics of the particle cloud over finite time intervals,

and divides the flow, and in turn the phase space, into dynamically distinct regions, where all the

particles within the same region have a similar fate, or in other words coherent behavior. There-

fore, these structures can help in revealing the geometry of the crowd-flow in the video where they

map to the boundaries of different crowd segments/regions.

The LCS are located using a Lyapunov Exponent approach which employs individual particle

trajectories to generate a finite-time Lyapunov exponent (FTLE) field. Ridges in this field are a

good estimate of LCS, and act as edges separating dynamically distinct crowd regions from each

other. I compute two types of LCS: 1) Attracting LCS and 2) Repelling LCS. The attracting LCS,

represented by a forward FTLE field, are computed by advecting the particle cloud forward in

time, while the repelling LCS, represented by a backward FTLE field, are computed by advecting

the particle cloud backward in time. The two FTLE fields are combined to generate a scalar field

which is used in a watershed segmentation scheme to generate dynamically distinct crowd-flow

segments.

Next, I use the crowd-flow segmentation information to detect change in the behavior of the

crowd from its learnt pattern. Our formulation of the crowd-flow segmentation allows us to ac-

complish this task by simply detecting the presence of new flow segments from one time instant to

the next. This is true because the difference in the dynamics of any part of the crowd-flow will give
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rise to LCS exactly at the location where the change in dynamics is taking place. New LCS will

eventually give rise to new flow segments, and by detecting these new segment one can pinpoint

which part of the flow is deviating from its normal behavior.

1.4.2 Tracking Individual Targets in Crowded Scenes

The second algorithm developed in this thesis performs tracking of an individual object in a

crowded scene. In our formulation of the problem, a crowd-flow is seen as a collection of mu-

tually interacting particles. This is a reasonable assumption, because when people are densely

packed, individual movement is restricted, and members of the crowd can be considered as gran-

ular particles interacting with each other. To track a specific individual in the crowd, I model the

instantaneous movement of that person (particle) using a matrix of preferences which contain the

probabilities of a move in a certain preferred direction. The probabilities take into consideration

multiple sources of information, ranging from the appearance of individual target to the structure

of the scene.

The influences resulting from the structure of the scene are represented in terms of ascene

structure based force model. This model captures the notion that an individual, moving in a partic-

ular scene, is subjected to forces that are functions of the geometry of that scene and the locomotive

behavior of other individuals in the immediate vicinity. The scene structure is incorporated into the

tracking algorithm by introducing a concept offloor fields, which models the interactions between

pedestrians and their preferred direction of movements by transforming the long ranged forces into

the local ones. The transition probability of a tracked person depends on the strength of the floor
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field in his/her neighborhood, such that transitions in the direction of larger fields are preferred.

For instance, a long range force that is compelling the individual in a crowd to move towards the

exit door can be converted into a local force by increasing the instantaneous probability of move

in that direction.

I compute three such floor fields, namely: a ‘Static Floor Field’ (SFF), a ‘Boundary Floor

Field’ (BFF), and a ‘Dynamic Floor Field’ (DFF). Here, the SFF field specifies the regions of

space which are more attractive, e.g. an exit, dominant direction of motion etc.; while the BFF

specifies the regions in the scene which are more repulsive e.g. barriers, no-go areas etc. The DFF

corresponds to the virtual traces created by the movements of individuals in the scene, and in turn

influences the motion of the individual being tracked. These floor fields taken together represent

the ‘scene structure force model’.

For any given scene, the SFF is computed only once during a learning period and it does not

change with time. It is constructed by using a ‘sink seeking’ scheme that computes the distance

to the nearest exit in the scene for every pixel location. The distance is defined as the number of

steps required to exit the scene by wading through a smoothed optical flow field generated by the

crowd-flow. In order to move from one point to the other, the velocity at that point is estimated

as the weighted sum of the velocities of its neighbors. The weights are computed using a kernel

density method. The DFF is computed at each time instant by using a sliding window of frames

where the optical flow is computed between the consecutive frames thus resulting in a stack of

optical flow fields. Next a grid of particles is overlaid over the first flow field. The particles are

advected through the volume of optical flow fields using a numerical integration scheme. During
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the advection, whenever a particle jumps from one pixel location to one of the neighboring pixels,

the value of the interaction between these two pixels is increased by one. Repeating the process

for all the pixels allows calculation of the DFF for the current time instant. The computation of the

BFF is based on the crowd-flow segmentation algorithm described in the previous section where

the boundaries of the crowd-flow segments represent physical and virtual barriers present in the

scene. In order to generate the BFF, an edge map is created from the segmentation by retaining only

the boundary pixels of each segment. The closest distance to barrier of each pixel is determined by

computing a distance transform of this edge map. The distance transformed edge map represents

the BFF.

1.4.3 Target Re-acquisition

The third algorithm developed in this thesis performs the reacquisition of target objects in the pres-

ence of an occlusion. The phenomenon of occlusion is very frequent in crowd videos due to high

density of distracting objects in the scene. Sometimes physical features of the scene and camera

motion also cause occlusion, resulting in the loss of visibility of the tracked object. Since the tra-

jectories of moving objects are critical for understanding their behavior, any missing information

will result in a significant degradation in the accuracy of any event recognition algorithm that uses

these trajectories. Therefore, the objective of the re-acquisition algorithm is to reduce the inci-

dence of missing information by augmenting the capability of the tracking algorithm to reacquire

the target object after occlusions.
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The main thrust of our proposed re-acquisition algorithm is to exploit the contextual knowl-

edge present in the scene. I divide this contextual knowledge into two categories, namelymotion

context(MC) andappearance context(AC). The MC is based on the insightful observation that

the locomotive behavior of an object (e.g. people, vehicles) in a given environment provides in-

formation about the locomotive behaviors of nearby objects that are in the same environment.

The AC is based on the notionthat when a target object re-appears after undergoing occlusion,

its appearance will have to be discriminated with respect to the appearance of other unobserved

objects.

Specifically, the (MC) is a collection of trajectories which are representative of the motion

of the occluded/unobserved object. These trajectories belong to other moving objects in a given

environment. The MC is constructed using a clustering scheme based on the Lyapunov Charac-

teristic Exponent (LCE), which measures the mean exponential rate of convergence or divergence

of the nearby trajectories in a given state space. Next, the MC is used to predict the location of

the occluded/unobserved object in a regression framework. Theappearance context(AC) of a

target object consists of its own appearance history and the appearance information of the other

objects which are currently occluded. The intent is to make the appearance descriptor of the tar-

get object more discriminative with respect to the other unobserved objects, thereby reducing the

possible confusion between the unobserved objects at re-acquisition. This is achieved by learning

the distribution ofintra-classvariation of each occluded object using all of its previous observa-

tions. In addition, a distribution ofinter-classvariation for each target-unobservable object pair is

constructed. Finally the re-acquisition decision is made by using both the MC and the AC.
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1.5 Organization of the Thesis

The structure of the thesis is as follows:Chapter 2 reviews existing literature that focuses on

handling different aspects of crowded visual scenes. It also discusses related approaches from

other fields such as fluid dynamics, oceanography, and crowd dynamics.Chapter 3 presents the

crowd-flow segmentation framework, discusses the assumptions, and details the steps involved in

the mathematical modeling of crowded scenes. Results are shown on very challenging sequences

gathered from a variety of online resources.Chapter 4 introduces the tracking algorithm that is

specifically designed for tracking individuals in crowded scenes. The chapter discuss the steps

involved in the construction of the floor fields, and show how they can be integrated into a track-

ing methodology. Chapter 5 develops a target re-acquisition algorithm and elaborates on the

regression-based prediction framework. The thesis is concluded inChapter 6 with a summary of

contributions and description of future work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter I review the methods that have been developed to handle different aspects of

crowded visual scenes. I have divided the chapter into two main parts. In the first part, I cover

the algorithms and techniques that are used for detection, tracking, and event analysis in crowded

scenes. I also describe a popular technique of modeling crowd/pedestrian flow dynamics. In the

second part of the chapter I target the literature on object association under different camera setups.

2.1 Analysis of Crowded Scenes

The research on the analysis of crowded visual scenes can be categorized on the basis of the specific

task that each work is trying to solve. The solutions to these tasks may use the methodologies

developed in the field of computer vision or in other related research disciplines. I categorize these

tasks as follows:

• Detection in (of) Crowds

• Tracking in Crowds

• Events in Crowds

• Modeling Crowd-Flow Dynamics

The research literature relevant to each of these categories is discussed in detail now.
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2.1.1 Detection in (of) Crowds

The aim of this task is to develop algorithms that are capable of either localizing the individuals

making up the crowd, or the crowd itself, in images and videos. It also includes methods that try

to estimate the density of the crowd or explicitly count the number of people in the crowd.

2.1.1.1 Detection of Individuals in Crowd

The goal of this task is todetect individual persons that are part of the crowd. A number of

vision algorithms have been proposed to achieve this goal [12, 13, 14, 15]. Zhao et al. [12]

proposed a model based on a segmentation scheme for localizing people in a crowded scene. The

problem was posed in a Bayesian framework where each person was localized by maximizing the

posterior probability of matching 3D human shape models with the foreground blobs. The initial

human hypotheses were generated by detecting the locations of heads in the foreground blobs.

This method works well on a low density crowded scene but (it) is not scalable to high density

situations where quite often the complete human body is not visible. In Wuet al. [13], an image-

based detection approach is proposed which uses part based detectors consisting of edgelet features

to localize individuals in crowds.

Detection of individuals using interest points and their trajectories has also been explored by a

number of researchers in previous years. For instance, Tuet al. [14] proposed a global annealing

optimization framework for segmenting individuals in crowds using clustering of interest points

based on their geometric association with each other. The detection was only performed on images

where the crowd was being viewed from above. This camera setup limits the types of scenes that

18



can be handled by their approach. Brostowet al. [15] proposed a Bayesian clustering scheme

for grouping trajectories based on their space-time proximity. Their method tracked simple image

features and probabilistically grouped them into clusters representing independently moving enti-

ties/individuals. The space-time proximity and trajectory coherence through the image space were

used as the probabilistic criterion for the clustering.

In [16], Huanget al. proposed a stereo-based head detection algorithm for human detection

in crowds. The algorithm was based on the assumption that at public places like airports, railway

stations, shopping centers etc, the camera usually looks at a scene from a high position, and, since

every person in the crowd occupies a 3D volume in space, the human heads are isolated from

each other even in crowds. Their algorithm consisted of three steps: first, a scale adaptive filtering

was performed to extract hypotheses of head like objects; second, a perspective correction was

performed to suppress spurious hypotheses which had much higher or lower than average human

height; third, mean-sift was used to locate human heads in the likelihood map. The results were

reported on a low density scene. In [17], Faulhaberet al. proposed a different method based on

Haar-wavelet features for head detection in crowded scenes. They used the assumption that heads

of pedestrians in crowds form a texture which can be distinguished from the scene background by

using wavelet features.

Recently, Donget al. [18] has developed an algorithm that detects individual pedestrians from

a foreground blob generated by a background subtraction algorithm. In a crowded situation such

a blob often contains more than one person. Their algorithm used Fourier descriptors and an

indexing scheme that mapped the observed descriptors to the parameter set explaining the shape.
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There is another set of research work which employs laser range scanners for detection of

moving objects in crowded situations. For instance, in [19], Fod et al. used multiple laser ranger

scanners at waist height to localize objects. The background modeling of the laser scan image

was performed to detect foreground blobs belonging to the moving entities. Again in [20], Zhao

et al. employ a laser range scanner at the ground level for detection and tracking. At the ground

level, each person generates two point clusters corresponding to two feet. These two clusters were

grouped together using distance constraints to detect an individual. Another related method for

crowd detection using a laser range scanner was proposed by Cuiet al. [21].

The main limitation of these methods is that they are inherently designed to perform detection

in videos of a low density crowd. These methods tend to be impractical when the number of

objects present in the scene is large and the objects interact in complex manner, as shown in Figure

1.1. The computed features such as interest points, location of heads, foreground blobs, and color

histograms also become noisy and unreliable. To overcome this shortcoming, I contend that in a

scene of a high density crowd, detection of individual objects may not be necessary, and therefore,

modeling the crowds at a global or holistic level is more practical. For this purpose, I propose

a crowd-flow segmentation algorithm in Chapter 3, which is capable of locating the dynamically

distinct crowd segments in a scene, and uses it for abnormal event detection and behavior analysis.

2.1.1.2 Crowd Detection/Segmentation

As mentioned before, in a scene containing a high density crowd, detection of individual objects

in videos or images may not be possible. However, groups of people that share some feature, e.g.
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direction of motion, appearance, collective behavior etc., can be identified more easily. In the past

few works have attempted to do this. For instance, Riesmanet al. [22] proposed a method to detect

crowds in a video stream. The main thrust of their idea was to analyzext slices of spatio-temporal

volume of the given video to compute probability distribution of left and right inward motion, and

then use these distributions to infer the crowd location.

Chanet al. [23, 24] proposed to segment the videos of crowded environments using a repre-

sentation based on mixture of dynamic textures. A dynamic texture is defined as a sample from

a stochastic process over space and time. The idea behind using a mixture of dynamic textures

is that a video can be perceptually decomposed into multiple regions, each of which belongs to

a semantically different visual process. In case of a crowd video, these different visual processes

will correspond to different groups of people, or in case of a highway video, to traffic moving in

opposite directions. Specifically, Chanet al. [23, 24] developed a generative model of a dynamic

texture mixture, where a collection of video sequences (or video patches) were modeled as samples

from a set of underlying dynamic textures. They also derived an expectation-maximization (EM)

algorithm for maximum-likelihood estimation of the parameters of the dynamic texture mixture.

These approaches for crowd segmentation do not take into account the goal-directed nature of

human crowds. Large crowds of pedestrians at sporting events, religious festivals, train-stations

etc. can be described as goal directed and rational because the members of the crowds have clear

knowledge of what and where their goals lie. I incorporate this observation into the crowd seg-

mentation framework where segments are distinguished from each other on the basis of the fate
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of the particles belonging to that segment. The particles with similar fate have similar goals, and,

therefore, characterize a distinct group of the crowd in a given scene.

2.1.1.3 Crowd Density Estimation

The estimation of number or density of people in an area under surveillance is very important for

the problem of crowd monitoring. The initial research efforts ([25, 26, 27, 28, 29, 30, 31]) tried to

address the crowd density estimation problem in the early to late nineties. Global image features

such as foreground pixels, textures, edges, optical flows etc., were often utilized in this body of

work. For instance, Davieset al. [25] estimated the number of foreground pixels or number of

edge pixels from the image, and used them in a linear regression framework to estimate the number

of people in the scene. Coinazet al. [26] used sizes of foreground regions and ratio of foreground

to background regions as features, and trained a fuzzy classifier that classified the scene into one

of five categories: no people, a few people, some people, many people, overcrowding. In the same

vein, Choet al. [27] and Schofieldet al. [28] trained neural networks to classify the level of a

crowd. In [29], real-time estimation of crowd density was carried out by extracting a set of features

which included a number of edge points, a number of maxima in the edge point histogram, and

the sum of the amplitudes of the maxima in the edge point histogram. Although these pixel-based

techniques were simple and fast, they are not reliable when the crowd density is high.

The texture-based methods ([30, 31]) followed which used crowd images of different densities

as different texture patterns, and estimated the crowd density by texture analysis schemes. In [30],

texture measures were extracted from the images through gray level dependence matrices, straight
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line segments, Fourier analysis, and fractal dimensions. The estimations of crowd densities were

given in terms of the classification of the input images into five classes of densities (very low,

low, moderate, high and very high). This method was extended in a later work [31] where the

Minkowski fractal dimension was used for crowd density estimation. The utility of wavelet features

for density estimation was also explored in the work of [32] and [33].

More recently, trajectory based information has been used for crowd density estimation and

counting ([34, 35]). In [34], Rabaudet al. counted the number of people by segmenting the moving

objects in a dense crowded scene. This is achieved by clustering a rich set of extended tracked fea-

tures where spatial and temporal conditioning was used to overcome the fragmented nature of the

tracks. In a parallel work, Antoniniet al. [35] developed a trajectory clustering scheme for crowd

counting. They used several data representations (Independent Component Analysis, time series,

Maximum of Cross Correlation) and compared different distance/similarity measures (Euclidian,

Longest Common Subsequence, Hausdroff) under a common hierarchical clustering framework.

The hierarchy consisted of three stages: length clustering, spatial clustering and pedestrian count-

ing.

A number of crowd counting algorithms have been developed that take into account feature

normalization to deal with the perspective projection and different camera orientations. In this

regard, [36, 37] described a viewpoint invariant learning method for counting people in crowds

from a single camera. In [38], the density of persons was estimated by counting the foreground

pixels with the weights based on perspective correction. These algorithms provide the benefit of

viewpoint invariance in addition to easy deployment with at a new site.
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In a slightly different flavor, [39] developed a system that counted people in a crowded scene

using a network of multiple image sensors. They introduced a geometric algorithm for computing

bounds on the number and possible locations of people using the silhouettes which were obtained

from each sensor through background subtraction.

On the practical side, a number of commercialcrowd counting systemshave been developed.

Albiol et al. [40] designed a vision system for the Spanish Railway Company to determine the

number of people who get in and out of a train carriage. Zhanget al. [41] worked on an automatic

pedestrian counting method for an escalator or a moving walkway. They used a model-specified

directional filter to detect object candidate locations followed by a novel matching process to iden-

tify the pedestrian head positions. Teradaet al. [42] employed stereo images for crowd counting

at gate entrances. Similarly, using a camera hung from the ceiling of the gate, [43] proposed a

real-time scheme to detect and track the people moving in various directions with a bounding box

enclosing each person. Furthermore, [44] presented an automatic bi-directional people counting

method dedicated to passing through a gate or door. Haraseeet al. [45] used skin color modeling,

iterative face detection, and tracking for people counting in transport vehicles. Bozzoliet al. [46]

developed a system to estimate the number of people passing through a gate in a public area such

as a metro or a railway station.

Our objective in this thesis is to analyze the crowds at a holistic level, and, therefore, I do not

explicitly estimate the number of people or their density in the scene.
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2.1.2 Tracking in Crowds

Tracking is one of the highly researched areas in the field of computer vision. Most tracking

algorithms proposed over the years focus on the general problem of tracking, without specifically

addressing the challenges of a crowded scene. In this section, I review the tracking methodologies

that are specifically designed for crowded situations. The readers interested in a detailed review of

the state of the art in tracking are referred to a recent survey by Yilmazet al. [47].

To start with, few of the detection methodologies discussed previously have been used for

tracking in crowded scenes as well. For instance, Zhaoet al. [12] used the initial detection of

people in crowds to initialize the ellipsoid-based human shape models and color histograms to

carry out tracking. Similarly, Brostowet al. [15] tracked and clustered features points over-time,

and, therefore, were able to generate a separate trajectory for each individual.

There is another interesting and relevant body of work that tries to track sparse crowds of ants

[48], hockey players [49], crowds of clumped people [50, 51, 52], or a dense flock of bats [53] and

biological cells [54]. In [48], Khan et al. employed a Markov chain Monte Carlo based particle

filter to deal with interactions among targets in a crowded scenario. They used the intuitive notion

that in a crowded situation the behaviors of targets are influenced by the proximity and/or behavior

of other targets. The interactions among the targets were modeled by a Markov Random Field

(MRF) based motion priors that were learnt on the fly using an MCMC sampling. The results were

reported results on videos of interacting insects. Caiet al. [49] proposed a mutli-target tracking

algorithm for tracking hockey players in a video. Using their approach, they were able to robustly

track multiple targets and correctly maintain identities in the presence of background clutter, cam-
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era motions and mutual occlusion between targets. The approach consisted of a modified particle

filtering algorithm where they introduced a global nearest neighbor data association algorithm for

assigning Ada-boost based detections to the existing tracks for the proposal distribution. In ad-

dition, the mean-shift algorithm was embedded into the particle filter framework to stabilize the

trajectories of the targets for robust tracking during mutual occlusions.

