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a b s t r a c t 

Computer aided diagnosis (CAD) tools help radiologists to reduce diagnostic errors such as missing tu- 

mors and misdiagnosis. Vision researchers have been analyzing behaviors of radiologists during screening 

to understand how and why they miss tumors or misdiagnose. In this regard, eye-trackers have been in- 

strumental in understanding visual search processes of radiologists. However, most relevant studies in 

this aspect are not compatible with realistic radiology reading rooms. In this study, we aim to develop 

a paradigm shifting CAD system, called collaborative CAD (C-CAD), that unifies CAD and eye-tracking 

systems in realistic radiology room settings. We first developed an eye-tracking interface providing radi- 

ologists with a real radiology reading room experience. Second, we propose a novel algorithm that unifies 

eye-tracking data and a CAD system. Specifically, we present a new graph based clustering and sparsifica- 

tion algorithm to transform eye-tracking data (gaze) into a graph model to interpret gaze patterns quan- 

titatively and qualitatively. The proposed C-CAD collaborates with radiologists via eye-tracking technol- 

ogy and helps them to improve their diagnostic decisions. The C-CAD uses radiologists’ search efficiency 

by processing their gaze patterns. Furthermore, the C-CAD incorporates a deep learning algorithm in a 

newly designed multi-task learning platform to segment and diagnose suspicious areas simultaneously. 

The proposed C-CAD system has been tested in a lung cancer screening experiment with multiple radi- 

ologists, reading low dose chest CTs. Promising results support the efficiency, accuracy and applicability 

of the proposed C-CAD system in a real radiology room setting. We have also shown that our framework 

is generalizable to more complex applications such as prostate cancer screening with multi-parametric 

magnetic resonance imaging (mp-MRI). 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Lung cancer screening with low dose computed tomogra-

hy (CT) was shown to reduce lung cancer mortality by 20%

 Siegel et al., 2017 ). Yet, human error remains a significant prob-

em to detect abnormalities. For instance, Missing a tumor (recog-

ition error) and misdiagnosing (decision making error) are called

erceptual errors ( Kundel et al., 1978 ). It’s reported that 35% of

ung nodules are typically missed during the screening process

 Caroline, 2014 ). Over-diagnosis is another significant bias leading

o unnecessary treatment which can cause harm and unnecessary

edical expenses. 
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To alleviate some of these errors, Computer Aided Detec-

ion/Diagnosis (CAD) systems have been developed ( Firmino et al.,

014; Lemaître et al., 2015; Jalalian et al., 2013 ). CADs are often

nown as second opinion tools and they help to reduce false neg-

tive findings (i.e., missing tumors by radiologists). CADs also have

erious limitations such as a large number of false positive findings

nd high execution times. Radiologists are expected to eliminate

alse positive findings generated by the CAD systems, which makes

ajority of CADs infeasible in routine practice. 

Vision scientists have focused on exploring human errors in

creening for more than three decades ( Kundel et al., 1978; Lee

t al., 2013; McCreadie and Oliver, 2009; Al-Moteri et al., 2017; Kok

nd Jarodzka, 2017; Venjakob, 2015; Drew et al., 2013a; Manning

t al., 2006; Littlefair et al., 2017; Tourassi et al., 2013 ). One way to

xplore these perceptual errors is to use eye-tracking technology. It

rovides information about image interpretation by modeling per-

eptual and cognitive processes of radiologists. In this paper, we

https://doi.org/10.1016/j.media.2018.10.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2018.10.010&domain=pdf
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introduce a paradigm-shift system that uses eye-tracking technol-

ogy as a collaborative tool between radiologists and CAD systems.

The rationale behind this idea comes from the fact that radiolo-

gists are good at eliminating false positives, which CADs often fail

to achieve at a human level performance. On the other hand, CADs

capture missing tumors better than the human observer. Because

of this complementary properties, we call the proposed technology

collaborative CAD (C-CAD). 

Briefly, we develop an accurate and efficient deep learning algo-

rithm that accepts input from an eye-tracking device, and presents

the results to radiologists for their diagnostic evaluations. We hy-

pothesize that combining the strength of radiologists and CAD sys-

tems will improve the screening/diagnosis performance. To test

this hypothesis, we have conduct a lung cancer diagnosis ex-

periment (with low dose CT scans) based on eye-tracking data

recorded from multiple radiologists. We also show the applicabil-

ity of our framework to multi-parametric MRI to conduct prostate

cancer screening. We choose lung and prostate cancers due to their

high rate of mortality and growth in 2017, thus confirming their

clinical importance ( Siegel et al., 2017 ). 

1.1. Related works 

To the best of our knowledge, the proposed study is the first

approach that combines eye-tracking, graph sparsification, and

multi-task image analysis in a single framework to make a CAD

system. Most relevant studies as compared to individual steps of

our algorithms are summarized in the following. Since we focus

on two clinical screening examinations in this study (lung and

prostate cancers), related studies are confined to only these two

topics. Nevertheless, the method presented here can be general-

ized to other radiology screening examinations. 

Benefits of screening: According to the American Cancer So-

ciety, lung and prostate cancers are the leading causes of death

and also the fastest growing cancers in 2017 ( Siegel et al., 2017 ).

Medical imaging helps early detection of cancers, but in a recent

lung cancer screening clinical trial, it was found that approximately

35% of lung nodules were missed during the screening process

by radiologists ( Caroline, 2014 ). Previous studies have shown that

early diagnosis of cancers may have a greater impact on the pop-

ulation ( Siegel et al., 2017; Caroline, 2014; Armato et al., 2002 ).

However, many open questions remain in screening examinations.

For instance, definition of at-risk population affects the patient’s

inclusion in the study. Timing and intervals of screening are ad-

justed by clinical trials, but there is no optimal method yet to jus-

tify these selections. Nevertheless, even in these suboptimal condi-

tions, exciting research is ongoing in this field, thanks to more ad-

vanced CT scanners and development of computerized image anal-

ysis methods. CAD systems have shown to be useful in reducing

false negative (missed tumor) cases, but the main issue with all

CAD systems is the presence of a high false positive rate ( Al Mo-

hammad et al., 2017 ). For instance, when an automated lung nod-

ule detection method was used in a study by Armato et al. (2002) ,

84% of the missed lung cancers were marked by the computer. De-

spite this catch, the false-positive rate was very high: 28 false pos-

itive findings per scan. 

