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Classification of Cinematographic Shots using Lie
Algebra and its Application to Complex Event

Recognition
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Abstract—In this paper, we propose a discriminative rep-
resentation of a video shot based on its camera motion and
demonstrate how the representation can be used for high level
multimedia tasks like complex event recognition. In our tech-
nique, we assume that a homography exists between a pair of
subsequent frames in a given shot. Using purely image-based
methods, we compute homography parameters that serve as
coarse indicators of the ambient camera motion. Next, using Lie
algebra, we map the homography matrices to an intermediate
vector space that preserves the intrinsic geometric structure of the
transformation. The mappings are stacked temporally to generate
vector time-series per shot. To extract meaningful features from
time-series, we propose an efficient linear dynamical system based
technique. The extracted temporal features are further used to
train linear SVMs as classifiers for a particular shot class. In
addition to demonstrating the efficacy of our method on a novel
dataset, we extend its applicability to recognize complex events
in large scale videos under unconstrained scenarios.

Our empirical evaluations on eight cinematographic shot
classes show that our technique performs close to approaches
that involve extraction of 3-D trajectories using computationally
prohibitive structure from motion techniques.

Index Terms—Cinematographic shots, Multimedia Event
Recognition, Lie Algebra, Homography, Shot classification

I. Introduction

SHOT level classification of videos has been an interesting
field in computer vision research, especially due to its

applicability in diverse domains. These include: content based
video search [12], film genre classification [8], [23] and video
quality analysis [4]. With the constant need to improve online
video search, interesting research [6], [8], [12], [17], [23],
[29] have been pursued that address shot classification from
multiple perspectives: low-level textures, intensity, high-level
objects and scenes etc. While these are meaningful at content
level, they are unable to capture the ambient camera motion
which replicates the narrative human eye and hence are far
more semantically challenging.

Camera motion in authored videos (commonly pan, tilt
or zoom), are directly correlated with high-level semantic
concepts described in the shot. For example, a tracking shot in
which a camera undergoes translation on a moving platform
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Fig. 1. A schematic diagram showing the various processes involved in
our proposed approach towards classification of a typical shot. We build our
complex event recognition computational pipeline (discussed in Sect. IV-E
based on the above methodology. Please refer to text for a detailed explanation.

indicates the presence of a following concept. Detection of
such useful concepts can be used by current video search
engines at a later stage to perform high-level content analysis
such as detection of events from videos. This motivates us to
explore the possibilities of using pure camera motion to solve
the shot classification problem. Camera motion parameters,
also known as telemetry, are very difficult to obtain directly as
few video cameras are equipped with sophisticated sensors that
can provide such accurate measurements. Furthermore, teleme-
try data is not generally available and is certainly not present
in Internet or broadcast video. Hence, we resort to a purely
image based technique to robustly estimate homographies
which are coarse indicators of the camera motion incurred
during capture. However, homographies are not meaningful
features for discriminative classification of shots as different
parameters in a homography matrix quantify different planar
relationship (scale, rotation, etc.) and cannot be treated in
separation. Also, since homographies belong to the projective
group (i.e., are not closed under vector subtraction or scalar
multiplication), they are not suitable for classifiers such as
linear SVMs or Nearest Neighbors. Therefore representing the
ambient motion in a principled manner is extremely important,
to classify a shot.

While there exist methods [24], [30] to estimate camera
motion using full 3D reconstruction of a scene, we argue
that our method achieves a reasonable trade-off between high-
accuracy and prohibitive computational cost. This enables us
to contribute a global feature based on camera motion which
can be used for large scale video analysis.
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To this end, we propose the following methodology (Fig. 1)
to represent the camera motion extracted from a video: (1)
Given a shot, pairwise homographies are computed between
the consecutive frames, (2) Next we map them to a linear
space using Lie algebra defined under Projective Group (3)
Coefficients of this linear space are used to construct multiple
time series (4) Representative features are computed from
these time series for discriminative classification. A schematic
diagram of our computational pipeline is shown in Fig. 1.

II. Related Work & Our Contributions
A full survey of shot classification is beyond the scope

of this paper. Please refer to [10], [22], [23] for a good
background. In one of the earliest efforts [25], the authors
qualitatively estimate camera pan, tilt, zoom, and roll from
a sequence of images. [32] extends the idea to shots with
camera rotation, where mutual information between motion
vectors is utilized. In [21], Park et al. explored further using
linear combination of motion vectors. While these techniques
relied on optical flow to obtain motion vectors, a few teams in
TRECVID 2005 [20] used motion vectors provided in MPEG
stream for this purpose.

