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Abstract—Risk stratification (characterization) of tumors from
radiology images can be more accurate and faster with computer-
aided diagnosis (CAD) tools. Tumor characterization through
such tools can also enable non-invasive cancer staging, prog-
nosis, and foster personalized treatment planning as a part of
precision medicine. In this study, we propose both supervised
and unsupervised machine learning strategies to improve tumor
characterization. Our first approach is based on supervised
learning for which we demonstrate significant gains with deep
learning algorithms, particularly by utilizing a 3D Convolu-
tional Neural Network and Transfer Learning. Motivated by
the radiologists’ interpretations of the scans, we then show how
to incorporate task dependent feature representations into a
CAD system via a graph-regularized sparse Multi-Task Learning
(MTL) framework.

In the second approach, we explore an unsupervised learning
algorithm to address the limited availability of labeled train-
ing data, a common problem in medical imaging applications.
Inspired by learning from label proportion (LLP) approaches
in computer vision, we propose to use proportion-SVM for
characterizing tumors. We also seek the answer to the fun-
damental question about the goodness of “deep features” for
unsupervised tumor classification. We evaluate our proposed
supervised and unsupervised learning algorithms on two different
tumor diagnosis challenges: lung and pancreas with 1018 CT
and 171 MRI scans, respectively, and obtain the state-of-the-art
sensitivity and specificity results in both problems.

Index Terms—Unsupervised Learning, Lung cancer, 3D CNN,
IPMN, Pancreatic cancer.

I. INTRODUCTION

Approximately 40% of people will be diagnosed with cancer
at some point during their lifetime with an overall mortality of
171.2 per 100,000 people per year (based on deaths between
2008-2012) [1]. Lung and pancreatic cancers are two of the
most common cancers. While lung cancer is the largest cause
of cancer-related deaths in the world, pancreatic cancer has
the poorest prognosis with a 5-year survival rate of only 7%
in the United States [1]. With regards to pancreatic cancer,
specifically in this work, we focus on the challenging prob-
lem of automatic diagnosis of Intraductal Papillary Mucinous
Neoplasms (IPMN). IPMN is a pre-malignant condition and
if left untreated, it can progress to invasive cancer. IPMN
is mucin-producing neoplasm that can be found in the main
pancreatic duct and its branches. They are radiographically
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Figure 1: A block diagram to represent different schemes,
methods and experimental case studies presented in this pa-
per. We develop both supervised and unsupervised learning
algorithms to characterize tumors. For the supervised learning
scheme, we propose a new 3D CNN architecture based on
a Graph Regularized Sparse Multi-task learning and perform
evaluations for lung nodule characterization from CT scans.
For unsupervised learning scheme, we propose a new clus-
tering algorithm, ∝SVM, and test it for the categorization of
lung nodules from CT scans and pancreatic cysts (IPMN) from
MRI scans.

identifiable precursors to pancreatic cancer [2]. Detection and
characterization of these lung and pancreatic tumors can aid
in early diagnosis; hence, increased survival chance through
appropriate treatment/surgery plans.

Conventionally, the CAD systems are designed to assist
radiologists in making accurate and fast decisions by reduc-
ing the number of false positives and false negatives. For
diagnostic decision making, a higher emphasis is laid on
increased sensitivity: a false-flag is more tolerable than a
tumor being missed or incorrectly classified as benign. In this
regard, a computerized analysis of imaging features becomes
a key instrument for radiologists to improve their diagnostic
decisions. In the literature, automated detection and diagnosis
methods had been developed for tumors in different organs
such as breast, colon, brain, lung, liver, prostate, and others.
As typical in such studies, a CAD includes preprocessing
and feature engineering steps (including feature extraction and
selection) followed by a classification step [3], [4], [5], [6].
However, with the success of deep learning, a transition from
feature engineering to feature learning has been observed in
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medical image analysis literature. Those systems comprise
Convolutional Neural Networks (CNN) as feature extractor
followed by a conventional classifier such as Random Forest
(RF) [7], [8]. In scenarios where a large number of labeled
training examples are available, however, end-to-end trainable
deep learning approaches can be employed [9].

