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a b s t r a c t 

Automatically recognizing and localizing wide ranges of human actions are crucial for video understand- 

ing. Towards this goal, the THUMOS challenge was introduced in 2013 to serve as a benchmark for action 

recognition. Until then, video action recognition, including THUMOS challenge, had focused primarily on 

the classification of pre-segmented (i.e., trimmed) videos, which is an artificial task. In THUMOS 2014, 

we elevated action recognition to a more practical level by introducing temporally untrimmed videos. 

These also include ‘background videos’ which share similar scenes and backgrounds as action videos, but 

are devoid of the specific actions. The three editions of the challenge organized in 2013–2015 have made 

THUMOS a common benchmark for action classification and detection and the annual challenge is widely 

attended by teams from around the world. 

In this paper we describe the THUMOS benchmark in detail and give an overview of data collec- 

tion and annotation procedures. We present the evaluation protocols used to quantify results in the two 

THUMOS tasks of action classification and temporal action detection. We also present results of submis- 

sions to the THUMOS 2015 challenge and review the participating approaches. Additionally, we include 

a comprehensive empirical study evaluating the differences in action recognition between trimmed and 

untrimmed videos, and how well methods trained on trimmed videos generalize to untrimmed videos. 

We conclude by proposing several directions and improvements for future THUMOS challenges. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

The action recognition community has made great progress in

he last few years, driven in large part by the release of large

ideo datasets such as UCF101 ( Soomro et al., 2012 ) and HMDB

 Kuehne et al., 2011 ) in conjunction with the development of new

eatures ( Wang and Schmid, 2013 ), representations ( Oneata et al.,

013 ) and learning methods ( Simonyan and Zisserman, 2014a ). Re-

ent datasets contain challenging videos with actions from vari-

us sources such as movies ( Kuehne et al., 2011; Marszałek et al.,

009 ), YouTube ( Liu et al., 2009 ), and wearable cameras ( Pirsiavash

nd Ramanan, 2012; Ryoo and Matthies, 2013 ). The performance

f methods evaluated on such datasets has steadily increased over

he years ( Wang and Schmid, 2013 ). In line with these advances in

ction recognition, the THUMOS challenge was introduced to the
� www.thumos.info 
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omputer vision community in 2013 with the aim to explore and

valuate new approaches for large-scale action analysis from Inter-

et videos in a realistic setting. 

The THUMOS 2013 challenge was based on the UCF101 dataset

 Soomro et al., 2012 ), which similar to most of the commonly eval-

ated action recognition datasets consists exclusively of manually

rimmed video clips that exclude temporal clutter. The assumption

f such clean and trimmed videos may be reasonable during train-

ng time since it provides methods with strongly supervised data.

owever, the same restriction during testing is potentially imprac-

ical and unreasonable for several reasons: 

• it assumes an (unrealistic) external process to temporally seg-

ment videos into clips that precisely surround the desired ac-

tion; 
• it creates a test set distribution that does not match the real-

world distribution since the test data is free from temporal

clutter, ‘background’ class data notwithstanding; 
• it can allow methods to inadvertently exploit side-

information, such as the length of the test video clip

http://dx.doi.org/10.1016/j.cviu.2016.10.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.10.018&domain=pdf
http://www.thumos.info
mailto:haroon@cs.ucf.edu
http://dx.doi.org/10.1016/j.cviu.2016.10.018
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Fig. 1. Illustration of contrast between a (trimmed) video clip for the ‘BaseballPitch’ 

action from the UCF101 dataset and an untrimmed video from the corresponding 

action taken from the validation set of THUMOS’15. Note that the entire tempo- 

ral span of the video (shown in red) contains a variety of baseball actions with the 

pitch occurring multiple times (shown in blue). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 
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( Satkin and Hebert, 2010 ), even though this information is

available only due to an artifact of the evaluation methodology.

Thus, the temporally segmented clips do not reflect the real

world as the actions are typically embedded in complex dynamic

scenes with rich causal and spatial relations among people and ob-

jects. While elimination of temporal clutter simplifies the recog-

nition problem, it becomes difficult to predict the performance

of different methods in real applications. In literature, there have

been some effort s to address the problem of action recognition

in untrimmed videos. For example, temporal detection has been

studied in Bojanowski et al. (2014) , Duchenne et al. (2009) , Hoai

et al. (2011) , Pirsiavash and Ramanan (2014) , Shou et al. (2016) and

Richard and Gall (2016) , while spatiotemporal localization of ac-

tions has been addressed in Ke et al. (2007) , Klaser et al. (2010) ,

Laptev and Pérez (2007) , Tian et al. (2013) and Soomro et al.

(2015) ; 2016 ). Such works deal with substantial amount of tempo-

ral clutter from movies and sports videos. However, they typically

were evaluated on only a small number of action classes and re-

quired strongly supervised training and test sets. The THUMOS’14

challenge ( Jiang et al., 2014 ) introduced thousands of untrimmed

videos in validation, background and test sets for 101 action classes

providing the community with the first-of-its-kind dataset for ac-

tion recognition and temporal detection in realistic settings with a

standardized evaluation protocol. Similarly, THUMOS’15 challenge

( Gorban et al., 2015 ) extended the THUMOS’14 dataset by in-

cluding a new test set constituting 5613 positive and background

untrimmed videos. 

THUMOS (Greek: θυμó ς ) which means a spirited contest , con-

sists of two principal challenges: classification - where the goal

is to determine whether a video contains a particular action or

not, and temporal detection - where the goal is to classify an ac-

tion and find its temporal locations in each video. The THUMOS

action classes are from UCF101 ( Soomro et al., 2012 ) and can be

divided into five main categories: Human-Object Interaction, Body-

Motion Only, Human-Human Interaction, Playing Musical Instruments ,

and Sports . All the videos are publicly available from YouTube, 1 and

manually annotated both for action label and temporal span. 

The objectives of the THUMOS challenge are twofold: a) to

serve as a benchmark and enable a comparison of different ap-

proaches on the tasks of action classification and temporal detec-

tion in large-scale realistic video settings; and b) to advance the

state of the art. For instance, the accuracy on UCF101 increased

from 45% in 2012 to almost 90% at THUMOS’13 ( Jiang et al., 2013 ).

Similarly, the 2014 and 2015 challenges are characterized by three

significant differences com pared to traditional action recognition.

The first is the introduction of background videos that share sim-

ilar scenes and objects as positive videos but do not contain the

target actions. This downplays the role of appearance and static

information since background videos are distinguishable from ac-

tion videos primarily based on the motion. Associated with this

is the second difference where the classification task is changed

from a forced-choice multi-class formulation to a multi-label bi-

nary task, where each video can contain multiple actions. This has

been enabled through the use of background videos and is not pos-

sible with other action datasets. And third is the introduction of

untrimmed videos ( Fig. 1 ) for validation and testing as opposed to

manually pre-segmented (or “trimmed”) videos ( Blank et al., 2005;

Kuehne et al., 2011; Liu et al., 2009; Rodriguez et al., 2008; Schuldt

et al., 2004; Soomro et al., 2012 ) typically used in action recogni-

tion. Consequently, a testing video in THUMOS’15 can contain zero,

one or multiple instances of an action (or different actions) that

can occur anywhere in the given video. 
1 http://www.youtube.com/ 
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One of the contributions of this paper is to extend and com-

lement prior work with a study of action recognition in tem-

orally untrimmed videos and show how it differs from trimmed

ideos using the THUMOS dataset (see Fig. 1 ). We address both

ideo-level action classification and temporal detection problems

nd systematically evaluate and quantify the effect of temporal

lutter. In particular, we evaluate the popular Improved Dense Tra-

ectory Features (IDTF) ( Wang and Schmid, 2013 ) + Fisher Vec-

ors + SVM pipeline that has dominated several action recogni-

ion benchmarks. While temporal clutter causes a drop in recog-

ition performance, untrimmed videos also contain additional in-

ormation about the context of actions. In the evaluation study, we

xplore action context and show improvements in action recogni-

ion performance using context information extracted from tempo-

al neighborhoods of untrimmed videos. 

The rest of the paper is organized as follows. We provide com-

arison with existing datasets in Section 2 and define challenge

asks in Section 3 . Next, we explain the procedure used for col-

ection and annotation of the dataset in Section 4 , and present

he evaluation protocol in Section 5 . Since the challenge in still

ascent, a longitudinal study of participants’ methods would be

ossible after the next few years. Nonetheless, we perform a

ross-sectional study of the THUMOS’15 challenge with a sum-

ary of methods presented in Section 6 and results reported in

ection 8.3 . Additionally, we study the impact of background and

emporal clutter, as well as role of context for action recognition in

ntrimmed videos in Section 8 . Finally, we conclude with ideas on

mprovements for future challenges in Section 9 . 

. Related datasets 

Early datasets on action recognition in videos, such as KTH

 Schuldt et al., 2004 ) and Weizmann ( Blank et al., 2005 ), em-

loyed actors performing a small set of scripted actions under

ontrolled conditions. The next series of datasets, such as CMU

http://www.youtube.com/
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v  
 Ke et al., 2005 ) and MSR Actions ( Yuan et al., 2009 ), intro-

uced scripted actions performed against challenging dynamic

ackgrounds. Later datasets, such as HOHA ( Laptev et al., 2008 )

nd Hollywood-2 ( Marszałek et al., 2009 ) moved to relatively

ore realistic video footage from Hollywood movies and broad-

ast television channels, respectively. Many of these datasets pro-

ided spatiotemporal annotations for action instances in relatively

hort untrimmed videos. However, this level of annotation be-

ame impractical once the research community demanded larger

atasets. Most of the modern datasets are collected from realistic

ources, have more classes and have more temporal clutter. For in-

tance, the Human Motion DataBase (HMDB) ( Kuehne et al., 2011 )

ataset released in 2011 contains 51 action categories, each con-

aining at least 101 samples for a total ∼ 6800 action instances. 