From a different perspective, Fablet et al. [9] make use of
local spatio-temporal derivatives to classify dynamic content
of shots without motion segmentation. Wang and Cheong on
the other hand, explore the possibilities of using a Markov
Random Field based motion foreground vs background label-
ing framework [27] together with cinematographic principles
to classify pan, tilt, zoom, track and establishing shots. Ap-
proaches proposed in [14], [26], [28] focus on specific seman-
tic classes of videos. For example, in [28] the authors employ
structure tensor histograms to determine motion characteristics
in shots from action movies. Similarly, [14], [26] leveraged
on specific cinematographic techniques that only applied to
sports videos to address the shot classification problem.

In this paper, we make the following contributions: (1) We
obtain global camera motion by robustly estimating frame
to frame homographies unlike approaches [9], [21], [25],
[32] that rely on local optical flow based techniques, which
are often noisy or full structure from motion based ap-
proach [31],which is computationally expensive (2) Compared
to approaches [26] that use homographies directly for clas-
sification, our lie-algebra based representation homographies
is more accurate, (3) Our global features computed from a
shot consider temporal continuity between frames, are superior
to orderless bag of words techniques used in [20], thereby
eliminating any need for explicit temporal alignment of shots
of unequal lengths, (4) Our representation is capable of clas-
sifying a broader category of shots as compared to [19], [21],
[25], [31], [32]. Our dataset consists of eight cinematographic
shot classes [1] which we are freely distributing to the research
community, (5) Our method is more versatile than approaches
suggested in [14], [26], [28] which apply to specific domains
such as movies or sports. It also requires fewer parameters
to adjust as compared to [27], which require explicit motion
segmentation, and (6) Finally, this is the first work to show
how our novel camera motion representation can be used as
a complementary feature for recognition of complex events in

unconstrained Internet videos.

III. Approach
A. A Cinematography Primer

A complete list of cinematographic techniques can be found
in [1]. In this paper we focus on the following cinemato-
graphic shot classes:aerial, bird-eye, crane, dolly, establishing,
pan, tilt and zoom. The Fig. 2 shows the ambient camera
motion in each shot class except for establishing shots where
the camera remains stationary. Both aerial and bird-eye shots
are captured from a high flying platform. The former class
of shots have a strong perspective distortion, while the latter
being taken from a camera ortho-normal to the ground plane,
show affine transformation properties between consecutive
frames. Crane or boom shots involve vertical motion of camera
which may include simultaneous movement along x or y axes
A dolly shot, on the other hand, is taken by placing the
camera on a platform that moves smoothly on ground without
any movement along z-axis. Pan and tilt shots are associated
with camera rotation along z and y-axes respectively. A
zoom shot, does not involve any physical camera motion.
It is characterized by the change in focal length, which is
an internal camera parameter. All of these motions can be
efficiently captured by the projective transformation model.

B. Motion Parameter Extraction

We employ a feature based method to estimate homography
between consecutive frames or every n-th frame of a given
shot. In our technique, SURF features [2] are detected on each
pair of frames on a dense sampling basis. Correspondence
between features are established using a nearest neighbor
search. We use the open source implementation available in [3]
for this purpose.

Given two sets of corresponding points
{(x1, y1), . . . (xn, yn)}, and {(x′1, y′1), . . . (x′n, y′n)} a
homography H = {hij}, is a 3 × 3, 8 degrees of freedom
projective transformation that models the relationship between
two points (x, y) and (x′, y′) in the following way:

x′ =
h11x+ h12y + h13

h31x+ h32y + h33
, y′ =

h21x+ h22y + h23

h31x+ h32y + h33
. (1)

Using a set of N corresponding points, we can form the
following linear system of equations:

[ax1

T , ay1
T , ax2

T , ay2
T , . . . , axN

T , ayN
T ]TH = 0, (2)

where H, ax, ay are the following vectors:

H = [h11, h12, h13, h21, h22, h23, h31, h32, h33]
T ,

ax = [−xi,−yi,−1, 0, 0, 0, x′ixi, x′iyi, x′i]
T
,

ay = [0, 0, 0,−xi,−yi,−1, y′ixi, y′iyi, y′i]
T
. (3)

Eqn. (2) is solved using random sampling consensus tech-
nique [11] that iteratively minimizes the back-projection error,
defined as: ∑

i

(x′i − x′′i )2 + (y′i − y′′i )2 (4)
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Fig. 2. Schematic diagram showing different types of shots – Top Row: The first two figures show aerial and bird-eye shots. In both shots the camera
is attached to a high flying platform and has its characteristic motion in 3D. In case of aerial shot, there is a strong perspective which is absent in case of
bird-eye shots. The third figure shows a crane shot where the crane moves along z-axis with no simultaneous motion along x or y axis. Red lines show the
field of views of each camera in a particular shot setting. Bottom Row: The first figure shows a dolly shot where the camera is on a platform that undergoes
smooth translation along the ground plane. The next three figures show pan, tilt and a zoom shot. Pan and tilt shots are associated with camera rotation along
z-axis and y-axis respectively. A zoom shot as shown, does not involve any physical camera motion. The change of focal length in this case is indicated
using dotted lines with different sized lenses.