Work of Gennariet al. [50] is aimed at scenarios where large numbers of targets form natural

groups which can be efficiently tracked together. In their method, groups were defined on the basis

of the position and velocity of targets. They used a set of merging and splitting rules which were

embedded into a Kalman filtering framework for tracking multiple groups. In cases where groups

of different velocities cross, a general methodology for matching measurements to groups was

introduced. In [51, 52], Lin et al. advocated a different paradigm for tracking groups of people by

treating them as a near-regular texture (NRT). The NRT is defined as a geometric and photometric

deformation of a regular texture. For tracking purposes, the NRT was nested in a lattice-based

MRF model of a 3D spatio-temporal space. Next, the tracking algorithm used the topological

invariant property of the dynamic NRT by combining a global lattice structure that characterizes

the topological constraint among multiple textons (people) and an image observation model that

handles local geometry and appearance variations.

Recently, Betkeet al. [53] proposed an algorithm to track a dense crowd of bats in ther-

mal imagery. They combined multiple techniques such as multi-target track initiation, recursive

Bayesian tracking, clutter modeling, event analysis, and multiple hypotheses filtering for this pur-

pose. Impressive results were obtained by tracking up to approximately eight hundred thousand
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bats. Tracking of multiple interacting and crowded objects has been attempted in the area of bi-

ological cell tracking as well. For instance, Liet al. [54] has recently developed an algorithm

for tracking thousands of cells in phase contrast time-lapse microscopy images. The tracking was

performed in two stages where at the first stage a track compiler operating in a frame-by-frame

manner was producing intermediate tracking results, called track segments, which were linked

into cell trajectories at the second stage by a track linker overseeing the entire tracking history.

Another approach for tracking in crowded scenes using selective visual attention is proposed by

Yanget al. [55]. In their algorithm, the early selection process extracts a pool of attentional regions

that were defined as the salient image regions which have good localization properties, and the late

selection process dynamically identified a subset of discriminative attentional regions through a

discriminative learning of the historical data on the fly. They demonstrated tracking of complex

targets in real-world sequences and movie clips.

Most tracking algorithm described so far only use low level image information for tracking

purposes. Surprisingly little has been done in exploiting high-level cues for human detection and

tracking in complex crowded situations. One of the few works on this topic is that of Antoniniet

al. [56] which used discrete choice models (DCM) [57] as motion prior to predict human motion

patterns and fused this model in a visual tracker for improved performance.

The utility of multi-camera setups for tracking in crowds has also been explored. In this regard,

Khanet al. [58] presented a homography constraint to fuse information from multiple views us-

ing geometrical constructs and resolved occlusions by localizing people on multiple scene planes.

Mittal et al. [59] developed a system using multiple synchronized cameras for detection and track-
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ing of multiple people in a crowded environment. There are several tracking approaches which

specifically address the problem of occlusion. The traditional approach for detection of occlusion

is by detecting blob merging [60]. The feature point based approaches define the occlusion as the

disappearance of the point being tracked [61]. In recent years, tracking techniques using object

contours [62, 63] and appearances [64, 65], which represent and estimate occlusion relationships

between objects by using the hidden variables of depth ordering of objects toward the camera, have

been proposed.

A crowded scene has a number of characteristics which makes the direct application of above-

mentioned tracking algorithms extremely difficult. First, in high density crowds it is hard to discern

individuals from each other, and therefore ownership of the features (color, spatial templates, in-

terest points, contours, etc.) cannot be computed reliably. Second, severe occlusions occur due to

interactions among the members of the crowd; therefore, even if reliable features are computed,

tracking over longer durations of time is difficult. In order to overcome these difficulties, our

tracking algorithm uses higher level knowledge about the scene which is the novel aspect of the

algorithm. In other words, above-mentioned tracking methodologies are object centric, and do not

exploit any high level knowledge that may aid the tracking algorithm. In the tracking algorithm, I

incorporate the high level knowledge of the scene and the behavior of the crowd into the tracking

algorithm by computing a number offloor fields. Another major difference is that the traditional

crowd tracking algorithms are designed for low density scenes and are not extendable to a high

density scene where it is difficult to determine the ownership of the features. Our algorithm, on the
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other hand, performs tracking of individuals in high density crowded scenes containinghundreds

or thousands of people.

2.1.3 Events in Crowds

Analysis of crowd behaviors is an important problem. It can be dealt with at the individual level

where the event of interest is defined in terms of individual objects, or it can be defined at a global

level where the behavior of the crowd is modeled at an extended spatial scale.

In the literature, the analysis of the global level behavior is often carried out by using the mo-

tion information described in terms of optical flow. This is different from the approaches which

employ change detection algorithms to first detect foreground blobs and then use it for behavior

analysis. Using the optical flow based motion information Velastinet al. [66] and Davieset al.

[25] developed a block matching scheme to estimate the motion trends of the crowds. Specifically,

they used frequency distribution of velocity directions for this purpose. Similarly, Bouchafaet al.

[67] also used a block matching scheme for crowd monitoring in subway stations. The underlying

assumption of their algorithm was that for detection of any abnormal activity the knowledge about

direction of crowd motion is essential. In addition to block matching, they tested their method

with two other ([68, 69]) optical flow algorithms as well. In a later work Bouchafaet al. [70]

used the same technique for detection of abnormal individual or crowd motion in one-way sub-

way corridors. Using the motion information, Yin [71] conducted a detailed study and showed

that accurate estimation of crowd movements can be obtained through appropriate settings of the

operating parameters (size of block, size of search window).
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In the work of Andradeet al. [72, 73], the crowd behavior is characterized at a global level

also by using the optical flow of the video sequence. During the learning stage, a reduced order

representation of the optical flow was generated by performing Principal Component Analysis

(PCA) on the flow vectors. The top few eigenvectors were used as the representative features and

spectral clustering was performed to identify the number of distinct motion patterns present in the

video. The features in the clustered motion segments were used to train different HMMs which

were later used for event detection in crowds.

In [74], Boghossianet al. proposed to model the dynamics of the scene under consideration

for the prevention of crowd-related emergencies in large crowds. They started by estimating the

optical flow and clustered the optical flow vectors based on direction and magnitude to segment

different crowds. Next they detected a number of events using a technique based on Hough voting

space. The types of event detected by their method include circular flow paths close to site exits in-

dicating trapped crowds; crowd-flow diverging from a point to all directions, which might indicate

a potential danger (fights, fire etc.); obstacles in the flow paths that might correspond to injured

pedestrians or deliberate flow disturbances. In their later work an automatic monitoring system

was proposed for detecting overcrowding conditions on platforms of underground train services

[75], and for determining the congestion levels on the platform [76].

Paragonset al. [38] proposed an MRF-based approach for real-time subway monitoring by

carrying out change detection and congestion estimation. Their solution consisted of two steps:

The first step was a change detection algorithm that distinguished the background from the fore-

ground by using a discontinuity preserving MRF-based approach. In the MRF model, information
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from different sources (background subtraction, intensity modeling) was combined with spatial

constraints to provide a smooth motion detection map. In the second step the computed change

detection map was combined with a geometry module to perform a soft auto-calibration to estimate

a measure of congestion in the observed area (platform).

Recently Keet al. [77] have proposed an algorithm for detection of single actor based events

in crowded scenes. They handled the artifacts resulting from the partial occlusions and a cluttered

environment. The recognition itself was performed by a part-based matching of a volumetric

representation of an event against over-segmented spatio-temporal video volumes. The shape and

flow features were used for the encoding information contained in each volume. Phamet al. [78]

demonstrated event detection capabilities in thermal imagery of a crowded environment. Their

method was based on the detection and segmentation of individuals within groups of people using

a combination of several weak classifiers in a boosting algorithm.

The assumption of our abnormal event detection algorithm (Chapter 3) is that in a real crowd

scene one cannot easily specify beforehand or train particular labels for behavior analysis. There-

fore, the events are classified as normal or abnormal behavior without having any specific label for

them. I believe this type of crude labeling will help in pinpointing the locations where the behav-

ior of the crowd has changed, and will allow the safety management officials to take the remedial

actions. Our abnormal event algorithm uses the crowd segmentation instead of optical flow which

is one major difference with respect to the body of work described above.
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2.1.4 Modeling Crowd-Flow Dynamics

Modeling pedestrian flow dynamics particularly in crowds has been a major topic of research in

sociology and behavioral sciences. A number of models have been proposed for this purpose over

the years. One well established way to study crowd dynamics is by discrete simulation of individual

pedestrians. Discrete simulation forms a very useful numerical tool for practical applications, but

as a research tool it suffers from lack of analytical tractability that makes deriving general results

difficult. Some reference work that follow this line of modeling include [79, 80].

In the case of Cellular Automaton (CA) model [81], the local movements of the pedestrian are

modeled with a matrix of preferences which contains the probabilities for a move, related to the

preferred walking direction and speed, toward adjacent directions. Schadschneider [82] introduced

the interesting concept of floor fields to model the long-ranged forces. These floor fields have

their own dynamics (diffusion and decay), which are modified by pedestrians and in turn modify

the matrix of preferences, thus simulating interactions between individuals and the geometry of

the system. Simple behavioral rules are implemented (turning directions, obstacle avoidance) in

order to reproduce more complex collective phenomena [83]. Several other approaches have been

proposed and I refer the interested reader to Bierlaireet al. [84] for a detailed survey of the

literature. It is important to note that in our work I am learning the floor fields directly from

the observed data instead of designing them manually as has been the practice in the stimulation

community.

Another famous pedestrian behavior model is the Social Force Model [79, 85]. In this model

an individual is subject to long-ranged forces and his/her dynamics follow the equation of motion,
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similar to Newtonian mechanics. The model has been empirically tested in a wider range of envi-

ronmental settings and has shown compelling simulations of complex human group behaviors like

lane formation, exit clogging, collision avoidance etc. Due to its simplicity and intuitive nature the

social force model has become a pedestrian behavior model of choice in the behavioral sciences

community.

A popular way of modeling crowds is in terms of attributes of a fluid. The examples include the

work by Hugeset al. [86, 87] and Hendersonet al. [88]. In [86, 87], Hugeset al. have developed

a set of governing equations for high density crowd flows using the following three hypotheses: 1)

the speed of a pedestrian depends on the density of the surrounding pedestrians, 2) pedestrians have

a common sense of task and 3) pedestrians try to minimize their estimated travel time. These sets

of equations are then used for studying the effects of barriers on the flow of the crowd. However,

in this type of modeling it is assumed that the crowd will involve only a single pedestrian type

which means these method are not be able to handle situations where multiple interacting crowd

flows are present. Furthermore, these methods rely on the availability of accurate data about the

crowd density in the scene. Unfortunately, there are no reliable means to measure such physical

quantities using the video data, which makes these approaches impractical for a general scene.

2.2 Object Association

The proposed re-acquisition algorithm is related to a variety of previous works in the areas of

track linking in UAV videos, multi-camera object association, appearance modeling, and context
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modeling. In this section, I provide an overview of these related works and highlight similarities

and differences of our approach.

2.2.1 Track Linking in Moving Cameras

With the growing interest in the area of aerial surveillance, vision researchers have explored tech-

niques to perform object association or track linking in videos taken by UAVs. For monocular

aerial cameras, Amithaet al. [91] recently proposed a framework, which builds upon their previ-

ous work [92], for linking tracks across occlusions . The object association problem is solved in

two stages: In the first stage, one to one correspondence is established between the tracks seen at

two different time intervals. The pairwise association probabilities are computed using temporal

ordering, proximity of forward and backward estimation of the object’s position, and similarity of

appearance templates. The second stage improves the correspondence for splitting and merging of

objects. Although I am employing the same camera setup, our approach differs from their work

in several important ways: Amithaet al. [91] do not employ contextual knowledge of an object’s

kinematics or appearance for linking tracks. In addition, only a restricted set of object kinematics

are managed using a linear motion model for prediction. This clearly is not the case in the real

world where objects move along arbitrary paths. Our approach, on the other hand, can handle dif-

ferent types of motions by adapting to the kinematics of objects in the given scene through motion

context.

Another related area of research has focused on associating tracks across multiple moving

aerial cameras [93, 94]. In [93], Sheikhet al. proposed a method to correspond objects across
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un-calibrated cameras that are mounted on aerial vehicles. It is assumed that the cameras have

overlapping FOV, and a maximum likelihood estimate of object correspondence is computed using

a graph theoretic approach. While in [94], the restriction on overlap between the FOVs is relaxed

and track correspondences are established by fitting kinematic polynomial models to object trajec-

tories. The parameters of polynomial and inter-camera homographies are estimated simultaneously

in an Expectation Maximization algorithm. Again, our approach is different from their method as

I do not explicitly impose any particular kinematic model on object trajectories, rather I infer the

type of the motion from the contextual information.

2.2.2 Multi-Camera Object Association

Over the years, a number of algorithms have been proposed for associating objects in a multiple

stationarycamera setup. Although I am dealing with the problem of association in a single moving

camera setup, the techniques proposed for stationary camera setups are worth mentioning. I will

consider two scenarios: i) multiple stationary cameras with overlapping FOVs, and ii) multiple

stationary cameras with non-overlapping FOVs.

2.2.2.1 Multiple Stationary Cameras with Overlapping FOVs

A large body of work has addressed the object association problem for this setup, beginning with

the work of Nakazawaet al. [95], in which a state transition map was constructed that linked

regions observed by one or more cameras along with a number of action rules to consolidate

information between cameras. Caiet al. ([96]) proposed a method to track humans across a
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distributed system of cameras, employing motion analysis on 3D geometry of the camera setup

where the spatial matching was based on the Euclidean distance of a point with its corresponding

epipolar line. Bayesian Networks for combining multiple cues were employed in a variety of

papers. In [97], Changet al. used Bayesian networks to combine geometry (epipolar geometry,

homographies and landmarks) and recognition (height and appearance) based modalities to match

objects across multiple sequences. Bayesian networks were also used by Dockstaderet al. in [98]

to track objects and resolve occlusions across multiple calibrated cameras. In [99], Khan et al.

proposed an approach that avoided explicit calibration of cameras and instead used constraints on

the field of view lines between cameras, learnt during a training phase, to track objects across the

cameras. Weiminget al. ([100]) used the principal axis of foreground blobs for matching people

across uncalibrated cameras. For this purpose, a relationship was established between the principal

axis of a person in two views and the 3D “ground point” of the person.

2.2.2.2 Multiple Stationary Cameras with Non-Overlapping FOVs

Non-overlapping FOVs allow coverage of a far wider area. A number of algorithms have been

proposed for carrying out object association within such a camera setup. An example of this is the

work by Huanget al. [101], who developed a probabilistic appearance based approach for tracking

vehicles across consecutive cameras on a highway. Constraints on the motion of the objects across

cameras were first proposed by Kettnakeret al. [102], in which positions, object velocities and

transition times across cameras were used in a setup of known path topology and transition prob-

abilities. In [103], Collins et al. used a system of calibrated cameras with a environment model to
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track objects across multiple views. The method proposed by Javedet al. ([104]) used a supervised

framework for learning the camera topology and path probabilities of objects using Parzen win-

dows and did not assume any site model. In [105], Staufferet al. tracked objects across multiple

cameras with both overlapping and non-overlapping FOVs, building a correspondence model for

the entire set of cameras. Recently, Glibertet. al [106] proposed an unsupervised framework for

learning camera topology.

Our proposed algorithm has several important differences from the above mentioned body of

work. First, due to the nature of the setting in which airborne cameras operate, the topographic,

appearance and learning based constraints of multi-camera object association are not easily extend-

able. Most of the aforementioned methods require a learning period to estimate various parameters

of the system, however the UAVs on which cameras are mounted usually fly over an area only once,

and therefore reliable learning of unknown parameters is not possible. Second, the multi-camera

setups (overlapping and non-overlapping) that use motion patterns to acquire objects across cam-

era views often address very restrictive cases. For instance, the solution suggested by Hunaget al.

[101] is confined to setups where the cameras are placed along the side of a single path so that the

movement of the objects is pre-determined, and can be predicted by linear motion models. Third,

the above mentioned methods try to link tracks across occlusions and do not attempt to track them

while they are occluded, as has been observed by [91]. Fourth, there is no notion of ‘context’ in

the aforementioned algorithms, which means only the motion of the target object is used to make

predictions about its potential future location. In other words, these algorithms ignore the state of

the surrounding environment when making these predictions.
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2.2.3 Appearance Modeling

Another technical component of our work is related to modeling of appearance of vehicles in

aerial cameras. A number of papers have proposed solutions in this regard. For instance the work

of Ying et al. [107, 108] used edge based measures to establish the association of cars across

different cameras. The novel feature of their work was that instead of explicitly modeling the

appearance of cars, they posed the problem as one of computing same-different probabilities. Guo

et al. [109] proposed an alternative framework where objects were aligned and line based features

were employed to match the objects with large pose variation. Ozgeet al. ([110]) combined shape

and appearance features for matching cars in aerial cameras. In [111], Javedet al. handled change

in appearance across cameras by learning a brightness transfer function from a small training set.

All of these approaches fall short of utilizing the contextual knowledge. In our proposed method,

I am exploiting the contextual information available in the form of appearance history of not only

the target object and but also other objects that are are present in the scene.

2.2.4 Context Modeling

A number of approaches have explored the utility of spatial context for modeling the appearance

of targets for tracking purposes. The spatial context is defined as the features (e.g. color, interest

points etc.) of the surrounding background of the object. This spatial context assists in making the

distinction between the target and the surrounding background. For instance, in [112] those color

features were selected for encoding the appearance, which were most discriminative with respect

to the local background window. Similarly, [113] maintained an online foreground-background
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discriminating function as the objective function during the target search. The spatial context was

augmented by a temporal context for a fixed camera multi-target tracking in a parallel work by

Nguyenet al. ([114]). The temporal context was constructed by integrating the entire history of

target appearance using the probabilistic principal component analysis (PPCA) algorithm. The no-

tion of temporal context is closely related to our definition of AC. However, the main difference is

that I am incorporating not only the appearance history of the target object, but also the appearance

history of other objects which are currently occluded. In addition, I use motion context which was

not explored in [114].

The brief overview of the research literature underscores the fact that no attempt has been made

so far to use the rich contextual knowledge present in a scene in terms of motion and appearance of

inter-related objects. The is precisely where the main contribution of our re-acquisition algorithm

(Chapter 5) lies, and I will show through experimental verification, the validity and usefulness of

using the contextual knowledge. Now, in the next Chapter I describe the crowd-flow segmentation

algorithm which is the first stage of processing the video of a high density crowded environment.
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CHAPTER 3

A LAGRANGIAN PARTICLE DYNAMICS APPROACH FOR
CROWD-FLOW SEGMENTATION

Crowd flow segmentation generates a global representation of the scene by locating all the distinct

crowd regions/groups that are present in the scene. The emphasis of the approach is on locating

those crowd groupings that are dynamically distinct and spatio-temporally dominant. In the later

part of the chapter, the applicability of crowd segmentation is demonstrated on the task of abnormal

event detection within crowds.

3.1 Overview

To achieve the goal of crowd-flow segmentation the proposed algorithm assumes that the spatial

extent of the video is a phase space of a non-autonomous (or time dependent) dynamical system,

in which transport from one region of the phase space to another is controlled by the optical flow.