This paper includes two main approaches for tumor charac-
terization from radiology scans: supervised and unsupervised
learning algorithms. In the first part, we focus on novel
supervised algorithms, which is a significant extension to our
IPMI 2017 study [10]. Specifically, we first present a novel su-
pervised learning strategy to perform risk-stratification of lung
nodules from low-dose CT scans. For this strategy, we per-
form a 3D CNN based discriminative feature extraction from
radiology scans. We contend that 3D networks are important
for the characterization of lung nodules in CT images which
are inherently 3-dimensional. The use of conventional 2D
CNN methods, whereas, leads to the loss of vital volumetric
information which can be crucial for precise risk assessment
of lung nodules. In the absence of a large number of labeled
training examples, we utilize a pre-trained 3D CNN archi-
tecture and fine-tune the network with lung nodules dataset.
Also, inspired by the significance of lung nodule attributes
for clinical determination of malignancy [11], we utilize the
information about six high-level nodule attributes such as
calcification, spiculation, sphericity, lobulation, margin, and
texture (Figure 2-A) to improve automatic benign-malignant
classification. Then, we integrate these high-level features into
a novel graph regularized multi-task learning (MTL) frame-
work to yield the final malignancy output. We analyze the
impact of the aforementioned lung nodule attributes in-depth
for malignancy determination and find these attributes to be
complementary when obtaining the malignancy scores. From
a technical perspective, we also exploit different regularizers
and multi-task learning approaches such as trace-norm and
graph regularized MTL for regression.

In the second part of the paper, inspired by the success-
ful application of unsupervised learning methods in other
domains, we explore the potential of unsupervised learning
strategies in lung nodule and IPMN classification. First, we
extract discriminative information from a large amount of
unlabeled imaging data. We analyze both hand-crafted and
deep learning features and assess how good those features are
when applied to tumor characterization. In order to obtain an
initial set of labels in an unsupervised fashion, we cluster the
samples into different groups in the feature domain. We next
propose to train Proportion-Support Vector Machine (∝SVM)
algorithm using label proportions rather than instance labels.
The trained model is then employed to learn malignant-benign
categorization of the tumors.

This paper is organized as follows. Section 2 describes re-
lated work pertaining to supervised and unsupervised learning
for the diagnosis of lung nodules and IPMN. We present
our MTL based supervised learning algorithm in Section 3.
In Section 4, we introduce an unsupervised learning method
adapted for the diagnosis of lung nodules and IPMN from
CT and MRI scans, respectively. The experiments and results
are discussed in Section 5. In the same section, we also

study the influence of different deep learning features for
unsupervised learning and establish an upper bound on the
classification performance using supervised learning methods.
Finally, Section 6 states discussions and concluding remarks.

II. RELATED WORK

This section summarizes the advances in machine learning
applied to medical imaging and CAD systems developed for
lung cancer diagnosis. Since the automatic characterization
of IPMN from MRI scans has not been extensively studied
in the literature, relevant works are mostly selected from the
clinical studies. Our work is the first in this regard.

Imaging Features and Classifiers: Conventionally, the risk
stratification (classification) of lung nodules may require
nodule segmentation, computation and selection of low-level
features from the image, and the use of a classifier/regressor.
In the approach by [12], different physical statistics includ-
ing intensity measures were extracted and class labels were
obtained using Artificial Neural Networks. In [3], lung nod-
ules were segmented using appearance-based models followed
by shape analysis using spherical harmonics. The last step
involved k-nearest neighbor based classification. Another ap-
proach extended 2D texture features including Local Binary
Patterns, Gabor and Haralick to 3D [4]. Classification using
Support Vector Machine (SVM) was performed as the final
step. In a different study, Way et al. [5], implemented nod-
ule segmentation via 3D active contours, and then applied
rubber band straightening transform. A Linear Discriminant
Analysis (LDA) classifier was applied to get class labels.
Lee et al. [6] introduced a feature selection based approach
utilizing both clinical and imaging data. Information content
and feature relevance were measured using an ensemble of
genetic algorithm and random subspace method. Lastly, LDA
was applied to obtain final classification on the condensed
feature set. In a recent work, spherical harmonics features
were fused with deep learning features [8] and then RF
classification was employed for lung nodule characterization.
Hitherto, the application of CNN for nodule characterization
has been limited to 2D space [13], thus falling short of
incorporating vital contextual and volumetric information. In
another approach, Shin et al. [14] employed CNN for the
classification of lung nodules. Other than not completely 3D
CNN, the approach didn’t take into account high-level nodule
attributes and required training an off-the-shelf classifier such
as RF and SVM.