Review of CAD systems in the deep learning era: In recent

years, deep learning based algorithms revolutionized many fields

including medical image analysis applications. In conventional CAD

systems (i.e., prior to the deep learning era), hand-crafted feature

design/extraction followed by a feature selection and classification

scheme were the main steps. However, with the success of deep

learning, this strategy has moved from feature engineering to fea-

ture learning . In very recent frameworks, Convolutional Neural Net-

works (CNN) have been used for feature extraction and off-the-

shelf classification methods in most CAD systems ( van Ginneken
t al., 2015; Ciompi et al., 2015; Tsehay et al., 2017a; Le et al.,

017 ). In this line of research, for instance, Hua et al. proposed us-

ng a Deep Belief Network and a CNN for lung nodule classification

 Hua et al., 2015 ) while Kumar et al. used deep features extracted

rom an autoencoder to classify nodules into malignant and benign

 Kumar et al., 2015 ). Deep learning based lung cancer detection has

lso been used as part of a screening strategy ( Roth et al., 2016;

etio et al., 2016 ). 

In our previous works, we have developed various deep learn-

ng networks for lung cancer diagnosis ( Buty et al., 2016; Hus-

ein et al., 2017a, 2017b ). In those works, we have first incor-

orated shape information of lung nodules to improve diagnos-

ic accuracy ( Buty et al., 2016 ). In another approach, we inves-

igated Gaussian Process algorithms along with CNN to incorpo-

ate radiographical interpretations of nodule appearances to im-

rove diagnostic decisions ( Hussein et al., 2017b ). Later, we im-

roved our network (called TumorNET ) by converting the CNN into

 multi-task deep learning strategy ( Hussein et al., 2017a ). A multi-

ask 3D network for joint segmentation and false positive reduc-

ion of lung nodules in a semi-supervised manner was proposed

n Khosravan and Bagci (2018b) . Meanwhile, many studies in the

ecent literature focused on false positive reduction in lung nod-

le detection. Some utilized multiple CNNs for multi-view lung

odule analysis ( Setio et al., 2016 ), while some used 3D CNNs for

 more efficient analysis ( Huang et al., 2017; Ding et al., 2017 ).

urthermore, a multi-scale analysis of lung nodules using multi-

le 3D CNNs was proposed by Dou et al. (2017) . The literature

ertaining to lung nodule detection and characterization via CNN

s vast. A brief overview of some network architectures related

o lung cancer diagnosis can be found in Shin et al. (2016) and

etio et al. (2017b) . Specific to prostate cancer detection from ra-

iology scans, recent works investigated the application of CNNs

sing multi-parametric MRI ( Tsehay et al., 2017b ) and a semi-

upervised approach for biopsy-guided cancer detection using a

eep CNN ( Tsehay et al., 2017a ). Deep learning has also been used

xtensively as a feature learning tool for various applications such

s MRI based prostate segmentation ( Guo et al., 2016 ). 

It is beyond the scope of this study to enlist all of the rel-

vant papers in deep learning-based CAD systems in lung and

rostate cancers. Herein, we devise a new approach for a CAD de-

ign, where deep learning is the part of a collaborative learning

trategy. Our proposed framework is generic and its components

an be replaced with newer networks, in the future, if desirable. 

Review of visual search studies in radiology: A key aspect of

iological vision studies is to understand perceptual and/or cogni-

ive errors and how radiologists search radiology scans for finding

bnormalities. These studies extensively benefit from different eye-

racking technologies ( Venjakob and Mello-Thoms, 2016 ). Compari-

on of the visual search patterns of radiologists, and inferring local

nd global information from those patterns have accelerated the

esearch in this field and led to a better understanding of the dif-

erences between expert and novice readers/radiologists, and gen-

ral strategies for visual search in radiology scans. Some of these

tudies date back to the 1960s. In spite of decades of work, avail-

ble methods in the literature fail to provide: 

• A real radiology room experience for radiologists. 
• A quantitative modeling and comparison of eye-tracking data. 
• Exploration of eye-tracking tools’ potential to compensate for

CAD errors. 

In particular, the interaction between radiologists and comput-

rs (either simple PACS or CAD systems) remain untouched except

y a few seminal image analysis studies ( Drew et al., 2013b; Khos-

avan et al., 2016; Venjakob et al., 2016 ). 

Challenges: Realistic radiology experience with eye-tracking is

ot achieved yet, mainly because of technical complexities. Eye-
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racking systems record data in 2D and having a 3D system needs

n exact synchronization. Furthermore, one of the main challenges

f quantitative modeling and comparison of gaze data stems from

he difficulty of representing, analyzing, and interpreting dense

ye-tracking data. This is not only technically challenging, but also

omputationally demanding ( Venjakob and Mello-Thoms, 2016 ).

he closest study addressing these problems was conducted by

rew et al. (2013b) who proposed the famous scanning and drilling

aper analyzing gaze patterns at the global level. While scanners

xamine one slice of a radiology scan, more explicitly before mov-

ng to the next one, drillers keep going forward and backward in

lices, moving through a 3D stack of the scan. However, quanti-

ative analysis of search patterns at the global and local level

as never been addressed before . We believe that such mapping

ill be extremely useful since it can serve as a natural interface

etween radiologists and CAD systems in that details of the gaze

atterns will be used to guide a CAD system when it is neces-

ary. In other words, it is not possible to benefit from human visual

earch in CAD systems when search patterns are represented only

t the global level. This forms the major challenge of the problem

epicted in (3). 

What we propose? In this study, we address these challenges

y (1) developing an eye-tracking interface that provides a real

adiology reading room experience and (2) performing an atten-

ion based clustering and sparsification of dense eye-tracking data

or building a C-CAD. Our proposed algorithm preserves topologi-

al properties of the gaze data while reducing its size significantly.

his allows us to quantitatively compare global search patterns of

adiologists, extract radiologists’ regions of interest (ROI) based on

heir level of attention during the screening process (local), and to

ombine this information with image content to do different image

nalysis tasks for each ROI. Radiologist’s gaze data is represented

s a graph and sparsified using the proposed attention based algo-

ithm. Finally, a 3D Deep Multi-Task CNN is presented to perform a

oint process of false positive removal (FP removal) and segmenta-

ion for each ROI. An overview of the proposed framework (C-CAD)

s illustrated in Fig. 1 for a lung cancer diagnosis example. Details

f each module in the proposed framework are explained in the

ollowing sections. 

Our work is built upon our previous effort ( Khosravan et al.,

016 ), wherein we first thresholded the eye-tracking data by its

ime component to define potential attentional regions. Then, these

egions (ROIs) were processed with computer vision based saliency

odels to remove some of the false positive regions from con-

iderations. Final ROIs were used for image analysis, particularly

or segmenting lung pathologies using attention. A 2D random

alk algorithm ( Grady, 2006 ) was utilized to segment those ROIs

y combining visual saliency and visual attention information as

eeds of the random walk algorithm. The average dice similarity of

6% was achieved. In the current study, we significantly improve

ur design into a new level with multiple novel contributions. 