The idea is that, by observing the transport phenomenon under the influence of the time dependent

optical flow, the regions of qualitatively different dynamics in the phase space will be revealed.

These different regions of the phase space will have a one-to-one correspondence with the distinct

crowd groupings emerging from the spatio-temporal interactions of the members of the crowd with

each other and with the physical world.
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The discovered crowd regions/groupings are called “Flow Segments”. To avoid any confusion,

it is pertinent at this point to emphasize the distinction between the terms “Flow Segment” and

“Optical Flow”. Traditionally, optical flow represents motion information that is local in space and

time. There is no high level interpretation associated with this local information. In contrast, a

“Flow Segment” represents a motion trend that is global in nature and has an associated physical

interpretation in the context of the given scene, e.g., in a crowd video a “Flow Segment” represents

a group of people whose behavior, in terms of dynamics, is distinct. A scene can have an arbitrary

number of “Flow Segments” and each “Flow Segment” can have any arbitrary shape.

The crowd-flow segmentation algorithm developed in this chapter makes use of recent advances

in the areas of nonlinear dynamical systems [1][2], fluid dynamics, [3][4][5] and turbulence theory

[6][7]. The basis of the idea is to use Lagrangian Particle Dynamics to uncover the spatial organi-

zation of the flow field by examining a cloud of particles as it mixes and gets transported over time

under the action of the optical flow generated by the crowd motion. At the conceptual level, the im-

plication of using time-dependent optical flow fields to examine the temporal behavior of particles

is that it helps in assimilating/integrating the motion information over longer periods of time. This

integration is important for the analysis of complex temporal behaviors or structures exhibited by a

moving crowd. In practical terms, the advection of particle cloud quantifies the transport between

different regions of the phase space and, therefore, helps in revealing the representative character-

istics of the phase space, such as locations of the barriers, mixing properties, sources, and sinks.

As the phase space is directly related to the crowd video (a non-autonomous dynamical system),

these characteristics have a direct relationship with the physical properties of the crowded scene,
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such as physical and virtual barriers in the scene, the direction in which the crowd is going, the

number of different crowd segments, and the locations at which segments merge or split.

However, in the proposed construction, I do not have to explicitly locate all these characteristic

features of the phase space; instead, I use the key theoretical notion ofLagrangian Coherent Struc-

tures (LCS)[5], which are the invariant manifolds of the phase space. Roughly speaking, Coherent

Structures are separatrices/material lines that influence the kinematics of the particle cloud over

finite time intervals, and they divide the flow, and in turn the phase space, into dynamically distinct

regions, where all the particles within the same region have a similar fate or, in other words, coher-

ent behavior. The notion of coherent structure is extendable to phase spaces of the crowd videos,

where they map to the boundaries of dynamically distinct crowd regions/groupings. Intuitively,

coherent structure is to flow data what “edge” is to image data. Note that when coherent structures

are studied in terms of quantities derived from particle trajectories, they are named as Lagrangian

Coherent Structures (LCS).

Now, a fundamental question is how to locate LCS in the given phase space. Several approaches

have been proposed to compute LCS based on whether the underlying dynamical system is periodic

[10], aperiodic [9], or quasi-periodic. The crowd movements fall under the category of aperiodic

motion (or time-dependent motion), since often in a given scenario there is no constraint on the

dynamics of the crowd that includes both speed and direction. The Lyapunov Exponent approach

is adopted in this work to locate the LCS. The Lyapunov exponent measures the exponential rate of

convergence or divergence between two particle trajectories. For a given crowd video, I use a grid

that covers the optical flow field of the video and compute the finite-time estimate of Lyapunov
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exponents for trajectories starting at each point of the grid. This process returns a finite-time

Lyapunov Exponent (FTLE) field over the phase space. It has been shown by Haller [5] that the

coherent structures appear as ridges in the FTLE field and govern the mixing and transport of the

particles.

Therefore, I treat ridges, which are coherent structures of the phase space, in this field as edges

that separate flow segments that have different dynamics from each other. I compute two types

of LCS: 1) attracting LCS and 2) repelling LCS. The attracting LCS, represented by a forward

FTLE field, are computed by advecting the particle grid forward in time, while the repelling LCS,

represented by a backward FTLE field, are computed by advecting the particle cloud grid in time.

The two FTLE fields are combined to generate a scalar field that is then used in a watershed

segmentation scheme to generate dynamically-distinct, crowd-flow segments. Note that only finite-

time estimates of Lyapunov exponents are of interest, because the flow field in any physical context

only has a finite time to operate on the particle/tracer. In most cases, these finite time estimates turn

out to be a good estimate of the infinite-time exponents. The steps of the crowd-flow segmentation

algorithm are summarized in the block diagram of Figure3.1.

In the next section, I describe the mathematical notations, provide formal definitions, and ex-

plain some of key concepts in more detail. The nomenclature of Shaddenet al. [8] is used for this

purpose.
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Figure 3.1: Block diagram of the crowd-flow segmentation algorithm. (1) The input is a video

of a crowded scene. (2) Computation of optical flow from the frames of the video. (3) For-

ward and backward advection of particle grid resulting in forward and backward particle

flow maps. (4) Computation of respective FTLE fields from the forward and backward par-

ticle flow maps. (5) Fusion of forward and backward FTLE fields and label assignment using

the watershed segmentation algorithm. (6) Detection of abnormal events (or crowd-flow in-

stabilities).

3.2 Definitions and Notations

Let a compact setD ⊂ R2 be the domain of the phase space under study. This domain corresponds

to the 2D-spatial extent of the crowd video. Next, define a time-dependent optical flow fieldv(x,t)
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on D that satisfiesC0 andC2 continuity in time and space, respectively. TheC0 andC2 assump-

tions are required to keep the optical flow field smooth. Here,t corresponds to thet-th frame of

the video. Then a particle trajectoryx(t : t0, x0), starting at pointx0 at timet0 can be defined as a

solution of

ẋ(t; t0, x0) = v(x(t; t0, x0), t), (3.1)

x(t0; t0, x0) = x0, (3.2)

whereẋ is the time derivative. It can also be observed that a trajectory,x(t : t0, x0), of a particle

depends on the initial positionx0 and the initial timet0. From the above mentioned continuity

constraints of optical flow,v(x,t), it follows that the particle trajectory,x(t : t0, x0), will be C1 in

time andC3 in space.

Since the goal is to analyze the transport properties of the phase space and, in turn, the under-

lying crowd, the solution of Equation3.1 can be viewed as a transport device or map that takes

particles from their initial positionx0 at timet0 to their position at timet. Formally, this solution

is referred as a “flow map,” denoted byφt
t0

, and that satisfies:

φt
t0

: D → D : x0 7→ φt
t0
(x0) = x(t; t0, x0). (3.3)

In addition, the flow mapφt
t0

satisfies the following properties:

φt0
t0(x) = x, (3.4)

φt+s
t0

(x) = φt+s
s (φs

t0
(x)) = φt+s

t (φt
t0
(x)). (3.5)

These properties follow directly from the existence and uniqueness theorem that allows one to

conclude that there exists only one solution to a first-order differential equation that satisfies the
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given initial condition. The next section describes the concept of FTLE field, and also discusses

the steps involved in its computation from the flow mapφ.

3.2.1 Finite Time Lyapunov Exponent Field

As described in Section3.1, the crowd segments are located by first locating the LCS, and the

localization of LCS in turn requires computation of the FTLE field. The Lyapunov exponent

is an asymptotic quantity that measures the extent to which an infinitely-close pair of particles

separate in an infinite amount of time. In the theory of dynamical systems, it is used as a tool for

measuring the chaoticity of the system under consideration by measuring the rate of exponential

divergence between the neighboring trajectories in the state/phase space. Traditionally, for any

given dynamical system,̇x = f(x), the maximum Lyapunov characteristic exponent is defined as

γ = limt→∞χ(t), with

χ(t) =
1

t
ln
| ξ(t) |
| ξ(0) | , (3.6)

whereξ(t) is the current state of the system, whileξ(0) is the initial state of the given system.

These states are usually obtained by solving the differential equation controlling the evolution of

the system.

When Lyapunov exponent analysis is performed over a grid of particles over finite times, it

generates a FTLE field. In our formulation, the state of the system is defined as the maximum

possible separation between a particle and its neighbors. Essentially, this means that the Lyapunov

exponent now can be defined as a ratio of the initial separation to the maximum possible separation

between the particle and its neighbors. Using this definition of the Lyapunov exponent, FTLE field
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σT (x0, t0) can be computed using the flow mapφt0+T
t0 , which contains the final locations of the

particles at the end of advection. The flow map, as mentioned earlier, quantifies the transport

properties of the phase space by taking a particle from the initial position,x0, at timet0 to its later

position at timet0 + T .

One important point to note is that the FTLE does not capture the instantaneous separation rate,

but rather measures the average, or integrated, separation rate between trajectories. This distinction

is important because, in time-dependent complex crowd flows, the instantaneous optical flow is

not very informative. However, by accounting for the integrated effect of the crowd-flow using

particle trajectories in the FTLE field, I hope to extract information that is more indicative of the

actual transport behavior.

x x x

)( 0txxy δ+= )( 0txxy δ+=

)( 0txδ

Figure 3.2: Computation of FTLE. The initial separation between particle x and y= x+δx(0)

is δx(0). In order to compute the FTLE between them, I need to find out the magnitude of

the final separation between after a time intervalT .
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The formal derivation of the expression of FTLE proceeds as follows [6, 8]. Consider a particle

x ∈ D at initial timet0 (Figure3.2). Following advection, the position of the particle after a time

intervalT is x 7→ φt0+T
T (x). Now, when advected through the flow, any arbitrary particle that is

infinitesimally close tox at timet0 will behave in a manner similar tox locally in time. However,

as the advection time increases the distance between these neighboring particles will change. Now,

if I represent the neighboring particle byy = x + δx(0) (Figure3.2), whereδx(0) is an arbitrarily-

oriented unit vector, then after a time intervalT , the distance between them becomes:

δx(t0 + T ) = φt0+T
t0 (y)− φt0+T

t0 (x) (3.7)

=
dφt0+T

t0 (x)

dx
δx(0) + O(‖δx(0)‖2). (3.8)

Since the distanceδx(0) is infinitesimally small, I can drop the higher order terms in the Taylor

series expansion of the flow map around the locationx. The magnitude,‖ δx(t0 +T ) ‖, of the final

separation can be computed by taking the standardL2 norm

‖δx(t0 + T )‖2 =

∥∥∥∥∥
dφt0+T

t0 (x)

dx
δx(0)

∥∥∥∥∥
2

. (3.9)

I am interested in finding out the maximum possible separation between the particle,x, and

all its neighbors, which, in other words, means that I seek to maximize‖ δx(t0 + T ) ‖2 over all

possible to choices ofδx(0):

‖ δx(t0 + T ) ‖2= max
|δx(0)|=1

∥∥∥∥∥
dφt0+T

t0 (x)

dx
δx(0)

∥∥∥∥∥
2

. (3.10)

Using the operator norm, the above equation can be written as:

‖ δx(t0 + T ) ‖2 = max
|δx(0)|=1

∥∥∥∥∥
dφt0+T

t0 (x)

dx
δx(0)

∥∥∥∥∥
2

=

∥∥∥∥∥
dφt0+T

t0 (x)

dx

∥∥∥∥∥
2

. (3.11)
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The right-hand side of the above equation is the matrixL2 norm that can be computed simply

by using the standard property that states that, for any matrixA, the matrixL2 norm is the square

root of the maximum eigenvalue of the positive definite symmetric matrixAT A. If I consider

A =
dφ

t0+T
t0

(x)

dx , thenAT A is

∆ = AT A =
dφt0+T

t0 (x)

dx

∗
.
dφt0+T

t0 (x)

dx
, (3.12)

where superscript ‘*’ refers to the transpose operator. It is interesting to note that∆ is also known

as the finite time version of the Cauchy-Green deformation tensor. The quantity
dφ

t0+T
t0

(x)

dx is the

spatial gradient tensor of the flow map. The maximum eigenvalue of∆ is represented byλmax(∆).

Now, knowing the magnitude of the maximum possible separation,λmax(∆), and the initial

separation,δx(0), between the particle and its neighbors, I can compute the FTLE field,σ, with a

finite integration timeT corresponding to pointx ∈ D at timet0 as:

σT
t0

=
1

T
ln

√
λmax(∆). (3.13)

Since,δx(0) is a unit vector, I eliminated it from the above equation. The above quantity is com-

puted for eachx ∈ D to obtain the entire FTLE field at timet0.

3.2.2 Lagrangian Coherent Structures

The LCS corresponds to the boundaries between the crowd flows of distinct dynamics. They

appear as ridges in the FTLE field of the video. The relationship between ridges in the FTLE

field and the LCS can be explained in the following way. If two regions of a phase space have
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qualitatively different dynamics, then I expect a coherent motion of particles within each region,

and, therefore, the eigenvalues of∆ will be close to 1, an indication that the fate of nearby particles

is similar inside the region. At the boundary of the two regions, particles will move in incoherent

fashion, and, therefore, will create much higher eigenvalues. These higher values will make the

ridge prominent in the FTLE field and point to the locations of the LCS.

I compute two types of LCS, namely “Attracting Lagrangian Coherent Structures” (ALCS) and

“Repelling Lagrangian Coherent Structures” (RLCS). The former will emphasize those boundaries

between the crowds from which, in a given time interval (forward in time), all nearby particle tra-

jectories separate; the later will emphasize those boundaries between the crowds from which in a

given time interval (backward in time), all nearby particle trajectories separate. For the compu-

tation of ALCS, the particle grid is initialized at the first optical flow field and advected forward

in time, followed by the computation of forward FTLE field. For the computation of RLCS, the

particle grid is initialized at the last optical flow field and advected backward in time, followed by

the computation of backward FTLE field.

3.3 Crowd-Flow Segmentation - The Algorithm

In this section, I bring together all the concepts explained so far and describe the algorithmic steps

involved in carrying out the crowd-flow segmentation. A block diagram in Figure3.1provides the

higher-level view of the steps and the data flow.
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3.3.1 Optical Flow Computation

Given a video sequence, the first task is to compute the optical flow between the consecutive

frames of the video. I employ two different schemes for this purpose. The first scheme consists

of a block-based correlation in the Fourier domain. The process starts by selecting a square block

centered at the same pixel location of two consecutive framesF1 and F2, of the given video.

The pixel values in both blocks are mean normalized, and a correlation surface is constructed by

performing cross correlation in the frequency domain. The peaks are located in the correlation

surface and are used to calculate the displacement. Note that all the pixels inside a block are

assigned the same displacement value. The process is repeated for all possible blocks in the given

frame. Local outliers in the displacement vectors are replaced in a post-processing step, by using

adaptive local median filtering. The removed vectors are filled by interpolation of the neighboring

velocity vectors. A typical size of the block employed in our experiments is16 × 16 pixels. The

second scheme that I used was proposed in [115] where grey value constancy, gradient constancy,

smoothness, and multi-scale constraints were used to estimate a high-accuracy optical flow.

To analyze the crowd-flow in a given interval ofT frames, I pool the optical flow fields,

v(1), v(2), . . . , v(T ), to generate a 3D volume of optical flows. To simplify the notation, I have

removed the dependence ofv on locationx. This 3D volume of optical flow is used to advect the

particles, where parameterT is used as the integration time. I use the symbolBt+T
t to represent

a the 3D volume of optical flow fieldsv(t), v(t + 1), . . . , v(t + T ). Figures3.3, 3.4, 3.5, and3.6

show color-coded optical flows computed from different sequences in our data set.
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Figure 3.3: Examples of optical flow fields computed by using the algorithm of [115]. Top

Row: Frames of the video. Bottom Row: Color-coded optical flow for the corresponding

frames.

Frame 1 Frame 20 Frame 40 Frame 60

Figure 3.4: Examples of optical flow fields computed by using the algorithm of [115]. Top

Row: Frames of the video. Bottom Row: Color-coded optical flow for the corresponding

frames.
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Frame 1 Frame 20 Frame 40 Frame 60

Figure 3.5: Examples of optical flow fields computed by using the block-based correlation

algorithm. Top Row: Frames of the video. Bottom Row: Color-coded optical flow for the

corresponding frames.

Frame 1 Frame 20 Frame 40 Frame 60

Figure 3.6: Examples of optical flow fields computed by using the block-based correlation

algorithm. Top Row: Frames of the video. Bottom Row: Color-coded optical flow for the

corresponding frames.
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(a)

(b)

Figure 3.7: The particle advection process. (a) Frames from the input video. (b) A grid of

particles is overlaid on the flow field of the input sequence. (c) Trajectories of the particles

are obtained by advecting them through the flow field.
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(a) (b)

Figure 3.8: (a) The Lagrangian trajectories obtained by forward integration. (b) The La-

grangian trajectories obtained by backward integration.

3.3.2 Particle Advection

The next step is to advect a grid of particles through the 3D volume of flow fields,Bt+T
t , that

corresponds to the time intervalt to t + T . I start by launching a grid of particles over the first

optical flow field,v(t), in Bt+T
t . Ideally, the resolution of the grid should be the same as the number

of pixels in each frame of the video. An example of this Cartesian mesh of particles placed over

the flow field of a crowd video and the trajectories of particles are provided in Figure3.7.

Next, the Lagrangian trajectory[x(t+T ; t, x0, y0), y(t+T ; t, x0, y0)] corresponding to a particle

at grid location(x0, y0) is computed by solving the ordinary differential equations numerically:

dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t), (3.14)

subject to the initial conditions[x(0), y(0)] = (x0, y0). t + T represents the time up-till which I

want to compute the trajectory. I use the fourth order Runge-Kutta-Fehlberg algorithm along with

cubic interpolation [11] of the velocity field to solve this system. The backward particle advection
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Figure 3.9: The spatial gradients of the particle flow maps for the sequence shown in Figure

3.3.

is carried out by initializing the grid of particles over the last optical flow fieldv(t + T ) in the

3D volume of optical flow fieldsBt+T
t . The direction of the optical flow vectors is reversed for

the backward integration. Figure3.8(a) provides a visualization of the Lagrangian trajectories

obtained by forward integration, while Figure3.8(b) provides the visualization of the Lagrangian

trajectories obtained by the backward integration. The length of integration,T = 50, was used for

this purpose.

Note that, in our case the domainD is not closed and trajectories can leave the domain. The

particles that leave the domain are not advected anymore, and their last available positions are kept

in the flow map. That is, I do not perform any re-seeding of the particles if they leave the domain.
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Figure 3.10: The spatial gradients of the particle flow maps for the sequence shown in Figure

3.4.

3.3.3 Particle Flow Maps and FTLE Field

During the forward and backward integration, a separate pair of flow maps, namelyφx andφy, is

maintained for the grid of particles. These flow maps are used to relate the initial position of each

particle to its later position obtained after the advection process. This way, the particle flow maps

integrate the motion over longer durations of time, which is lacking in the instantaneous optical

flow. Here, the first map,φx, keeps track of how thex coordinate of particles is changing, and,

similarly,φy keeps track of they coordinate of particles. I use notationφf
x andφf

y to refer explicitly

to forward flow maps, andφb
x andφb

y to refer explicitly to backward flow maps. When the explicit

references are not important, I omit the superscripts.
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Forward FTLE Backward FTLE

Combined FTLE

(a)
(b)

(c)

Figure 3.11: FTLE field for the sequence shown at the top. The sequence has multiple groups

of people intermingling with each other. The ridges are prominent at the locations where the

neighboring crowd groups have dynamically distinct behavior. (a) The forward FTLE field

obtained by the forward integration of particles. (b) The backward FTLE field obtained by

the backward integration of particles. (c) The combined FTLE field.

