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Abstract— High level vision tasks (recognition, under-
standing, etc.) for video processing require tracking of the
complete contour of the objects. In general, objects un-
dergo non-rigid deformations, which limit the applicability
of using motion models (e.g. affine, projective) that impose
rigidity constraints on the objects. In this paper, we propose
a contour tracking algorithm for video captured using mo-
bile cameras of different modalities. The proposed tracking
algorithm uses Bayesian inference based on the probabil-
ity density functions (PDFs) of texture and color features.
These feature PDFs are fused in an independent opinion
polling strategy, where the contribution of each feature is
defined by its discrimination power. We formulate the evo-
lution of the object contour as a variational calculus problem
and solve the system using level sets. The associated en-
ergy functional combines region-based and boundary-based
object segmentation approaches into one framework for ob-
ject tracking in video, evaluated in the vicinity of the object
contour. In this regard, it can be viewed as generaliza-
tion of formerly proposed methods where the shortcomings
of other methods (color, shape, gradient constraints, etc.)
are overcome. The robustness of the proposed algorithm is
demonstrated on real sequences.

I. Introduction

In the recent years, a great deal of effort has been ex-
panded on object tracking. There are three broad classes
of methods for tracking multiple objects:
• Correspondence-based object tracking: requires object de-
tection in every frame. Tracking is performed by establish-
ing correspondence of the objects in consecutive frames.
Objects are represented by their centroids or silhouettes.
• Transformation-based object tracking: requires object de-
tection only once. Tracking is performed by estimating the
motion of objects in consecutive frames. Object are repre-
sented by planar surfaces, such as rectangle and ellipse.
• Contour-based object tracking: requires object detection
only once. Tracking is performed by finding the object
contour given an initial contour from the previous frame.
Objects are represented by contour.
Object detection, which is common in all the classes can
be performed by feature detection (corner detectors), back-
ground subtraction or segmentation. Due to space limi-
tations, we will not discuss all possible object detectors,
however it is worth to mention several.

Harris corner detector is the most favorite feature de-
tector [1]. It finds the variation of image intensities by
generating a 2x2 matrix, M, from first order image deriva-
tives and computes the eigenvalues, λ, of M. Pixels with
high λ represent existence of a corner.

Background subtraction is the most popular detection
method used in object trackers [2], [3], [4], where color

observations of individual pixels in a reference frame are
statistically modeled. Detection is performed by labeling
the pixels that deviate from the background model. In
[2], Wren et al. used a single Gaussian kernel to model
YUV color space of each pixel. Stauffer and Grimson [3]
generalized this scheme by modeling the RGB values of
pixels using a Gaussian mixture model.

Segmentation is another object detection method. Al-
though there are various ways to perform segmentation,
due to the relevance to our approach, we will only review
active contours (snakes) in the discussion on related work.

In the sequel of an detection method, correspondence
based tracking can be achieved using object’s state, where
state variables can be composed of linear motion models
(constant velocity and acceleration) coupled with regional
information (color, texture, area and shape). These vari-
ables can be modeled using dynamic linear models [4],
Gaussian kernels (Kalman filtering) [3] or Monte-Carlo
techniques (particle filtering) [5]. Based on the model, ob-
ject correspondence is performed by predicting the objects
new position using past observations and verifying the ex-
istence of the object at the predicted position.

Transformation based tracking is performed directly by
computing the transformation of the planar object region
from one frame to the next. Object transformations used
are translation, translation+scaling and affine motion mod-
els. One of the most common transformation based tracker
is “template matching”, where translation of an object
template (rectangle) is computed by searching the image
for a similar template. Template matching is compu-
tationally expensive and sensitive to illumination varia-
tion. Limitations of template matching is solved by the
mean-shift tracker, which uses translation based motion
model for rectangular or elliptical objects [6]. In mean-
shift tracking, for each object, color priors are computed
using weighted kernel density estimation, where the weights
are obtained based on their distance from the object cen-
troid. Mean-shift vector is then computed iteratively by
maximizing likelihood ratio between the object color prior
and the model generated from hypothesized object posi-
tion. In [7], Shi and Tomasi proposed the KLT tracker,
where object transformation is modeled by affine. Ob-
jects, detected using Harris detector, are represented by
25 × 25 windows. Similarly, Jepson et al. [8] proposed an
object tracker which computed affine motion of an ellip-
soidal object in consecutive frames using a variation of EM
algorithm based on maximizing the likelihood of observing
stable features (phase response of steerable pyramids) and
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object structure (ellipse), while dealing with the outliers
(occlusions).