The UCF series of datasets started with UCF Sports ( Rodriguez

t al., 2008 ) in 2008, which comprised of movie clips captured

y professional filming crew, and offered videos with camera mo-

ion and dynamic backgrounds. The next in the series were UCF11

 Liu et al., 2009 ) and UCF50 ( Reddy and Shah, 2013 ), released in

009 and 2011, respectively. Both datasets consisted of trimmed

lips from a variety of sources ranging from digitized movies to

ouTube. The UCF101 dataset ( Soomro et al., 2012 ) is a superset of

he previous UCF11 ( Liu et al., 2009 ) and UCF50 ( Reddy and Shah,

013 ) datasets and was released in 2012. It contains 13,320 video

lips of 101 action classes ( Appendix A ). The actions are divided

nto 5 categories: Human-Object Interaction, Body-Motion Only,

uman-Human Interaction, Playing Musical Instruments, Sports, as

hown in Fig. 2 . The clips of one action class are divided into

5 groups which contain 4–7 clips each. The clips in one group

hare some common features, such as the background or actors.

he videos have a resolution of 320 × 240, with a total dura-

ion of ∼27 h. The training data of the THUMOS challenge uses

he trimmed clips of UCF101, however, the datasets for THUMOS’14

nd THUMOS’15 additionally include untrimmed positive and back-

round videos for validation and test sets. 

The Sports-1M ( Karpathy et al., 2014 ) dataset, released in 2014,

ontains more than 1 million untrimmed videos from almost 487

lasses with about 10 0 0–30 0 0 videos per action class. The dataset

s divided into the following categories: Aquatic Sports, Team

ports, Winter Sports, Ball Sports, Combat Sports, Sports with An-

mals, and taxonomy becomes fine-grained at the lower levels.

hile the dataset is large in the number of videos, it focuses only

n sports actions and is weakly annotated (only at the video level)

ith automatically generated – and thus potentially noisy – labels.

y contrast, the THUMOS dataset includes videos that have been

arefully annotated. Furthermore, THUMOS includes negative back-

round videos for each action class in both the validation and test

ets, making the action recognition task more difficult. 

“TREC 2 Video Retrieval Evaluation” (TRECVID) 3 is a series of com-

etitions and workshops conducted by National Institute of Stan-

ards and Technology (NIST) with the aim to stimulate research

n automatic segmentation, indexing, and content-based retrieval

f digital videos. Since the first competition in 2003, it now con-

ists of several independent tasks. The datasets for each task have

een typically extended each year, and are only available to the

articipants who register for the competition. There are two set

f tasks in TRECVID that are related to THUMOS challenge. One of

he task is Semantic Indexing (SIN) and the associated Localization

LOC) which focus on the detection and localization in video shots

r clips. The dataset consists of Internet Archive Creative Com-

ons (IACC) ( Ayache and Quénot, 2008 ) collected by NIST with

5,300 videos for a total of ∼1200 h. Only short clips or shots are
2 TREC stands for “Text REtrieval Conference”
3 http://www-nlpir.nist.gov/projects/trecvid/ 

f  

t  

m  

i  
nnotated for 500 object, scene and action concepts for training.

uring testing, the highest scoring shots from all participants are

athered, and used for generating ground truth. Since only a sub-

et of test data is annotated, inferred Average Precision is used for

valuation (infAP) ( Yilmaz and Aslam, 2006 ) of each concept. For

015, only 30 concepts were evaluated for detection and 10 for

patio-temporal localization. It is important to remember that un-

ike untrimmed videos in THUMOS, the spatio-temporal localiza-

ion in SIN task is performed on pre-defined trimmed shots. 

Another TRECVID task, Multimedia Event Detection , requires the

ethods to provide a confidence score for each video from a col-

ection as to whether the video contains the event. The collection

s complemented with event kits that include a textual descrip-

ion of the event and information about related concepts that are

ikely to occur in each event. An associated task, Multimedia Event

ecounting , has the objective of stating key evidence, in the form

f text with pointers to detected concepts, that led a Multime-

ia Event Detection (MED) method to decide that a multimedia

lip contains an instance of a specific event. There were 20 pre-

pecified events for the main task, and Mean Average Precision and

nferred MAP were used as metrics for event detection. The eval-

ation for recounting is performed after results are returned by

articipants where judges evaluate the key evidences for correct-

ess. The dataset consists of Heterogeneous Audio Visual Internet

HAVIC) Corpus ( Strassel et al., 2012 ) collected by the Linguistic

ata Consortium. For 40 events, it has ∼290 h of training videos.

he testing is performed on a separate set with 20 0,0 0 0 videos

 ∼80 0 0 h). The THUMOS challenge focuses on actions, which are

ess complex and more atomic than MED events, and are primar-

ly affected by motion of actors. Furthermore, the action concepts

n the Multimedia Event Recounting task are primarily driven by

vents rather than the actions themselves. Thus, miss-detections

f actions are not penalized in evaluation as long as the evidence

resented by a system is sufficient for detection of an event. 

ActivityNet ( Caba Heilbron et al., 2015 ) is a recent dataset for

ecognition of human activities. It was released in 2015, two years

fter THUMOS, and consists of 203 activity classes with an av-

rage of 137 untrimmed videos per class. The classes are linked

hrough a taxonomy consisting of parent-child relationships. Dif-

erent from ActivityNet, THUMOS contains a large number of back-

round videos making the problem of action recognition more re-

listic. For training the classifiers, the negative videos not only

ome from positive samples of other actions but the background

ideos associated with an action as well. Thus, it becomes cru-

ial for the classifier and detector to accurately model the mo-

ion since similarity in scene in action and background videos

ignificantly reduces the utility of appearance features. The back-

round videos in THUMOS also aid in studying and quantifying

he role of stationary and non-action context for action recognition

 Section 8 ). Table 1 summarizes different characteristics of various

ction recognition datasets. 

. The THUMOS challenge tasks 

This section gives an overview of the THUMOS classification and

emporal detection tasks. We also describe their evolution since the

rst THUMOS held in 2013. 

.1. Classification 

The task of action classification consists of predicting (for each

ideo) the presence or absence of each of the 101 action classes

rom the UCF101 dataset. This is a binary classification task per ac-

ion, as the actions are not mutually exclusive — a given action

ay occur once, multiple times or never in a testing video. This is

n contrast to the typical forced-choice multi-class task whose goal

http://www-nlpir.nist.gov/projects/trecvid/
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Fig. 2. The figure shows the sample frames of the actions from UCF101 dataset ( Soomro et al., 2012 ). The color of frame borders specifies the action type to which they 

belong: Human-Object Interaction, Body-Motion Only, Human-Human Interaction, Playing Musical Instruments, Sports (c.f. Appendix A ). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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is to assign a class label to a given video from a set of pre-defined

classes. For the classification task, the participants are expected to

provide real-valued confidences for each test video for all the 101

actions. A low confidence for a particular action means either the

video contains some other action or none of the 101 actions. The

participants are required to report results on all the videos, and

omitting videos from evaluation results in lower performance. 

The classification task of the 2013 challenge only consisted

of videos from UCF101. The dataset was divided into three pre-

defined splits and participants reported results using three-fold

cross-validation, i.e., training on two folds and testing on the

third. However, since 2014 the dataset has been extended with
 o  
ntrimmed validation, background and test videos. The partici-

ants can only use UCF101, validation and background sets to train,

alidate and fine-tune their models and then report results on the

ithheld test set. Participants are not permitted to perform any

anual annotation at their end. 

.2. Temporal detection 

For the temporal detection task participants are expected to

rovide temporal intervals and corresponding confidence values for

ll detected instances of 20 pre-selected action classes. The task

f classification is embedded within the temporal detection which
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Table 1 

Summary of major action recognition datasets. 

Dataset Number of 

hours 

Number of 

actions 

Background 

type 

Camera 

motion 

Released 

year 

Source Background 

videos 

Untrimmed 

videos 

Evaluation 

setup 

Labels per 

video 

Annotation 

level 

Weizmann Blank et al. 

(2005) 

0 .06 9 Static No 2005 Staged No No Multi-class Single Label 

UCF Sports Rodriguez et al. 

(2008) 

0 .27 10 Dynamic Yes 2008 TV, Movies No No Multi-class Single Label 

IXMAS Weinland et al. 

(2007) 

0 .51 11 Static No 2006 Staged No No Multi-class Single Label 

Olympic Niebles et al. 

(2010) 

1 .84 16 Dynamic Yes 2010 YouTube No No Multi-class Single Label 

HOHA Laptev et al. (2008) 2 .24 12 Dynamic Yes 2009 Movies No No Multi-class Single Label 

UCF11 Liu et al. (2009) 2 .82 11 Dynamic Yes 2009 YouTube No No Multi-class Single Label 

KTH Schuldt et al. (2004) 3 .22 6 Static Slight 2004 Staged No No Multi-class Single Label 

HMDB51 Kuehne et al. 

(2011) 

5 .92 51 Dynamic Yes 2011 Movies, 

YouTube 

No No Multi-class Single Label 

UCF50 Reddy and Shah 

(2013) 

13 .80 50 Dynamic Yes 2010 YouTube No No Multi-class Single Label 

UCF101 Soomro et al. 

(2012) 

26 .67 101 Dynamic Yes 2012 YouTube No No Multi-class Single Label, 

Spatio- 

Temporal 

ActivityNet (v1.2) 

Caba Heilbron et al. 

(2015) 

305 .55 200 Dynamic Yes 2015 YouTube No Yes Binary 

Detection 

Multiple Label, 

Temporal 

THUMOS’14 Jiang et al. 