At the start, these maps are populated with the initial positions of the particles, which are the

pixel locations at which the particle is placed. The particles are then advected under the influence
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(a)
(b)

(c)

Forward FTLE
Backward FTLE

Combined FTLE

Figure 3.12: FTLE field for the sequence shown at the top. The sequence has multiple lanes

of traffic, and the traffic from the ramp is merging onto the main highway. (a) The forward

FTLE field obtained by the forward integration of particles. Note that no LCS are present at

the intersection of the ramp and the highway. (b) The backward FTLE field obtained by the

backward integration of particles. Note that LCS have now appeared at the intersection of

the ramp and the highway. (c) The combined FTLE field.

of Bt+T
t using the method described in Section3.3.2. The positions of the particles are updated

until the end of the integration time lengthT .
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Combined FTLECombined FTLE

Figure 3.13: The combined FTLE fields for the sequences shown at the top.
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Figure 3.14: The combined FTLE fields for the sequences shown at the top.

The computation of the FTLE field from the particle flow maps requires computation of the

spatial gradients of the particle flow maps, i.e.,dφx

dx
, dφx

dy
, dφy

dx
, and dφy

dy
. This step is accomplished

by using a finite differencing approach for taking derivatives. Figures3.9 and3.10show spatial

gradients of particle flow maps for two different sequences in the data set. It can be observed
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that a high gradient is present where the neighboring particles are behaving differently over the

length of the integration. The Cauchy-Green deformation tensor is computed by substituting the

spatial gradients of the particle flow maps in Equation3.12. Finally, the FTLE field is computed

by finding the maximum eigenvalue of the Cauchy-Green deformation tensor and plugging it in

Equation3.13. Figures3.11-3.14show a number of FTLE fields corresponding to different crowd

sequences in our data set. In these examples, the combined FTLE field is obtained by adding

the forward and backward FTLE fields. It can be observed that ridges in these fields (Figures

3.11-3.14), which point to the location of LCS, are very prominent, and, therefore, can be used to

separate regions of the crowd-flow that are dynamically distinct from each other.

The utility of computing forward and backward FTLE fields becomes obvious from the analysis

of the FTLE fields shown in Figure3.12. In this video sequence traffic from the ramp is merging

onto the main highway. When the particles are advected forward in time, no LCS appear at the

intersection of the ramp and the main highway (Figure3.12(a)). The reason is that the particles at

the intersection move forward coherently in time as the destinations of the underlying traffic flow

on the ramp and the main highway are the same. But when these particles are advected backward

in time, the LCS appear at the intersection (Figure3.12(b)) since the particles at the intersection do

not have the same destination backward in time because the underlying traffic is originating from

different locations. In other words, by backward integration, I am able to take into account the

origin of the flow in addition to its destination. This capability is important to completely resolve

different crowd-flow segments present in the scene. This point will become clearer when I present

the segmentation results in a later section.
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3.3.4 FTLE Field Segmentation

The LCS in the FTLE field can be treated as the watershed lines dividing individual catchment

basins. Each catchment basin represents the distinct crowd grouping that is present in the scene.

The catchment basins are homogeneous in the sense that all the particles belonging to the same

catchment basin have the same origin and destination. To generate a distinct labeling for each

catchment basin, I employ the watershed segmentation algorithm [119]. The final segmentation

map is created by removing those segments where the magnitude of the flow is zero. I call such

segments “vacuum segments.” Note that, due to the unique strength of the FTLE field based

representation, I do not have to pre-specify the number of crowd-flow segments. This way, I am

able to overcome the problem of specifying the number of segments or clusters which is common

in most of the clustering and segmentation algorithms [121].

3.4 Flow Instability

In this section, I demonstrate the applicability of the crowd-flow segmentation on the task of ab-

normal event detection in crowds. This is in line with the goal of the thesis, which emphasizes the

use of global level knowledge to help solve more complex, low-level vision tasks.

Given the crowd-flow segmentation information, I define the problem of locating the abnormal

behavior (also called flow instability) as the problem of detecting the change in the number of flow

segments over time. Recall that the boundaries between flow segments are reflected as LCS in the

corresponding FTLE field. Now any change in the behavior of the crowd will cause new LCS to

appear in the FTLE field exactly at the location of the change. These new LCS will eventually give
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rise to new flow segments that were not there before. By detecting these new flow segments, I can

identify the locations in the scene where the behavior of the crowd is changing and can term it as

the abnormal behavior.

In formal terms, I establish correspondence between the flow segments that are generated from

two consecutive blocks of the video for detecting new flow segments. Let us represent the seg-

mentation maps of the two blocks byS1 andS2. The shape of a flow segment is represented by a

Gaussian distribution over the spatial coordinates of pixels belonging to that segment. The mean

of the Gaussian is initialized to the mean of the spatial coordinates, while the variance is initialized

to the variance of the coordinates of the boundary pixels. A voting scheme is then employed for

establishing correspondence between flow segments of the segmentation mapsS1 andS2. Each

pixel of a flow segment inS2 votes for one of the flow segments inS1. A flow segment fromS2

corresponds to a flow segment inS1, if the majority of the pixels of the segment inS2 have voted

for that flow segment inS1. A flow segment inS2 whose correspondence cannot be established is

“flagged” as an unstable flow (or abnormal) region. On the other hand, if the pairwise correspon-

dence between all flow segments is found, it is assumed that the dynamics of the underlying crowd

has not changed. Note that the spatial probability distributions of flow segments are constructed in

a learning stage during which it is assumed that the behavior of the crowd is normal.

3.5 Experiments and Discussion

This section discusses the experimental setup and the data sets used in the experiments. It also

presents the segmentation results along with a discussion of the interpretation of the results.
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Figure 3.15: Example of sequences used in our experiments.

3.5.1 Data Sets and Experimental Setup

I have tested our approach on videos taken from the stock footage web sites (Getty-Images [136],

Photo-Search), and Video Google [135]. Two types of crowded scenarios are covered in these

videos: the first scenario consists of scenes involving the high-density crowds, while the second

scenario consists of high-density traffic scenes. Traffic scenes can be treated as a close approxima-

tion of the motion of crowds of people and, therefore, provides us with useful data for testing the

performance of the proposed algorithm. Another set of videos were taken from the National Ge-
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ographic documentary, entitled “Inside Mecca,” which covers the yearly ritual of Hajj performed

by close to two million people. Therefore, this event provides a unique opportunity for capturing

data about the behavior of large gatherings of people in a realistic setting. Figure3.15shows key

frames from some of these sequences.

For each video, the optical flow was computed by using the algorithms previously described

in Section3.3.1. The computation of the optical flow was performed at a coarser resolution than

the resolution of the image to reduce the computational cost. Next, a grid of particles was placed

over the flow field. The resolution of the grid was kept the same as the number of pixels on

which the flow field was computed. The forward and backward particle flow maps were generated

using the advection algorithm described in Section3.3.2. The corresponding FTLE fields were

computed from the spatial gradient tensor of the flow maps using Equation3.13. The backward

and forward FTLE fields were fused to generate a combined FTLE field. The fusion was carried

out by adding the values of both fields. Finally, the segmentation was performed by using the

watershed segmentation algorithm.

3.5.2 Segmentation Results

This section presents qualitative analysis of the results obtained on different video sequences.

Figures3.16- 3.24show the segmentation results on all the sequences in the data set.

The first sequence, shown in Figure3.16, was extracted from the National Geographic docu-

mentary entitled “Inside Mecca”. The sequence depicts thousands of people circling the Kabba in

a counter-clockwise direction. In this case, the group of people circling in the center is part of the
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Figure 3.16: The flow segmentation result on a video taken from the National Geographic

documentary “Inside Mecca.” Left: A frame from the video. Right: The crowd-flow seg-

mentation mask.
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Figure 3.17: The flow segmentation result on a video from “Video Google.” Left: A frame

from the video. Right: The crowd-flow segmentation mask.
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Figure 3.18: The flow segmentation result on a video taken from the stock footage web site

“Getty Images.” Left: A frame from the video. Right: The crowd-flow segmentation mask.
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Figure 3.19: The flow segmentation result on a video taken from the National Geographic

documentary “Inside Mecca.” Left: A frame from the video. Right: The crowd-flow seg-

mentation mask.
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Figure 3.20: The flow segmentation result on a video from “Video Google.” Left: A frame

from the video. Right: The crowd-flow segmentation mask.
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Figure 3.21: The result of the flow segmentation on a high-density traffic scene. This segmen-

tation was obtained by using both the forward and backward FTLE fields. Left: A frame

from the video. Right: The crowd-flow segmentation mask.
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Figure 3.22: Result of the flow segmentation on a high-density traffic scene. The segments

correspond to group of cars that are behaving dynamically different from each other.
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Figure 3.23: The result of the flow segmentation on a high-density traffic scene. This seg-

mentation was obtained by using only the forward FTLE field. Left: A frame from the video.

Right: The crowd-flow segmentation mask.

69



50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

50 100 150 200 250 300 350 400 450

50

100

150

200

250

300

350

Figure 3.24: The result of the crowd-flow segmentation on a marathon sequence. Left: A

frame from the video. Right: The crowd-flow segmentation mask.

(a) (b)

Figure 3.25: A comparison with respect to the mean shift segmentation. (a) The segmenta-

tion obtained for the sequence shown in Figure3.16. (b) The segmentation obtained for the

sequence shown in Figure3.19.
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same flow segment because of its common dynamics and desirable goal. The optical flow field of

the crowd motion offers a unique challenge as one can observe from the color-coded optical flow

shown in Figure3.3. The different colors emphasize that the flow vectors along the circular path

have different directions and magnitudes. This means that a simple clustering of these vectors will

not allow us to assign these vectors to the same cluster when, in fact, they all belong to one cluster.

The result is shown in Figure3.25(a), where mean-shift clustering was used to cluster the optical

flow vectors ((u, v)) extracted from the instantaneous optical flow field. The clustering results are

shown for different choices of the band-width parameter. But even with different values of the

band width, the mean-shift is not able to correctly localize the circular segment. However, using

our method where I integrate the motion information over longer durations of time, I am able to

correctly segment the complex crowd motions (Figure3.16). The LCS structures previously shown

in Figure3.13(a), show that the dynamic behavior of the crowd moving in a circle is preserved by

emphasizing the boundaries of the coherent flow regions. Another result of a similar type of mo-

tion is presented in Figure3.20. In this case, there was an additional group of people that was

walking on top of the roof. Our method was able to localize this additional crowd-flow segment as

well.

The next result that I would like to discuss is shown in Figure3.19. This sequence contains

complex motion dynamics as there are several groups of people that are intermingling with each

other and moving in various directions. The challenges posed by this sequence are different in that

the mixing barriers between various crowd groupings must be correctly located. The segmentation

result shown in Figure3.19 demonstrate that I am able to localize most of the distinct crowd
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groupings that were present in the scene. The discovered barriers between the crowd groupings

can be observed in the combined FTLE field shown in Figure3.11(c). The barriers which appear

in the form of ridges in the FTLE field, encapsulate each crowd group. A comparison is again

performed with the mean-shift clustering approach (Figure3.25(b)), but, again, the mean shift is

not able to localize all the crowd-flow segments. This again points to the utility of integrating

motion information over longer periods of time, which helps to get a better picture of the crowd

motion. Some other example results on sequences involving groups of people are presented in

Figures3.17, 3.18, and3.24.

Next, I discuss the segmentation results on a high-density traffic sequence (Figure3.22). The

results on this sequence highlight the utility of using both forward and backward integration of

particles through the 3D volume of optical flows. In this sequence, vehicles are moving in two

opposite directions on the main highway, while a flow of traffic is merging onto the main highway

from the ramp. The challenge in this sequence is to find the right membership of the flow gener-

ated by the traffic on the ramp by resolving its origin and destination. If I only use the forward

integration, it is obvious that all the particles initialized over the ramp will have the same fate as

the particles on the main highway. This means that the traffic on the ramp will become part of

the flow generated by the lane on the right-hand side of the highway. Another way to look at the

forward integration is from the viewpoint of flow continuity, where out-going flux on the ramp

is equal to the additional flux received by the highway at this location. The segmentation result

shown in Figure3.22validates the above observation where same labeling is being assigned to the

ramp and to the right lane of the main highway. This ambiguity can be resolved by the addition of
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the backward integration of particles. Since they are considered backwards in time, the particles

on the two sections of the road do not share the same origin or, in other words, the outgoing flux

is not equal to the flux received by the two sections of the road. The segmentation result shown in

Figure3.23demonstrates that by using both forward and backward integration of particles, a flow

segmentation that is more refined is obtained. The result on another traffic sequence is shown in

Figure3.21.
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Figure 3.26: (a) Bounding box shows the location at which the instability was created by

flipping the image patch. (b) Outcome of the flow segmentation algorithm. (c) Instable flow

region is detected and highlighted on the video sequence. (d) The FTLE field corresponding

to the video sequence with synthetic instabilities. Emergence of new LCS can be observed

within the white circle.
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Figure 3.27: (a) Bounding box shows the location at which the instability was created by

rotating the image patch. (b) Outcome of the flow segmentation algorithm. (c) Instable flow

region is detected and highlighted on the video sequence. (d) The FTLE field corresponding

to the video sequence with synthetic instabilities. Emergence of new LCS can be observed

within the white circle.

3.5.3 Abnormal Event Detection Experiments

A second set of experiments was performed to test our approach for the detection of flow instability

or an abnormal event occurring in the crowd. In the absence of publicly available videos that may

contain shots of a stampede or other types of disturbances, I have created our own sequences by
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inserting synthetic instabilities into the original video sequences. For each experiment, the orig-

inal video sequence was used during the learning stage to compute the crowd-flow segmentation

corresponding to the normal flow of the crowd.

After the learning stage, the next set of frames on which I perform the flow segmentation was

taken from the corresponding video sequence that contains the synthetic instability. Synthetic

instability is created by randomly choosing a location over the moving crowd and then placing

a bounding box of fixed size around that location. The patch of the image within the bounding

box is either flipped or rotated to change the flow behavior at that location. Two examples of

this process are shown in Figures3.26(a) and3.27(a). The correspondence of the flow segments

that were generated from the frames of the synthetic sequence is established with the learned set

of segments using the procedure described previously. Figures3.26and3.27show the results of

these experiments.

In case of the first sequence (Figure3.26), the instability has created a barrier in the flow that

resulted in the breakup of the original segment into two parts, as shown in Figure3.26(b). The

segment for which the correspondence cannot be established is flagged as a potential unstable flow

region in Figure3.26(c). The emergence of new LCS in the FTLE field, shown in Figure3.26(d)

(circled in white), validates the observation that any change in the dynamics of the flow will result

in the emergence of new LCS that can be used to locate the instabilities.

The second sequence, shown in Figure3.27, captures a bird’s-eye view of the New York City

marathon. In this case, the synthetic instability was placed at the location shown in Figure3.27(a).

Again, our algorithm was able to locate and flag it as a potential problem region as demonstrated
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in Figures3.27(b) and3.27(c). The FTLE field of this sequence (Figure3.27(d)) again shows the

presence of LCS structures at the location of the instability.

3.6 Summary

This chapter has developed a framework for segmenting scenes of crowds of people into regions

that are dynamically distinct using Lagrangian particle dynamics. For this purpose, the spatial

extent of the video was treated as a phase space of a non-autonomous dynamical system in which

transport from one region of the phase space to the other was controlled by the optical flow. Next,

a grid of particles was advected forward and backward in time through this phase space and the

amount by which the neighboring particles diverged was quantified by using a Cauchy-Green de-

formation tensor. The maximum eigenvalue of this tensor was used to construct a Finite-Time

Lyapunov Exponent (FTLE) field, which revealed the time-dependent invariant manifolds of the

phase space called Lagrangian Coherent Structures (LCS). The LCS in turn divided the crowd-flow

into regions of different dynamics.

The strength of this approach lies in the fact that it bypasses the need for low-level detection

of individual objects altogether, which will be impossible in a high-density crowded scene, and

generates a concise representation of the complex mechanics of human crowds using only the

global analysis. I also demonstrated that this global knowledge about different crowd groupings

can be used to localize abnormal behaviors that are taking place in the scene.

The next goal is to use the information generated by the crowd-flow segmentation to solve the

task of tracking individual objects within the crowd. This type of capability will allow the operator
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who is observing the video stream to focus on a single suspicious person instead of worrying about

tracking all the moving objects in the crowded scene. In the next chapter, I develop this capability

by proposing a tracking algorithm that uses the information from the crowd segmentation.
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CHAPTER 4

TRACKING INDIVIDUAL TARGETS IN CROWDED
SCENES

Global information about the scene generated by crowd-flow segmentation can be used as an aid

to solve the more complex task of tracking a single person within a high density crowd. In this

chapter, I describe a tracking approach forhigh density crowd scenescontaining hundreds and

thousands of people at a time that employs crowd-flow segmentation as one of the cues. The

approach is based on the observation that thebehavior of an individual in a crowded situation is

a function of collective behavioral patterns evolving from the space time interaction of a large

number of individuals among themselves and with the structure of the scene. Therefore, these

collective behavioral patterns can be channeled in as an auxiliary source of information, which may

help in constraining the likely locations/paths taken by individuals in the given scene. I developed a

model called the ‘scene structure force model’ to directly incorporate these influences. This model

captures the notion that an individual, when moving in a particular scene, is subjected to forces

that are functions of both the layout of that scene and locomotive behavior of other individuals in

his/her vicinity. I demonstrate some examples of high density crowded scenes in which tracking is

performed in Figure4.1.

In our tracking algorithm, the crowd is treated as a collection of mutually interacting particles.

This is a reasonable assumption, because when people are densely packed, individual movement
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Figure 4.1: Examples of high density crowded scenes. (a)-(c) Hundreds of people participat-

ing in marathon races. (d) A scene from a densely packed railway station in India. (e) A

group of people moving in various directions.

is restricted, and members of the crowd can be considered as granular particles. For tracking a

specific individual in the crowd, I model the instantaneous movement of that person (particle) with

a matrix of preferences containing the probabilities of a move in a certain preferred direction. The

probabilities take into consideration multiple sources of information, including appearance of the

target individual and structure of the scene. The scene structure is incorporated by introducing a

concept offloor fields, which model the interactions between individuals and their preferred direc-

tion of movements by transforming long ranged forces into local ones. The transition probability

of a tracked person then depends on the strength of the floor field in his/her neighborhood. For

instance, a long range force that will compel the individual in a crowd to move towards the exit
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door, can be converted into a local force by increasing the instantaneous probability of a move in

that direction. The concept of floor field itself is inspired from the field of evacuation dynamics

([89, 90]), where floor fields aremanuallydesigned to simulate behaviors of pedestrians in panic

situations. I compute three floor fields, namely: a ‘Static Floor Field’ (SFF), a ‘Boundary Floor

Field’ (BFF), and a ‘Dynamic Floor Field’ (DFF). Here, the SFF field specifies the regions of space

that are more attractive, e.g. an exit and dominant direction of motion; while the BFF specifies the

regions in the scene which are more repulsive e.g. barriers and no-entry areas. The DFF corre-

sponds to the virtual traces created by the movements of individuals which are abstracted in the

form of particle trajectories, and in turn influences the motion of the individual being tracked.