.2. Our contributions 

We believe that our work has significant broader impacts in ra-

iology and imaging sciences and introduces several technical in-

ovations as summarized below: 

• A key aspect of any interactive system is to provide a natural

feeling to the user. Having this natural feeling plays a crucial

role specifically in the field of radiology, as imposing any con-

straint might affect the diagnosis accuracy. The majority of eye-

tracking studies are conducted in the laboratory settings and

no realistic eye-tracking based 3D screening experiment is re-

ported in the literature. Our work fills this research gap and

provides a natural (realistic) interaction framework. 
• We propose a new attention based data sparsification method

applied to gaze patterns of radiologists. The proposed approach

allows local and global analysis of visual search patterns based

on visual attention concepts. More importantly, sparse repre-

sentation of gaze patterns help interaction with the newly de-

signed CAD system. Our system truly collaborates with its hu-

man counterpart (i.e., radiologists); therefore, it is fundamen-

tally different than currently available second opinion tools. 
• We develop a new CAD system by proposing the state of the

art 3D deep learning algorithm in a newly designed multi-task

learning platform where both segmentation and diagnosis tasks

are jointly modeled. The proposed system has been tested by

radiologists with different years of experience, and robustness

of the proposed C-CAD has been demonstrated. 
• We extend the proposed C-CAD into a multi-parametric image

analysis framework where users can utilize multiple screens as

in prostate screening with multi-parametric MRI. To the best of

our knowledge, this is the first study in the literature consider-

ing multiple screens in the eye-tracking platform. 

Rest of the paper is organized as follows: In Section 2 , we

escribe the proposed hardware and software integration, details

f data acquisition parameters, the proposed data representation

echnique with sparsification, and multi-task learning based deep

earning algorithm for tumor diagnosis. In Section 3 , we report val-

dation of the sparsification experiments followed by a lung cancer

iagnosis experiment with the C-CAD. We also introduce the po-

ential of the proposed C-CAD system to handle multi-parametric

mages and multi-screen based eye-tracking and image analysis in

eneral. We conclude the paper with a discussion and summary in

ection 4 . 

. Methods 

.1. Data acquisition and eye-tracker 

In this study, a Fovio TM Eye Tracker remote eye-tracker sys-

em (Seeing Machines Inc, Canberra, Australia) was used. We col-

ected eye tracking data using EyeWorks TM Suite ( v .3.12) on a

ELL Precision T 3600 using a Windows 7 operating system on

n Intel Xeon CPU E5 − 1603 0 @ 2.80 GHz with 8GB of RAM.

ig. 2 illustrates integration of Eye-Tracker into our system. Us-

ng EyeWorks TM , eye movements were recorded by two synchro-

ized, remote eye-trackers at 60 Hz . All stimuli were presented at

 resolution of 1280 × 1024 on a DELL19” LCD monitor. We uti-

ized a 60 Hz FOVIO eye-tracker and verified calibration through

 five-point calibration procedure in EyeWorks TM Record prior to

he task. Calibration was considered sufficient if the dot follow-

ng the eye movement trajectory was sustained (indicating that the

ye movement monitor was not losing tracking) and if the calibra-

ion dot was accurate (falling on the calibration check targets at

he center and corners of the screen when the participant was in-

tructed to look at them, with inaccuracy of up to one centimeter

or the upper two corner targets). The eye-tracker was located be-

ween 9 . 5 cm and 8 cm beneath the bottom of the viewing screen

eye-tracker was placed just under the viewing area and at a 25 °
ngle with respect to the monitor.). Following calibration, partici-

ants completed the task as described above. After completing this

ask, the FOVIO was re-calibrated before moving on to a Smooth

ursuit task. Upon completion of screening, the experimental por-

ion of the study was complete and subjects discussed the study

ith the experimenters before leaving. From consent to debriefing,

he study duration spanned roughly 45 min . Custom made DICOM

iewing software was built on Medical Image Processing, Analysis

nd Visualization software (MIPAV CIT, NIH, Bethesda, MD). 
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Fig. 1. To extract radiologist ROIs the dense eye-tracking data goes through a clustering and sparsification algorithm. After extracting ROIs a 3D multi-task CNN is used to 

perform FP removal and segmentation of lesions inside the ROIs, jointly. 

PACS(MIPAV)

a

Multi-Screen

Single-Screen

FOVIO

Fig. 2. A representation of the Eye-Tracking system in a realistic radiology setting is illustrated. Eye-Tracking system, the connection to the workstation, and the C-CAD 

system are integrated into the PACS (MIPAV) system directly as shown on the left. Screening experiments in normal light (a,c) and dark (b,d) radiology rooms for single (a,b) 

and multi-screen (c,d) experiments are shown on the right. 
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In our proposed framework, eye-tracking data goes through five

steps to be converted from a dense graph into a set of diagnos-

tic decisions and segmentation masks on the lesions inside ROIs:

Step 1) The gaze data is represented with a graph. Step 2) A non-

parametric clustering method is applied to the graph nodes. Step 3)

A novel attention-based sparsification algorithm is applied to the

graph to reduce redundant information. Step 4) Radiologists’ Re-

gions of Interest (ROIs) are extracted based on the level of atten-

tion, and Step 5) A deep 3D multi-task Convolutional Neural Net-

work (CNN) is presented to jointly decide about lesions as a nodule

or non-nodules (FP removal) and segment potential abnormalities
t  
nside ROIs. (See Fig. 1 for the overview of the proposed system for

n example application). 

.2. Step 1: A graph representation of the eye-tracking data 

An example of eye-tracking data recorded from two cancer

creening tasks is shown in Figs. 3 and 4 . For each experiment, 2D

mages are overlaid with the coverage area (left), heatmap (mid-

le), and scanpaths (right) representations inferred from the gaze

atterns. Once gaze patterns are recorded, they are dense, hence,

ifficult to analyze (See Fig. 5 ). The aim in data sparsification is

o represent the data with far less parameters and without signif-
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Fig. 3. Eye-tracking data recorded from lung cancer screening. Low-dose CT is used in a single screen. Gaze patterns (right), heat maps of gaze patterns (middle), and 

coverage area of the gaze patterns (left) are illustrated. 