(2014) 

254 .00 101 Dynamic Yes 2014 YouTube Yes Yes Binary 

Detection 

Multiple Label, 

Temporal 

THUMOS’15 Gorban et al. 

(2015) 

430 .00 101 Dynamic Yes 2015 YouTube Yes Yes Binary 

Detection 

Multiple Label, 

Temporal 
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4 https://developers.google.com/youtube/v3/ 
5 https://developers.google.com/youtube/v3/guides/searching _ by _ topic 
akes it comparatively more difficult. For example, an instance of

n action that is correctly localized in time but is assigned with

n incorrect class label will be treated as an incorrect detection.

or this task, participants are required to report results for 20 ac-

ion classes in all the test videos. For the detection tasks, similar to

lassification, participants are not permitted to perform additional

anual annotations. 

The first THUMOS challenge in 2013 included spatio-temporal

ocalization for 24 action categories instead of temporal detection.

he spatio-temporal annotations for 24 actions were provided in

he trimmed videos of UCF101. The temporal detection resembles

patio-temporal localization with the difference that the spatial lo-

ation of the detections is not incorporated in the evaluation. Be-

ides the significant reduction in annotation effort, adopting tem-

oral detection over spatio-temporal localization in later years of

he THUMOS challenge was driven by two factors. First, tempo-

al detection is computationally more tractable, particularly in long

ntrimmed videos. Second, in many practical scenarios, the tem-

oral aspect is more important than the spatial, e.g., a user may

ant to seek directly to the portion of the video that includes

he given action and may not benefit from a bounding box lo-

alizing the action within each frame. For these reasons, the 2014

nd 2015 challenges only included a temporal detection task, with

oth the training and test set containing temporal annotations in

ntrimmed videos for the 20 actions. 

. The THUMOS dataset 

This section provides an overview of the data collection and an-

otation procedures. In addition, we also provide various statistics

elated to the THUMOS’15 dataset. 

.1. Video collection procedure 

The Internet videos for the THUMOS competitions were drawn

rom public videos on YouTube, which made it possible to find a

arge number of videos for any given topic — but a large fraction

f videos may not contain visible instances of the desired action.

e employed a series of manual filtering stages to ensure the set

f videos for each action contains only the relevant videos. 
Positive videos: The YouTube Data API 4 allows video search

hrough Freebase 5 topics. Every YouTube video has several Free-

ase topics associated with it that are assigned based on annota-

ions provided by the video creator, as well based on some high

evel video features. We defined a set of Freebase topics corre-

ponding to the action labels. However, a Freebase topic which ide-

lly corresponds to an action either returns too few videos or too

eneral to be useful. Therefore, we manually augmented topic ids

ith a set of search keywords. Keywords combined with Freebase

opics yielded a reasonable set of potential videos for each action. 

An issue with YouTube videos in context of our task is that

ighly rated or frequently viewed videos may include “viral” videos

r compilations, so we had to exclude these by explicitly black-

isting keywords “-awesome”, “-crazy”, “-compilation”, etc. Further-

ore, as the dataset is extended each year by collecting new

ideos, we exclude all YouTube videos and channels whose videos

ere used in previous THUMOS competitions to avoid adding

ideos that might be similar to those from previous years. 

Background videos: Collecting useful background videos is

ore involved than searching for positive videos. Simply adding

ideos from unrelated categories does not help since such videos

re visually dissimilar to those in the positive set. The best back-

round videos are those that share the context of a given action

i.e., include similar scenes, actors and objects) without actually

howing instances of the given action being performed. For in-

tance, for the ‘PlayingPiano’ class, a video showing a piano in

hich the piano is not being played is a valid background video.

t is also important that background videos for one action class do

ot contain positive instances of other actions. Therefore, for this

ask we grouped all action types into super classes. Several actions

ccur in similar settings: e.g., ‘BalanceBeam’, ‘FloorGymnastics’,

ParallelBars’, etc. are all likely to occur indoors in Olympic gym-

astic venues; whereas ‘HammerThrow’, ‘HighJump’, ‘HighJump’, 

tc., occur outdoors in track and field arenas. To find such videos,

e supplemented the search with the following queries which re-

ulted in background videos without any instance of that action: 

https://developers.google.com/youtube/v3/
https://developers.google.com/youtube/v3/guides/searching_by_topic
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6 BaseballPitch (07), BasketballDunk (09), Billiards (12), CleanAndJerk (21), Cliff- 

Diving (22), CricketBowling (23), CricketShot (24), Diving (26), FrisbeeCatch (31), 

GolfSwing (33), HammerThrow (36), HighJump (40), JavelinThrow (45), LongJump 

(51), PoleVault (68), Shotput (79), SoccerPenalty (85), TennisSwing (92), ThrowDis- 

cus (93), VolleyballSpiking (97). 
• X + ‘for sale’ : for actions that involve an instrument, e.g., piano

for sale (‘PlayingPiano’), yoyo for sale (‘YoYo’). 
• X + venue : for actions that involve a particular location or

venue, e.g. baseball stadium or Coors Field (‘BaseballPitch’),

climbing tower (‘RockClimbing’), bathroom (‘BrushingTeeth’). 
• Co-occurring events : for sports related actions, e.g., cheer lead-

ing or dance, e.g., waist twirling dance -hoop -contra (‘Hula-

Hoop’). 
• X + brands : for actions involving branded objects e.g., L’oreal

eye makeup (‘ApplyEyeMakeup’). 
• X + ‘drill’ or ‘workout’ : for some sports actions, e.g., shotput

drill (‘ShotPut’). 
• X + ‘review’ or ‘how to choose’ : for products, e.g., lipstick

overview (‘ApplyLipstick’). 
• General Freebase topics : excluding class names e.g., circus

gymnastics (‘StillRings’), computer (‘Typing’), macramé (‘Knit-

ting’). 
• Object names : for actions involving object e.g., ‘piano -playing’

(‘PlayingPiano’), bat (‘CricketShot’). 
• Different object / action combination : mechanical bull ride

(‘PommelHorse’), Invisible drum (‘PlayingTabla’), running with

dog (‘WalkingDog’), yoga standing pose (‘Lunges’). 

The video collection procedure builds lists of putative positive

and background videos for each action class. The YouTube id, chan-

nel id , and title of each video are saved in the list. Next, the videos

go through an annotation stage, followed by downloading and final

verification. 

4.2. Annotation and verification procedure 

The video collection procedure provides a set of potential posi-

tive and background videos for each of the 101 action classes. For

positive videos, the annotators were asked to first go through the

videos of a particular action class in UCF101, and then annotate the

videos from the list as either positive or irrelevant . The videos for a

particular action were presented to the annotator in a batch of four

(for User Interface efficiency reasons), which were played simulta-

neously from YouTube. As soon as the annotator found a positive

and valid instance of the action class being annotated, s/he marked

it as positive. A video may contain an instance of an action, but

was marked as irrelevant if it satisfied any of the following crite-

ria: 

• Slow Motion : The video contains action that has been per-

formed in slow motion or in an unrealistic way, and looks dif-

ferent from the instances of an action class in UCF101 dataset. 
• Sped Up : The action is being performed faster than usual. 
• Occlusions / Partial Visibility : There is text or any other object

significantly occluding the actor. 
• Motion Blur : Video is blurry or camera is shaking to the extent

that the action cannot be seen properly. 
• Clutter / Incorrect Background : Action is performed in an en-

vironment where it is partially visible e.g., a ‘GolfSwing’ action

recorded from a camera directly behind the audience, therefore

they are blocking the field-of-view, or if it has an atypical back-

drop, e.g., somebody performing ‘PushUps’ on the moon. 
• Unrealistic Instances : The action does not seem realistic. For

example, an instructional video on how to perform a ‘PushUp’

might have a person performing the action much slower than

usual. The person might also stop half-way while performing

the action to explain, or performs an action in an unusual way,

not seen in the UCF101 dataset. 
• Animation : Any animated examples of the action of interest,

e.g. a character from a video game performing the action or

from a cartoon, etc. 
• Fake Action : The action does not seem realistic or is poorly

performed. 
• Long Video : Video is longer than 10 minutes. 
• Compilation : Video is compiled using multiple videos. 
• Slide Show of Images : The video contains a slide show of im-

ages, but no video of the action of interest. 
• First Person Video : The video is recorded from an egocentric

perspective by the same person who is performing the action

i.e. actions viewed from a wearable camera. 
• Not Related : The video neither contains any instance of the ac-

tion of interest nor the background for that action. 

The positive videos are also annotated with secondary actions,

nes which occur or co-occur with the primary action in a video.

ome of the actions are subset of others, for instance, ‘Basketball-

unk’ implies ‘Basketball’, ‘HorseRace’ implies ‘HorseRiding’, and

CliffDiving’ implies ‘Diving’. Similarly, there are several actions that

re usually proximal in time, such as ‘CricketBowling’ and ‘Cricket-

hot’, as well as videos involving playing of musical instruments

hat can have multiple secondary actions. In contrast to positive

ideos, the task of annotating background videos is somewhat

ore difficult as each background should not contain instances of

ny of the 101 action classes. To achieve this, each annotator was

sked to review at most 34 actions at a time, and ensure none

f those occurred in the background video being annotated. Thus,

ach background video was annotated by three different annota-

ors for three distinct subsets of 101 action classes. Once the anno-

ation is finished for positive and background videos, all of them

re verified by a different set of annotators both for consistency

nd accuracy. 