4.1 Tracking Framework

The crowd-flow in the scene is treated as a collection of mutually interacting particles. Therefore,

given a videoE = [f1, f2, . . . , fN ], whereN is the total number of frames, the image space is

discretized into small cells where each cell is occupied by a single particleoxi. Here,xi = (xi, yi)

is the coordinate of theith pixel at which the particle is located. At the highest resolution each

cell corresponds to a single pixel. For tracking, the target individual is represented by a set of

particlesP = [. . . , oxi, . . .] (red particles in Figure4.2(a)). Next, an appearance template,H, of

the target is computed using the pixels corresponding to particleso ∈ P. The target moves from

one cell (pixel) to the next at discrete time steps,t → t + 1, according to a transition probability

that determines the likely direction of the motion. These transition probabilities are determined by

using two factors: 1) the similarity between the appearance templates at the current location and
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the next; 2) the influence generated by the layout of the scene and the behavior of the crowd at and

around the target individual, as captured by the floor fields. Formally, if the individual is currently

at celli, then the probability of moving to a neighboring cellj is:

pij = CekDDijekSSijekBBijRij, (4.1)

Where:

• Dij is the influence of the DFF

• kD is the coupling strength of the tracked object to the DFF

• Sij is the influence of the SFF

• kS is the coupling strength of the tracked object to the SFF

• Bij is the influence of the BFF

• kB is the coupling strength of the tracked object to the BFF

• Rij is the similarity measure between the initial appearance templateH and the current

appearance template of the target computed at the locationj

• C is a normalization constant

A pictorial representation of the matrix of the preferred walking direction is shown in Figure

4.2(c). Next, I describe the algorithm for computingSij, Dij, andBij from the respective floor

fields.
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Figure 4.2: (a) Particleso ∈ P belonging to the individual I want to track. The yellow par-

ticle is the center cell. (b) The green particles represent the search area around the yellow

particle. (c) The matrix of preferred walking directions. Each value in the matrix repre-

sents the probability of moving from the center celli to the surrounding cell. The transition

probability pij is computed by using Equation4.1.

4.1.1 Static Floor Field -Sij

The SFF is aimed at capturing the constant properties of the scene which are attractive in nature.

These constant properties include the preferred areas such as dominant path often taken by the

crowd as it moves through the scene, preferred exit locations etc. In our framework, for a given

scene, the SFF is computed only once during the learning period which spans initialM << N
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frames. The steps involved in the computation of the SFF are as follows: i) Computation of a point

flow field; ii) Sink Seeking.

4.1.1.1 Point Flow Field

A ‘point flow field’ is representative of the instantaneous changes of motions present in the video.

Each vector in this field is a 4-dimensional vector obtained by augmenting the local flow vector

with the position information. The new vector is referred to as a ‘point flow vector’, hence the

name ‘point flow field’. Using the firstM frames of an input video,E = [f1, f2, . . . , fM ], a dense

optical flow can be computed between consecutive frames using the method of [129]. Next, for

each cell (or pixel)i, a point flow vector,Zi = (Xi, Vi), is computed that includes both location

Xi = (xi, yi) and the optical flow vectorVi = (vxi
, vyi

). Note thatVi is the mean of(M − 1)

optical flow vectors computed at pixeli from the firstM frames of the video. All flow vectors

averaged overM frames of the video then constitute the ‘Point Flow Field’ which represents the

smoothed out motion information of the video in that interval. This smoothed motion information

helps in computing the dominant properties (paths, exits) of the scene which is one of the primary

objectives of the SFF. Figure4.3(a) shows flow vectors generated for a marathon video using the

dense optical flow computation [129]. The resulting point flow field is given in Figure4.3(b).

4.1.1.2 Sink Seeking Process

Next, the point-flow field is used to discover the regions in the scene which are more attractive.

These regions are called ‘sinks’. The idea behind the sink seeking process is that the behavior of
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(a)

(b) (c)

Figure 4.3: (a) Dense optical flow for frames[f1, f2, . . . , fM ] that represent the learning pe-

riod. (b) The computed point flow field. (c) Sink seeking process. The yellow circle represents

the initial location, while the red circle shows the corresponding sink. Black windows repre-

sent the area used to weight the local velocity and propagate the sink seeking process. The red

trajectory represents the ‘sink seeking path’, while the number of black windows represents

the corresponding number of sink steps.

large crowds of pedestrians in locations such as sporting events, religious festivals, train-stations

etc., can be described as goal directed and rational because the members of the crowd have clear

knowledge of what and where their goals lie [87]. Therefore, if I know the locations of the sinks,

which are the desired locations (or goals) pursued by the crowd, then, for any given point in the

scene I can compute a local force representing the tendency of the individual at that point to move
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towards the closest sink. This local force will be a function of the shortest distance to the sink in

terms of the appropriate distance metric.
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Figure 4.4: (a) Sink seeking (red: the states of the point flow in the sink seeking process,

orange: the sink, rectangles: sliding windows, yellow: the sink path); (b) Sliding window

(solid circle: the point flow under consideration; rectangle: sliding window; hollow circles:

neighboring points; dotted circles: non-neighboring points). (c) The region at which I am

interested in computing the DFF. (d) The computed DFF where the yellow circle represents

the pixel i. In this case, the DFF is representing the strength of the relationship between the

pixel i and other pixels.

To compute sinks and shortest distances, I initialize a grid of particles over the point flow field

of the scene. Then, a particle dropped at a non-zero velocity location has the tendency to move to

a new position under the influence of the neighboring point flow vectors. It then moves from the
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new position to the next one and continues this process. To optimally combine the influence of the

neighboring point flow vectors, the velocity at each new position is re-estimated as the weighted

sum of its neighboring velocities (Figure4.4(a)). The weights are computed using a kernel density

method. If all the weights are below a threshold, which implies the new velocity is not significant

enough to drive the particle to the next position. Therefore, the particle will stop, and the process

of pursuing a new location is discontinued. I call this process thesink seeking process, and the

last state (stopping state) of the process is called thesink. The corresponding path taken by the

particle to reach the sink is called thesink path( Figure4.3(c) and4.4(a)). The length of the sink

path is a quantification of the minimum number of steps required to reach the closest exit location

in the scene. The number of steps taken during the sink-seeking process to reach the sink is called

seek steps. This is also the distance metric used for representing the shortest distance. Note that

the sink seeking process is carried out for each point in the point-flow field, thus generating one

sink path per point. Formally, the ‘sink seeking process’ can be described as follows: Suppose

{Z1, Z2, · · · , Zn} is the point flow field of the video, where the state of the pointi is defined as:

Z̃i,t = (X̃i,t, Ṽi,t), t = 1, 2, ..., and computed as:

Z̃i,1 = Zi, X̃i,t+1 = X̃i,t + Ṽi,t, (4.2)

Ṽi,t =

∑
n∈Neighbor(X̃i,t)

VnWt,n∑
n∈Neighbor(X̃i,t)

Wt,n

, (4.3)

Wt,n = exp

(
−

∥∥∥∥
Ṽt−1 − Vn

ht−1

∥∥∥∥
2)

, (4.4)

In the previous equations, it is clear that the new position of a point only depends on the

location and velocity at the previous state. However, the new velocityṼi,t+1 depends not only on
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the previous velocity but also on the observed velocities of its neighbors, which represents the

motion trend of a local group. In this work, I employ the kernel based estimation that is similar to

the mean shift approach [132]. However, there is one important difference. In mean shift tracking,

theappearanceof pixels in a small neighborhood of the object is used to determine the location

of the object in the next frame. In our approach, I usethe location and the velocityof neighboring

points in the point flow field to determine the next location. There are other methods proposed in

the literature for locating sources and sinks in the scene ([116]), however, they do not provide the

shortest distance for each point in the scene. This distance is essential for our algorithm in order

to compute the local SFF force. The following is the pseudo code of the sink seeking algorithm:

Algorithm 1 : Sink Seeking Algorithm
Input : a set ofn points{Zi = (Xi, Vi)}, i = 1, 2, ..., n in a video.

Output : the corresponding sinks{Z∗i }, i = 1, 2, ..., n.

for each pointi do1

Initialize t = 1, Ṽi,1 = Vi andX̃i,1 = Xi;2

Incrementt = t + 1 and setX̃i,t = X̃i,t−1 + Ṽi,t−1;3

Find the neighbors of̃Xi,t and compute theWt,n ;4

if maxn Wt,n ≥ T then5

ComputeṼi,t according to equation (4.4) and go to step 26

else7

Set the sinkZ∗i = (X̃i,t−1, Ṽi,t−1).8

end9

end10
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4.1.1.3 SFF Generation

The SFF is finally generated by using the sink steps for each sink path. I find the location(x, y)

(in the image space) at which each sink path starts, and then place the value of corresponding ‘sink

step’ at that location. Figure4.5(d) shows the computed SFF for the sequence in Figure4.1(c). It

is interesting to note that the shape of the SFF emphasizes the notion that if you place a particle

at any location it will roll down towards the exit. This is exactly what the goal oriented dynamics

of the crowd in this scene represents. In the tracking algorithm, the shape of the SFF translates

into a force in the direction that requires the minimum number of steps to reach the nearest exit

location. That is, the difference between the values in celli andj in this field is the measure of the

Sij parameter of Equation4.1. Other SFFs are also shown in Figure4.6.

4.1.2 Boundary Floor Field -Bij

The purpose of the BFF is to capture influences generated by barriers/walls in the scene. When

people are moving in confined spaces they tend to move away from the walls, and it is this re-

pulsive effect that the BFF tries to capture. The computation of the BFF requires the localization

of physical as well as virtual barriers in the scene. The virtual barriers arise from the presence

of dynamically distinct crowd flows in the scene. The computation of the BFF is performed after

a set time interval∆TB, and works on a group of frames defined by the parameterNB. That is,

computation of the BFF at timet uses frames[ft, ft+1, . . . , ft+NB
].

The computation of the BFF is based on the crowd-flow segmentation algorithm proposed in

Chapter 3. Recall that physical and virtual barriers in the scene are represented by the ridges in
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(a)
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Figure 4.5: (a) Crowd-flow segmentation obtained by the method described in Chapter 3. (b)

The edge map obtained from the segmentation. (c) The boundary floor field for the sequence

shown previously in Figure 4.1(c). The higher values in the field represent the decreasing

effect of the repulsive potential generated by the barriers. In this case, the barrier effect

vanishes for distances greater than 20 pixels. (d) The static floor field computed by our

algorithm for the sequence shown in Figure4.1(c).

the Finite Time Lyapunov Exponent (FTLE) Field. The FTLE field was then used to compute a

segmentation map where different labels represented different crowd-flow segments. In order to

generate the BFF, I use this segmentation map and compute an edge map by retaining only the

boundary pixels of each segment. Next, the closest distance to the wall/barrier for each pixel is

determined by computing the distance transform of this edge map. An example of this process is

show in Figures4.5a-c. Note that, for a distance larger than a certain threshold, the barrier effect

vanishes completely. This vanishing effect is represented by the flattening of the surface (the red

region) in Figure4.5(c). The difference between the values in cellj andi represents the value of

Bij in Equation4.1. A few examples of BFFs are presented in Figure4.6.
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Figure 4.6: The SFFs (top) and BFFs (bottom) of various sequences. Left: For the sequence in

Figure 4.1(e). Center: For the marathon sequence in Figure4.1(a). Right: For the marathon

sequence in Figure4.1(b).

4.1.3 Dynamic Floor Field -Dij

The objective of the DFF is to capture the behavior of the crowd around the individual being

tracked. The instantaneous information about the crowd motion is an important cue for con-

straining likely future locations. This is even more important when the tracked individual acts

suspiciously and does not obey the layout of the scene represented by the SFF and the BFF. The

idea of the DFF is inspired by the active-walker models [117, 118] used for the simulation of trail

formation.

In our framework, the instantaneous interaction among the members of the crowd is abstracted

by using a particle based representation. For a given scene, the DFF is computed at each time
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instant by using a sliding window ofND frames. That is, for computing the DFF at timet, I use

framesFD = [ft, ft+1, . . . , ft+ND
]. I first compute the optical flow between consecutive frames

in FD, and stack them together to generate a 3D volume of optical flow fields. Next, a grid of

particles is overlaid on the first flow field of the volume and numerically advected. During the

advection, whenever a particle jumps from a cell (pixel)i to one of the neighboring cellsj, the

value of interaction between these cells (pixels) is increased by one. That means the DFF,D, can

only have non-negative integer values. In addition, this construction results in one DFF per cell

(pixel), where each DFF captures the strength of the dynamic interaction between the target pixel

i and remaining pixels in the scene. A visualization of the DFF is shown in Figures4.4(c)-(d).

Since the DFF is meant to capture the local interaction of particles around the tracked individual,

the Figures4.4(c)-(d) represent the shape of the DFF, but only in that local neighborhood. The

peak in Figure4.4(d) represents the location where most particles end up if they pass through the

yellow cell.

4.2 Experiments and Discussion

A detailed experimental analysis was performed on three marathon sequences shown in Figure4.6.

In addition, qualitative results are shown for a busy train-station sequence. In all the experiments,

tracking started by selecting a rectangular region around the target object and using it to compute

the gray-level appearance template. At each time instant, the next position of the target was cho-

sen according to Equation4.1, where the matrix of preferences around the current target location

consisted of twice the size of the selected rectangular region. The appearance similarity was com-
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puted using normalized cross correlation and the template was progressively updated at each time

instant. I set the values ofkS, kD, andkB equal to0.02 for all experiments. The tracking results

were stable for small changes in the values of these coupling factors. I used the first 50 frames of

each sequence to construct the SFF. To compute the BFF and the DFF, the values ofNB = 20 and

ND = 5 were used.

(a)

(b)

(c)

Figure 4.7: Chips used for tracking. (a) Marathon-1. (b) Marathon-2. (c) Marathon-3.

4.2.1 Marathon-1

This sequence (Figure4.1(a)) captures participants in a marathon from an overhead camera. It is

a difficult sequence due to the severe occlusion among the participants, and the similar looking

outfits worn by most athletes. The sequence has 492 frames, but each athlete, on average, remains

in the field of view for 120 frames. I manually selected 199 individuals, shown in Figure4.7(a),

from various frames for tracking. The average size of the selected chip was 14× 22 pixels.

A set of trajectories generated by our tracing algorithm is shown in Figure4.8(a). In total,

I was able to track 143 out of 199 individuals without any tracking error i.e. correct label was
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maintained throughout the time duration for which the athlete was in the FOV. The number of

frames for which 199 athletes were tracked is provided in Figure4.12(a). The quantitative analysis

of the tracking was performed by generating ground-truths trajectories for 50 athletes, which were

selected randomly from the initial set of 199 athletes. The ground-truth shows that these 50 athletes

were visible for an average of 77 frames, and our algorithm tracked them for an average of 72

frames. This is summarized by the first 50 bars in the graph of Figure4.12(d). The average

tracking error is summarized by the first 50 green bars in the graph of Figure4.13(a). A qualitative

visualization of the accuracy of the tracking is demonstrated in the first row of Figure4.9, where

red trajectories are the ground-truth and yellow trajectories are from our algorithm. The tracking

failure on this sequence resulted in situations when the target was completely occluded either by

another athlete or by the street-light in the scene. Since I did not use any prediction mechanism,

I could not recover from full occlusion. However, partial occlusion was handled amicably by our

tracker. Some tracking failures are shown in Figure4.10(a).

4.2.2 Marathon-2

This sequence (Figure4.1(c)) also involves a marathon. However, the camera is installed on a

high-rise building to increase the FOV. As a result, the number of pixels on each individual is

fewer. In addition, there are drastic illumination changes when athletes move into the shadow of

the neighboring buildings. This sequence has 333 frames. I manually selected 120 individuals

(Figure4.7(b)) from various frames for tracking. The average size of the selected chip was 13×

16 pixels.
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Figure 4.8: Displays trajectories of individuals which were accurately tracked by our method.

(a) Marathon-1. (b) Marathon-2. (c) Marathon-3. (d) Train Station.

A set of trajectories generated by our tracing algorithm is shown in Figure4.8(b). In total,

I tracked 117 of the 120 individuals correctly. The number of frames for which each individual

was tracked by our method is shown in Figure4.12(b). A quantitative analysis was performed by

generating ground-truths for 20 athletes. The length of ground-truth trajectories and trajectories

generated by our tracker is summarized by bars 51-70 in Figure4.12(d). A qualitative comparison

with the ground-truth for some of the trajectories is presented in the second row of Figure4.9.
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The average tracking error is summarized by the green bars (51-70) in the graph of Figure4.13(b).

It can be observed that our tracking was very accurate in most cases, and able to overcome the

illumination changes with the aid of the DFF and the SFF. Some tracking failures in this sequence

are shown in Figure4.10(b).

Figure 4.9: A comparison of tracking (yellow tracks) with the ground-truth (red tracks).
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Figure 4.10: The failure cases. (a) Marathon-1. (b) Marathon-2. (c) Marathon-3.
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4.2.3 Marathon-3

The third sequence (Figure4.1(c)) is extremely challenging due to two factors: 1) appearance

drastically changes due to the U-shape of the path; 2) the number of pixels on target varies due to

the perspective effect. The fewer number of pixels make it more difficult to resolve even the partial

occlusions. The sequence is 453 frames long. For tracking, I manually selected 50 individuals

(4.7(c)). The average size of the selected chip was 14× 17 pixels. In total, I was able to track 38

of the 50 individuals without any tracking error (Figure4.8(c)). The number of frames for which

each individual was tracked and a comparison with the 15 ground-truth trajectories is summarized

in Figure4.12(c) and Figure4.12(d), respectively. The average tracking error is summarized by

bars 71-85 in Figure4.13(a).

In this sequence, I also performed the tracking of an individual who was moving in the direction

opposite to the normal flow of the crowd. The result is shown in Figure4.11(b). I would like to

emphasize that our method is able to track this person due to the presence of the DFF, which

captures the instantaneous motion information. Therefore, I was able to track this individual for

400 frames, even when he was behaving differently than the crowd. In addition, I performed

tracking on a busy train-station sequence shown in Figure??(d).There, I tracked 20 individuals.

The qualitative results are shown in Figure4.8(d).

4.2.4 Analysis

On of our results will be discussed in detail to provide an intuitive insight as to how the floor fields

are helping in improving the tracking accuracy. For this purpose, I picked a track from Marathon-
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3, where the athlete was wearing a black shirt and running away from the camera (Figure4.2(a)).

During the course of tracking, the appearance became ambiguous due to other neighboring athletes

who were also wearing black shirts. Figure4.11(a) (top-left) shows the similarity surface obtained

by matching the appearance template in a16 × 16 neighborhood, for one of those instances. The

surface was relatively flat, showing a lack of a good match for the tracked person in the current

frame. If I was to use only this surface, there was a high probability that the tracker would jump

onto one of the neighboring athletes wearing the same clothing. However, floor fields helped in

resolving this ambiguity, as visible from the final decision surface (Figure4.11(a) bottom-right).

The DFF shown in Figure4.11(a)(top-right) guided the tracker by emphasizing the direction taken

by most particles from the current location of the target. I am able compute this reliably, because

the DFF integrates the motion information over a small interval, and therefore, does not make a

hasty decision. Similarly, the SFF shown Figure4.11(a)(bottom-left) allowed the tracker to take

into consideration the direction which would take the target to the exit point. In short, the DFF and

the SFF together helped in resolving the appearance ambiguity, and allowed our tracker to maintain

the correct label. Note that, in this example, the BFF was not playing any part as the individual

was running on the flat surface of the BFF.

4.2.5 Mean-Shift Comparison

I then performed a quantitative analysis by comparing the results with a color based mean-shift

tracker. The comparison is performed with respect to the ground-truth generated for the three

marathon sequences. The mean-shift was initialized using the same regions and appearance was
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updated during the course of tracking. The tracking error was computed as the average distance

in term of pixels from the ground-truth location over the entire video. The results are summarized

in Figure4.13(a). The green bars in the graph correspond to the average error of our tracking

algorithm, while the yellow bars correspond to the average error committed by the mean-shift

tracker. It can be observed that our method works much better than the mean-shift tracking method.