The information about different high-level image attributes
had been found useful in the malignancy characterization of
lung nodules. In a study exploring the correlation between
malignancy and nodule attributes, [11] found that 82% of the
lobulated, 93% of the ragged, 97% of the densely spiculated,
and 100% of the halo nodules were malignant in a particular
dataset. Automatic determination of lung nodule attributes and
types had been explored in [15]. The objective was to perform
the classification of six different nodule types such as solid,
non-solid, part-solid, calcified, perifissural and spiculated nod-
ules. However, the approach is based on 2D CNN and fell short
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of estimating the malignancy of lung nodules. Furthermore,
66% of the round nodules were determined as benign.

Although, not an objective in this paper, the detection of
lung nodules has also been an active subject of interest among
researchers [16], [17], [18]. A short but informative review
of the most recent detection studies can be found in [18].

Pancreatic Cysts (IPMN): Although there has been
considerable progress in developing automatic approaches to
segment pancreas and its cysts [19], [20], the use of advanced
machine learning algorithms to perform fully automatic
risk-stratification of IPMNs is limited. The approach by
Hanania et al. [21] investigated the influence of 360 imaging
features ranging from intensity, texture, and shape to stratify
subjects as low or high-grade IPMN. In another example,
Gazit et al. [22] extracted texture and features from the solid
component of segmented cysts followed by a feature selection
and classification scheme. Both of these approaches [21], [22]
required segmentation of cysts or pancreas and are evaluated
on CT scans only.

Unsupervised Learning: Typically, the visual recognition and
classification tasks are addressed using labeled data (supervi-
sion). However, for tasks where manually generating labels
corresponding to large datasets is laborious and expensive, the
use of unsupervised learning methods is of significant value.
Unsupervised techniques had been used to solve problems
in various domains ranging from object categorization [23],
speech processing [24] and audio classification [25]. These
methods conventionally relied on some complementary infor-
mation provided with the data to improve learning, which
may not be available for several classification tasks in medical
imaging.

In medical imaging, there have been different approaches
that used unsupervised learning for detection and diagnosis
problems. The approach by Shin et al. [26] used stacked au-
toencoders for multiple organ detection in MRI scans. Vaidhya
et al. [27] presented a brain tumor segmentation method with
stacked denoising autoencoder evaluated on multi-sequence
MRI images. In a work by Sivakumar et al. [28], the segmenta-
tion of lung nodules is performed with unsupervised clustering
methods. In another study, Kumar et al. [7] used features from
autoencoder for lung nodule classification. These auto-encoder
approaches, however, did not yield satisfactory classification
results. Other than these, unsupervised deep learning has also
been explored for mammographic risk prediction and breast
density segmentation [29].

Unsupervised feature learning remains an active research
area for the medical imaging community, more recently
with Generative Adversarial Networks (GAN) [30]. In order
to explore the information from unlabeled images, Zhang
et al. [31] described a semi-supervised method for the
classification of four types of nodules. In sharp contrast
to these approaches, the unsupervised learning strategies
presented in this paper don’t involve feature learning using
auto-encoders. Using sets of hand-crafted as well as pre-
trained deep learning features, we propose a new unsupervised
learning algorithm where an initially estimated label set is

progressively improved via proportion-SVM.

Our Contributions
A block diagram representing different supervised and unsu-
pervised schemes is presented in Figure 1. Overall, our main
contributions in this work can be summarized as follows:

• For lung nodule characterization, we present a 3D CNN
based supervised learning approach to fully appreciate the
anatomical information in 3D, which would be otherwise
lost in the conventional 2D approaches. We use fine-tuning
strategy to avoid the requirement for a large number of
volumetric training examples for 3D CNN. For this purpose.
we use a pre-trained network (which is trained on 1 million
videos) and fine-tune it on the CT data.