.3. Temporal annotations 

Action boundaries (unlike objects) are generally vague and sub-

ective. This makes the evaluation less concrete as human experts

efine the action boundaries differently from each other. The same

s true for different methods whose output can vary among each

ther. However, we observed that the 101 action classes can be

ivided into two categories: the instantaneous actions which have

hort time span and can be well-localized in time e.g., ‘Basketball-

unk’, ‘GolfSwing’; and cyclic actions that are repetitive in nature,

.g. ‘Biking’, ‘HairCut’, ‘PlayingGuitar’. To select the action classes

or the temporal detection task, we handpicked the instantaneous

nes 6 with well-defined temporal boundaries (c.f. Appendix A ). 

Besides only focusing on instantaneous actions for the temporal

etection, we also take additional measures to ensure that evalu-

tion for this task is objective. First, we annotated action intervals

onsistently with the temporal segmentation of corresponding ac-

ions in the UCF101 dataset. Second, we also marked some action

nstances as ambiguous in cases of partial visibility, incomplete ex-

cution or strong deviation in the style. Third, we use a liberal

ntersection-Over-Union threshold (small, 10%) to quantify the per-

ormance on this task, since actual actions are only a small fraction

f the entire videos. Lastly, we ensured that evaluation at multiple

OU thresholds keeps the rankings unaffected. 

For the 20 instantaneous actions selected for the task of

emporal detection, we annotated their temporal boundaries in

ntrimmed videos. Each instance of these action classes is anno-

ated with the start and end time in all videos in the Validation

nd Test sets. The labels include any of the 20 actions or ‘ambigu-

us’ . To ensure consistency, the annotation has been made by one
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Fig. 3. Illustration of temporal annotation (shown in blue) for eight video samples from the Validation set of THUMOS’15 dataset. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Histogram of video lengths in THUMOS’15 (a) Background, (b) Validation 

and (c) Test set, respectively. We excluded videos from the Validation set which 

were over 250 s long. 

(  

fi  

a  

d

nnotator in two passes over the data, and then verified by another

nnotator. The annotation has been performed using the Viper 7 

ool. Action annotation for a few example videos is illustrated in

ig. 3 . In these and other examples each video typically contains

nstances of one action category only. Exceptions include ‘Cricket-

owling’ and ‘CricketShot’ actions which often co-occur within the

ame video. 

.4. Attributes 

Besides the video and clip level annotations provided with the

HUMOS dataset, we also provided semantic relationships between

he 101 action classes and several attributes. Each action class is

ssociated with one or more of these attributes, as summarized

n Table 2 . Although video-level annotations for the attributes are

ot provided, such semantic knowledge can be incorporated while

raining and testing action categories. 

.5. Dataset statistics 

We summarize the statistics of THUMOS’15 benchmark dataset

elow: 

• Validation set: 2104 untrimmed videos with temporal annota-

tions of actions. This set contains on average 20 videos for each

of the 101 classes found in the UCF101 dataset. 
• Background set: 2980 relevant videos that are guaranteed not

to contain any instances of the 101 actions. 
• Test set: 5613 untrimmed videos with temporal annotations for

20 classes. 

The THUMOS’15, which is an extension of THUMOS’14 dataset,

as designed to provide a realistic action recognition scenario.

nlike UCF101 ( Soomro et al., 2012 ), the videos in the set were

ot temporally segmented to contain only the actions of interest.

herefore, in most of the videos the action only takes a small

ercentage of time when compared to the length of the video in

hich it occurs (see Fig. 4 ) (the only notable exceptions are videos

f cyclic actions). The use of variable length videos, each contain-

ng different numbers of actions of different lengths makes it less

ikely that a system could inadvertently exploit side-information
7 http://viper-toolkit.sourceforge.net/products/gt/ 

 

t  

a  
 Satkin and Hebert, 2010 ), such as action length during the classi-

cation task. The mean clip length for UCF101 is 7.21 s, which is

bout 80% more than the average action length in the THUMOS’15

ataset. 

Statistics of the temporal annotation for the 20 action classes in

he Validation set is presented in Table 3 . As can be seen, the aver-

ge length of such actions is ∼4.6 s while their temporal intervals

http://viper-toolkit.sourceforge.net/products/gt/
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Table 2 

Attributes for the 101 action classes. 

Body motion Body parts visible Object Indoor 

Flipping Head Closeup Ball Like Pool 

Walking Face Closeup Big Ball Like Office 

Running Upper Body Stick Like Court 

Riding Lower Body Rope Like Gym 

Up down Full Body Sharp Home 

Pulling One Hand Circular Track 

Lifting Two Hands Cylinderical 

Pushing One Musical Instrument Outdoor 

Diving Two Portable Musical Instrument Grass 

Jumping Up Many Water 

Jumping Forward Animal Ocean/Lake 

Jumping Over Obstacle Body Parts Used Boat Like Court 

Head Sky 

Spinning Hands Posture Street/Road 

Climbing Up Arms Sitting Track 

Horizontal Legs Sitting In Front Of Table Like Object 

Vertical Up Foot 

Vertical Down Standing 

Bending Lying 

Handstand 

Body Part Articulation-Arm 

One Arm Motion Two Arms Bent Legs Open To The Side Facing Down 

Two Arms Motion One Arm Stretched One Leg Bent Facing Up 

Synchronized Arm Motion Two Arms Stretched Two Legs Bent Facing Front 

Alternate Arm Motion One Arm Swinging One Leg Stretched Facing Sideways 

One Arm Raised Over Head Two Arms Swinging Two Legs Stretched Straight Position 

Two Arms Raised Over Head Synchronized Leg Motion Throw Release Motion Tilted Position 

One Arm Raised Chest Level Alternate Leg Motion Synchronized Hand Motion Down Forward Motion 

Two Arms Raised Chest Level Fold Unfold Motion One Hand Closed Twist Motion 

One Arm Open To The Side Up Down Motion Two Hands Closed Bent Position 

Two Arms Open To The Side Up Forward Motion One Hand Grab Straight Up Position 

One Arm Down Side Stretch Motion Two Hands Grab Touching Ground 

Two Arms Down One Leg Raise One Hand Open In Air 

One Arm Bent Two Legs Raise Two Hands Open 
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occupy ∼28% of corresponding videos. The relatively large number

of action instances and the low ratio of action length indicate the

difficulty of the THUMOS temporal detection task. 

5. Submission and evaluation 

5.1. Action recognition 

For action recognition, each system is expected to output a real-

valued score indicating the confidence of the predicted presence

in a video. Due to the untrimmed nature of the videos, a signifi-

cant part of a test video may not include any particular action, and

multiple instances may occur at different time-stam ps within the

video. Similarly, the video may not contain any of the actions, for

which the expected confidence for each action is zero. 

Each team was allowed to submit the results of at most five

runs. The run with the best performance is selected as the primary

run of the submission and is used to rank the teams. Each run has

to be saved in a separate text file with 102 columns, where the

first column contains the name of the test video, and rest of the

columns contain confidences for the 101 actions. Essentially, each

row shows the results of one test video, and each column contains

the confidence score of presence of the corresponding action class

anywhere in the video. The confidence scores must be between 0

and 1. A larger confidence value indicates greater confidence to de-

tect the action of interest in a test video. 

We use Interpolated Average Precision (AP) as the official

measure for evaluating the results on each action class. Given a
escending-score-rank of videos for the test action class c, the

P(c) is computed as: 

P (c) = 

∑ n 
k =1 ( Prec (k ) × rel (k )) 

∑ n 
k =1 rel ( k ) 

, (1)

here n is the total number videos, Prec( k ) is the precision at cut-

ff k of the list, rel( k ) is an indicator function equaling to 1 if the

ideo ranked k is a true positive, and to zero otherwise. The de-

ominator is the total number of true positives in the list. Mean

verage Precision (mAP) is then used to evaluate the performance

f one run over all action classes. 

.2. Temporal detection 

Temporal detection is evaluated for twenty classes of instanta-

eous actions 6 in all test videos. The system is expected to output

 real-valued score indicating the confidence of the prediction, as

ell as the starting and ending time for the given action. For this

ask, each team is allowed to submit at most 5 runs. The run with

he best performance is selected as the primary run of the sub-

ission and is used to rank across teams. Each run must be saved

n a separate text file with the following format, where each row

epresents one detection output by the system: 

video name] [starting time] [ending time] [class label] 

confidence score] 

Each row has five fields representing a single detection. A de-

ector can fire multiple times in a test video (reported using mul-

iple rows in the submission file). The time must be in seconds
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ith one decimal point precision. The confidence score should be

etween 0 and 1. 

For evaluation, detected time intervals of a given class are

orted in the order of decreasing detector confidence and matched

o ground truth intervals using Intersection over Union (IoU, also

nown as Jaccard) similarity measure. Detections with IoU above

 given threshold are declared as true positives. To penalize mul-

iple detections of the same action, at most one detection is as-

igned to each annotated action and the remaining detections are

eclared as false positives. Annotations with no matching detec-

ions are declared as false negatives. Given labels and confidence

alues for detections, the detector performance for an action class

s evaluated by Average Precision (AP). The mean AP value for

wenty action classes (mAP) provides the final performance mea-

ure for a method. To account for somewhat subjective definition

f action boundaries, the evaluation is reported for different values

f IoU threshold (10%, 20%, 30%, 40%, and 50%). Action intervals

arked as ambiguous are excluded from the evaluation, hence, all

etections having non-zero overlap with ambiguous intervals are

gnored. 

. Methods 

This section presents methods used by participants for both

asks at the THUMOS’15 challenge. A comprehensive survey of

echniques and their evolution across years is beyond the scope of

his paper, and will be made after several more challenges in the

uture. 

.1. Classification 

In this subsection we briefly summarize the classification meth-

ds of the 11 teams. Table 4 summarizes the major feature extrac-

ion and fusion methods. Most teams adopted two kinds of fea-

ures, deep learning based features and the improved Dense Tra-

ectories (iDT) ( Wang and Schmid, 2013 ). 