Tracking non-rigid objects can not be performed by us-
ing rigid-body motion models. Due to the fact that all
rigid and non-rigid transformations reduce to translation
of pixels inside the region, tracking can be defined as pixel
translations. This leads to tracking both rigid and non-
rigid objects using contours. Contour tracking can be per-
formed by evolving the contour based on minimizing an
energy. Compared to the silhouettes obtained from back-
ground subtraction, contour tracking produces tighter ob-
ject boundaries. There are two variations of contour track-
ers in the literature, with two types of energy functionals:
• Motion-based energy functional: is defined based on op-
tical flow to evolve an initial object contour.
• Segmentation-based energy functional: clusters the im-
age into object and background regions using past obser-
vations.
In this paper, we propose a novel segmentation based en-
ergy functional for contour tracking, which is minimized
by variational approach. Proposed functional is motivated
by a Bayesian framework and is derived without imposing
any constraints on object’s shape, color or gradient, and it
does not use parametric motion models. It fuses color and
texture features computed from the object using indepen-
dent opinion polling. Proposed functional builds a bridge
between the boundary-based and region-based variational
tracking methods which will be detailed in the following
section. The functional is evaluated in the vicinity of the
contour which increases stability of the solution due to lo-
cality. Thanks to texture features proposed method is less
prone to lighting changes. The model priors are updated
online to learn changes in the background model, thus it is
suitable for tracking objects using mobile camera.

The paper is organized as follows: In Section II, we dis-
cuss related work on active contours, and state differences
and similarities between our work and others. Section III
details the proposed method, outlines the features used
(§III-A) and presents the proposed contour energy func-
tional (§III-B). Contour representation and related evolu-
tion equations based on the proposed energy functional is
given in Section IV. Finally, the experimental results and
conclusions are sketched in Sections V and VI respectively.

II. Related Work

Active contour (snake) was introduced to the vision com-
munity by Kass et al. [9]. In an active contour approach,
the objective is to get tight contour enclosing the object.
The contour, Γ, is usually represented explicitly by control
points, v, and is initialized by placing the control points
outside the object region. Segmentation is obtained by
evolving the contour toward the object region. Contour
evolution is associated by minimizing an energy functional.
Energy functionals in active contour framework include
regularity and smoothness (internal) terms along with ei-
ther boundary or region based image energies. Some ap-
proaches use external energies to increase stability of the

evolution. A typical functional has the following form:

E(Γ) =
∫ 1

0

Einternal(v)+Eimage(v)+Eexternal(v)ds (1)

where s is the arc-length of Γ. Kass et al. [9] used first
order (∇v) and second order (∇2v) continuity terms for
Einternal, which guaranteed elimination of gaps and rapid
bending of the contour. The evolution was terminated by
gradient magnitude, |∇I|, based boundary energy. In [10],
authors used a greedy algorithm to minimize the contour
energy, which was composed of second order regularity and
curvature terms. The energy was computed using image
gradient |∇I| at each control point, i, which was normalized
by max(|∇Ii−1|, |∇Ii+1|)−min(|∇Ii−1|, |∇Ii+1|).

Caselles et al. [11] replaced the contour energy of (1)
with E(Γ) =

∫ 1

0
Einternal(v)Eimage(v)ds. Eimage was set

to g(|∇I|), where g was a sigmoid function. In contrast to
using control points, they implicitly represented the con-
tour by a level set function (see §IV for details).