• We introduce a graph regularized sparse MTL platform
to integrate the complementary features from lung nodule
attributes so as to improve malignancy prediction. Figure 2-
A shows high-level lung nodule attributes having varying
levels of prominence.

• We evaluate the proposed supervised and unsupervised
learning algorithms to determine the characterization of lung
nodules and IPMN cysts (Table I). In the era where the wave
of deep learning has swept into almost all domains of visual
analysis, we investigate the contribution of features extracted
from different deep learning architectures. To the best of our
knowledge, this is the first work to investigate the automatic
diagnosis of IPMNs from MRI.

• In the proposed unsupervised learning algorithm, instead of
hard assigning labels, we estimate the label proportions in
a data-driven manner. Additionally, to alleviate the effect
of noisy labels (i.e. mislabels) obtained during clustering,
we propose to employ ∝SVM, which is trained on label
proportions only.

III. SUPERVISED LEARNING METHODS

A. Problem Formulation

Let X = [x1, x2 . . . xn]T ∈ Rn×d represent the input
features obtained from n images of lung nodules each having
a dimension d. Each data sample has an attribute/malignancy
score given by Y = [y1, y2 . . . yn], where Y T ∈ Rn×1. While
X consists of features extracted from radiology images, and
Y represents the malignancy score over 1-5 scale where 1
represents benign and 5 represents malignant. In supervised
learning, the labeled training data is used to learn the coeffi-
cient vector or the regression estimator W ∈ Rd. In testing,
W is used to estimate Y for an unseen feature/example.
For regression, a regularizer is often added to prevent over-
fitting. Hence, a classical least square regression turns into a
constrained optimization problem with `1 regularization as:

min
W
‖XW − Y ‖22 , s.t. ‖W‖1 ≤ t. (1)
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Figure 2: (A) A visualization of lung nodules having different levels of attributes. On moving from the top (attribute absent)
to the bottom (attribute prominently visible), the prominence level of the attribute increase. Different attributes including
calcification, sphericity, margin, lobulation, spiculation and texture can be seen in (a-f). The graph in (g) depicts the number
of nodules with different malignancy levels in our experiments using the publicly available dataset [32]. An overview of the
proposed 3D CNN based graph regularized sparse MTL approach is presented in (B).

In the above equation, the sparsity level of the coefficient
vector W = [w1, w2 . . . wd] is controlled by a parameter t.
Since the function in Eq. (1) is convex and the constraints
define a convex set, a local minimizer of the objective function
is subjected to constraints corresponding to a global mini-
mizer. In the following subsections, we extend this supervised
learning setting with deep learning and MTL concepts to
characterize lung nodules as benign or malignant.

B. 3D Convolution Neural Network (CNN) and Fine-Tuning

We use 3D CNN [33] trained on Sports-1M dataset [34]
and fine-tune it on the lung nodule CT dataset. The Sports-
1M dataset consists of 487 classes with 1 million videos.
As the lung nodule dataset doesn’t have a large number of
training examples, fine-tuning is done to acquire dense feature
representation from the Sports-1M. The 3D CNN architecture
consists of 5 sets of convolution, 2 fully-connected and 1 soft-
max classification layers. Each convolution set is followed by
a max-pooling layer. The input to the 3D CNN comprises
dimensions of 128x171x16, where 16 denotes the number of
slices. Note that the images in the dataset are resized to have
consistent dimensions such that the number of channels is 3
and the number of slices is fixed to 16. Hence, the overall input
dimension can be considered as 3x16x128x171. The number
of filters in the first 3 convolution layers are 64, 128 and 256
respectively, whereas there are 512 filters in the last 2 layers.
The fully-connected layers have a dimension 4096 which is
also the length of feature vectors used as an input to the MTL
framework. Implementation details are mentioned in section
V-C.