Deep learning features extracted by Convolutional Neural Net-

orks (CNN) have been popular in many visual recognition tasks.

y considering different network architectures and feature pool-

ng methods, the resulting CNN features may vary greatly. For

etwork architectures, VGGNet ( Simonyan and Zisserman, 2014b ),

oogleNet ( Szegedy et al., 2015 ), ClarifaiNet ( Zeiler and Fergus,

014 ) and 3D ConvNets (C3D) ( Tran et al., 2015 ) were used. In

articular, VGGNet was used by most teams, and GoogleNet was

sed by three teams (UTS&CMU, CUHK&SIAT, UvA). Each of the re-

aining two networks was used by only one team (CUHK&SIAT

sed ClarifaiNet, and MSM used C3D), which are therefore ex-

luded from the table due to space limitations. In addition, the re-

ent two-stream CNN approach ( Simonyan and Zisserman, 2014a ),

hich explores both spatial stream (static frames) and temporal

tream (optical flows), was adopted by the CUHK&SIAT team. 

For the CNN based models, typically the outputs of 6th, 7th

r 8th fully connected layers (FC6, FC7, FC8) are used as features.

 few teams also explored a recent method called latent concept

escriptors (LCD) ( Xu et al., 2015a ). In addition, as the CNN fea-

ures are computed on video frames, a pooling scheme is needed

o convert the frame-level feature into a video-level representa-

ion. For this, most teams adopted the Vectors of Locally Aggre-

ated Descriptors (VLAD) ( Jégou et al., 2010 ) and the conventional

ean/max pooling. 

The iDT is probably the most powerful hand-crafted feature for

ideo classification. It extracts four kinds of features, i.e., trajectory

hape, HOG, HOF and MBH, on the spatial-temporal volumes along

he extracted dense trajectories. The features are encoded with the

isher Vector (FV) ( Sánchez et al., 2013 ) to generate a video level

epresentation. The UTS&CMU team used a variant of iDT, called
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nhanced iDT ( Lan et al., 2015 ). The UTS&CMU and the MSM teams

lso used auditory features MFCC and ASR. 

For classification, all of the teams adopted SVM as the classi-

er. In addition, the USC&Tsinghua team adopted kernel ridge re-

ression (KRR) ( Yu et al., 2014 ) as an alternative classifier. While

he classifiers are consistent across the teams, the fusion method

aries. As shown in the table, average fusion is the most popular

ption due to its simplicity and good generalizability, but there are

ther strategies like weighted fusion, logistic regression fusion, ge-

metric mean fusion, etc. 

.2. Temporal detection 

This section summarizes the methods used for temporal de-

ection of actions in testing videos. For the THUMOS’15 challenge,

e received 5 runs from only one team. The team consists of re-

earchers from Advanced Digital Sciences Center (ADSC), National

niversity of Singapore (NUS), and University of Illinois Urbana-

hampaign (UIUC). The temporal detection task attracted fewer

articipants compared to the classification task due to its higher

omputational requirements. Furthermore, temporal detection is a

ew problem that was introduced recently in THUMOS. With very

ew research efforts related to temporal detection in the past, we

elieve it will gain interest of the wider community resulting in

ncreased participation in the future. 

The runs from ADSC, NUS and UIUC were obtained using

he following pipeline: First, the Improved Dense Trajectory (iDT)

 Wang and Schmid, 2013 ) features are extracted throughout the

ideo. For forming the Gaussian Mixture Model dictionary, only

eatures from UCF101 are used. The video segments are encoded

sing Improved Fisher Vectors. The FVs were not normalized to

aintain additivity of Fisher Vectors. Besides the motion fea-

ures, scene features were extracted from VGG-19 deep net model

 Chatfield et al., 2014 ). In particular, features were made from the

ast 4096-d rectified linear layer. 

Since different actions have different lengths, the team used a

yramid of score distributions as features. For each frame, they

sed nine windows of 10, 20, . . . , 90 frames around it. The hypoth-

sis was that the scores at the correct window length should be

ighest, and should vary smoothly for neighboring temporal res-

lutions. Next, the FV in each window are normalized to obtain

mproved FV. This yields 9 × 101 scores, which are concatenated

o form a feature vector. The action confidences are then computed

sing a 21-class SVM (20 actions, 1 background). Afterwards, they

se median filtering on output labels for smoothness. 

. Results 

In this section, we present results and analysis of the ap-

roaches from the THUMOS’15 challenge presented in the previous

ection. 

.1. Classification 

In this subsection, we summarize and discuss the results of the

lassification task. We received 47 submissions from the 11 teams.

able 5 shows the overall results of all the submissions, measured

y mAP. The best mAP from each team is highlighted in bold. The

eams are sorted based on their highest mAP. 

As discussed earlier, most of the approaches adopted two kinds

f features: iDT features and deep learning features. iDT features

ere used by all the top-10 teams, and deep learning features were

sed by all the teams. Based on the results, we make the follow-

ng observations: 1) The LCD coding with the VLAD representation

 Xu et al., 2015a ) is very effective; 2) fine-tuning the CNN models
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Table 5 

Classification Results measured by mAP (%). Each team could submit up to five runs. The teams are sorted 

based on their highest mAP. 

Rank Team Run1 Run2 Run3 Run4 Run5 

1 UTS & CMU ( Xu et al., 2015b ) 0 .7384 0 .7157 0 .7011 0 .6913 0 .647 

2 MSR Asia (MSM) ( Qiu et al., 2015 ) 0 .6861 0 .6869 0 .6878 0 .6886 0 .6897 

3 Zhejiang U. ( Ning and Wu, 2015 ) 0 .6876 0 .6643 0 .6859 0 .6809 0 .5625 

4 INRIA LEAR ( Peng and Schmid, 2015 ) 0 .6814 0 .6811 0 .5395 0 .6739 0 .6793 

5 CUHK & SIAT ( Wang et al., 2015 ) 0 .4894 0 .5746 0 .6803 0 .6576 0 .6604 

6 U. Amsterdam ( Jain et al., 2015 ) 0 .6798 NA NA NA NA 

7 Tianjin U. ( Liu et al., 2015 ) 0 .6666 0 .6551 0 .6324 0 .5514 0 .5357 

8 USC & THU ( Gan et al., 2015 ) 0 .6354 0 .6398 0 .6346 0 .5639 0 .6357 

9 U. of Tokyo ( Ohnishi and Harada, 2015 ) 0 .6159 0 .6172 0 .6174 0 .6087 0 .4986 

10 ADSC, NUS & UIUC ( Yuan et al., 2015 ) 0 .4471 0 .3451 0 .4 84 9 0 .4869 0 .3466 

11 UTSA ( Cai and Tian, 2015 ) 0 .3981 NA NA NA NA 

Fig. 5. Per-action results, measured by AP: The bars depict the AP for each action, and the curve represents the results of all the actions sorted in decreasing AP values. For 

each action, we report the average AP from all the submissions. 
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an bring further improvements; and 3) some specially designed

etwork structures for video analysis are helpful, e.g., the two-

tream CNN ( Simonyan and Zisserman, 2014a ). Furthermore, the

esults also indicate that multi-modal fusion with audio clues can

onsistently improve the results. 

.1.1. Per-action results 

Fig. 5 shows the results of each action class, where the bars

epict the AP of each action and the curve represents the results

f all the actions sorted in decreasing AP values. For each action,

he result is obtained by averaging the results of all the submis-

ions. We can see that the AP varies significantly across different

ctions, from the lowest value of 19.8% to the highest of 96.4%. The

urve of sorted AP fits well with a straight line, which indicates

hat the numbers of actions that are easy/hard to be distinguished

re evenly distributed. The mAP over all the action classes is 61.3%,
hich reflects an average level of recognition capability of all the

eams. 

While the results are promising in general, there is still room

or improvement. Table 6 lists the action classes which are easy or

ard to be recognized. Some classes like ‘Bowling’ and ‘Surfing’ are

asy but there are many difficult ones that can confuse the classi-

er. For example, ‘BlowDryHair’ is visually very similar to ‘Haircut’.

ore advanced techniques are needed to distinguish these classes.

Fig. 6 further shows the precision-recall curves. We plot the

urves for a few classes with high (‘Bowling’, ‘Surfing’), medium

‘CricketBowling’, ‘PlayingGuitar’) and low (‘BlowDryHair’, ‘Haircut’) 

P numbers. The team names in the legend of each figure are

orted by their AP values. Overall, the classes with higher accu-

acies tend to contain more unique/representative objects/scenes,

hile some difficult classes often share similar visual contents that

re hard to be separated using state-of-the-art features (e.g., the

lasses ‘BlowDryHair’ and ‘Haircut’). 
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Fig. 6. Precision-recall curves of a few classes with high (‘Bowling’, ‘Surfing’), medium (‘CricketBowling’, ‘PlayingGuitar’) and low (‘BlowDryHair’, ‘Haircut’) AP values. 
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Fig. 7. Video frames for class ‘Bowling’: First row: top-5 positive videos. Second row: bottom-5 positive videos. Third row: top-5 negative videos. Prediction scores are shown 

on the frames. 

Fig. 8. Video frames for class ‘Surfing’: First row: top-5 positive videos. Second row: bottom-5 positive videos. Third row: top-5 negative videos. Prediction scores are shown 

on the frames. 

Table 6 

The top 10 easy and difficult classes in THUMOS’15. 