Fig. 4. Eye-tracking data recorded from prostate cancer screening. Multi-Parametric MRI is used in four screens (left upper: T2-weighted (T2w), right upper: apparent 

diffusion coefficient (ADC) map, left lower: diffusion weighted imaging (DWI), right lower: dynamic contrast enhanced (DCE) maps). Gaze patterns across different screens 

and the paths are illustrated for an example screening task. Gaze patterns (right), heat maps of gaze patterns (middle), and coverage area of the gaze patterns (left) are 

illustrated. 

Fig. 5. (a) 3D Graph representation of visual search patterns from a lung cancer screening experiment. (b) Clustering helps to group gaze points to define attention regions. 

Colors indicate different clusters. 
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cantly losing its content. It is also desirable to process the data

asily and efficiently when sparisified. To end this, we propose to

epresent eye-tracking data as a graph and reduce its size without

istorting the topology of the data structure by utilizing clustering

nd sparsification algorithms. 

Graph theory is concerned with a network of points (nodes or

ertices) connected by lines (edges). It is a well-established branch

f mathematics and it has numerous successful applications in di-

erse fields. Formally, a graph ( G ) refers to a set of vertices ( V )

nd edges ( E ) that connect the vertices, and it is represented as
 = (V, E) . In the current problem, a graph representation is a per-

ect choice for eye-tracking data because gaze locations (i.e., fixa-

ions) can easily be stored as vertices while path/directions (i.e.,

accades) between gaze locations can be stored as edges in the

raph. An example of a 3D graph representation of gaze patterns

btained from a lung cancer screening experiment using volumet-

ic low-dose CT scans is illustrated in Fig. 5 (a). A zoomed version

f the graph indicates dense data points and edges between them.

or simplicity, edges are shown as undirected. 
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Dense graph

Edge ratio: 0.6 Edge ratio: 0.4 Edge ratio: 0.2

Sparse graphs with different sparsity levels

Fig. 6. Results of applying proposed graph sparsification method on a 2D dense synthetic data. Edge ratio is the ratio of edges after applying the method to the original 

graph. 

:3x3x3 Conv + Batch 
normalization + ReLU

:Down sampling :Up sampling :Sigmoid

@64 filters
in each layer

@128 filters 
in each layer

@128 filters 
in each layer

@64 filters
in each layer

Encoder Decoder

Image size

Image size

40x40x6

20x20x6

:Fully Connected

FP removal
(prob. for two classes)

Segmentation
(binary map)

Input
(3D volume of 
size 40x40x6)

Fig. 7. The 3D deep multi-task CNN architecture. The size of all convolutions are 3 × 3 × 3 with a stride of 1 in each dimension. The downsampling and upsampling operators 

are performed only in the xy plane, and do not affect temporal information. All convolution and layers are 3 D . The network has 14 shared layers, 2 FP removal specific layers 

and one segmentation specific layer. 
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Although graph representation allows parameterization of the

patterns in the data, its analysis and interpretation are infeasible

because the graph includes large amount of nodes and edges as

exemplified in Fig. 5 . Such graphs are called “dense”, and sparsi-

fication operation can be considered to simplify the data to over-

come challenges of the analysis of a dense graph. A graph sparsi-

fication algorithm reduces the graph density by omitting unneces-

sary edges. However, there are challenges unique to our problem

which makes the conventional sparsification algorithms subopti-

mal in our case: 

• First , the constructed graph is consecutive, meaning each edge

in our graph connects only two distinct vertices (due to the na-

ture of eye-tracking data). This causes a maximum vertex de-

gree of 2 in our graph resulting in the failure of current spar-

sification algorithms to remove even a single edge from our

graph. This is because all the edges in our graph are consid-

ered equally important for keeping the structure of the graph

unchanged. 
• Second , the radiologist’s attention should be taken into account

while sparsifying the data. This will make sure that the global
visual search pattern and attention regions are both preserved

after sparsification. 

To overcome these challenges, we propose the next two steps

f our algorithm to handle the consecutive nature of the data and

ncountering attention information, respectively. 

.3. Step 2: Non-parametric clustering of the graph nodes 

We propose to apply a non-parametric clustering algorithm to

raph vertices of gaze data and reconstruct the graph from clus-

ered vertices (i.e., one vertex for each cluster). There exists a great

umber of clustering methods in the literature due to its applica-

ility in many fields. Each algorithm has advantages and disadvan-

ages. Since gaze patterns are dense, it is desirable that the cluster-

ng algorithm is chosen from a time-efficient family of algorithms. 

Non-parametric clustering algorithms often have subjective

easures for partitioning the data into distinct groups. Hence,

any effort s are spent on designing such measures. The choice of

his similarity measure (or called dissimilarity metric in the same

ashion) is very important, as it has a strong effect on the result-
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Dense graph Clustered data Sparse graph

Clustering Sparsifying

Fig. 8. Sparsification results from synthetic data experiments. The number of graph nodes are reduced from 50 0 0 to 196 in the clustering step, and the number of edges 

(after clustering) are reduced from 4269 to 524 in the graph sparsification step. 

Fig. 9. Lung cancer screening experiments with CT data. First column: dense gaze patterns. Second column: attention based clustering. Third column: nodes in clusters are 

reduced. Fourth column: sparse graph after further reducing edges. 
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t  
ng groupings. In the current problem, we make a domain-specific

efinition of similarity for gaze patterns. Simply, we use distance

etween gaze points as a similarity measure. This is because if

adiologists spend more time in screening for a particular region

i.e., attention region), then the data collected from those regions

re dense and in close vicinity of each other. Likewise, if the dis-

ances between gaze locations are far, it can be safely assumed that

 different attention region is being examined. Given the fact that,

here will be some heterogeneity in distance measurements, it is

till reasonable to use it, as is common in most non-parametric

lustering algorithms. However, any clustering algorithm with a

istance based similarity metric will not be an optimal choice in

ur case since the data is extremely dense, and we desire the al-

orithm to run in linear time while processing large amounts of

ata. 

We hypothesize that the Balanced Iterative Reducing and Clus-

ering using Hierarchies (BIRCH) algorithm can be a good fit for our

urpose because it is time-efficient (linear time), non-parametric,

t  
nd local ( Zhang et al., 1996 ). BIRCH uses a Cluster Feature (CF ) =
(N, LS, SS) to make a large clustering problem tractable by concen- 

rating on densely occupied portions. For N data points in a given

luster X i , LS = 

∑ N 
i =1 X i , and SS = 

∑ N 
i =1 X 

2 
i 

are used to measure pair-

ise distances between data points. N, LS , and SS are basically rep-

esenting norms of the cluster. 