Image gradient based contour energy is not suitable to
segment objects in textured background. To overcome this
limitation, Ronfard [12] proposed a region-based energy,
where statistical models were used for object and back-
ground regions. All contour points with a neighborhood
that fits the object model are pushed outside, while, all con-
tour points with a neighborhood that fits the background
model are pulled inside. The force on the contour was
the difference of the statistical fits to the object and back-
ground, which was formulated as Ward distance. Since
Ward distance depends on the image data in a very intri-
cate way, it is impossible to use conventional techniques
to minimize the contour energy. Thus Ronfard followed
a heuristic evolution approach. In another region based
approach, Zhu and Yuille [13] defined a region to be homo-
geneous and its brightness (color) could be modeled using
simple statistical models, such as a single Gaussian. In
order to avoid over-segmenting the image, Zhu and Yuille
used circular windows of m pixels around each point. At
each evolution iteration, they computed the probability
of pixels coming from the region prior, and evolved the
boundary by minimizing E(Γ). During iterations, if the
adjacent regions had similar models, they merged them
offline and continued the iterations until the image was
segmented. Paragios and Deriche [14] extended the region
model to the mixture of Gaussians for magnitude of Ga-
bor filter responses. Their functional had both boundary
energy (similar to [11]) and region energy (similar to [13])
in Eimage, which were combined using convex combina-
tion, E(Γ) =

∫ 1

0
λEboundary(v)+(1−λ)Eregion(v)ds. The

boundary term was used to increase numerical stability.
If the contour is initialized with its previous position,

contour segmentation approaches become object trackers
(segmentation-based functional). On the other hand, con-
tour tracking using motion-based functional is motivated
by the availability of comprehensive study on optical flow.
In its simplest form, optical flow constraint is defined by
It+1(x, y) − It(x − u, y − v) = 0, where t is time t, and
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(u, v) is flow vector.In [15], Bertalmio et al. used flow
constraint to evolve object contour in consecutive frames.
Their objective was to compute u and v iteratively for each
contour position using level set representation. At each it-
eration, the contour speed in normal direction, −→n , was
computed by projecting the temporal gradient |∇It| onto−→n . The authors used two energy functions: contour track-
ing, Et(Γ) =

∫ 1

0
Eexternal(v)ds, and intensity morphing,

Em(Γ) =
∫ 1

0
Eimage(v)ds, where Eexternal energy of Et is

based on Em. Em(Γ), which minimized intensity changes
in the current and previous frames, ∇It = It− It−1, on the
hypothesized object contour was coupled with Em(Γ). For
instance, if ∇It(x, y) À 0, then the contour moves with
maximum speed in its normal direction and It−1(x, y) is
morphed into It(x, y). Similarly, Mansouri [16] used the
optical flow constraint for contour evolution. In contrast
to [15], his approach was motivated by computing the flow
vector for each regional pixel by brute-force-search in a cir-
cular neighborhood with radius r. Note that, motion-based
methods do not require background modeling.

Contour tracking approach proposed in this paper is mo-
tivated by [12] (both him and us use subregion around the
contour) and [13] (in terms of statistical ideas: conditional
probabilities are used in an essential way in defining the
functionals). Our work is different from [12] in terms of
defining these subregions. We followed a rigorous approach
motivated by Bayesian framework, which can be minimized
by conventional techniques such as gradient descent. How-
ever, in [12], the energy was minimized heuristically, ie.
solution is not stable, since derivatives of the energy func-
tional could not be taken. Our functional is very similar
in appearance to [13], but has very different interpreta-
tions. First, the probability in [13] is assumed to belong to
a preassigned family of distributions. Second, within each
region, all points are assumed to have the same distribu-
tion ([13, Equation (18)]). Third, the averaging operation
is not directly related with the minimization since it only
serves as a noise reduction operator similar to a low-pass fil-
ter, whereas our minimization functional is directly derived
from the contour neighborhood. Finally, since [13] uses
parametric form of the contour for segmentation, it makes
the numerical implementation difficult and inefficient. In
comparison, by using the level set, we only calculate energy
in a small neighborhood of the object contour.