where,

x′′i =

(
h11xi + h12yi + h13

h31xi + h32yi + h33

)
, (5)

and,

y′′i =

(
h21xi + h22yi + h23

h31xi + h32yi + h33

)
(6)

In practice, since frame-to-frame homographies do not map
image points to infinity, the last element of the matrix, h33

is set to 1, which gives 8 transformation parameters to be
computed between each image pair. Except for h13 and
h23, which indicate translational motion along x and y axes
respectively, these parameters are not individually meaningful
(this is experimentally validated in Section IV). However, since
they represent a transformation, they can be mapped efficiently
to some subspace that preserves the internal structure of the
transformation. We resort to Lie algebra for projective group
to establish this mapping.

C. Lie Algebra Mapping of Projective Group

Recently, Lie algebra is made popular by the authors of
[13] to solve a wide range of tasks in computer vision. The
algebraic representation of affine and projective transforms
facilitates the use of learning methods by providing an equiv-
alent vector space that preserves the geometric transformation
structure under linear operations.

Homographies belong to the projective group which has
multiplicative structure. This group is neither closed under
vector addition nor scalar multiplication, and therefore treating

it as a linear space for classification results in undesirable
effects. This is because nearest neighbor or SVM based clas-
sification do not consider geometric constraints which apply
to projective groups since they belong to a nonlinear manifold.
The Lie algebra mapping of the projective group is a 3 × 3
matrix in homogeneous space which relates to the homography
matrix H through an exponential function as:

H = exp(M) = I +

∞∑
k=1

1

k!
Mk, (7)

Alternatively,

M = log(H) =

∞∑
k=1

−1k+1

k
(H − I)k. (8)

Due to linearity in the Lie algebraic representation, M can
be written as the linear combination of orthogonal bases as:

M =

8∑
i=1

αiGi (9)

where, Gi are also called generators of the Lie group [7].
It is shown in [7] that for infinitesimal transformations near
identity, the higher order terms in Eqn. (8) can be ignored.
Thus, αi can be computed by projecting the first order
approximation of M i.e. H − I on Gi. In principle, as long
as the bases are orthogonal, Eqn. (9) is valid. We select
the following generators since they are already established in
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Fig. 3. Trajectory based visualization of different shots obtained from raw homography sequence and their linear space mapped counterparts. (a),(c) can be
interpreted as pure homography sequences while (b),(d) are their respective Linear space mapping using Lie algebra of Projective groups. Time is shown in
z-axis and scaled independently to improve visualization. The x, y axes represent dimensionally reduced H, and L coefficients from a shot sequence using
PCA and do not have any physical interpretation. Note the clutter in projective case.

literature [7] and have injective mapping with the projective
group of transformations:

G1 =

0 0 1
0 0 0
0 0 0

 G2 =

0 0 0
0 0 1
0 0 0

 G3 =

0 −1 0
1 0 0
0 0 0


G4 =

1 0 0
0 1 0
0 0 0

 G5 =

1 0 0
0 −1 0
0 0 0

 G6 =

0 1 0
1 0 0
0 0 0


G7 =

0 0 0
0 0 0
1 0 0

 G8 =

0 0 0
0 0 0
0 1 0


.

(10)
Using the above, the frame by frame homography matrix

can be represented by {αi} in an equivalent vector space. The
effect of this transformation can be well explained using Fig. 3.
The Figs. 3(a) and 3(c) are pure homography sequences from
different shot categories, alphabetically arranged into 2 groups.
In contrast, Figs. 3(b) and 3(d) are Linear space mapping of
the original homography sequences, obtained using Eqn 9-10.
Time is shown in z-axis and scaled independently to improve
visualization. The x, y axes represent homographies and their
corresponding linear space mappings, reduced to 2-D using
PCA and do not have any physical interpretation. In both Figs.
3(a) and 3(c), we observe how cluttered these trajectories
appear in the projective space, while in case of Figs. 3(b) and
3(d), they appear more distinct, arguing in favor of our original
hypothesis.

Fig. 4 provides a more convincing evidence towards how
our Lie algebra based representation is more efficient in terms
of segregating different classes of shots in contrast to their

original projective space. Both Fig. 4(a) and 4(b) show
color coded similarity matrices in bag-of-X representations
computed from homographies and the corresponding linear
mapping, respectively. For more details on the vocabulary
chosen for Bag-of-X please refer to Sect. IV. These are
being referred to as Bag-of-H and Bag-of-LC throughout the
rest of the paper. For ease of understanding, shot samples
are arranged alphabetically according to their respective class
names with aerial samples (top - aerial, bottom - zoom). We
observe high intra-class similarity and inter-class dissimilarity
in case of Fig. 4(b) as opposed to Fig. 4(a). In case of both
similarity matrices, we observe strong degree of similarity in
the establishing shot category (5th from top), which is mainly
due to the identity nature of the homography matrices.