This step represents the dense data with a set of attention re-

ions by clustering them into different groups allowing us to mod-

fy our graph as follows: 

1. all the vertices pertaining to each cluster are removed except

the centroid of the cluster, 

2. all the edges that were connecting vertices from different clus-

ters now connect the corresponding centroids, and 

3. all the edges that were connecting vertices inside each cluster

are modeled as self loops on the centroid (see Fig. 1 ). 

This modification allows the maximum vertex degree of larger

han 2 in the graph. The results of clustering on the graph ver-

ices and the modified graph are shown in Fig. 5 . (Note: the self
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Fig. 10. Lung cancer screening experiment with CT data. Dense and sparse gaze points on 3D lung surface as well as time analysis. Number of nodes in the largest cluster 

(N), corresponding time spent by radiologist on that cluster (Tc) and overall screening time (T), with the eye-tracker frequency being 60 Hz , for each radiologist is computed. 
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loops on cluster centroids are not shown in the modified graph for

the sake of visibility). Spectral sparsification algorithms can now

be used to reduce the data further. 

2.4. Step 3: Attention based graph sparsification 

In the previous step, we simplify our graph by eliminating ver-

tices inside each cluster and represent them by a centroid. This

step will switch the attention mechanism from vertices to clusters,

meaning that the attention region is now represented by clusters.

Graph sparsification methods, on the other hand, eliminate edges

and convert a dense graph G into a sparse graph S . 

In our proposed method, we intend to preserve the structural

similarity between the sparsified and original graphs; therefore,

spectral sparsification algorithms are more suitable than the other

kinds. It is mainly because many graphs can be characterized bet-

ter with spectral estimations where spectral information is ob-

tained by an adjacency matrix, which is normalized by its edges

and subtracted from the identity matrix. In our problem, another

constraint is to have a linear or nearly-linear sparsification al-

gorithm so that the whole dense data analysis become efficient.

Due to these two constraints (being fast and intention to pre-

serve structural similarities), we adapted Spielmans’s nearly-linear

time spectral graph sparsification method ( Spielman and Srivas-

tava, 2011 ) with a novel weight parameter, w , to reflect the atten-

tion regions inferred from eye-tracking data. This particular spec-

tral sparsification algorithm forces the Laplacian quadratic form of

the sparsified graph to be a σ − spectral approximation of the orig-

inal graph ( Spielman and Srivastava, 2011 ) and preserves the struc-

tural similarity between the sparsified and original graph. Note

that the spectral sparsifier is defined as a subgraph of the origi-

nal whose Laplacian quadratic form is approximately the same as

that of the original graph on all real vector inputs, as proved by

Spielman and Srivastava (2011) . That is, if the Laplacian (i.e., spec-
ral properties) matrix is preserved, the structural similarity is pre-

erved. 

The Laplacian matrix of a weighted graph G ( V, E, w ) is defined

imply as: 

 G (i, j) = 

{
−w i, j i � = j ∑ 

z w i,z i = j, 
(1)

here w i, j represents the weight of edge between vertices i and j .

he Laplacian quadratic form of G for x ∈ IR 

V is: 

 

T L G x = 

∑ 

i, j∈ E 
w i, j (x (i ) − x ( j)) 2 . (2)

et ˆ G be a σ − spectral approximation of G if for all x ∈ IR 

V such

hat: 

1 

σ
x T L ˆ G 

x ≤ x T L G x ≤ σ x T L ˆ G 
x . (3)

n the original implementation of the spectral sparsification algo-

ithm ( Spielman and Srivastava, 2011 ), a weighted graph G ( V, E, w )

s converted to a sparse graph S(V, ̂  E , ˆ w ) with | ̂  E | = O (n log n/α2 )

n 

˜ O (m ) time, for a graph with n vertices and m edges, such that

(1 − α) 
∑ 

i, j∈ E 
w i, j (δx ) 2 ≤

∑ 

i, j∈ ̂ E 

ˆ w i, j (δx ) 2 ≤ (1 + α) 
∑ 

i, j∈ E 
w i, j (δx ) 2 , (4)

here α is the sparsification parameter and δx denotes x (i ) − x ( j) .

his method samples edges from G with a probability proportional

o w i, j . r i, j , where r i, j represents effective resistance corresponding

o the edge. Note that effective resistance is a distance measure, in-

pired by the homology (i.e., correspondence) between a graph and

n electrical network. 

We modify the spectral sparsification approach according to

ur unique problem by adding a novel weight function to it. We

resent the radiologists’ level of attention on different regions by

he edge weight between those regions. These weights are also
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Fig. 11. Quantitative parameters to compare graph topology between already clustered data and sparsified data with respect to the preserved edge ratio. R # indicates a 

particular radiologist (blue, green, red). (Lung cancer screening experiment). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Algorithm 1: Attention based spectral graph sparsification. 

Input : Dense graph: G = (V, E) , α: Sparsification parameter 

Output : Sparse graph: S = (V, ̂  E , ˆ w ) 

for i and j in V do 

if There exists e i, j in E then 

Compute N i and N j (number of nodes in clusters 

corresponding to vertices i and j) 

Compute C in and C jn (number of self-loops 

corresponding to vertices i and j) 

Compute w i, j using Eq. (5) 

end 

end 

return G (V, E, w ) ; 

for e i, j in E do 

Sample edge e i, j form G with prob. proportional to w i, j .r i, j 

Add e i, j to S 

end 

return S(V, ̂  E , ˆ w ) ; 

2

 

k  

R  

c  

p

 

a  

n

a

w  

a  

c  
sed as a probability measure to define their importance. More

mportant edges are defined as the edges connecting regions with

ore attention (indicating dense visual search patterns). We trans-

er these rationale into our graph using two primary parameters: 

• Number of nodes in each cluster (N) : indicating a global repre-

sentation of attention for a particular region. The more a radi-

ologist spends time on a region, the denser the corresponding

cluster is. 
• The amount of time spent on one cluster (C) : indicating a local

representation of attention for a cluster. The number of self-

loops on each centroid can be considered to define such pa-

rameters. 

We then define edge weights based on these two parameters as

elow: 

 i, j = exp( −N 

2 
i × C in ) 

−1 × exp( −N 

2 
j × C jn ) 

−1 , (5)

here N i and N j are number of nodes in clusters i and j , respec-

ively, and C in and C jn are number of self-loops for clusters i and

 . Each exp term can be considered as the attention level corre-

ponding to each of the nodes. The major strength of our modified

pectral sparsification algorithm is that we model both local and

lobal visual patterns and their interactions through this weight

unction. The pseudo code of our sparsification method is given in

lgorithm 1 . 