Easy classes AP Difficult classes AP 

SkyDiving 0 .964 Punch 0 .198 

PommelHorse 0 .955 ShotPut 0 .216 

Rowing 0 .933 Lunges 0 .252 

Skiing 0 .925 BrushingTeeth 0 .265 

BalanceBeam 0 .905 BreastStroke 0 .273 

Rafting 0 .902 MoppingFloor 0 .286 

Surfing 0 .881 Haircut 0 .290 

FloorGymnastics 0 .875 Hammering 0 .315 

Drumming 0 .873 PushUps 0 .331 

Bowling 0 .872 BlowDryHair 0 .347 

 

F  

s  

T  

t  

t  

n  

f  

v  

f  

t  

u  

(  

b  

c  

n

7

 

w  

i  

s  
We also provide several representative frames from videos in

igs. 7–12 , respectively for the classes with precision-recall curves

hown in Fig. 6 . The frames are selected based on the best run in

HUMOS’15 (from the UTS&CMU team). For each class, we show
he top-5 positive videos found by the best run in the first row,

he bottom-5 positive videos in the second row, and the top-5

egative videos (false alarms) in the third row. As can be seen

rom the figures, the top ranked negative samples are all visually

ery similar to the positive ones, which demand more advanced

eatures and classifiers to be correctly separated. We also observe

hat, for many classes that are easier to be recognized, they contain

nique background scene settings. While for the difficult classes

e.g., ‘BlowDryHair’), the actions may happen under different scene

ackgrounds. This indicates that current algorithms may signifi-

antly be relying on background scenes to support action recog-

ition, not just focusing on the actions themselves. 

.1.2. Impact of background videos 

We also evaluate the impact of background videos in Fig. 13

hich shows AP per-action with and without background videos

n the test set. In this figure, the blue histogram represents the re-

ults without background videos and the red histogram represents
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Fig. 9. Video frames for class ‘CricketBowling’: First row: top-5 positive videos. Second row: bottom-5 positive videos. Third row: top-5 negative videos. Prediction scores 

are shown on the frames. 

Fig. 10. Video frames for class ‘PlayingGuitar’: First row: top-5 positive videos. Second row: bottom-5 positive videos. Third row: top-5 negative videos. Prediction scores are 

shown on the frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

1  

i  

d  

w  

f  

m  

t  

d  

t  

p  

p  

m  

i  

c  

t  

o

the official results with the background videos. Overall, the mAP

after excluding the background videos is 76.3%, which is 15% higher

than the results with the background videos (61.3%). This indi-

cates that background videos have critical influence on the per-

formance, which is easy to understand. Some classes like ‘Fris-

beeCatch’, ‘WalkingWithDog’ and ‘BlowDryHair’ show significant

performance degradation. The main reason is that the background

videos contain samples that are visually (but not semantically)

similar to these classes. Adding more negative samples during

model training might be helpful for these classes. It would be in-

teresting to study this in the future. 

7.2. Temporal detection 

The results for the temporal detection task for THUMOS’15 are

presented in Table 7 . In this table, the mAP is computed at over-

laps of 10%, 20%, 30%, 40% and 50%. Run1 from ADSC, NUS and

UIUC has the best results compared to the other four runs, with
AP of ∼41% at an overlap of 10%. The difference between Run

 and Runs 2–5 is the use of context features. Run 1 only uses

DT features, while others fuse appearance and scene features from

eep networks. This is contradictory to the classification results,

here fusion with appearance features in general, and features

rom deep networks, in particular, result in significant improve-

ent in performance. However, due to the nature of temporal de-

ection task, the appearance of scene features cause a significant

rop in performance. This is because for detection, it is impor-

ant that the algorithm correctly detects the action, and does not

roduce false alarms on the rest of the positive videos. The ap-

earance features reduce the discrimination between action seg-

ents and background within positive videos, and therefore result

n drop in performance. Furthermore, ADSC, NUS and UIUC con-

luded that it is important to use multiple temporal scales while

emporally localizing the actions. Using just a single scale (instead

f 9) results in ∼30% drop in performance. 
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Fig. 11. Video frames for class ‘BlowDryHair’: First row: top-5 positive videos. Second row: bottom-5 positive videos. Third row: top-5 negative videos. Prediction scores are 

shown on the frames. 

Fig. 12. Video frames for class ‘Haircut’: First row: top-5 positive videos. Second row: bottom-5 positive videos. Third row: top-5 negative videos. Prediction scores are 

shown on the frames. 

Fig. 13. Effect of background videos: Blue histogram represents results without the background videos, and red histogram plots results including the background videos. 

Results are sorted based on the former. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 7 

Temporal Detection results measured by mAP (%). Each team can submit up to five runs. The percentages cor- 

respond to different values of overlaps. 

Rank Team-Run / Overlap 10% 20% 30% 40% 50% 

1 ADSC, NUS & UIUC - Run1 ( Yuan et al., 2015 ) 0 .4086 0 .3629 0 .3076 0 .2351 0 .1830 

1 ADSC, NUS & UIUC - Run2 ( Yuan et al., 2015 ) 0 .1611 0 .1349 0 .1072 0 .0830 0 .0562 

1 ADSC, NUS & UIUC - Run3 ( Yuan et al., 2015 ) 0 .1577 0 .1346 0 .1117 0 .0882 0 .0652 

1 ADSC, NUS & UIUC - Run4 ( Yuan et al., 2015 ) 0 .1386 0 .1154 0 .0939 0 .0728 0 .0510 

1 ADSC, NUS & UIUC - Run5 ( Yuan et al., 2015 ) 0 .1413 0 .1180 0 .0980 0 .0773 0 .0552 

Fig. 14. Per-Action Average Precision using ADSC, NUS and UIUC - Run1 on the 20 classes used for the temporal detection task. 
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Fig. 14 shows the per-action performance on the 20 classes.

The action classes with high performance include ‘HammerThrow’,

‘LongJump’, and ‘ThrowDiscus’, whereas the classes with low per-

formance include ‘Billiards’, ‘ShotPut’ and ‘TennisSwing’. ‘Golf-

Swing’ and ‘VolleyballSpiking’ have the worse results of all. The

results are correlated with the length of the actions, with short

and swift actions such as ‘GolfSwing’ being the most difficult to

localize. 

8. Action recognition in untrimmed videos 

The past few decades of research on action recognition has pri-

marily focused on trimmed videos that only contained an action of

interest in each video. The lack of a dataset for untrimmed videos

and preference of classification over detection task deviated the re-

search on action recognition to focus on pre-segmented trimmed

videos. Nevertheless, there have been a few approaches developed

for classification ( Bojanowski et al., 2014; Duchenne et al., 2009;

Karpathy et al., 2014; Niebles et al., 2010; Raptis and Sigal, 2013;

Tang et al., 2012 ) and localization ( Hoai et al., 2011; Ke et al.,

20 05; 20 07; Pirsiavash and Ramanan, 2014; Tian et al., 2013; Yuan

et al., 2009 ) in untrimmed videos. However, the lack of a large-

scale benchmark dataset of untrimmed videos was a pressing need

that was first fulfilled in 2014 with the release of THUMOS’14. In

this section, we investigate classification performance of state-of-

the-art action representations and learning methods in untrimmed

setups where target actions occupy a relatively small part of longer

videos. In particular, we explore the following questions: 

• What are the important differences between trimmed and

untrimmed videos for action recognition? 
• How well methods designed for trimmed videos perform on

untrimmed videos? 
• What are the different approaches to represent content and

context for action recognition in untrimmed videos? 

Since we aim to study the role of actions (content) and back-

ground (context) in untrimmed videos - which requires temporal

annotations - we perform experiments on the 20 action classes

with manually annotated action intervals (see Section 4 ). Recall
hat the THUMOS’15 Validation set was formed by merging THU-

OS’14 Validation and Test sets, and we collected a new Test

et for THUMOS’15. For all the experiments in this section, we

sed THUMOS’14 Validation Set and/or THUMOS’14 Training Set

UCF101) for training, and the THUMOS’14 Test set for testing. 

.1. Representations 

To systematically investigate the role of context or background,

e construct several representations simulating different amounts

f trimming around the action instances (content). These represen-

ations are illustrated in Fig. 15 and are described below: 

R1 - Global: In the global representation, we extract action de-

criptor from the full video without using any knowledge about

he ground truth action intervals. This is the most straightforward

pplication of standard techniques to untrimmed settings. 

R2 - Content Only: Here we assume all action boundaries

o be known and extract one descriptor for each action interval.

his setup resembles the majority of common action methods and

atasets with trimmed action boundaries. 

R3 - Context Only: Video intervals outside action boundaries

ften correlate with temporally close actions and can provide con-

extual cues for action recognition. For example, tennis swing ac-

ion co-occurs with running and typically appears on tennis courts.

o investigate the effect of contextual cues, we extract descriptors

rom an entire video excluding action intervals. 

R4 - Sliding Window: Here we do not use any knowledge about

ction boundaries and assume actions occupy compact temporal

indows. We model the uncertainty in temporal position of an ac-

ion and compute descriptors for overlapping windows of length

 s using temporal stride of 2 s. 

R5 - Loose crop: This setup is derived from the Content Only

epresentation by gradually extending the initial action interval

nto background. We extend initial action boundaries by 1, 3, and

 s before and after the action. Note that the extension of temporal

oundaries to the full video is equivalent to the Global representa-

ion above. 

R6 - Content & Context Modeling: Given a mechanism that

an separate content from context, this representation aims to

nderstand if there is any benefit in modeling them separately.
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Fig. 15. Video representations for action recognition in untrimmed videos. Here, red represents a positive action instance in the video whereas blue indicates the background 

portion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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herefore, we combine Content Only and Context Only representa-

ions by concatenating representations computed from action in-

ervals and the temporal background. 

.2. Features 

Local video features are a standard choice for action represen-

ation. We adopt common, standard, and well performing features,

n particular Improved Dense Trajectory Features (IDTF) ( Wang and

chmid, 2013 ), to focus on experiments on various representations

nd methods. Following Wang and Schmid (2013) , we use HOF and

BH features based on optical flow to capture the motion infor-

ation in the video. We also use HOG features based on the ori-

ntation of spatial image gradients to captures static information

n the scene. All descriptors are computed in space-time volumes

long 15-frames long point tracks, hence, they capture information

n motion-aligned local neighborhood of a video. 