This verifies our initial observation that in videos of high density crowds, appearance alone is not

a reliable cue, and therefore, other sources of information present in the scene should be exploited.

4.2.6 Contribution of Floor Fields

This experiment was performed to test the contribution of floor fields towards the accuracy of

tracking. The comparison is performed using ground-truth trajectories from Marathon-1, for which

I obtained accurate tracking using all three floor fields. There were 35 such trajectories in total.

Next, I ran the tracker multiple times by first turning off the SFF and the BFF, and then by turning

off the DFF and the BFF. The error was computed in a manner similar to the mean-shift experiment.

The graph in Figure4.13(b) shows the comparison. It can be observed that I obtained the minimum

error by using all three fields. This points to the utility of using all floor fields together.

4.3 Summary

In this chapter, I have presented an algorithm for tracking individual targets in high density crowded

scenes containing hundreds or thousands of people. Tracking in such a scene is extremely chal-

lenging, due to the small number of pixels on targets, ambiguous appearance resulting from dense
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Figure 4.11: (a) (top-row from left to right) Appearance similarity surface and the local DFF. (bot-

tom-row from left to right) The local SFF and the final decision surface obtained by merging appear-

ance, the DFF, and the SFF according to Equation4.1. (b) Tracking when the individual is going

against the flow of the crowd.

packing, and severe inter-object occlusions. The novel aspect of the proposed tracking algorithm

to overcome these challenges was called thescene structure based force model. This force model
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Track Length (Our Method)

Track Length (Ground Truth)

(d)

Figure 4.12: The number of frames for which the target was tracked. (a) Marathon-1. (b)

Marathon-2. (c) Marathon-3. (d) A comparison of track lengths using the ground-truth: 1

to 50 Marathon-1; 51-70 Marathon-2; 71-85 Marathon-3.

captured the notion that an individual, when moving in a particular scene, is subjected to global

and local forces that are functions of the layout of that scene and the locomotive behavior of other

individuals in his/her vicinity.

The key ingredients of the force model were three floor fields, inspired by the research in the

field of evacuation dynamics, namely,Static Floor Field(SFF),Dynamic Floor Field(DFF), and
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Figure 4.13: (a) Comparison of the tracking error of our method against the mean-shift

tracker. The bars represent the average error over the entire track. The length of the tracks

is given in Figure 4.12(d) (1 to 50 Marathon-1; 51-70 Marathon-2; 71-85 Marathon-3). (b)

Contribution made by different floor fields towards the tracking accuracy.
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Boundary Floor Field(BFF). These fields determine the probability of moving from one location

to another by converting the long-range forces into local ones. The SFF specified regions of the

scene which were attractive in nature e.g. an exit location. The DFF, which was based on the

idea of active walker models, corresponded to the virtual traces created by the movements of

nearby individuals in the scene. The BFF specified influences exhibited by the barriers in the scene

e.g. walls, no-entry areas. By combining cues from all three fields with the available appearance

information, I was able to track individuals in high density crowds. Results were reported on real-

world sequences of marathons and railway stations containing thousands of people. A comparative

analysis, with respect to the appearance based mean-shift tracker was also conducted by generating

the ground truth. The results of this analysis demonstrate the benefit of using floor fields in crowded

scenes.

In the next chapter, I propose a target re-acquisition methodology, with an aim to reduce the

incidence of broken trajectories resulting from frequent occlusions and limited field of view of the

camera.
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CHAPTER 5

TARGET RE-ACQUISITION IN CROWD AND AERIAL
VIDEOS

In this chapter, I propose an algorithm that has been developed to augment a generic tracking

algorithm to perform persistent tracking in crowded and other types of scenes. The term ‘persistent

tracking’ refers to the ability of the tracking algorithm to maintain the correct label of an object

when the object is occluded or when it leaves and re-enters the field of view (FOV) of the camera.

The occurrence of occlusion is very frequent in crowded scenes due to a high number of interacting

objects. This makes it necessary for the tracking algorithm to have a re-acquisition capability.

Since, trajectories of moving objects are critical for interpretation of their behavior, any missing

information will result in a significant degradation in the accuracy of any event recognition modules

using these trajectories. In this Chapter, without loss of generality, I initially setup the reacquisition

problem for moderate to high density traffic scenes which are viewed either by moving aerial

cameras or cameras mounted on high rise buildings. In the later part of the Chapter, I will show

the applicability of the re-acquisition on a high density crowded scene containing people as well.

The main focus of our proposed re-acquisition idea is to utilize the contextual knowledge

present in the scene in order to re-acquire previously tracked objects. Generally, the contextual

knowledge consists of the information that is necessary to understand and interpret the meaning of

a process/event taking place in a scene. For the purpose of this thesis, this contextual knowledge is
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divided into two categories,motion context(MC) andappearance context(AC). The MC is based

on the insightful observation thatthe locomotive behavior of an object (e.g. a car, a person) in

a given environment provides information about the locomotive behaviors of nearby objects (e.g.

other cars or persons) that are in the same environment.This is true because cars moving along

the same stretch of a road are subjected to similar constraints, for example which path they can

take, the shape of the path, road conditions, and speed restrictions. Therefore, the motion of one

car contains information that can be used to interpret how neighboring cars will behave, thus pro-

viding the necessary MC. I can apply this same idea towards re-acquisition, that is to predict the

movement of an occluded car by using the motion of other cars that are part of its MC. Figure5.1

provides a pictorial description of the concept of MC. All the cars circled in yellow are part of

the MC of the car circled in red. This is valid for the following two reasons: first, the yellow cars

have a spatial relationship with respect to the red car that remains relatively unchanged over a short

time; second, all the yellow cars and the red car are subjected to same physical constraints such as

road conditions, road shape and direction of motion. Therefore, when the red car goes under the

bridge, the contextual knowledge consisting of how the yellow cars are behaving can be used to

predict the future location of the red car. It is important to note that since in most cases our objects

of interest are moving cars, I will use terms ‘objects’ and ‘cars’ interchangeably.

The AC is based on the notionthat when a target car re-appears after undergoing occlusion,

its appearance will have to be discriminated with respect to the appearance of other unobserved

cars. This is true because the car that appears in a FOV of an aerial camera could be either a

new car, or one of the cars from the set of currently occluded cars. By constructing an appearance
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Motion Context Appearance Context

Target Unobservable Unobservable Set

    Intra-

Class Variation

Inter-Class Variation
Observable     - Can be used as predictors

Observable     - Cannot be used as predictors

Unobservable - Predictand

Figure 5.1: The figure illustrates the concept ofMotion and Appearance Context. The motion

context of a car, which in this example is circled in red, is defined by the cars that have motion

dynamics similar to that of the selected car. In this case, these cars are circled in yellow. The

cars circled in blue are not part of the motion context of red car, because the blue cars have

motion dynamics which are different from the red car. Tracks corresponding to the yellow

cars, which are used for predicting the motion of the red car, are shown in the blue rectangle

on the right. The appearance context of the red car consists of the other cars which are

currently unobservable. These cars are shown in the green rectangle on the far right, where

I have multiple observations for each car. The yellow rectangle displays the observations of

the red car. The appearance context of the red car is then computed using intra and intra

class variations of the red car with itself and with the unobservable cars respectively.

descriptor for a car that takes into consideration its own appearance history and the appearance

of other unobserved cars, I hope to build a more discriminative representation. This will make it

easier to establish the correspondence between the appearance of the newly detected car and that

of the cars from the occluded set. It is important to note that our definition ofappearance context
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is different from the definitions currently used in the literature, where theappearance contextis

defined exclusively in terms of the foreground vs. background appearance features. Our definition

extends the idea of AC by taking into consideration not only the previous observations of the target

car itself, but also the appearance of other cars in the scene.

Figure5.1provides a pictorial description of the concept of AC. The car circled in red is about

to become occluded. All the observations related to the appearance of this car until this point

are displayed in the yellow rectangle. While the red car is undergoing occlusion, there are other

cars in the scene which are currently unobserved and have not been reacquired yet. These cars

are shown in the green rectangle. The AC requires that the appearance model of the red car be

discriminative with respect to the cars in the green rectangle, since only these cars are approaching

the re-acquisition stage. Therefore, the appearances of the cars in the green rectangle can be used

to build a more discriminative appearance descriptor for the red car.

Before moving on to the next section, I would like to emphasize that in our proposed algorithm

the MC and the AC provide a unifying theme which states that information from other objects in

the environment can be utilized to solve the re-acquisition problem.

5.1 Overview

The proposed concept of MC is implemented in a regression framework, which is inspired by the

research conducted in the field of oceanography for search and rescue operations at sea [122, 123,

124, 125]. The goal in that scenario is to narrow the search area based on the best prediction of

the lost object, given its initial position and the mean current (velocity field) of the sea. However,
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prediction just based on the mean current becomes difficult due to the presence of large velocity

fluctuations. Such fluctuations will cause the object to drift away from the track predicted by the

mean velocity field. In order to overcome this problem, one can utilize other floating objects in the

same area, for example debris or human made floating devices, which can be tracked or observed

by satellites. The tracks of these objects can be used to make a prediction about the potential

location of the lost object since they are both subjected to similar physical forces.

I have mapped this to the scenario of aerial videos by defining the object (car) on the ground

which has either gone out of the FOV of the camera or has undergone occlusion due to some

terrain feature, as the object that I want to predict. Let us call this object ‘predictand’. Tracks from

other objects (cars) which are either currently present in the FOV of the camera or have moved

along the same path in the past, can be used to estimate the likely location of the ‘predictand’.

Let us call all such objects (cars) ‘predictors’. I use tracks of objects that are currently present

in the FOV of the camera because they move along the same stretch of the road, and, therefore,

are subjected to similar constraints in terms of, e.g., the path they can take, the shape of the path,

the road conditions and the speed restrictions. Tracks from the past objects are also used because

they provide potential observations about the likely paths taken by objects that passed through the

current scene.

Let r1(0), r2(0), ..., rN(0) be the starting positions ofN objects,{Oi}N
i=1, in the image plane

at timet = 0. Corresponding to eachOi, I have a setCi ⊂ O, of cardinalityM ≤ N , defining

the MC. Then, assume that the trajectories of firstp = N − 1 objects (cars)r1(t), r2(t), ..., rp(t)

are observed during the time interval(0, T ), while the trajectory of the last object,rN(t), is not
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observed. The problem is then defined as making a prediction about the location of the unobserved

objectON , given trajectories of predictors inCN and the initial ‘predictand’ position. The optimal

prediction in the mean square sense isE | r̂N(T )−rN(T ) |→ min [122], wherer̂N is given by the

conditional expectation̂rN(T ) = E(rN(T ) | r1(t), r2(t), ..., rp(t), 0 ≤ t ≤ T ) [126], based on all

the observations. However, this expectation is difficult to find explicitly, as observed by Piterbarg

et al. [122]. To overcome this problem, I resort to a regression framework which estimates the

future location of the ‘predictand’ by employing the data from the predictors in a least square

sense. Note that, for clarity purposes, the above mentioned equations assume that allp objects are

in the setCN .

I solve the problem of finding the optimal predictors by employing a concept known as Lya-

punov Characteristic Exponent (LCE) from the Theory of Linear and Non-Linear Dynamical Sys-

tems. LCE measures the mean exponential rate of convergence or divergence of nearby trajectories

in a state space. It is used for measuring sensitivity of a dynamical system to initial conditions. A

track generated by a moving object in a given scene can be treated as a trajectory taken by a dy-

namical system through the phase space which is defined by the position and time variables(r, t).

Tracks of any two objects moving in a scene can be considered as two different trajectories taken

by the dynamical system in this phase space. I can get a measure of dynamical similarity between

these trajectories by computing the LCE. Tracks showing high similarity can be used as predictors

for each other

For implementing the AC I maintain a set of objectsU ⊂ O at all timest. The appearance of an

objectOi, currently undergoing occlusion, is encoded in terms of intra-class appearance variations,
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which are obtained by using all previous observations ofOi, and pairwise inter-class appearance

variation with respect to other objects in the setU . Therefore, ifl is the cardinality of the setU ,

then for eachOi ∈ U I have(l − 1) observation sets of inter-class variation. Next, I consider each

inter- and intra-class variation as an observation of a single dimension random variable drawn from

a Gaussian probability density (PDF) specific to that inter/intra class variation set. The means and

standard deviations of(l−1) inter-class and one intra-class Gaussian PDFs are computed using the

corresponding observations of inter- and intra-class variation. In order to establish whether a newly

detected blob,Q, is Oi, first observations of intra- and inter-class variation ofQ are computed

using the observations ofOi and other objects in the setU , respectively. Then the similarity is

computed by the Bhattacharya metric which quantifies how well the observations of intra- and

inter-class variation ofB are described by the PDFs of inter- and intra-class variations of object

Oi. Note that, by employing inter-class variations for object re-acquisition, I am able to incorporate

the appearance of other objects into the model. Also, by directly modeling the differences in the

appearances of cars rather than differences with respect to a mean class appearance, I hope to

capture the physical variation in the shape of the car over time. I believe that such variations have a

number of ‘inter-class’ and ‘intra-class’ properties that are functions of the make, model and color

of the car, and, therefore, can be used to develop a discriminative representation.

5.2 Framework

In this section, the theoretical and implementation details of the proposed framework are presented.

I begin by presenting the modeling details of MC and then explain the modeling details of AC.
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5.2.1 Modeling Motion Context

Let N be the total number of objects observed until timeT , which are represented by the setO.

Let VT ⊆ O be the objects that are visible in the current frame of the video.P ⊂ O is the set of

objects whose locations are being predicted. Corresponding to eachOi ∈ P , I have a setCi ⊂ O of

objects that act as the predictors forOi. Last, I maintain a set of trajectoriesR, whereri(0, ..., T )

is the trajectory corresponding to objectOi. Our goal is to predict the next location,ri(t), of object

Oi ∈ P at timet wheret > T , given its last locationri(T ). Note thatri(t) is a vector consisting

of image location[xi(t), yi(t)]. The starting and the current locationsrj(T ) of all M predictors in

Ci are also known.

Given this information the current location of the objectOi ∈ P can be predicted by using the

following regression model:

ri(t) = A(t)ri(T ) + b(t) + zi(t), (5.1)

whereA(t) and b(t) are an unknown 2x2 matrix and 2-vector, respectively. The variablezi(t)

represents a stochastic process with zero mean uncorrelated for fixedT .

The unknown matrixA(t) and vectorb(t) for Oi are computed using the initial and the current

locations of predictors in the setCi. There are six unknown parameters, i.e., four entries of matrix

A and two entries of vectorb. Therefore, I must have at least three or more predictors in the setCi

to solve the system. If I have less than three predictors, I resort to appearance only re-acquisition,

which is explained later.
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The least square estimates ofA(t) andb(t) are obtained by the equation:̂A(t) = S(t)
S−1(T )

and

b̂(t) = m(t) − Â(t) − m(T ), wherem(t) = 1
p

∑p
i=1 ri(t) is the center of mass of the predictor

cluster. The value ofS(t) is calculated using the relationS(t) =
∑p

i=1(ri(t) − m(t))(ri(0) −

m(0))
′
. Finally, the obtained estimator is used to predict the unobservable objectOi usingr̂i(t) =

m(t) + S(t)S(0)−1(ri(0)−m(0)).

The most significant step in the above formulation is the computation of the setCi for each

objectOi. Once I have this set, finding the solution of the above equation is straightforward. The

next section will discuss the theory and the algorithm behind the computation of predictor setCi.

5.2.2 Selecting Predictors

The predictors for each occluded and unobservable object are selected using a methodology based

on the concept of Lyapunov Characteristic Exponent (LCE). I now briefly describe LCE before

moving on to the algorithm for predictor selection that utilizes it.

5.2.2.1 Lyapunov Characteristic Exponent

The LCE is a tool for measuring the chaoticity in dynamical systems ([127][128]). It measures the

rate of exponential divergence between neighboring trajectories in a phase space of the dynamical

system. For a given dynamical system,ẋ = f(x), the LCE is defined asγ = limt→∞χ(t),

with χ(t) = 1
t
ln |ξ(t)||ξ0| . ξ(t) is the current state of the dynamical system, obtained by solving the

differential equation that controls the evolution of the system through the phase space;ξ(0) is the

initial state of the system. The value ofγ, which is close to zero, represents a system that is stable
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Figure 5.2: (a) Initially, cars a and b are d(t0) units apart. Over (∆t × N), in a series of

time steps from t0 to tN , the two cars move until the distance between them becomesd(tN)

units. This divergence is quantified by LCE and can be calculated using Equation5.3. (b)

A portion of potential predictor trajectory (shown in the red ellipse) is first normalized with

respect to the predictand trajectory (shown with the yellow ellipse). Next, at each time stepi,

the Euclidian distance is computed between the corresponding points of the two trajectories.

To compute LCE, these Euclidian distances are accumulated over the entire length of the

trajectory using Equation 5.3.

to small perturbations in its initial conditions, whileγ > 0 signals the presence of chaos in the

system. The valueχ(t) is called the Lyapunov Characteristic Exponent. In practical computations

it is not possible to take the limit to infinity. Therefore, I follow the evolution of the system up to

a pre-determined number of steps.

Another related issue is that I typically do not have information about the differential equations

that govern the temporal evolution of a dynamical system. This is the case in the scenario discussed

in this Chapter in which the state of the observed scene is governed by some unknown differential
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(a) (b) (c)

Figure 5.3: The results of the predictor selection procedure. (a) Shows the set of trajectories

that have been observed so far in this scene. This set contains trajectories generated from

observed objects as well as trajectories that have been predicted in the past. (b) Shows the

predictand trajectory for which I want to select the predictors. (c) Predictor selection result

returned by our selection procedure. It is evident that our procedure was able to select the

objects whose motion dynamics are similar to the predictand trajectory.

equations. To overcome this problem, I use an alternative approach proposed by Wolf et. al. [133]

for computing the LCE, in which the definition of LCE is replaced by

χ(t) =
1

N
ln

dt

d0

. (5.2)

Here,dt is the distance between two trajectories in the phase space at timet. These trajectories

were initially separated by distanced0. A pictorial description of LCE computation using the above

equation is given in Figure5.2(a).
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5.2.2.2 Predictor Selection

Using LCE to compute predictor setCi for a given predictandOi ∈ P requires special considera-

tion. First, the ‘predictand trajectory’,ri(t), is labeled as the reference trajectory and the locations

of all the other trajectories inG, whereG is the set of all tracks, are computed relative to the ref-

erence trajectory. Pairwise LCE are computed between the reference trajectory and the remaining

trajectories, one at a time, using Equation5.3.

In order to accurately predict the positionri(t) of the unobserved objectOi at timet, I must

select a set of meaningful predictorsCi to be used in the regression framework. The term ‘mean-

ingful predictor’ is used to emphasize the object thatis followingor has followeda track similar to

that of the predictand during time intervaltc = (ts, te) where0 < ts < te andts < te < T . This

implies that a sectionrj(t
j
s, t

j
e) of trajectoryrj(t) ∈ G during some timetjc = (tjs, t

j
e) is similar to

the trackri(t) of the predictand inF = (tje − tjs) frames of the sequence, whereF is a parameter

defining the observation window (F = 10 is used for all experiments). Note that superscriptj in

tjs andtje refers to the fact that there is a separate start and end time corresponding to each potential

predictor trackrj(t). In order to assemble a set of predictors for a particular predictand, I search

all the tracks inG for a sectionrj(t
j
s, t

j
e), in which the motion of the object is most similar to that

of the predictand in terms of the LCE.