To illustrate the effect of our sparsification method on very

ense data, we applied the proposed method on synthetic data

ith different sparsification levels. Result is shown in Fig. 6 .

he data was created by randomly generating locations which

ere connected to each other consecutively to best mimic human

aze (in terms of consecutive connections). Progressively sparsified

raphs are shown with respect to different levels of edge ratio.

dge ratio herein refers to the percentage of the total number of

dges remaining after the sparsification; hence, the most sparse

raph is represented on the last column where the edge-ratio is

et to 0.2. 
.5. Step 4: Extracting attention-based ROIs 

Having discussed how to construct the sparsified graph while

eeping attention information, we now discuss how to extract the

egions of Interest (ROIs) from the graph. This step allows us to

ombine this information with image content, all in 3D space, and

erform different analysis inside ROIs. 

The attention level of each node inside our graph ( a i ) is defined

s a combination of global and local attention information on that

ode. This can be formulated as follows: 

 i = exp( −N 

2 
i × C in ) 

−1 , (6) 

here N i represents the number of nodes in cluster i (i.e., global

ttention level) and C in represents the number of self loops on

luster i (i.e., local attention level). That is, higher values of a cor-
i 
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Fig. 12. Quantitative parameters to compare graph topology between already clustered and sparsified data with respect to the preserved edge ratio. (Synthetic data experi- 

ment). 
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respond to higher focus of attention on a corresponding cluster

centroid. The cluster centroid represents a location in the 3D space

of image coordinates. 

Our method enables us to perform any image analysis tasks on

the ROIs including but not limited to segmentation, detection of

particular pathology, and diagnosis. In the next section, we demon-

strate how the search pattern and attention information from the

radiologists’ gaze can be combined with image content to perform

radiological image analysis: nodule segmentation and false positive

removal. 

2.6. Step 5: A 3D multi-task deep learning for joint nodule 

segmentation and false positive removal 

We propose a fully 3D deep multi-task CNN that can per-

form two image analysis tasks simultaneously. Multi-Task Learning

(MTL) is a branch of machine learning that deals with jointly opti-

mizing multiple loss functions to update a single model. The goal

of MTL is to generalize a learned model to be able to perform mul-

tiple tasks ( Caruana, 1998 ). Other than having a generalized model,

MTL can benefit each task by learning from other tasks. Some un-

derlying features learned from one task can be helpful in increas-

ing the performance of model on another relevant task. 

In this work, we propose to use a single 3D CNN for combin-

ing two relevant tasks of segmentation and false positive (FP) re-

moval. We chose segmentation and FP removal tasks because mor-

phology/volume and shape are important features to distinguish

nodules from non-nodules, and decision makers for determining

follow up scan time or necessary intervention. Besides, learning a

segmentation task in parallel to FP removal task strengthens the

effect of such features. The proposed network segments the object

inside the ROIs regardless of it being a nodule or not, while clas-

sification task scores the presence of nodule inside 3D ROI, which

makes these two tasks relevant. In the results section, we show

that both tasks benefit from each other and the network performs

better on both. This justifies that knowing an abnormality as nod-
le or non-nodule helps segmentation and the segmentation helps

n decision making about nodule vs. non-nodule in return. 

For the experiment, we briefly feed a 3D volume of interest

VOI) around the cluster centroid corresponding to radiologist’s

OIs into our 3D deep multi-task CNN to perform FP removal

nd segmentation jointly. The proposed CNN architecture is an

ncoder-decoder network containing 14 shared layers, 6 of which

re convolutional layers in the encoder side, and 6 convolutional

ayers are in the decoder side. There are also one down sampling

nd one up-sampling layers. The shared layers are trained jointly

or both tasks while task specific layers are trained only on a sin-

le task. The network has 3 task specific layers including 1 sigmoid

ayer, specific to segmentation, and 2 fully connected layers, spe-

ific to false positive (FP) removal task. The fully connected layers

ave 1024 and 2 neurons, respectively. 

The input to the network is a 3 D volume of size 40 × 40 × 6

entered at the centroid corresponding to the ROIs. The output for

P removal is the probability of lesion membership to one of the

lasses (nodule vs. non-nodule) and the output of the segmenta-

ion task is a binary mask of a nodule. Our network architecture

s inspired by the work by ( Badrinarayanan et al., 2017 ) and can

e considered as a significant extension of their work into a 3D

ulti-task architecture. The details of our different architecture are

ummarized in Fig. 7 . 

. Results 

.1. Data 

We tested our proposed method on synthetic data and two real

creening experiments: 

Synthetic data: included random generation of 50 0 0 nodes

ith consecutive generated edges between these nodes, to better

imic the nature of eye-tracking data. 

Lung cancer screening: the chest CT scans for this experi-

ent were obtained from Lung Tissue Research Consortium (LTRC)



N. Khosravan, H. Celik and B. Turkbey et al. / Medical Image Analysis 51 (2019) 101–115 111 

Fig. 13. Inter-observer variation of MSE for 2 radiologists on 4 different scans. 

Fig. 14. Left: Comparison of accuracy on the test set over training epochs. An increase from 95 to 97% is observed. Middle: Comparison of DSC on test set is shown. An 

increase from 87% to 91% is observed in the network’s trained state. Right: FROC analysis and its comparison with the state of art for false positive reduction. 
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 https://ltrcpublic.com/ ). The in-plane resolution of the CT images

re 512 × 512 with a voxel size of 0 . 58 × 0 . 58 × 1 . 5 mm 

3 . For train-

ng our MTL based CNN, we used the data provided by LUNA chal-

enge ( Setio et al., 2017a ). The challenge organizers provided the

ocation of nodules accepted by at least 3 out of 4 radiologists.

cans with a slice thickness greater than 2.5 mm were excluded

rom the dataset. Overall, we used 6960 lung nodule ROIs (in

D) to train/test our network, 3480 of which were positive sam-

les (nodules which were the augmentation of 498 distinct sam-

les) and the rest were negative samples (non-nodule). Positive

amples (nodules) were augmented by shifting into 6 directions

top, bottom, left, right, top-left and bottom-right) to keep the

alance between classes. The binary masks were obtained manu-

lly by a trained annotator using the ITK-SNAP 3D segmentation

ool ( Yushkevich et al., 2016 ). For MTL-based deep learning experi-

ents, 20% of data was used for testing while the rest was used for

raining, and this procedure was repeated five times to get average

core from all experiments. 