The bag-of-LC model provides reasonably discriminative
representation for a given shot, and can be used as a generic
shot-level descriptor. However, we intend to incorporate the
temporal relationship between the Lie group coefficients which
is not captured in the bag-of-LC model. With this motivation
we proceed to the next step where we present an efficient
manner to extract the temporal relationship in a more mean-
ingful way, leading to a compact descriptor per shot, without
the requirement of additional vector quantization.

D. Feature Extraction from Time Series

The different time series obtained after sequential arrange-
ment of the Lie-group coefficients could be imagined as
trajectories. It may be tempting to fit these trajectories into
splines or simple models by finding the parameters that best
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Fig. 4. Intra class similarity in original projective space and proposed Lie Space. The similarity is not meaningful in case of (a), while they are more
pronounced in (b). In the latter case 8 distinct blocks are clearly visible, corresponding to the shot classes arranged in alphabetical order of their class name.

explains the data, however classification using these models is
complex and can be badly distorted by outliers as they usually
do not have any structural interpretation. We hypothesize
that the temporal order of these coefficients is crucial for
classification. This motivates us to explore computation of
features from multi-dimensional time-series data from the
perspective of linear dynamical systems (LDS). Modeling our
time-series data using LDS is a reasonable assumption as (a)
the Lie-algebra coefficients span a well defined linear space in
a given shot, and (b) coefficient vector at a time step follows
single chain Markov property.

Thus, using foundations from LDS theory, we can describe
any coefficient vector using the following set of equations:

αt = Kxt + εt, (11)
xt = φxt−1; x0 given, (12)

where, K is the observation matrix ∈ Rp×θ that maps each
observed time-step αt to a relatively lower dimensional hidden
state vector xt ∈ Rθ, εt ∼ N (0, 1) (noise), and φ is the
dynamics or transition matrix ∈ Rθ×θ which relates the current
hidden state with the previous hidden state.

One popular way to indirectly characterize the system de-
fined in Eqn. (12) is to analyze the Eigenspace of the Hankel
matrix constructed from this system [5]. Given a sequence of
coefficient vectors of length n (α(0) . . .αn) the Hankel matrix
can be can be constructed as follows, whose entries are the
same along the anti-diagonals:

Qi =


α

(0)
i α

(1)
i α

(2)
i . . . α

(n−r+1)
i

α
(1)
i α

(2)
i α

(3)
i . . . α

(n−r+2)
i

α
(2)
i α

(3)
i α

(4)
i . . . α

(n−r+3)
i

. . . . . . . . . . . . . . .

α
(r−1)
i α

(r)
i α

(r+1)
i . . . α

(n)
i

 , (13)

where r is an integral estimate on the number of entries of the
j-th column vector that are sufficient to express the subsequent
(j +1)-th column in Qi. The Eigenspace of the above matrix
captures the dynamic structure of a system in a meaningful
manner [5]. Since, the matrix in Eqn. 13 is not guaranteed
to be square, we perform singular value decomposition on
QiQ

T
i , yielding the matrix U containing the eigen vectors.

The projection of QiQTi on the largest Eigenvector from U
is used as the final descriptor, which is interestingly invariant
to phase-shift. Thus, a quick pan motion and a slow pan are
treated in the same way, as similar to pan-right and pan-left.
In practice, all Hankel matrices are normalized before any
processing, using the Frobenius norm for matrices given by
the following equation:

K̂i =
Ki

trace(KiKT
i )

1
2

, (14)

The projection results in a r×8 = 64 dimensional descriptor
for a shot We maintain r = 8 to have sufficient overlap
between column vectors of the matrix. The feature computed
as above is used to train linear SVM classifiers, details of
which is provided in Section IV. Throughout the paper, this
method is being referred as “Proposed” for shot classification.

The descriptor computed using the above method is capable
of capturing temporal dynamics across all the Lie group coef-
ficients efficiently for a given shot. To support this argument,
we compute a set of exhaustive statistics from each dimension
of the 8-dimensional time-series separately. Assuming, a time
series across each dimension can be represented as a vector
z, the statistical features are as follows: mean, variance (σ),
first and last order statistics (z(1), z(n)), range (|z(1) − z(n)|),
average crossing rate (N(d(z−z̄)

dt )/N(z), dt being temporal
interval, N(.) is the cardinality function), average root mean
square, mean and variance of skew ( (z−z̄)3

σ3 ), signal entropy,
mean and variance of kurtosis ( (z−z̄)4

σ4 ). In addition, we
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Fig. 5. Camera Motion based Representation of Events: Top two rows
represents two different videos each from an event class. Each video is
divided into fixed length shots of 100 frames. Outputs from 4 shot classifiers:
Establishing (E), Pan (P), Tilt (T), and Zoom (Z) Shot are indicated under
each shot..

compute 28 pairwise correlations between each of the eight
dimensions of the trajectory. Finally the sum and the squared
sum of all the dimensions is computed. This results in a total of
8×12+28+2 = 126 statistical features and is used as another
baseline (SF in Fig. 7) to compare the contribution of the
temporal correlation observed between Lie group coefficients.