Our approach naturally is a generalization of previously
proposed boundary based [9], [10], [11] and region based
[12], [13], [14], [16] active contour methods by definition of
a band around the contour, such that if the band size is set
to 1, it becomes a boundary based method, or if the band
is set such that it covers the complete object region, then
it becomes a region based method. Details on the band
definition will be given in Section III-B.

III. Methodology

Tracking an object in an image sequence In : 0 < n < ∞
can be treated as discriminant analysis of pixels in two non-
overlapping classes, where the classes correspond to the
object region, Robj , and the background region, Rbck. The

performance of discriminant analysis depends on selection
of features. In this section, we detail the features used for
this purpose and derive the tracking functional associated
with discriminant analysis in the spatial domain.

A. Object Features And Modeling

During the last two decades, two classes of features have
been widely considered for object tracking: color feature
(is obtained from raw color values in an image) and texture
feature (codes the repetitive details in an image).

We believe an ideal tracking approach should use both
color and texture features. Therefore, in our approach, we
used both of these features. In particular, raw color values
are modeled by kernel density estimation using Epanech-
nikov kernel:

K(x) =
{

1
2c−1

d (d + 2)(1− ‖ x ‖2) if ‖ x ‖< 1
0 otherwise ,

where cd is the volume of unit d-dimensional sphere. For
texture, we select a multi-scale and multi-oriented linear
basis, specifically steerable pyramids (SP). In order to
generate a disjoint feature space for creating independent
PDFs based on texture analysis, we used Gabor wavelets,
which create an orthonormal sub-band basis in SP:

Gi(x, y) = e−π[x2/α2+y2/β2] · e−2πi[u0x+v0y],

where α and β specify width and height, while u0 and v0

specify modulation of the filter. We modeled both the mag-
nitude and the phase responses of SP using Gaussian mix-
ture model N(µk, σk). The probability of observing a value
x is computed by p(x|Θ) =

∑CN

k=1 Pkpk(x|µk, σk), where Pk

is a priori component probability and Θ = {Pk, µk, σk : k =
1 . . . CN}. Fixing CN to 3, unknowns are computed using
Expectation Maximization (EM) algorithm.

Color and texture models together construct a semi-
parametric feature model. Clustering pixels using this
model should take discrimination power of the fea-
tures into account. For this purpose, we gener-
ated the semi-parametric model using independent opin-
ion polling strategy [17], in which integration of fea-
tures are evaluated prior to object/background mem-
bership: p(x|Mα) =

∏
β p

β
(x|Mα,β), where x is the

spatial variable, α ∈ {object, background} and β ∈
{color, {steerable sub-bands}}. Using Bayes’ rule, a pos-
teriori estimate of membership can be computed by:

p(α|x) =

∏
β p

β
(x|Mα,β)p(α)∑

γ

∏
β p

β
(x|Mγ,β)p(γ)

, (2)

where γ ∈ {object, background}. It can be easily observed
from (2) that discriminant features will be emphasized.

B. Tracking Energy Functional

In the spatial domain, the object and background regions
define R = Robj ∪ Rbck. Object contour, Γ, is defined
by the intersection of directional curves corresponding to
each region, such that Γ = Γobj ∩ Γbck, where Γobj and
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background

object
BAND

b)

Fig. 1. (a) Object band (light gray), background band (dark gray)
around the object contour (white ellipse), (b) subregions around the
contour Γ defined by rectangles.