In order to compute the LCE, I define a track sectionZ of predictandOi asZ = ri(t − F, t),

wheret is the current time. Then, for every possible sectiontjc = (tjs, t
j
e) of the potential predictor’s

trackrj(t), I extract a sectionZc = rj(t
j
s, t

j
e) (Figure5.2(b)). Next, I normalize track sectionZc

with respect to the predictand’s track sectionZ, so that they both start at the same point. Let us
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call the normalized trackZcn. Then, I compute the LCE between the predictand’s and the object’s

track sectionsZ andZcn as:

γ(Z, Zcn) =
F∑

i=2

ln
dist(Z(i), Zcn(i))

dist(Z(1), Zcn(1))
, (5.3)

wheredist(Z(i), Zcn(i)) is the Euclidian distance between two track points(x(i), y(i)) and(xcn(i), ycn(i))

given bydist =
√

(x(i)− xcn(i))2 + (y(i)− ycn(i))2. (Figure5.2(b))

If γ(Z, Zcn) ≤ α, whereα (12 for all the experiments) is an empirically derived threshold, I

add objectOj to the set of predictorsCi of predictandOi. I also addtje to a new setBi, where

the cardinalities ofBi andCi are the same. The closer the value ofγ is to 0, the more similar

the motion of predictorOj, between framestjs andtje, is to the motion of the predictand between

framest − F and t. The process of computing the LCE between a reference trajectory and a

potential predictor trajectory is summarized in Figure5.2(b).

Once an object has been added to the predictor setCi of predictandOi, I maintain the same

predictor in setCi until the predictor’s and predictand’s tracks begin to diverge. Therefore, for

all subsequent frames, I call the above procedure to ensure that the motion of predictorOj ∈ Ci,

between framestjs + p andtje + p, is similar to the motion of the predictandOi between frames

t− F + p andt + p, wherep is the frame counter. If the tracks of the predictand and the predictor

begin to diverge, I remove the predictor from the set. Figure5.3 shows a result for the reference

trajectory shown in Figure5.3(b); I was able to construct the corresponding predictor set shown in

Figure5.3(c) from the input tracks displayed in Figure5.3(a).
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5.2.3 Modeling Appearance Context

The appearance model of each objectOi is constructed using the contextual knowledge about

which objects are in the setP . An example of the setP is shown in the leftmost column of Figure

5.4 where I have three cars in the set. In general, the setP can have any number of cars. The

observations (image chips) ofOi are represented by a setΦi = (xn | n = 1, ....L) (leftmost

column in Figure5.4), whereL is the total number of observations. For eachΦi, I generate a set

Hi (center column in Figure5.4), in which each elementhn ∈ Hi is a three-dimensional (RGB)

color histogram. For eachHi, I define a variableq, which is a functionq = f(ha, hb) of a pair

of observations,ha ∈ H andhb ∈ H. In the scenario described, the functionf is the histogram

intersection ofha andhb. Next, I compute a vectorKi, which contains the values of histogram

intersection,q, for all possible pairs of observations inHi. This way I generate the observations of

intra-class appearance variationof objectOi. (Figure5.4)

Similarly, for Oi, observations ofinter-class appearance variationare computed with respect

to eachOj ∈ P . For this purpose, RGB histograms of observations,Φi andΦj, are employed to

compute vectorΩij. Ωij, which contains the values of histogram intersection between all possible

pairs of histograms inHi andHj. (Figure5.4) The same process is repeated to obtain observations

of inter-class variation with respect to the remaining object in the setP .

Assuming the differences in the values of histogram intersections originate from additive Gaus-

sian noises, I construct a Gaussian probability density function for observations of intra-class vari-

ation (Ki) and observation of inter-class variation (Ωij). This is completed by using the standard

formulas to compute the means and standard deviations of the observations (Figure5.4). Finally,
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Figure 5.4: Modeling of AC when the setP contains three cars,Oi, Oj and Ok. The first col-

umn displays the observations (chips) of each of these cars until current timeT . Then, each

observation of the car is encoded in terms of an RGB color histogram, as shown in the second

column. Vectors of inter- and intra-class variations between these objects are computed by

performing histogram intersection. Finally, the mean and standard deviations of the values

in these vectors are computed, which summarize the inter- and intra-class variation infor-

mation, as shown in the fourth column.

each object,Oi ∈ P , is represented by a set of Gaussian PDFs, where one Gaussian PDF encodes

the variation in the appearance of the object with respect to itself, and the remaining PDFs encode

the variation in the appearance of the object with respect to other objects in the setP .
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If a new objectOk is detected and I want to determine whether if it is an unobservable object

from the setP , I proceed as follows: observations (image chips) belonging to the objectOk are

extracted and an RGB color histogram,s, is computed for every observation. For eachOj ∈ P , I

compute a vector of variations by computing histogram intersection between all possible pairs of

observations ofOj andOk. I again model each observation in the vector as a Gaussian PDF by

computing its mean and standard deviation. This provides a set of Gaussian PDFs (one for each

Oi ∈ P ) for the new object. Our goal is to select the objectOi from the setP whose inter- and

intra-class variation distributions are closer to the variation distributions of the new objectOk. To

do this, for every object,Oi ∈ P , I compute the average Bhattacharya distance between its own

variation distributions and variation distributions ofOk. The objectOi is reacquired asOk if the

average Bhattacharya distance forOk is a minimum of:

ζ(Oi, Ok) =
1

|P |
|P |∑
j=1

1

4

(µj
i − µj

k)
2

σj
i + σj

k

+
1

2
log

∣∣∣σj
i +σk

i

2

∣∣∣
√∣∣σj

i

∣∣ ∣∣σk
i

∣∣
. (5.4)

5.3 Target Re-acquisition

For every new objectOi that appears in the scene, I search the set of predicted objects,P , for

objects that satisfy the motion and appearance context constraints. The search is limited to those

objects whose predicted tracks lie within a certain radius around the centroid of the new object

Oi. The region is defined in terms of a Euclidian distance threshold,η, as shown in Figure5.5(a).

An additional motion constraint, defined in terms of Lyapunov exponentγ, is also applied at the

re-acquisition stage. It is used to filter out the trajectories within the search area that do not agree

with the dynamical behavior of the predicted trajectories.
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(a)

(b)

η

Figure 5.5: Visualization of the re-acquisition procedure. (a) The red circle represents the

search area around the new objectOi. The black portion represents the part of the scene

through which the trajectories are predicted using the MC (Section5.2.1). There are four

trajectories represented by the colors yellow, green, cyan, and blue. The red portion of these

trajectories represents the predicted portion. (b) Computation of Lyapunov exponent at the

re-acquisition stage. The trajectory of the new objectOi is represented by the pink track

section. To compute the motion constraint, it is normalized with respect to the two predicted

tracks that are within the search area.

This motion constraint is computed as follows: Gathert observations of the new objectOi

(shown by the pink trajectory in Figure5.5(a)) and normalize them with respect to predicted tra-

jectories that are within the search area. There are two such trajectories for the example described

in Figure 5.5(a), and their corresponding normalizations are shown in Figure5.5(b). After the

normalization, the LCE is computed using Equation5.3. Trajectories that have an LCE above a
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Algorithm 2 : Target Re-acquisition

foreach incoming framef do1

Get set of objects,Vf , in the current frame;2

foreachnew objectOk in Vf do3

Find if Ok is in P by computing distance between current location ofOk and last4

predicted location ofPi within (f − u) frames;

Find if motion ofOk is similar to that ofPi by computingγ by using Equation5.3;5

If distance < η AND γ < α, setOk = Pi ;6

RemovePi from P ;7

end8

foreachold objectOl in Vf do9

Update the predictor setCi by callingPredictorSelection(rl(0, ..., f), Ci, Bi, G)10

end11

end12

threshold,α, are removed from the set of potential target objects. From the remaining trajectories,

I reassign that label to the trajectory that lies closest to the new objectOi in terms of Euclidian dis-

tance. For example, in Figure5.5(b), the LCE between the pink and the blue trajectories is above

the threshold, therefore the blue trajectory is removed from the set of potential target objects. The

yellow trajectory has an LCE that is below the threshold and its last predicted position (i.e., the

red portion of the yellow trajectory in the black region) is closer to the starting position of the pink

trajectory, therefore, the yellow label will be assigned to the pink trajectory.
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Algorithm 3 : PredictorSelection

Input: R(0...., f),C,B,G,O, Returns:C1

foreach track ri(0, .., f − 1) in G except the trackR(0, ..., f − 1) do2

if Oi not member ofC then for each time instancej = F to (f − 1);3

Z = R(f − F, f) , Zc = ri(j − F, j);4

Zcn = normalize(Z,Zc);5

Computeγ by using Equation5.3;6

if γ < α then addOi to C and addj to B;7

else8

Pick entry corresponding toCi from B, call it j;9

Zc = ri(j − F + 1, j + 1), Z = R(f − F, f);10

Zcn = normalize(Z,Zc);11

Computeγ using Equation5.3;12

if γ > α, then removeCi from C and addBi from B, otherwiseB(i) = B(i) + 1;13

end14

However, assigning labels purely on the basis of MC-based prediction cannot handle all pos-

sible scenarios. For example, if the behavior of the cars while out of the FOV of the camera is

different from the behavior of the cars in the FOV of the camera, MC-based may fail to assign

the labels correctly. Then, there is the possibility that the cars may have changed positions while

out of the FOV of the camera. Similarly, if the predicted positions of two cars are spatially near

each other and if there is error present in the prediction, then once again label reassignment based
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purely on the MC based prediction may be incorrect. To overcome these situations, I use AC to aid

the re-acquisition. A subset of unobservable objects is selected that is within the search area and

that satisfies the motion constraint. However, rather than selecting the object that best satisfies the

spatial proximity, I select the object that best matches with the AC of the objects in the setP as

described in Section5.2.3. A pseudo-code of the re-acquisition algorithm is provided in the above

table.

5.4 Experiments and Results

In this section, I present systematic evaluations of the proposed re-acquisition algorithm. In Section

5.4.1, I perform qualitative and quantitative evaluations of the algorithm on aerial videos taken

from the VIVID data set and GettyImages, which is a stock footage web-site. In Section5.4.4, the

experiments are performed on a multi-camera data set that consists of videos taken from a high-rise

building and simulates the setting of aerial videos. I also compare our re-acquisition results with

the results obtained using the motion prediction model of [91].

5.4.1 Re-acquisition in Aerial Videos

5.4.1.1 Data Set

The first set of aerial video sequences were taken from the DARPA VIVID data corpus. The

VIVID sequences contain a convoy of cars that is being followed by the UAV. However, due to the

rapid motion of the UAV, a particular car remains visible in the FOV of the camera only for a short

duration of time. In the absence of a re-acquisition methodology, the resulting tracks are broken.
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The second set of aerial videos is downloaded from Getty-Images, which is a stock footage web

site. These sequences contain footage of busy road intersections, in which the average number of

visible cars varies from 20 to 30 in each frame. The cars move along multiple paths at any given

time. These sequences are challenging not only from the point of view of track completion but

also predictor selection. The types of occlusions in these videos include single overhead bridges

and multiple overhead bridges.

5.4.1.2 Detection and Tracking

The detection and trackingwithin each sequence are done automatically. Detection of all the

moving objects is a challenge in these videos due to the small sizes of the objects. For automatic

detection and tracking, I used the COCOA system [120], which performs these tasks in two stages.

First, the incoming frames are aligned to the reference frame using the direct method for image

alignment [130]. In the second stage, an algorithm based on frame differencing and motion history

image [131] is used to detect the regions containing moving objects. I observed that fusion of

results obtained by using both techniques returns far better results for object detection. I also tried

background modeling [134], but results were not as satisfactory.

5.4.2 Qualitative Results

The experiments on aerial videos were conducted in the following manner. The detected objects

were tracked, and once they become unobservable, their positions were predicted using the MC

algorithm discussed in Section5.2.1. When a new object enters the FOV of the camera, I match
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it with all predicted tracks within the search radius using motion and appearance constraints, as

described in Section5.3. The qualitative results of re-acquisition on two different tracks, each

taken from a separate video of the VIVID data set, are shown in Figure5.6.

Figure5.6(a) shows a scenario in which the motion of the convoy of cars is linear. The different

colors in Figure5.6(a) represent different labels that were assigned to our target car every time it

re-entered into the FOV of the aerial camera. I predicted the motion of the target car through the

unobservable region by using its MC, which was composed of the motion of the other cars in the

convoy. This allowed us to correctly assign it the same label (i.e., color) when it reappeared, as

shown in the Figure5.6(b). The predicted portion in Figure5.6(b) is shown in blue color.

Figures5.6(c)-(d) show re-acquisition results on a rather challenging maneuver. In this se-

quence, the convoy of cars made a U-turn, and the aerial camera was only able to track part of

the convoy. In the absence of the re-acquisition module, the tracking algorithms generated four

tracklets for the target car (Figure5.6(c)). However, our prediction algorithm was able to assign

the correct label every time the car reappeared in the FOV of the camera (Figure5.6(d)). Although

in this case, the prediction was still along the linear stretch of the motion, I was able to overcome

thechange in the direction of the motionafter the U-turn using the MC. The cars that composed

the MC were behaving in a manner similar to the target car and therefore, it was possible for the

algorithm to infer the correct dynamics of the motion. I would like to stress here that a prediction

model based on linear motion assumption, for example the work by Pereraet al. [91], will not be

able to handle a change in the direction of motion, because it uses the motion information of the

target object in isolation. Note that in Figure5.6(d), the noisiness of the tracks near the matching
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(a) (b)

Frame 5 Frame 100 Frame 213 Frame 424 Frame 799

…..

(c) (d)

Frame 13 Frame 113 Frame 223 Frame 475 Frame 626

…..

Figure 5.6: Target re-acquisition for linear motion. The tracks of the cars are overlaid onto

the mosaic of the aerial sequence for better visualization. The top row shows a number of

frames from the video sequence. (a) Track sections belonging to the same car are assigned

different colors in the absence of prediction. (b) Our algorithm is able to assign the same color

(light brown) to the target car every time it reappears in the FOV of the camera. Note that our

target car leaves and re-enters the FOV twice, and I was able to maintain the correct label.

(c) Another scenario where the target car performs a U-turn and becomes unobservable at

three different time instances during the course of tracking. The four tracklets belong to the

same car, but different colors are assigned in the absence of prediction. (d) Our algorithm

was able to assign the same color (green) to the car every time it reappears in the FOV. In

this scenario, the car moves along a non-linear trajectory, but the predicted portion contains

only the linear motion.
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(a) (b)

Frame 3 Frame 82 Frame 217 Frame 425 Frame 846

…..

(c) (d)

Frame 13 Frame 113 Frame 223 Frame 475 Frame 626

…..

Figure 5.7: A target re-acquisition result where the tracks of the cars are overlaid onto the

mosaic of the aerial sequence for better visualization. The top row shows a number of frames

from the video sequence. (a) Figure shows re-acquisition on a busy road intersection, where

cars are moving along different paths and in different directions. Tracks belonging to the

same object were assigned different colors in the absence of prediction. (b) Our algorithm

was able to assign the same color to the object as it reappeared on the other side of the over-

head bridge. (c) Figure shows re-acquisition for a non-linear motion case. Tracks belonging

to the same object were assigned different colors in the absence of prediction. (b) Our al-

gorithm was able to assign the correct label by accurately predicting the motion of the car

along the U-turn.

points is due to the error present in the prediction model. A detailed analysis of the error model is

presented in the next section. The error in the prediction model can result either in a gap or an over-
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lap between the predicted and the matched tracks, depending on whether the model overestimated

or underestimated the velocity of the unobserved object.

The re-acquisition result of an aerial sequence from the Getty-Images website is shown in Fig-

ures5.7(a)-(b). This scenario contains a static occlusion in the form of an over-head bridge instead

of a dynamic occlusion caused by the motion of the aerial platform. In addition, cars were moving

along different paths that made it challenging to learn the valid MC. The re-acquisition in Fig-

ure5.7(b) demonstrates that by learning a valid MC, I can predict the motion through the regions

where I do not have any observed data, for example under the bridge. This is possible because the

MC also contains the inter-object relationships, for example, how far ahead the unobserved car is

with respect to the cars that are part of the MC. The algorithm tries to maintain these relationships

during the prediction step and is then able to re-acquire the car when it appears from the other side.

Finally, I show a re-acquisition result for the non-linear motion case, which demonstrates how

robust and rich our algorithm is. The results are shown in Figures5.7(c)-(d), where the prediction is

made along the non-linear portion of the track, which was unobserved due to motion of the aerial

platform. This result emphasizes the point that our prediction algorithm is model independent

and infers the motion directly from the environment using the MC. This is not possible in other

algorithms available in the current literature (e.g. [91][94]). In Figure 5.7(c), the two tracklets

belong to the same object and are correctly repaired by predicting the motion along the U-turn as

shown in Figure5.7(d).
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5.4.3 Quantitative Results

Quantitative analysis was performed by analyzing the prediction accuracy of our context-based

motion prediction model. The prediction error of our model was a function of how well the motion

of an unobservable object is modeled by the selected predictors. In order to analyze the prediction

accuracy, I proceeded as follows: For a given sequence with short and rare periods of occlusion

and enough potential predictors, I allowed an object to be observed forF number of frames. After

a brief period of observation, I artificially added the object to the list of unobservable objects and

predicted its position using our MC based algorithm. The AC was not used in this case. At the end

of the sequence, I computed the distance between the predicted positionpi and the actual position

ti of the object for every position of the predicted track of lengthN . Then, for each sub-interval

of lengthn of the track, I computed the mean prediction error as:MPEn = 1
n

∑n
i=1 dist(pi, ti).

The mean prediction error computed for linear motion and non-linear motion is shown in Figure

5.8. It can be observed that the mean prediction error increases with the duration of the prediction.

The increase is greater when the object undergoes non-linear motion, as shown in Figure5.8(e),

indicating the difficulty of the regression model to predict the position of the object. However,

the error is still sufficiently small enough for the track re-acquisition to work, as demonstrated

in Figure5.7(d). I computed the variance of the error (Figure5.8(c) and Figure5.8(f)) for each

sub-interval of lengthn as:V ariancen = 1
n

∑n
i=1(MPEn − dist(pi, ti))

2.
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Figure 5.8: Estimation error of the prediction algorithm. (a)-(c) The estimation error in

the case of linear motion. (a) The portion circled in red is the observed segment, while the

remaining portion of the track is predicted using the algorithm. (b) The mean distance of the

predicted track to the actual track. The error increase with the increase in the duration of the

prediction. (c) The variance of the distance around the mean distance. (d)-(e) The estimation

error in the case of non-linear motion. (d) The track circled in red is the observed portion,

while the remaining portion of the track is predicted. (e) The mean distance of the predicted

track to the actual track. (f) The variance of the distance around the mean distance.

5.4.4 Re-acquisition in a Multi-Camera Data Set

The second set of experiments was performed on the multi-camera data set generated by the Next

Generation Simulation (NGSIM) program [137]. This data set contained video sequences of the

traffic flow on a section of Lankershim Boulevard in Los Angeles, California, on June 16, 2005.