E. Recognizing Complex Events

The novel camera representation presented above can be
used in many applications. In addition to the obvious appli-
cation of cinematographic shot classification, it can be ex-
tended to perform high-level analysis of unconstrained Internet
videos. A majority of unproduced videos in the Internet,
captured by amateur users tend to have different camera
motion signatures depending on the subject or the context of
an event being captured. For example, a person “attempting a
board trick” or performing “parkour” is mostly captured by a
camera in motion to keep the subject in focus. Consequentially,
the captured video, depicts significant amount of unintentional
pan, tilt or zoom. Similarly, a video of a “parade” is expected
to have pan and zoom in contrast to videos that are shot
indoors such as “working on a sewing project”.

This motivates us to explore a principled approach towards
describing such videos using our proposed camera motion
descriptor. To this end, we resort to the following methodol-
ogy: we divide each video into non-overlapping, fixed length
shots of f frames and apply pre-trained classifiers for four
of the commonly occurring shot classes - pan, tilt, zoom
and establishing. Any classifier response below a certain
threshold δ is neglected and the corresponding shot class is
labeled as “undetermined”. Thus, each video can be reduced
to string of variable length containing symbols ‘P’, ‘T’, ‘Z’,
‘E’ and ’U’ depending on the respective classifier outputs, as
shown in Fig. 5. Given such a compact representation of a
video, it is straightforward to train a Hidden Markov Model
corresponding to a set of videos that depict a specific complex
event category. Once these models are generated, classification
for an unknown video, is performed by comparing the log-
likelihood of its corresponding camera motion signature string,
being generated from a particular model against all other
models. The maximum likelihood identifies the target complex
event class.

While it is to be noted that unconstrained videos in practice,

show a combination of shots: simultaneous pan-tilt, zoom-pan
etc., we believe there are two ways to address this problem.
The first one is training separate classifiers for such combined
shots, which requires further annotation. The second one being
using the camera motion representation as is in a bag of
features model (Bag-of-LC), without the need of explicit shot
classification. Clearly, the first one is beyond the scope of
this paper. We however report performance of the second
method against the more principled approach of using a HMM
based classifier over camera motion signature sequence in
Section IV-D.

IV. Experiments
In this section, we first discuss our dataset of 8 distinct

category of shot classes based on cinematographic guidelines.
The following section provides implementation specific details
on the various stages involved in our computational workflow.
This is followed by results and discussion. On a separate
note, we describe how this shot classification technique can be
integrated into large scale complex event recognition, backing
our claim with results.

A. Cinematographic Shot Dataset

Most of the earlier papers [9], [21], [25], [32] on this
topic evaluate their respective approaches on their own private
collections, which are not made available. We make an attempt
to build the first dataset of this kind which is reusable,
expandable and publicly available.1 Our dataset consists a
clean and an unconstrained part. The clean part has videos
downloaded from high resolution, professional stock video 2

while the unconstrained part contains videos from amateur
consumer uploaded videos found in YouTube that typically
have fair amount jitters caused due to unstable mounts. These
two separate sources were used for two different experiments
to validate the efficiency of our shot representation. Each
videos in the dataset conforms to either one of eight categories,
namely: (1) Aerial, (2) Bird eye, (3) Crane, (4) Dolly, (5)
Establishing, (6) Pan, (7) Tilt, and (8) Zoom. Each video is
carefully screened by 3 human observers with good cinemato-
graphic knowledge to ensure there is no mixing up of camera
motions in a particular video. Note that this is a difficult
task since most shots do not occur in isolation as pointed
out in [20]. Finally all videos are resized to an approximate
resolution of 480×360 keeping the aspect ratio locked. Some
sample frames from the clean part of our dataset are shown
in Fig. 6. Table I contains some statistics of our dataset.