Γbck are respectively borders of the object and background
regions in the counterclockwise direction. The likelihood
of observing the boundary (contour) between two regions
is equal to the likelihood of partitioning the regions:

P (Γ) = P (ϕ(R) = {Robj , Rbck}) , (3)

where ϕ is the partitioning operator [13]. Posteriori prob-
ability for the boundary (left side of (3)) can be used in-
terchangeably with posteriori probability of partitioning the
space. Thus, for frame In, we formulate the object tracking
problem in terms of the boundary probability, PΓ, given In,
and the previous object boundaries, Γn−1,Γn−2, . . . , Γ1:
PΓ = P

(
ϕ(Rn)|In, Γn−1, Γn−2, . . . , Γ1

)
. Using Markovian

assumption and Bayes’ rule, PΓ is simplified to:

PΓ ≈ P
(
In|Rn

obj ,Γ
n−1

)
P

(
In|Rn

bck,Γn−1
)
P

(
ϕ(Rn)|Γn−1

)
(4)

The last term in (4) is based on only the pre-
vious contour observation, which corresponds to the
shape of the object. For the sake of simplicity,
we will assume P

(
ϕ(Rn)|Γn−1

)
= 1 and drop the

term. Thus, the contour probability becomes PΓ =
P

(
In|Rn

obj , Γ
n−1

)
P

(
In|Rn

bck,Γn−1
)
. Let there be two

subregions RΓ
obj and RΓ

bck defined in the neighborhood of
the curve, such that RΓ

obj ⊂ Rn
obj and RΓ

bck ⊂ Rn
bck. Due

to the artifacts and noise, PΓcan be defined in terms of
subregions RΓ

obj and RΓ
bck as shown in Figure 1a using:

PΓ 6 P ′Γ = P
(
In|RΓ

obj , Γ
n−1

)
P

(
In|RΓ

bck, Γn−1
)
. (5)

In the remainder of the paper, we will replace PΓ with P ′Γ
and assume that observation at each pixel is independent.
Let Robj(x) and Rbck(x) denote a neighborhood of x in
RΓ

obj and RΓ
bck respectively. Then, we can estimate P ′obj as:

P ′Γ =
∏
x1

( ∏
x2

PRΓ
obj

(In(x2))

︸ ︷︷ ︸
object likelihood

∏
x3

PRΓ
bck

(In(x3))

︸ ︷︷ ︸
background likelihood

)
, (6)

where x1 ∈ Γ, x2 ∈ Robj(x1) and x3 ∈ Rbck(x1).
The maximum a posteriori (MAP) estimate of the con-

tour being tracked, Γ̂n, is found by maximizing the prob-
ability P ′Γ over the subsets Γ ⊂ Ω, where Ω is the space
of all object contours. Based on (6), Γ̂n can be written in
terms of the subregions defined by Γ:

Γ̂n = arg max
Γ⊂Ω

∏
x1

( ∏
x2

PRΓ
obj

(In(x2))
∏
x3

PRΓ
bck

(In(x3))
)

.

(7)

In (7), the band around the hypothesized object contour
serves both as boundary constraint [9], [10], [11] and as a
region constraint [13], [14] generalizing previously proposed
active contour methods into one framework. The advan-
tages of using the band around the boundary compared to
using the complete region are:
• Reduced contour search space;
• Noise and artifacts (holes in the object) are not consid-
ered in contour estimation;
• Boundary and region region based energy functionals are
generalized into one framework.
• It allows object tracking using mobile cameras by adapt-
ing to the local changes around the object contour.
A convenient way of converting a MAP estimation to a
minimization problem is by computing the negative log-
likelihood of probabilities. Thus, the tracking scheme pro-
posed in (7) becomes:

E(Γ) =
∫

x1∈Γ

( ∫ ∫

x2∈Robj(x1)

Ψobj(x2)dx2

︸ ︷︷ ︸
EA

+

∫ ∫

x3∈Rbck(x1)

Ψbck(x3)dx3

︸ ︷︷ ︸
EB

)
dx1, (8)

where Ψobj(x) = − log PRobj
(In(x)) and Ψbck(x) =

− log PRbck
(In(x)). The planar integrals given in (8) are

not defined. To define these integrals, we select subre-
gion Robj ∪ Rbck to be a square region [−m,m]x[−m,m]
centered around xi (Figure 1b). The pixels inside the
Robj∪Rbck are defined for each contour position (f(s), g(s))
by x = x̃ + f(s) and y = ỹ + g(s), where f and g are para-
metric curve functions with parameter s, x̃, ỹ ∈ [−m, m].
To compute object and background probabilities inside
subregion, we define an indicator function of the form:

1Γ
α{x ∈ Rα} =

{
1 x ∈ Rα

0 otherwise
,

Using the above definitions, the functional EA becomes:

EA(s) =
∫ m

−m

∫ m

−m

Ψ(x, y)J1Γ
obj(x, y)dx̃dỹ,

where J is the Jacobian introduced due to the change of
variables and x, y are defined above. Due to the translation
of the square window around Γ the J = 1 and is dropped.
Once EB is rewritten, (8) results in the tracking functional:

E =
∫ 1

0

[
−

Φobj⇒posteriori object log likelihood︷ ︸︸ ︷∫∫ m

−m

log PRobj
(I(x))1Γ

obj{x}dx̃dỹ−
∫∫ m

−m

log PRbck
(I(x))1Γ

bck{x}dx̃dỹ
︸ ︷︷ ︸
Φbck⇒posteriori background log likelihood

]
ds (9)

where l is contour length and 1∂Γ
bck = 1− 1∂Γ

obj.
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The functional given in (9) is very general and function-
als proposed in [11], [13], [14], [16] are special cases of (9):
• Limiting the discriminant analysis to the pixels inside
the region and setting the probabilities of (9) to

Pα(x) = max
z:‖z‖≤m

e−
(In−1(x)−In(x+z))2

2σ2

and dropping the plane integrals (due to max operation)
results in the tracking scheme proposed in [16].
• Replacing the probabilities in (9) with the e−|∆I| reduces
to energy proposed in [11].
• Functional given in (9) can be simplified to [13] by in-
creasing m such that the band covers both object and back-
ground regions. In this case, the front dependent subre-
gions RΓ

α of (8) are changed to region terms Rα.
• Similarly, convex combination of boundary and regional
forces given in [14] is unified through regional probabilities
in (9) attracted by the contour which defines the regions.

C. Minimizing the Tracking Functional

Tracking using (9) requires that evolved object contour
has minimum energy. The first order necessary condition
in this regard is to compute the derivative of the energy
functional. Associated Euler-Lagrange equations of (9) are:

δE
δx = −(Φobj + Φbck)ẏ, δE

δy = (Φobj + Φbck)ẋ, (10)

where Φobj and Φbck are defined in (9). An interesting
observation about the speed function in (10) is that it is a
differential equation with integrals, and are called nonlinear
first order partial integro-differential equations, which are
not well-studied. This is different than the integral terms in
[13], which was used for averaging purposes. Although con-
vergence issue needs analysis, a practical approach to show
its convergence is to assume that the rectangle centered on
the contour has equal object and background regions on
all the contour positions. Thus, the planar integral can be
dropped and the system of equations can be transformed
into a second order differential equation.

IV. Level Sets and Contour Evolution

Contours can be implicitly represented using level sets.
Level set function, φ : R2 → R1, is a grid, where each
grid position has a value representing a level. The con-
tour, Γ, in level set function is defined by the 0th level,
φ(Γ(s, t), t) = 0, and other grid positions in φ carry nega-
tive (inside Γ) and positive (outside Γ) values. Evolution
of the contour in level set function is obtained by modify-
ing φ: φt(Γ(s, t), t) = F (x, t)|∇φ(Γ(s, t), t)| with speed F
in the normal direction, ~n, such that changing the values
creates new zero crossings. The Euler-Lagrange equations
given in (10) can be related to contour evolution on level
sets by defining F . To do so, we rewrite (10):

δE

δ~v
= −(Φobj + Φbck)

[ −ẏ ẋ
]T (11)

where ~v = (x, y). Note that, object and the background
normals are ~nobj = (ẏ,−ẋ) and ~nbck = (−ẏ, ẋ). Thus, (11)

relates to F :

Fx,y = −
m∑

i=−m

m∑

j=−m

log PRobj
(Ix′)1Γ

obj{(x′)}+

m∑

i=−m

m∑

j=−m

log PRbck
(Ix′)1Γ

bck{(x′)}, (12)

where x′ = (x + i,y + j). Negative and positive terms
correspond to the shrinking and expanding forces and are
due to the opposite normal directions. Equation 12 can be
interpreted as follows:
• When the contour is correctly positioned, F ≈ 0.
• If the contour is not correct, background (object) prob-
ability will be higher and F becomes negative (positive).