To aggregate local features into video descriptors we use Fisher

ector encoding (FV) ( Perronnin et al., 2010 ). FV has been shown

o consistently outperform histogram-based bag-of-feature aggre-

ation techniques ( Oneata et al., 2013 ). We use Gaussian Mixture

odel with K = 256 learned separately for each type of local fea-

ure, after reducing the dimensionality of HOG, HOF and MPH us-

ng PCA. 

Since computing features is the most expensive step to repre-

ent video intervals with different tem poral locations and tempo-

al extents, we compute FVs for consequent chunks of 10 frames
f a video without FV normalization independently for HOG, HOF

nd MBH. To obtain a FV descriptor for a given video interval, we

sed the additivity property of Fisher Vectors ( Oneata et al., 2014 )

y taking weighted sum of FVs corresponding to 10-frames chunks

ollowed by L2 normalization. Thus, this approach allowed us to

void re-computation of features for generating different represen-

ations as required by our setup. 

.3. Experimental results 

In this subsection, we report results and analysis of our

xperiments on action classification and temporal detection in

ntrimmed videos. We also investigate the role context plays in

etecting actions in untrimmed videos. Context refers to the back-

round portion of a positive video which does not contain any in-

tance of the labeled action (R3). We evaluate the different rep-

esentations in Section 8.1 to convert the localized (e.g., frame-

evel) annotations into video-level action labels: Global, Content

nly, Context Only, Sliding window, Loose Crop, and Content & Con-

ext modeling . 

.3.1. Action classification in untrimmed videos 

We investigate the first five representations R1–R5 at test time

nd report action classification results. For training, we assume

 fully-supervised setup with known action intervals. We use

rimmed videos from the THUMOS’14 Training Set (UCF101) and

nnotated action instances from the THUMOS’14 Validation Set as
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Fig. 16. Classification Performance: This graph shows the results when training is performed on UCF-101 and trimmed action instances of the THUMOS’14 Validation subset, 

and testing is performed on THUMOS’14 Test set using representations R1 to R5. Sliding Window with both average and max pooling is reported in this graph. 

Table 8 

Comparison of the various training and aggregation representations. The 

mean average precision (mAP) presented is obtained after re-balancing, 

where we ensure that number of testing instances is identical for all the 

five cases. This is achieved through repeating each video proportional to 

the number of action instances contained within that video. 

Training setup Testing representation mAP 

Context Only (R3) Global (R1) 0 .46 

Content Only (R2) Global (R1) 0 .68 

Content Only (R2) Content Only (R2) 0 .72 

Content Only (R2) Sliding Window (average pooling) (R4) 0 .77 

Content Only (R2) Sliding Window (max pooling) (R4) 0 .78 
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positive samples for a particular action class, i.e., one descriptor

per positive instance. For negative samples, we generate a single

descriptor from each background video in THUMOS’14 Validation

Set, and one descriptor per sliding window from the background

portion of positive videos ( Context Only ). We learn one-vs-rest clas-

sifiers for all action classes, where the negative samples include

positive instances from the other classes in addition to background

samples. Table 8 summarizes the results of the video-level classi-

fication task. For each case, we report the mean average precision,

reweighted by the number of instances in each test set. This makes

the number of test instances identical for all cases and enables di-

rect comparison between them. We make several observations: 

• The Global case in the second row corresponds to the real-

world deployment of a traditional action recognizer, which is

trained on trimmed data ( Content Only ) and tested on features

aggregated over an entire untrimmed test video. However, com-

paring this to Context Only in the first row is heartening: we

confirm that the method is strongly influenced by the frames

containing the action of interest (rather than context alone).

Removing the action frames drops mAP from 0.68 to 0.46 for

IDTF. 
• The Content Only in the third row corresponds to the (artificial)

scenario, where the action of interest is manually segmented

from the untrimmed video, enabling each representation to be

aggregated only over relevant frames. As expected, mAP im-

proves from 0.68 to 0.72. 
• The Sliding Window scenario is a systematic way (though com-

putationally expensive) way to deploy an action recognizer

trained on trimmed data on untrimmed videos. We see that it

performs the best and that the choice of pooling strategy (max

vs. average) has little impact, with max pooling (0.78 mAP) bet-

ter by only 0.01. 

Fig. 16 shows results of these experiments individually for the

20 classes. We also investigate the reason for superior performance
f Sliding Window approach over other cases. In this regard, Fig. 17

hows examples of temporal detection results for several categories

f sample videos. We note that the action of interest (black curve)

ises above the average of responses from other actions (green

urve) when the action is present. This explains why Sliding Win-

ow approaches work well for video-level classification with either

orm of pooling compared to the Global representation. The actions

re usually much shorter than an entire untrimmed video and the

etector gives better performance for those short durations. An-

ther interesting result that highlights the difference between ac-

ion recognition in trimmed and untrimmed videos is Sliding Win-

ow outperforming Content Only testing representation. The is pri-

arily due to the reason that untrimmed videos, and especially

ports videos, usually contain multiple instances of a particular

ction. Then, pooling simply makes results robust by aggregating

cores over multiple instances. A video can get a high score if

ost of the instances in it obtain high scores, thus, average pooling

erves as a regularizer. Similarly, in max pooling, if one instance

btains a high score, then the entire video gets that score and

eaker detections within the video benefit as a consequence. Re-

ember that we evaluate the performance of all methods by first

btaining score at the video level, and then reweigh each video

ith the number of instances within it. 

We also performed experiments for different parameters of Slid-

ng Window (R4) and Loose Crop (R5) with results shown in Table 9 .

or Loose Crop experiments in the first five rows, the performance

f action classification drops as window length is increased around

he action instance. The 120 s loose crop corresponds to the Global

R1) case as can be seen with mAP of 0.68 from Table 8 . The re-

ults for Sliding Window (R4) are shown in the bottom part of

able 9 . The optimal performance is achieved when the window

ength is 4 s and drops when it is either smaller or larger. This is

ecause the average duration of actions for the 20 classes is around

.75 s, and thus the detector output is optimized around this win-

ow length. Nonetheless, the drop in performance is nominal for

onger windows and shows Sliding Window is not sensitive to win-

ow length. 

.3.2. Role of context for classification in untrimmed videos 

Context plays an important role in the ability of the classifiers

o make good predictions. However, context alone is not sufficient

or obtaining good performance. Removing the action of interest

rom training decreases performance from 0.68 mAP to 0.46 mAP

 Table 8 ). The mAP for different runs evaluating the role of con-

ext are summarized in Table 10 , while Fig. 18 shows the same

or the 20 concepts individually. This particular experiment evalu-

tes on Content & Context (R6) representation and thus the training

ata requires untrimmed videos containing action instances. Thus,
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Fig. 17. Examples of temporal detection scores over time: This figure shows four graphs for different actions. The x-axis is time along the video and y-axis shows the detector 

scores. The ground truth is shown at the top in red (action) and blue (background). The black curve is detector score for the ground truth action, whereas green curve shows 

mean of scores from all other detectors. Note that the action of interest rises above the mean response when the action is present, showing why sliding window works well 

for video-level classification (when pooled) as well as temporal detection. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 9 

Video classification with Loose Crop (R5) and Sliding Window (R4): For all experiments we 

train models on UCF101 (1FV per video) + background set (1FV per video) + Validation 

(1FV per GT window, 1FV for each sliding window on the background part). 

Testing representation Window length Pooling mAP 

Loose Crop (R5) (1FV per loose GT window) 0 s loose – 0 .72 

1 s loose – 0 .71 

3 s loose – 0 .69 

7 s loose – 0 .69 

120 s loose – 0 .68 

Sliding Window (R4) (1FV per sliding window) 2 s long Max 0 .76 

2 s long Average 0 .77 

4 s long Max 0 .78 

4 s long Average 0 .77 

7 s long Max 0 .77 

7 s long Average 0 .76 

10 s long Max 0 .76 

10 s long Average 0 .76 

Table 10 

This table shows the experimental results on different approaches to handling context. 

The training is performed using positive videos of THUMOS’14 Validation Set and testing 

is performed on THUMOS’14 Test Set. 

Training setup Testing representations mAP 

1FV per GT win, 1FV for each sliding win on BG Global (R1) 0 .42 

1FV per GT win, 1FV for each sliding win on BG Content only (R2) 0 .45 

1FV per GT win, 1FV for each sliding win on BG Context only (R3) 0 .39 

1FV per GT win + 1FV for BG Content & Context (R6) 0 .49 

Fig. 18. This graph shows average precision (AP) for 20 actions using the THUMOS’14 Validation and Test sets for different combinations of content and context for repre- 

senting the videos. 
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Fig. 19. This figure shows the temporal detection performance on 20 action classes. The blue and red bars represent sliding windows of 2 and 4 s, respectively. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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we cannot use UCF101 since its videos are trimmed (no additional

context), and background videos from THUMOS’14 Validation set

that do not contain content. The training is performed on posi-

tive videos from the THUMOS’14 Validation Set, while testing per-

formed on THUMOS’14 Test Set. 

In Fig. 18 , the blue bars denote the Global descriptor for

untrimmed videos (R1), light-blue shows Context Only (R3), yellow

depicts Content Only (R2) i.e., trimmed actions, while red marks

the results obtained by concatenating descriptors for Content &

Context (R6). The graph reveals an important insight that context

described separately but used in conjunction with content gives

the best performance compared to training using Content Only

(R2). Therefore, gains in performance can be achieved through sep-

arate modeling content and context for action classification. For

this run, we used information about action boundaries during test-

ing. In realistic scenario, this is expected to be obtained with meth-

ods that can generate generic action proposals. 