Participants: Three radiologists with different expertise lev-

ls participated in our experiments. Their reading experience lev-

ls were noted as 20, 10, and 3 years, respectively. After nec-

ssary adjustment and calibrations of eye-tracking equipment

ere done for each participant, they were given instructions

bout the screening process without letting them know the exis-

ence or absence of tumors in the scans. Mouse and other ma-

ipulations (zoom, scroll, contrast/brightness window selection)
ere recorded automatically by the software along with gaze

ocations. 

.2. Evaluation of graph sparsification 

In order to show the effectiveness of our proposed graph spar-

ification method, we tested it first on a dense synthetic data.

hen, a 3 D lung cancer screening experiment was performed. To

how that our algorithm is capable of analyzing multi-screen ex-

eriments, we applied the proposed algorithm on a 3D multi-

arametric MRI prostate cancer screening as a feasibility study.

ll of our experiments were performed in a real radiology room

etting without putting any restriction or limitations on the ra-

iologist. The qualitative and quantitative results of the above-

entioned experiments are reported in the following sections. 

.2.1. Synthetic data experiment 

The goal of this experiment was to show the ability of our pro-

osed method in dealing with very dense data. In the synthetic

ata, 50 0 0 nodes were connected consecutively in the 3 D space to

reate a dense data. The reason behind consecutive connections is

o mimic data recorded from eye-trackers. Fig. 8 illustrates the ef-

ect of our algorithm in sparsifying the data. The number of edges

ere reduced from 4269 to 524 in sparsification step, and the

umber of nodes were reduced from 50 0 0 to 196 in the cluster-

ng step. 

https://ltrcpublic.com/
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Fig. 15. Prostate cancer screening experiments with multi-parametric MRI. Left: four MRI modalities and corresponding dense gaze patterns. Right: Clustered and sparsified 

gaze patterns corresponding to each modality. First column: clustered dense gaze patterns. Second column: attention based clustering. Third column: sparse graph after 

further reducing edges. 
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3.2.2. Lung cancer screening experiment: 

In the lung cancer screening experiments, our participants ex-

amined volumetric chest CT scans and the corresponding data was

recorded in 3D space. The qualitative results and comparison of vi-

sual search patterns of the three radiologists are reported in Fig. 9 .

Each column shows one step of the proposed algorithm and each

row corresponds to a radiologist. As can be seen, dense graphs

hardly reveal any comparisons between radiologists’ visual search

patterns. However, it is much easier to use sparsified graph (last

column) for a global comparison of visual search pattern. 

For a qualitative visualization on the image space (CT lungs), we

showed the effect of our sparsification method on the dense eye-

tracking data as well. Fig. 10 shows the original gaze points, from

3 radiologists, on the volume renderings of corresponding lung im-

ages in the first row. The second row illustrates the timing compo-

nent of visual search patterns on the whole scan as well as the

selected regions (i.e., attention region is indicated by circles) for

each radiologist. The third row shows sampled data points after

the clustering algorithm is applied. This figure supports how suc-

cessful a very dense data can be sparsified for any local/global im-

age analysis task easily. 

3.2.3. Quantitative results for sparsification 

In order to compare the topology of the graphs before and af-

ter sparsification, we reported the Diameter, Betweenness, and Mean

Square Error (MSE) of the graph Laplacian matrices. All these pa-

rameters are well established metrics representing structure of the

graphs. Diameter: measures the length of maximum shortest path

in a graph, Betweenness: is a measure of node centrality and counts

the number of shortest paths that pass through a node. The Spear-

man’s rank correlation coefficient is generally used to compare be-

tweenness of the original and sparsified graph. MSE: relates the

structure of the graph before and after sparsification based on the

error in the Laplacian matrix of the graph. The results for lung
creening data and synthetic data are plotted in Fig. 11 and Fig. 12 ,

espectively. The above-mentioned metrics for 3 different radiolo-

ists are plotted in Fig. 11 . Each point in the plot is computed cor-

esponding to an edge ratio. The edge ratio is simply the ratio of

dges in the graph after sparsification over the original graph. As

xpected, by removing more edges (edge ratio drops), betweenness

nd diameter metrics decrease and Laplacian MSE increases. 

Variation of MSE for the data recorded from two radiologists

who read 4 different scans) is plotted in Fig. 13 . The MSEs are

omputed for the fixed edge ratio of 0.9 in this analysis. With a

xed edge ratio, higher MSE means that the original graph is more

parse. This further indicates that removing the same ratio of edges

istorts the graph structure and, leads to a higher MSE. Hence, the

adiologists’ pattern of search can be compared within this varia-

ion. A higher average MSE means that the radiologist is perform-

ng a targeted search and most probably is more expert radiologist.

.2.4. Evaluation of deep learning based diagnosis algorithm 

The proposed MTL CNN achieved an average Dice Similarity Co-

fficient (DSC) of 91% for segmentation and 97% accuracy of clas-

ification (i.e., nodule vs. non-nodule). We also analyzed individ-

al performances of segmentation and FP removal tasks, and their

oint training (i.e., multi-task learning). For joint training, we de-

igned two additional experiments to explore optimal network per-

ormance for the both tasks: 

• Exp1: We connected the fully connected layers to the encoder

(at the network’s bottle neck) and trained the network. In this

experiment, classification loss only affected the encoder while

segmentation loss affected the whole network. 
• Exp2: We trained the network by computing both loss function

at the end of the network, similar to the joint training architec-

ture, and obtained the features from the encoder (at the bottle

neck) to train another fully connected layer and performed clas-
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Fig. 16. Prostate screening experiment quantitative results. 

Table 1 

Comparison of Dice Similarity Coefficient (DSC) and classification accuracy 

of the proposed multi-task network with the baselines (single task net- 

works) and methods from the literature corresponding to each individual 

task. 

Segmentation FP reduction 

Method DSC Method Accuracy 

Khosravan et al. (2016) 86.0% Dou et al. (2017) 96.0% 

Single 87.7% Single 95.0% 

Exp1 89.1% Exp1 96.0% 

Exp2 90.3% Exp2 96.2% 

Joint 91.5% Joint 97.3% 
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sification. In this experiment, both loss functions affected the

whole network while classification is performed based on fea-

tures extracted from the bottle neck. 

As can be seen in Fig. 14 , both tasks benefited from joint train-

ng, and each outperformed the best of single task training. The

lots indicate the DSC and classification accuracy over training

pochs on validation sets (averaged). These experiments support

he hypothesis that segmentation and FP reduction are highly cor-

elated. Furthermore, to have a more accurate evaluation of our

ystem we have conducted a Free-Response Receiver Operating

haracteristic (FROC) analysis ( Kundel et al., 2008 ) on LUNA16 FP

eduction track dataset. A 10-fold cross validation is performed and

ensitivity at 7 FP/scan rates (i.e. 0.125, 0.25, 0.5, 1, 2, 4, 8) is com-

uted. The corresponding results are plotted in Fig. 14 . The over-

ll score of system is defined as the average sensitivity for these 7

P/scan rates. 