B. TRECVID MED 2011 Events Dataset

Recently, NIST has released the Multimedia event detection
competition 3 dataset which consists of videos from 15 event
categories namely (1) Attempting a board trick, (2) Feeding an
animal, (3) Landing a fish, (4) Wedding ceremony, (5) Working
on a woodworking project, (6) Birthday party, (7) Changing
a vehicle tire (8) Flash mob gathering, (9) Getting a vehicle
unstuck, (10) Grooming an animal, (11) Making a sandwich,

1https://www.cs.ucf.edu/∼subh/csdv1.tar.gz
2http://www.gettyimages.com
3http://www.nist.gov/itl/iad/mig/med11.cfm
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Fig. 6. Cinematographic shot dataset: Each column in the figure represents a typical shot category. The top row shows the trajectory against x and y axes
of the image plane (obtained by tracking points). The second row contains the initial frame from the shot. Subsequent rows show samples 50 frames apart.
Images from top to bottom provide an idea of the camera motion as the shot progresses.

Shot Category Examples Total # of Frames
Clean Unc. Clean Unc.

Aerial 30 10 18122 3622
Bird-eye 30 7 18644 1578

Crane 43 8 20304 1226
Dolly 32 8 22241 1185

Establishing 36 9 20454 1256
Pan 30 7 22954 1806
Tilt 31 7 12718 3998

Zoom 31 8 14876 2320

TABLE I
SOME STATISTICS FROM OUR CINEMATOGRAPHIC SHOT DATASET (UNC.

STANDS FOR THE UNCONSTRAINED PART OF THE DATASET).

(12) Parade, (13) Parkour, (14) Repairing an appliance, and
(15) Working on a sewing project. We use a subset of this
dataset that has 2062 videos from all these 15 event categories
for our experiments. Events like “Attempting a board trick”
and “Parkour” usually have a lot of jittery camera motion
coupled with pan and tilt motions. Similarly, videos depicting
events such as “Wedding Ceremony” and “Birthday Party”
are mostly captured by stationary cameras with limited pan
and some amount of zoom. The goal of this experiment is
to find out if we can leverage our proposed representation to
capture these meaningful statistics from these amateur videos
and perform crude event detection without resorting to any
content extraction techniques.

Our experiments on this dataset are motivated to substantiate
two important claims: Firstly, we are able to demonstrate how
our proposed shot representation can be adapted to address a
more challenging problem – recognition of complex events.
Secondly, it provides an avenue to test our shot classification
framework on a significantly large dataset (approx 30, 000
shots).

C. Setup

We use an OpenCV based implementation of the SURF [2]
extraction and use an approximate nearest neighbor search
algorithm [16] to obtain point correspondences which is later
required for homography estimation. The normalized homo-

graphies (H) and their corresponding Lie-algebra mappings
(LC) are used in a bag-of-X framework typically surveyed
in [12], under different codebook configurations in the range:
128, 256, . . . , 2048 and these help us investigate the efficacy
of our shot representation incrementally. In both of these
settings, SVMs with histogram intersection kernel is used for
classification using a 10 fold cross validation scheme. The
parameters for SVM is chosen using coarse grid search during
cross validation.

We also, evaluate how our method performs against a more
accurate camera trajectory estimation technique (using full
structure from motion [24]). We compute similar temporal
features as described in Sect. III-D from camera trajectories
after connecting the 3-D camera locations (x, y, z) temporally
using frame indices. This method is being referred to as TF in
the remaining part of the paper. Although features extracted
using this method are very discriminative, the trajectory com-
putation in itself a prohibitive task as the 3D reconstruction
algorithm needs an exhaustive set of points from all frames in
a video to solve a complex optimization problem. This makes
this technique a misfit for large-scale Internet videos.

Next, we investigate the discriminability of our final
LDS based temporal representation by comparing against
naive time-series statistics (referred as SF) as discussed in
Sect. III-D. In addition to the above baselines, we compare
our method with our implementations of two other relevant
algorithms: Motion-Slices [19]) and HF (Threshold selection
on Homography and fundamental matrices [31]). The former
represents a shot using tensor histogram of spatio-temporal
slices of gray-scale intensities while the latter uses a combi-
nation of homography and fundamental matrix to represent a
shot. It is to be noted that, both of these methods have certain
limitations as stated by their respective authors because of
which they cannot be applied to all 8 classes of shots in our
cinematographic shot dataset.

Finally, to adapt our shot classification method to recognize
complex events, we empirically select f = 300 yielding
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Fig. 7. Classification performance of our method against several baselines on the cinematographic shot dataset. Note that the baseline method [19] cannot
be used for 4 types of shot classes : aerial, bird-eye, crane and dolly due to their algorithmic limitations. Similarly the other baseline [31] cannot be applied
for crane, dolly and aerial shots (The bars corresponding to these method-shot combinations are non-existent).