The data was collected over two 15-minute intervals using five video cameras that were mounted on

a 36-story building. The cameras were numbered 1 to 5, and camera 1 recorded the southernmost

section, and camera 5 recorded the northernmost section of the study area. The FOV of each
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camera had a small overlap with the FOV of the adjacent cameras. One frame from each of these 5

cameras is shown in Figure5.9. This data set was employed to test our re-acquisition algorithm for

two main reasons: first, a camera on a high-rise building accurately simulated the characteristic of

a camera mounted on an aerial platform. These characteristics included a wide FOV and a small

number of pixels on targets; second, the ground truth was available with the data set that allowed

precise quantitative verification of the performance of our algorithm in this real world setting.

Camera 1 Camera 2 Camera 3

Camera 4 Camera 5

Figure 5.9: One frame from each of the videos recorded by Cameras 1 to 5, mounted on a

36-story building at Lankershim Boulevard. Each vehicle was tracked consistently across the

five cameras. The bounding boxes illustrate the labels assigned to each vehicle.

The available ground truth was generated originally by the Next Generation Vehicle Interaction

and Detection Environment for Operations software [137]. This program automatically detected

and tracked the vehicles and transcribed the trajectory data into a database. All vehicles maintained

their labels across different cameras. The data provided(X, Y ) coordinates of each vehicle, using
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the California State Plane Coordinate System Zone 5 - NAD83, every0.1 second. For each tracked

vehicle, I had 24 pieces of information that included vehicle id, trajectory in state plane coordinate

system, vehicle type (1 - motorcycle, 2 - auto, 3 - truck), vehicle width and length, vehicle entry

and exit points, camera FOV in which the vehicle was visible at any time during its passage through

the scene.

I have performed the following three experiments on this data set: 1) Experiments evaluat-

ing the performance of MC. 2) Experiments evaluating the contribution of AC. 3) Experiments

evaluating the contribution of a number of initial predictors on the prediction accuracy.

5.4.4.1 Evaluation of Motion Context

The goal here was to compare the performance of the MC-based prediction against the linear

motion based prediction of [91]. The predictions were performed in the state plane coordinate

system (units: feet). I used both 15-minute videos generated by cameras 4 and 5 for the experiment.

A synthetic dynamic occlusion was introduced after observing the scene for a short time. The

dynamic occlusion was introduced so our setup could accurately simulate a scene observed by an

aerial camera. Due to constant motion of an aerial camera, it often observes a particular region

of the scene for a short time before moving on to another area. Similarly, I allowed our cameras

to observe the scene for a short time before introducing the occlusion. The combined FOV of

cameras 4 and 5 is shown in Figure5.10(a), while the FOV with synthetic occlusion is shown in

Figure5.10(b). Note that the synthetic occlusion spans a portion of both camera 4 and camera 5.
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(a) (b) (c) (d)

Figure 5.10: (a) The combine FOV of camera 4 and 5 of the NGSIM data set. (b) A syn-

thetic dynamic occlusion was introduced in the combined FOV of camera 4 and 5 to simulate

the characteristics of an aerial camera. (c) Plot of predicted tracks without using the MC

information. (d) Plot of predicted tracks using the MC information.

The initial observations of the cars to be re-acquired were made in camera 5 (the bottom camera

in Figure5.10(b)) and re-acquisition was performed in camera 4 (the top camera in Figure5.10(b)).

Overall, there were 982 cars that I had to accurately re-acquire using the complete 30-minute data.

For each car undergoing occlusion, the MC was computed using the methods described in Section

5.2.1.

The first experiment tested the practicality of MC for re-acquisition purposes against the algo-

rithm that does not use the MC. For this purpose, I first ran the algorithm to re-acquire the cars
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Figure 5.11: Qualitative performance of the MC-based prediction algorithm for correctly

reacquired tracks on the NGSIM data set. Each block corresponds to one track. Within

each block, the leftmost column shows the ground truth track, the center column shows the

predicted track, and the rightmost column shows the predicted track superimposed over the

ground truth track.

undergoing occlusion using the MC information. Next, I used the linear prediction (LP) algorithm

which does not use any MC information and tried to re-acquire the same set of cars. The results of

this experiment are summarized in plots of trajectories in Figures5.10(c) and (d), which show that

our algorithm can accurately predict the potential path of the cars (Figure5.10(d)) in comparison to

the LP algorithm (Figure5.10(c)). In this scenario the linear motion model-based prediction fails

due to the curvilinear nature of the path taken by the cars as they moved through the occlusion.

Without information about the type of path, the LP algorithm is unable to adapt to the situation.

Conversely, our algorithm made use of the MC to adapt to the situation and made an accurate

prediction about the path pursued by the occluded objects. For clarity purposes, I show separate

plots of predictions for some of the trajectories in Figure5.11where each block belongs to one
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Figure 5.12: Qualitative performance of the MC-based prediction algorithm for incorrectly

reacquired tracks on the NGSIM data set. Each block corresponds to one track. Within

each block, the leftmost column shows the ground truth track, the center column shows the

predicted track, and the rightmost column shows the predicted track superimposed over the

ground truth track.

trajectory. There are three plots (Leftmost: ground-truth, Center: Predicted using MC, Rightmost:

Overlay of predicted track on the ground-truth) for each trajectory in the block. The proximity of

the predicted tracks to the ground-truth demonstrates the fact that MC was helpful in re-acquiring

the target. To further emphasize the efficacy of the MC-based prediction, I show plots of the tra-

jectories that were re-acquired incorrectly in Figure5.12. It is important to note in Figure5.12

that even in the case of incorrect re-acquisition, the error committed by our algorithm is small.

However, in the case of LP, the error of incorrect re-acquisition is far larger as shown in Figure

5.10(c).
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Furtherquantitativeanalysis was performed by comparing the re-acquisition rate of the MC-

based prediction against the LP over the entire data set. The superior performance of our algorithm

was validated, as shown in the graph in Figure5.13(a). On the x-axis of this graph, I show the

radius of the neighborhood in which I searched for the object when it reappeared from occlusion.

On the y-axis, I show the re-acquisition rate. The green and red curves show the performance of

the MC-based and the linear motion prediction algorithms, respectively. The performance of our

algorithm improves with an increase in the search radius, but decreases after a certain value (60

feet) until it becomes parallel to the performance of the linear motion prediction algorithm. This is

because an increase in the search radius forced us to perform the comparison against more cars that

are in the neighborhood, thus raising the odds of making a mistake. In other words, the increase

in the search radius had the effect of a brute force search for the correct car in that region, which

effectively means the MC information is not utilized. As the search region started encompassing

the location predicted by the linear motion model, the performance of the two algorithms becomes

the same. This graph, therefore, shows that utilizing the MC information assists in accurately

constraining the probable locations of the unobserved cars resulting in higher re-acquisition rates.

Furthermore, I analyzed the relationship between prediction error and prediction duration of

the two models (MC and LP). The prediction error of our model was a function of how accurately

the motion of an unobservable object was modeled by the selected predictors. In order to analyze

the prediction accuracy I proceed in a similar manner as described in Sub-Section5.4.3. The plots

of mean prediction errors computed for a number of correctly acquired tracks are shown in Figure

5.14(a). In these plots, the x-axis contains the frame numbers, while the y-axis contains the error
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Figure 5.13: (a) Plot of the re-acquisition rate against the re-acquisition distance threshold

with (Green) and without (Black) MC. (b) Plot of the re-acquisition accuracy with respect to

the re-acquisition distance threshold when both AC and MC were used (Cyan), when only

MC was used (Green), and when MC and context-less appearance model was used (red). (c)

Figure shows the re-acquisition accuracy with respect to the re-acquisition distance threshold

when MC was used with different number of prior observations. 5 (Black), 7 (Yellow), 10

(Blue), 30 (Red), 50 (Cyan), 80 (Magenta), 100 (Green).

in terms of pixels. The mean prediction error increases with the duration of the prediction for both

models. However, the increase is greater for LP (black curves) than for MC-based prediction (green

curves), which highlights the much higher reliability of our algorithm. I have also plotted the mean

prediction errors for a number of tracks that wereincorrectly re-acquiredin Figure5.14(b). Again,

it is important to note that even in cases where our algorithm incorrectly reacquired an object, the

error was far smaller than the error by the LP algorithm. Table5.1 and Table5.2 summarize the

predication error over the entire data set (982 cars) for correctly and incorrectly re-acquired cars,

respectively. For correctly re-acquired cars, our algorithm made an average error of 7.83 feet after

making prediction for 80 frames, as compared to an average error of 28.53 feet by the linear motion
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prediction. Similarly, for incorrectly reacquired cars, our algorithm made an average error of 20.86

feet after making prediction for 80 frames, as compared to an average error of 31.76 pixels by the

linear motion predication.
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Figure 5.14: (a) Mean distance error between the correctly re-acquired tracks and the

ground-truth for cases where the MC was used (Green), and where the MC was not

used (Black). (b) Mean distance error between the incorrectly reacquired tracks and the

ground-truth for cases where the MC was used (Green) and where the MC was not used

(Black).
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Table 5.1: Summary of prediction error of two models (MC and LP) over the entire data

set for correctly reacquired cars. The columns show the average error committed by the

respective algorithm at the end of 20, 40, 60, and 80 frames. The error is in feet.

Prediction Model Avg. Error -(20) Avg. Error -(40) Avg. Error -(60) Avg. Error -(80)

LP 7.51 14.66 23.4 28.53

MC 5.54 8.21 10.23 7.83

Table 5.2: Summary of prediction error of two models (MC and LP) over the entire data

set for incorrectly reacquired cars. The columns show the average error committed by the

respective algorithm at the end of 20, 40, 60, and 80 frames. The error is in feet.

Prediction Model Avg. Error -(20) Avg. Error -(40) Avg. Error -(60) Avg. Error -(80)

LP 7.03 13.98 22.49 31.76

MC 5.54 9.57 13.74 20.86

5.4.4.2 Evaluation of Appearance Context

Next, I performed an experiment to determine the contribution of the AC to the re-acquisition rates.

In the NGSIM data set, additional work is required to obtain observations (chips) for every vehicle.

The position of every vehicle in the ground-truth was in the state plane coordinate system. In the

ortho-rectified views of the scene, the appearance of the car was corrupted by the visualization

of the bounding box and its associated vehicle id (Figure5.9). Therefore, the observation of

every vehicle must be acquired from the raw video (without the bounding box visualization) of

the scene. For this purpose, I proceeded as follows: To obtain an observation for a particular
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vehicle, I first warped its state-plane position to the ortho-rectified view of the scene, and then warp

its ortho-rectified position to the raw view. In order to compute homography between the state-

plane and the ortho-rectified view, I used correspondences between the state-plane ground-truth

positions of several vehicles and their corresponding positions in the ortho-rectified view. Next,

prominent image features, such as dividing lane intersections, were used to manually compute the

homography between the ortho-rectified and the raw views of the scene. The chips of the cars that

passed through the study area during the first 15 minutes are shown in Figure5.15. Figure5.15(a)

shows the chips of the cars just before they enter into the occluded region, while Figure5.15(b)

shows the chips of the cars when they reappear from the occluded region.

Now, when a car undergoes occlusion, I constructed its AC using all its previous observations,

employing the method described in Section5.2.3. During occlusion, the position of the car was

predicted using the MC-based prediction. For re-acquisition, both MC and AC were used, meaning

that when I searched for a car at the other end of the occlusion, I confirmed that it satisfied both the

motion- and appearance-based constraints as described in Section5.3. The process was repeated

for all the cars in the data set. The results of this experiment are summarized in Figure5.13(b),

where I plotted the re-acquisition rates as a function of the search radius. The blue curve shows

the re-acquisition rates when both the MC and the AC were used. The green curve shows the re-

acquisition rates when only the MC was used. This outcome demonstrates that the AC is helping

to improve the re-acquisition rate. On closer analysis, it was observed that the AC is particularly

helpful in cases where two or more cars simultaneously entered the occluded region next to each
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(a)

(b)

Figure 5.15: (a) Chips of the cars just before they enter into the occluded region during

the first 15 minutes of the video. There are 386 cars in total. (b) Chips of the cars as they

reappear from the occluded region during the first 15 minutes of the video.

other. In this case, when the cars reappeared at the other end, the AC helped the algorithm to

overcome the uncertainty present in the MC-based prediction.

Next, I performed an experiment to test the utility of usingcontextin the appearance model.

For this purpose, when a car undergoes occlusion, I constructed its context-less appearance model

140



(an RGB histogram) using its most recent observations. No inter- and intra-class variations are

employed in this case, hence there was no contextual information present in the appearance model.

During occlusion, the position of the car was predicted using the MC-based prediction. For re-

acquisition, both MC and context-less appearance model were used, meaning that when I searched

for a car at the other end of the occlusion, I confirmed that it satisfied the motion-based constraint

and its appearance also matched with the context-less appearance model. The process was repeated

for all the cars in the data set. The results of this experiment are summarized by the red curve in

Figure 5.13(b). It is evident that the context-less appearance model degraded the performance

of the entire prediction framework. The main reason is that without the context information, the

appearance model was not rich enough to discriminate between the cars as they reappeared after

the occlusion. This clearly demonstrates the benefit of using the context information when building

the appearance model.

It is important to note that our main objective in above mentioned experiments was to show the

utility of context information in building discriminative representations, and not to show that the

color features are the best features. Within our AC framework, other sophisticated features which

are proposed in the literature ([108][110]) can be integrated to achieve even better performance.

5.4.4.3 Number of Predictors

The last experiment was conducted to test the influence of the prior observation on the accuracy

of the MC-based prediction. The prior observation corresponds to the number of tracks that were

observed before the introduction of the dynamic occlusion. This was the initial number of tracks
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that were part of the setCi for objectOi. The remaining experimental setup was the same as that

described in Section5.4.4.1. I plotted the re-acquisition rates for different numbers of prior obser-

vations in Figure5.13(c). The re-acquisition performance improved with an increase in the number

of prior observations. This was because the regression framework, which was described in Sec-

tion 5.2.1, became over-constrained with the increase in the number of predictors, and, therefore,

assisted in improving the estimation of the unknown affine parameters. There was little change in

the re-acquisition rates beyond 20 predictors, which appears to be an optimal choice.

5.4.5 Re-acquisition in a Crowd Video

The next set of experiments was performed on a video containing high density crowds. Again

occlusion was simulated by introducing a synthetic dynamics occlusion. The qualitative results

of this experiment are summarized in plots of trajectories in Figure5.16, which shows that our

algorithm can accurately predict the potential path of the individuals in the crowded scene. The

predication was performed along the curved sections of the tracks.

5.5 Summary

In this chapter, a method was presented to re-acquire objects in moving aerial cameras. A novel

concept of motion context (MC) was used to predict the position of target objects during the period

that they are occluded. The MC consisted of a collection of trajectories that were representative of

the motion of the occluded or unobserved targets. The MC was learned using a clustering scheme

based on the Lyapunov Characteristic Exponent. The locations were predicted using the MC in a
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Figure 5.16: Qualitative results of re-acquisition in a crowded scenes. The black portion

represents the synthetic occlusion. The red trajectories are the predicted parts of the blue

trajectories.

regression framework. In addition, appearance context (AC) was used to differentiate targets when

there was uncertainty is the MC-based prediction. The AC was encoded in terms of inter- and

intra-class variations computed by using all previous observations of target objects.

The competitive performance of the proposed algorithm was demonstrated on challenging data

sets, which included aerial videos and videos taken from a high-rise building. I compared the

performance of our algorithm against the prediction model currently used in the literature ([91])

for re-acquisition in aerial sequences. The main advantages of our approach is the model-free
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prediction and its ability to adapt to the motions present in the video by learning the MC. Therefore,

it does not assume a fixed motion model, e.g., linear, quadratic or polynomial.

In the next chapter, I summarize the main contribution of this thesis and also discuss some

possible future research directions.
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CHAPTER 6

SUMMARY AND FUTURE WORK

The main theme of this dissertation has been the analysis of videos depicting high-density crowds.

Typical examples of such scenes include sporting events, religious festivals, malls and subway

stations. To that end, I investigated a global-level approach to generate a representation of the

scene that captures both the dynamics of the crowd and the structure of the scene. This global-

level analysis eliminated the need for low-level change detection algorithms and individual object

localization/tracking.

In particular, this was achieved by developing a crowd-flow segmentation framework, which

employed Lagrangian particle dynamics to uncover the spatial organization of the crowd. This

segmentation information was then used to detect any temporal changes in crowd behavior, thus

enabling the localization of abnormal events or behaviors within the crowd. Next, crowd segmenta-

tion information was used in conjunction with the scene structure to develop a tracking algorithm

that was used to track an individual object of interest within the crowd. For this purpose, the

structure of the scene was encoded in terms of “floor fields” that were used to constrain likely

locations an object might pursue while moving in the scene. Finally, I proposed a target reacqui-

sition algorithm that was employed to reduce the incidence of broken trajectories resulting from

frequent occlusions in crowded scenes. The proposed re-acquisition algorithm used the contextual

information in the form of appearance and motion context of the target object.
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We summarize the primary contributions of this thesis in following section.

6.1 Summary of Contributions

• Crowd-Flow Segmentation

– Representation of crowd motion in terms of Lagrangian Particle Dynamics.

– Introduction of the concept of Lagrangian Coherent Structure for the analysis of crowded

scenes.

– Representation of crowd dynamics in terms of FTLE fields.

– Application of the crowd-flow segmentation framework to the problem of abnormal

event detection in crowds.

• Target Tracking in High Density Crowds

– Algorithm for tracking individuals in high density crowded scenes containing large

number of people.

– Integration of high-level knowledge represented by floor fields into the tracking algo-

rithm.

– Introduction of the novel concept of floor fields to the vision community.

• Motion and Appearance Contexts for Re-Acquiring Targets

– An algorithm for the persistent tracking of objects in complex scenes.

– A regression-based framework to predict the locations of occluded objects.
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– Introduction of the novel concept of motion and appearance context.

6.2 Future Directions

The methods developed in this work can be improved and extended along a number of lines. Some

of these ideas are described in the following text.

6.2.1 Detailed Crowd Behavior Analysis

A more refined analysis of crowd behavior can be performed by labeling different crowd segments

with one of several commonly observed crowd behaviors. The common types of crowd behaviors

that can be detected include: lane formation, bottlenecks, intersections, freezing by heating, clog-

ging and the faster-is-slower effect. This can be achieved by using as a basic building block the

trajectories of particles belonging to the detected crowd-flow segments. By specifically labeling

regions of crowd-flow segments with these behaviors, one will be able to generate a representation

of the crowded scene that is easier for human operators to understand and interpret.

6.2.2 Directly Approximating the Crowd Groupings

Rather than attempting to extract Lagrangian Coherent Structures that are invariant manifolds and

relate to boundaries between different crowd regions, one can also think of directly approximating

the crowd grouping. In this context dynamically distinct regions can be identified by using the

notion of almost invariant sets. These sets are the regions in the phase space that are almost

invariant in the sense that, with a high probability, a trajectory starting in a particular set will

147



stay in this set for an extended period of time. This parallel paradigm is analogous to directly

approximating the pixels of an image segment rather than the boundaries of the segment.

6.2.3 Multi-Modality

The results of the segmentation are reported on videos where only a single segmentation map

can explain the dynamics of the underlying crowd. However, in many real world situations, the

same spatial location may support multi-modal crowd dynamics. For example, one is confronted

at intersections with various alternating and collective patterns of motion, which are often very

short-lived and unstable. In order to manage scenes with these types of multi-modalities, a number

of segmentation maps must be generated, each explaining the different modality.

6.2.4 Multi-Target Tracking in High Density Crowds

The individual target-tracking algorithm proposed in this thesis can be extended to multi-target

tracking in high-density crowds. For that purpose, the multi-target configuration can be treated

as a multi-particle system. This will add an interaction term in the tracking framework that will

further constrain the likely locations taken by the individual targets.
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