Table 1 shows the quantitative results of the proposed MTL-

NN. We compared the performance of our network with its own

aselines, which are the single task training of network on each

ask. For nodule segmentation and FP removal, we have selected

wo studies as example baselines for comparisons as well. Note

hat our proposed system is generic and each component of the
etwork can be improved by replacing them with the most upto

ate successful segmentation and/or FP removal neural network

ounterparts as long as those alternative networks allow joint

raining for improved analysis. 

.3. Feasibility study of multi-screen eye-tracking: 

As a proof-of-concept, we tested C-CAD on a multi-screen

rostate MR screening experiment. Promising results show the

exibility and generalizability of our algorithm in dealing with

ore complex tasks including more than one screen. 

This experiment was performed on a multi-parametric MRI

can of a single subject. MRI characteristics are: axial T2

eighted (T2w), with FOV of 140 × 140 and resolution of 0 . 27 ×
 . 27 × 3 mm 

3 , Dynamic Contrast Enhanced (DCE) with FOV of

62 × 262 and resolution of 1.02 × 1.02 × 3, b = 20 0 0 s / mm 

2 , Diffu-

ion Weighted Imaging (DWI) with FOV of 140 × 140 and resolution

f 0 . 55 × 0 . 55 × 2 . 73 mm 

3 . Apparent Diffusion Coefficient (ADC)

ap was derived from 5 evenly spaced b value (0–750 s / mm 

2 )

WI. 

One of our participating radiologists, an expert in prostate can-

er screening, examined multi-parametric MRI (four 3D images) for

outine prostate cancer screening. Based on the results reported

n Fig. 15 , it is evident by the sparsified graphs that the radiolo-

ist used axial T2-weighted images (anatomical information) and

DC maps (showing magnitude of diffusion) more frequently than

ther two images. This observation suggests that although all four

odalities are being used for making a diagnostic decision T2-

eighted and ADC map are more informative to the radiologists

n the screening process. This observation can be useful in further

evelopments of automatic computer-aided diagnosis systems. 

Quantitative results of our method for different modalities as

ell as the variation over these modalities are shown in Fig. 16 and

ig. 17 , respectively. In screening, DWI and DCE modalities were

sed less frequently than T2-weighted and ADC modalities; there-

ore, the initial graph representations of the DWI and DCE are
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Fig. 17. Variation of MSE on different prostate images per modality. 
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less dense compared to those of T2-weighted and ADC. For those

less dense graphs, the sparsification algorithm achieved a simi-

lar MSE performance in most edge ratios larger than 0.5. From

the reason that the sparsification algorithm keeps the graph in

a σ − spectral approximation of the original graph, we cannot re-

move large number of edges from less dense graphs. This situation

is reflected in diameter ratio and betweenness metrics. 

4. Discussions and concluding remarks 

Our study offers a new perspective on eye-tracking studies in

radiology because of its seamless integration into the real radiology

rooms and collaborative nature of image analysis methods. First,

the proposed system models the raw gaze data from eye-tracker as

a graph. Then, a novel attention based spectral graph sparsification

method is proposed to extract global search pattern of radiologist

as well as attention regions. Later, we propose a 3D deep multi-

task learning based CNN to perform diagnosis and segmentation

tasks jointly inside ROIs. Our proposed sparsification method re-

duced 90% of data within seconds while keeping mean the square

error under 0.1. The segmentation algorithm achieved the average

Dice Similarity Coefficient of 91% and classification accuracy for

nodule vs. non-nodule was 97%. 

As can be interpreted from the lung screening experiment,

the less experienced participant had more crowded visual search

patterns and examined the most lung volume. Also, from the

prostate cancer screening experiment, we observed that radiolo-

gists use anatomical/structural information more frequently than

other modalities in screening (i.e., diffusion MRI). This potentially

shows the importance of anatomical information in prostate can-

cer detection but at the same time we noticed that when anatom-

ical information gives less clues to radiologists about potential ab-

normality, radiologists looks for complementary information from

other imaging modalities to make inference. Our system provides

visualization of this process for the first time in the literature.

Scanpaths across different screens prove this observation as can be

seen in Fig. 15 . 

Our work has some limitations that should be noted. One of the

limitations is the lack of large amount of data for training more

sophisticated deep learning models as well as conducting scanpath

analysis with several other radiologists. In our extended study, we

plan to address this limitation and explore the validity of the pro-

posed methods in different settings, incorporating the behavioral
atterns into screening experiments such as cognitive fatigue of

he radiologists. 

For lung cancer screening with C-CAD, our system has the as-

umption that the radiologists are examining only lung regions and

he ROIs fall into the lung regions. If the radiologist starts focusing

n some other areas, outside the lungs, the segmentation results

ight not be as desired, because of non-lung regions. To solve this

roblem, one may include a simple segmentation step into the C-

AD to restricts the ROI definition into the lungs only. However,

his procedure may affect analysis of incidental findings too. 

In conclusion, CAD systems are often prone to high number

f false positives findings, which is one of the main drawbacks

n such systems. Missing tumors, especially in their early stages,

s also very common in screening. To increase the efficacy of the

ung cancer screening process, we propose a novel computer al-

orithm, namely collaborative CAD (C-CAD). Our proposed method

akes into account the gaze data of radiologists during the screen-

ng process, and incorporates this information into the CAD system

or better accuracy in reducing false positive findings in particu-

ar. In return, C-CAD has the capability of improving true positive

ndings as well as reducing missing cases. With our proposed at-

ention based graph sparsification method, qualitative comparison

nd analysis of different radiologists’ visual search patterns (both

ocally and globally) has become feasible. It is worth noting that

e are doing a local image analysis in the regions of interest and

ot solving the detection problem per se. It is also worth noting

hat, although deep learning has improved the accuracy and per-

ormance of detection methods, the efficiency of search is still a

ig issue in state of the art detection methods ( Khosravan and

agci, 2018a ). Our proposed system is a promising step toward

ombining the efficiency of searching strategy from the expert ra-

iologist and accuracy of analysis from deep learning methods.

ince our framework is capable of integrating any image analysis

lock as well as a detection block, having a detection task on top of

iagnosis and segmentation is a promising future direction which

nables the framework to handle cases that are missed by radiolo-

ists. 
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