10s long shots. Classifier threshold are uniformly chosen as
δ = 0.6 to eliminate less confident responses. We use an
open-source implementation of discrete HMMs 4 with default
number of states (10). In our experience, changing this pa-
rameter does not make any conclusive change in performance.
To show, how we fair with the camera motion representation
alone, we use a bag-of-features model with a vocabulary size
of 256 on the shot-level features to describe each video. We
compare both of these approaches with already published
bag-of-SIFT [15] features based approaches used in [29],
[31]. In both bag-of-X techniques, SVMs with histogram
intersection kernels are trained in a 10-fold cross validation
mode. Furthermore, to show our shot-level features contain
complementary information as compared to the bag-of-SIFT
representation, we perform late fusion of event-level classifier
scores.

D. Results and Discussions

We begin with an important insight on the motion parameter
extraction phase. Through careful temporal sampling of frames
for homography estimation the overall classification perfor-
mance can be improved. Temporal sampling can be perceived
as the number of frames that are skipped between any given
pair of frames before computing the homography between that
pair. Typically, the larger the gap between two sampled frames,
the more the homographies deviate from identity as the relative
inter-frame motion increases. The average accuracy reaches
its peak when the sampling interval is 4, i.e. homography is
computed between pairs separated by four frames. This can
be explained with the help of evidence from homography
computation which is primarily noisy for smaller temporal
intervals. At interval lengths larger than 4, the homography
violates the primary assumption for Lie group mapping which
states that the transformation should be approximately equal
to identity.

In Fig. 7, we provide an extensive analysis of the results
we obtained on the cinematographic shot dataset. Each bar

4https://code.google.com/p/pmtk3/

in the chart corresponds to one of 6 methods, grouped into
8 classes. As hypothesized in Fig. 4, a naive bag-of-LC (Lie
group coefficients of homographies) representation, without
any notion of temporal relationship across frames, performs
significantly better (21%) than bag-of-H (pure homographies).
When we add temporal information through naive statistical
features (LC+SF) the performance on an average increases by
another (7− 8%). This is progressively improved by (6− 7%)
when the appropriate method is used to extract meaningful
temporal pattern from the sequence of Lie group coefficients.

Furthermore, our proposed shot classification model built on
top of LDS based temporal features extracted from sequences
of Lie group coefficients does significantly better than all
baselines and two of the previously published algorithm.
Although our feature does not outperform the structure from
motion based trajectory estimation technique (TF), we report
comparable accuracies with the obvious advantage of speed.
Please refer to Tab II for more details.

It is also encouraging to see that the proposed method
reports a consistent classification performance (over 75%,
variance across different train-test folds are shown in error
bars) for 6 out of all 8 categories. Among shot classes, estab-
lishing shots are classified with maximum confidence which
indicates strong correlation of performance with proximity of
the homography matrices towards the identity matrix. This
is followed by the classification performance on bird-eye and
aerial shots (over 88%). One of the limitations of our approach
is observed in classifying zoom shots where the avg. accuracy
is 20% lower than the dataset average. One reason behind
such an anomaly can be linked directly to the initial step
of extracting homography. In case of zoom shots, the SURF
descriptors being sensitive to the degree of scaling, are often
mis-matched. This results in degenerate homographies, which
may result into suboptimal representations.

A deeper level of understanding can be obtained from the
confusion tables listed in Fig. 8. Visually similar shots such as
aerial and bird-eye depict certain degree of confusion. Like-
wise, pan and dolly shots are confused because of similarity
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Fig. 8. Confusion matrices obtained after classification on the clean and
unconstrained part of the cinematographic shot dataset. Figure on the left
shows confusion among classifiers trained on clean shots and tested on the
similar clean shots, while on the right, the test set is changed to unconstrained
shot, indicating a drop of performance.

when direction of rotation along z-axis coincide with slow
translation along the same direction. Apart from the confusion
alone, the Fig. 8 offers insight on another interesting experi-
ment we conducted to test the robustness of our shot classifiers.
In this experiment, we use our proposed final representation
to describe each shot in our dataset. The confusion matrix in
the left reports avg. accuracies and the respective confusions
across each of the 8 classes in our cinematographic shot
dataset.On the right, we report the results when the test set
is switched from clean part to the unconstrained part of the
dataset. We observe a 16% drop in performance which can be
attributed to the nature of the unconstrained shots that contain
significant jitter. However, the performance in the constrained
part of the dataset is still promising (38% better than random).

Step Speed (in ms) Size Dependence Parallelizable
FE 5.3× 102 Yes Yes
HE 75 Yes No

VSM 8 N/A No
TSFC 4 N/A No

TF 4.3× 105 Yes Partially

TABLE II
COMPUTATIONAL ASPECTS: EACH ROW INDICATES A COMPUTATIONAL
STEP, IMPLEMENTED IN C++/OPENCV. FROM TOP TO BOTTOM: FEATURE
EXTRACTION (FE), HOMOGRAPHY ESTIMATION (HE), VECTOR SPACE
MAPPING (VSM), TIME SERIES FEATURE COMPUTATION (TSFC). TF

BEING 3D CAMERA TRAJECTORIES ESTIMATED DIRECTLY USING
STRUCTURE FROM MOTION [24]. THE SPEED IS RECORDED FOR A

320× 240 VIDEO CONTAINING 300 FRAMES ON A STANDARD DESKTOP
HOSTING A 2.4 GHZ CPU.