V. Experiments

To demonstrate the performance of the proposed con-
tour tracker, we have experimented with various sequences
captured with infrared and electro-optical cameras and ob-
tained excellent results. Model priors are computed online
by reevaluating the change in the object and background
features. The level set contour evolution is implemented
using the narrow band method, where (12) is used as the
speed function. The algorithm is initialized with bound-
aries of objects in the first frame. Selection of m in (12) is
not sequence dependent and is fixed to 6 for all sequences.
In contrast to [16], magnitude of motion is not constrained.

In Figure 2i, the results are shown for the standard tennis
player sequence. The player generates non-rigid motion
while the camera pans. The tracking performance is the
best among other tracking methods including [18] and [19].

Shown in Figure 2ii, the method is tested on a sequence
captured using mobile camera. Both texture and color fea-
tures played roles during the course of tracking. For in-
stance, in regions, where the texture is similar with the
background, the method chose color to perform tracking,
while in regions, where the color of the pants is similar with
the background, the texture features are emphasized.

We also tested our method on a low quality sequence cap-
tured using surveillance camera (Figure 2iii). The tracked
person in the sequence undergoes high nonrigid motion.
Due to the similarities in the object and background tex-
ture color feature contributes more to the tracking. The ob-
ject contour is correctly tracked throughout the sequence.
Results given in Figure 2iv show where both features si-
multaneously contribute to the tracking. The contour of
the object is correctly tracked while the camera pans.

We also tested the method on IR sequences. In addition
to the problems due to clutter, objects sometimes are not
visible or distinguishable from the background. Due to
these limitations [16] (use intensity differences) [14] (use
only texture) will perform poor on these sequences. In
Figure 3, we show two different closing sequences, where
the target size increases. Since the imagery is of low quality
and the atmospheric effects cause changes in the features,
online models can adapt to the changes in the scene.

To conclude, experiments demonstrated here show the
superiority of the proposed method over the methods cited
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i)

ii)

iii)

iv)

Fig. 2. Contour tracking results for: (i) non-rigid tennis player sequence; (ii) object that has similar feature set with the changing background
(iii) sequence captured by a stationary surveillance camera; (iv) changing background. We suggest colored printout to view the results.

i) ii)

Fig. 3. Contours tracking of targets in closing infrared sequences taken from an airborne vehicle. (i) Sequence RNG14 15 every 30th frame;
(ii) sequence RNG16 18 every 30th frame.

here. In general, all background subtraction based algo-
rithms will fail for sequences given in Figure 2 except for
2iii where the camera is stationary. The methods given
in [9], [10], [11] will not work for all these sequences due
to the dependence on image or temporal gradients. Tex-
ture based methods given in [8], [14] will fail for sequences
in Figures 2i, iii and 3 due to the dependence on purely
repetitive texture information which is not present.

VI. Conclusions

We proposed an contour tracking method for tracking
non-rigid objects in video captured from mobile cameras.
The method generates online color and texture models for
both object and background regions. Based on the fea-
ture priors, object tracking is formulated as maximization
of a posteriori contour probability evaluated in the vicin-
ity of the contour, given the previous contour observations.
The locality introduced by a band around the contour sup-
presses the noise and artifacts that generally occur during
the course of tracking and increase stability of the solu-
tion. The minimization of the proposed tracking method
is performed by evolving the contour in the steepest descent
direction, using the implicit level set representation. The
results presented show robustness of tracking algorithm for
EO and IR imagery.
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