8.3.3. Temporal detection in untrimmed video 

We also report some results for the task of temporal detection

on 20 action classes. In this case, we use the same training setup

as for action classification using Training and Validation subsets.

At test time we use the classifier in a sliding window manner in

combination with temporal non-maximum suppression to select a

single action interval for each action hypothesis on the THUMOS’14

Test set. Fig. 19 reports AP per class using sliding windows. IDTF

achieves a mAP of 0.67 on this task. Furthermore, a sliding window

for 4 s outperforms that of 2 s by a margin of 0.03. 

9. Future directions 

There are several thrusts for improving action recognition, we

focus on two of them in line with the THUMOS challenge: the

dataset and evaluation tasks that quantify performance on differ-

ent aspects of action recognition. We believe having a denser, more

comprehensive, and more generalizable understanding of a video

is the way forward. One possibility is to introduce the spatio-

temporal localization task in weakly supervised setting, where

training is performed on untrimmed videos without the availability
f frame-level annotations or bounding boxes. The test set, how-

ver, can contain frame-level and bounding box annotations for the

etection and localization tasks, respectively. 

THUMOS’15 contains about 13,0 0 0 trimmed videos for training

he 101 action classes, as well as approximately 10,500 untrimmed

ideos in the validation and test sets. The dataset amounts to ∼370

igabytes of data, making it the largest dataset for actions and

ctivities. However, there is still room for extension in the THU-

OS’15 dataset, which despite being the largest video dataset for

ction recognition, is still deficient both in the number of classes as

ell as number of instances per class. One possible approach is to

efine action and activity classes associated with a variety of verbs .

his will result in the most comprehensive set of classes specif-

cally aimed at capturing human motion. The number of classes

ill be several times larger than current dataset, with at least 200

nstances per action. The space requirement are expected to be on

he order of terabytes. 

Moreover, the aim should be to move from visual (appearance

nd motion) perception in videos to a deeper semantic under-

tanding by describing different objects, actions and their interac-

ion among themselves and the environment in terms of attributes,

emantic relationships and textual descriptions. Hence, the goal is

ot only to detect objects and actions, but also explain their com-

lex spatial and temporal interactions. For this, one idea is to add a

ide variety of videos with primary focus on actions and activities

erformed by humans, both as individuals or in groups, and then

erform dense annotations for objects, actions, scenes, attributes,

nd the inter-relationships between objects, actions and environ-

ent. 

For assigning labels to objects, actions and scenes, WordNet can

e used as it allows modeling of structured knowledge. The Word-

et Synsets can be used to relate the different nouns, verbs and

djectives. Here, it will be important to consider the trade-off be-

ween consistency and diversity . The consistency requires that la-

els are reused, so that a particular object or action has the same

abel across videos. However, this objective conflicts with diversity,

s it limits the number of new labels that can be assigned to ob-

ects and actions. For instance, the terms ‘person’ and ‘man’ might

efer to the same subject. Similarly, the actions ‘jump’ and ‘plunge’
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re interchangeable in some contexts. WordNet Synsets are able

o relate these words as ‘person’ is a hyperonym of ‘man’, and

jump’ and ‘plunge’ are synonyms. Thus, the trade-off could be con-

rolled by preferring specific labels over more general labels and

sing them consistently, however, other specific labels can be used

henever relevant and available. This will also allow the transfer

f many appearance attributes directly from WordNet. The label

grass’ will be immediately labeled with green due to the struc-

ured knowledge available in WordNet. Indeed, this will require

erification from the annotators, but the transfer of attributes and

roperties will save time and effort while generating richer and

ense annotations for a large video dataset. 

For cognitive understanding of videos, it is important that train-

ng data contains detailed annotations about how the objects, ac-

ions and scenes interact with each other. Moreover, qualitative

roperties of objects and actions, termed attributes also add to

he semantic understanding of video data. Both appearance at-

ributes that capture the visual qualities of objects including color,

ize, shape, as well as motion attributes which are related to the

ctor, such as the body parts used, their articulation, and type

nd speed of movement etc. should preferably be included. Next,

hese relationships can be expressed using a structured represen-

ation with WordNet. For instance, a man playing violin could be

laying (man, violin) , and a woman holding eye brush as hold-

ng (woman, eye brush) . Once these relationships have been con-

tructed for objects, actions, scenes and attributes, they can be

erged together to form a graphical representation. The annota-

ors will verify the validity of tree-graphs relating nouns, verbs and

djectives. 

The annotations can also be supplemented with text, as the

bility to produce valid text descriptions of videos is one of the

easures of cognitive and high-level understanding. Also, textual

escriptions may be added for all interesting occurrences and

vents in a video by first annotating with bounding boxes and

ubes. Different video regions can have both spatial and temporal

verlap with each other, and a description of their own. For in-

tance, to be able to detect the action ‘BasketballDunk’, one only

eeds to detect the person performing the action. However, for

igh-level reasoning such as whether the actor is performing the

ction independently during practice, or while playing a game with

thers, it is important that we are able to locate all other objects

nd detect behaviors of other actors in the video. These dense text

aptions for each video region will give local summaries and help

rain better models for cognitive video understanding. The descrip-

ions can be written in third-person present tense, and be verified

or vocabulary and grammatical consistency. 

Region-level descriptions in addition to shots selected for sum-

arization through manual annotation can allow evaluation of

ideo-to-text approaches as well. While annotating the videos for

escriptions, it is important that the textual summary for regions

re not repeated and are diverse enough to delineate the events

aptured in the video. This can be achieved in an online man-

er, where new descriptions from an annotator will be n-gram

atched to existing descriptions, and highly matching descriptions

ill be flagged for an immediate update. 

Finally, with the graphical structure representing the objects,

ctions and attributes in addition to the textual descriptions for

egions, it is straightforward to create Question and Answer pairs

hat go beyond the detection and localization and allow computers

o exhibit cognitive understanding. These questions should empha-

ize the motion of actions, such as: 

• Which hand did the person use to apply makeup? Which eye? 
• How long did the person hold the arrow in the bow? 
• Was the baby crawling on his/her belly? 
• What instrument was the person playing? 
• Where were the people ice dancing? 
• Who was performing gymnastics? 

onclusion 

This paper describes the THUMOS dataset and the challenge

s detail. The two tasks include action classification and temporal

etection. We presented an overview of the relationship of THU-

OS to existing datasets, the procedure used to collect and an-

otate thousand of videos. Furthermore, we described evaluation

etrics used in the challenge and methods and analysis of results

or the THUMOS’15 competition. Next, we presented a study on

ntrimmed videos which were introduced in the 2014 challenge.

he results show that sliding window outperforms global represen-

ation, and separate modeling of content and context is certainly

elpful for improving the performance. We also presented several

irections to improve the challenge and proposed spatio-temporal

ocalization and weakly supervised action recognition tasks in the

uture challenges. Finally, by providing a large-scale benchmark

ataset of untrimmed videos to the vision community constitut-

ng dense annotations of objects, actions and textual descriptions,

e hope to foster research in holistic understanding of video data.
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ppendix A. List of 101 actions 

The complete list of actions for UCF 101 and THUMOS is pro-

ided below. The actions in bold face are used in the evaluation of

he temporal detection task. 

1. ApplyEyeMakeup 

2. ApplyLipstick 

3. Archery 

4. BabyCrawling 

5. BalanceBeam 

6. BandMarching 

7. BaseballPitch 

8. Basketball 

9. BasketballDunk 

10. BenchPress 

11. Biking 

12. Billiards 

13. BlowDryHair 

14. BlowingCandles 

15. BodyWeightSquats 

16. Bowling 

17. BoxingPunchingBag 

18. BoxingSpeedBag 

19. BreastStroke 

20. BrushingTeeth 

21. CleanAndJerk 

22. CliffDiving 

23. CricketBowling 

24. CricketShot 

25. CuttingInKitchen 

26. Diving 

27. Drumming 

28. Fencing 
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29. FieldHockeyPenalty 

30. FloorGymnastics 

31. FrisbeeCatch 

32. FrontCrawl 

33. GolfSwing 

34. Haircut 

35. Hammering 

36. HammerThrow 

37. HandstandPushups 

38. HandstandWalking 

39. HeadMassage 

40. HighJump 

41. HorseRace 

42. HorseRiding 

43. HulaHoop 

44. IceDancing 

45. JavelinThrow 

46. JugglingBalls 

47. JumpingJack 

48. JumpRope 

49. Kayaking 

50. Knitting 

51. LongJump 

52. Lunges 

53. MilitaryParade 

54. Mixing 

55. MoppingFloor 

56. Nunchucks 

57. ParallelBars 

58. PizzaTossing 

59. PlayingCello 

60. PlayingDaf 

61. PlayingDhol 

62. PlayingFlute 

63. PlayingGuitar 

64. PlayingPiano 

65. PlayingSitar 

66. PlayingTabla 

67. PlayingViolin 

68. PoleVault 

69. PommelHorse 

70. PullUps 

71. Punch 

72. PushUps 

73. Rafting 

74. RockClimbingIndoor 

75. RopeClimbing 

76. Rowing 

77. SalsaSpin 

78. ShavingBeard 

79. Shotput 

80. SkateBoarding 

81. Skiing 

82. Skijet 

83. SkyDiving 

84. SoccerJuggling 

85. SoccerPenalty 

86. StillRings 

87. SumoWrestling 

88. Surfing 

89. Swing 

90. TableTennisShot 

91. TaiChi 

92. TennisSwing 

93. ThrowDiscus 

94. TrampolineJumping 
95. Typing 

96. UnevenBars 

97. VolleyballSpiking 

98. WalkingWithDog 

99. WallPushups 

100. WritingOnBoard 

101. YoYo 
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