Table II shows the typical computational aspect of different
steps involved in the entire workflow. In our current imple-
mentation, the feature extraction process takes the maximum
amount of compute cycles. However, the process is completely
parallelizable both in terms of spatial and temporal perspec-
tives as features computed in one frame can be computed
independently of previous frames. Except for the feature com-
putation and homography estimation, none of the techniques
discussed in our shot classification process are dependent on
the spatio-temporal resolution of video. For, brevity we keep
aside asymptotic analysis of all the algorithms discussed here.

In the next section we discuss our results on a more
challenging problem i.e. recognition of complex events.

E. Complex Event Recognition based on Camera Motion
We perform exhaustive comparative analysis of event recog-

nition performance for two separate cases. In the former case,
we report the average precision of event classifiers on events
that are commonly observed in outdoor settings involving
significant camera motion. The results are reported in Fig. 9.
The latter case involves events that are typically expected
to occur in indoor settings, accompanied by limited camera
motion. Fig. 10 reports results corresponding to these events.
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Fig. 9. Recognition of complex events that are expected to occur in outdoor
setting with substantial camera motion.

Among outdoor events, “Attempting a Board trick”,
“Changing a Vehicle tire”, and “Parade” are well detected
using our proposed HMM based approach on top of the
predefined shot classifier responses (HMM/SC). While in case
of indoor events, “Birthday party” and “Working on a sewing
project” are detected with high avg. precision. We also notice
that in all event cases, late fusion with a content based
classifier Bag-of-SIFT + SVM, improves the result by 3−4%,
which supplies strong evidence towards the complementary
nature of our feature. Interestingly, classifiers trained on Bag-
of-LC only achieve 3.5− 5% lower than HMM/SC. Thus, for
even larger datasets, we can obtain a decent trade-off between
speed and accuracy by eliminating the full shot classification
followed by HMM training step, opting for simpler Bag-of-LC
+ SVM based approach.
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Fig. 10. Recognition of complex events that are expected to occur in indoor
settings with relatively low camera motion.

Lastly, we report detection error trade off plots in Fig. 11(a),
specific to the said 5 events to show how graceful the event
detectors are at different thresholds. In Fig. 11(b), we compare
the performance with detectors based on Bag-of-SIFT-features
+ SVM. We fix an reasonable operating region (6% false alarm
with 75% mis-detection) and measure the area under each
curve intersecting this operating region.



10

1 2 5 10 20 40 60 80 90 95 98 99
1

2

5

10

20

40

60

80

90

95

98

99

False Alarm probability (in %)

M
i
s
s
p
r
o
b
a
b
i
l
i
t
y
(
i
n
%
)

Working on a Sewing Project (PAUC 0.10)
Changing A Vehicle Tire (PAUC 0.09)
Attempting a Board Trick(PAUC 0.07)
Parade (PAUC 0.09)
Birthday Party (PAUC 0.08)

(a)

1 2 5 10 20 40 60 80 90 95 98 99
1

2

5

10

20

40

60

80

90

95

98

99

False Alarm probability (in %)

M
i
s
s
p
r
o
b
a
b
i
l
i
t
y
(
i
n
%
)

Parade (PAUC 0.07)
Birthday Party (PAUC 0.06)
Attempting a Board Trick (PAUC 0.10)
Changing a Vehicle Tire(PAUC 0.10)
Working on a Sewing Project (PAUC 0.10)

(b)

Fig. 11. Detection-Error Trade off (DET) curves for (a) 5 event classes best
represented using our camera motion based features. (b) Curves for corre-
sponding event classes obtained using a content based feature representation
(Bag-of-SIFT-features).

V. Conclusion
We presented a novel set of methodologies to perform

robust shot classification based on camera motion adhering
to cinematographic principles. In our approach, we first
extracted camera motion from shots by computing frame to
frame homographies. In order to represent homographies in
a manageable space, we proposed the use of Lie algebra
to obtain one to one linear mappings of the homographies.
In order to exploit the temporal order these mappings, we
compute features from time series constructed from these
mappings. Our approach performs significantly better than
the state of the art methods. As part of this work, we also
introduced a cinematographic shot dataset that can be used
by the research community to explore different avenues in
this direction. Finally, we demonstrated the applicability of
our proposed method to represent ambient camera motion in
videos to develop insights towards solving a more challenging
event detection problem. As part of future work, we intend
to augment our complex event recognition framework with
proper camera motion boundary detection [18], instead of
these fixed length segments.
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