C. Multi-task learning (MTL)

Multi-task learning is an approach of learning multiple tasks
simultaneously while considering disparities and similarities
across those tasks. Given M tasks, the goal is to improve

the learning of a model for task i, (i ∈ M ) by using the
information contained in the M tasks. We formulate the
malignancy prediction of lung nodules as an MTL problem,
where visual attributes of lung nodules are considered as
distinct tasks (Figure 2A). In a typical MTL problem, ini-
tially, the correlation between M tasks and the shared feature
representations are not known. The aim in the MTL approach
is to learn a joint model while exploiting the dependencies
among visual attributes (tasks) in feature space. In other words,
we utilize visual attributes and exploit their feature level
dependencies so as to improve regressing malignancy using
other attributes.

As shown in Figure 2B, we design lung tumor characteriza-
tion as an MTL problem, where each task has model param-
eters Wi, which are utilized to characterize the corresponding
task i. When W = [W1,W2 . . .WM ] ∈ Rd×M constitutes
a rectangular matrix, rank can be considered as a natural
extension to cardinality, and nuclear/trace norm leads to low
rank solutions. In some cases nuclear norm regularization can
be considered as the `1-norm of the singular values [35]. Trace
norm, the sum of singular values, is the convex envelope of
the rank of a matrix (which is non-convex), where the matrices
are considered on a unit ball. After substituting, `1-norm by
trace norm, the least square loss function with trace norm
regularization can be formulated as:

min
W

M∑
i=1

‖XiWi −Yi‖22 + ρ ‖W‖∗ , (2)

where ρ adjusts the rank of the matrix W, and ‖W‖∗ =∑
i=1 σi(W) is the trace-norm where σ denotes singular

values. However, as in trace-norm, the assumption about
models sharing a common subspace is restrictive for some
applications.

As the task relationships are often unknown and are learned
from data, we represent tasks and their relations in the form
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of a graph. Let Υ = (V,E) represent a complete graph in
which nodes V correspond to the tasks and the edges E model
any affinity between the tasks. In such case, a regularization
can be applied on the graph modeling task dependencies [36].
The complete graph can be modeled as a structure matrix S =
[e1, e2 . . . e‖E‖] ∈ RM×‖E‖ where the deviation between the
pairs of tasks can be regularized as:

‖WS‖2F =

‖E‖∑
i=1

∥∥Wei
∥∥2
2

=

‖E‖∑
i=1

∥∥∥Weia
−Weib

∥∥∥2
2
, (3)

here, eia, eib are the edges between the nodes a and b, and
ei ∈ RM . The matrix S defines an incidence matrix where eia
and eib are assigned to 1 and -1, respectively, if nodes a and
b are connected in the graph. Eq. (3) can be further explained
as:

‖WS‖2F = tr((WS)T (WS)) = tr(WSSTWT ) = tr(WLWT ),
(4)

where L = SST is the Laplacian matrix and ‘tr’ represents
the trace of a matrix. The method to compute structure matrix
S is discussed in Section V-C.

The malignancy prediction equation can be further regu-
larized because there are still other uncertainties to consider,
i.e., disagreement between radiologists’ visual interpretations
for a given nodule. For instance, while one radiologist may
give a malignancy score of xj1 for a nodule j, the other may
give a score of xj2 for the same nodule. In order to reflect
these uncertainties in our algorithm, we formulate a scoring
function which models such inconsistencies:

Ψ(j) =

(
exp(

−
∑
r(x

j
r − µj)2

2σj
)

)−1
. (5)

For a particular example j, this inconsistency measure can
be represented as Ψ(j). xjr is the score given by the rth

radiologist (expert) whereas µj and σj represent mean and
standard deviation of the scores, respectively. We calculate
this inconsistency score for all the tasks under consideration
and for simplicity we have omitted the index for the tasks. The
final objective function of graph regularized sparse least square
optimization with the inconsistency measure can expressed as:

min
W

M∑
i=1

1©︷ ︸︸ ︷
‖(Xi + Ψi)Wi −Yi‖22 +

2©︷ ︸︸ ︷
ρ1 ‖WS‖2F +

3©︷ ︸︸ ︷
ρ2 ‖W‖1,

(6)
where ρ1 tunes the penalty degree for graph structure and
ρ2 handles the sparsity level. In Eq. (6), the least square
loss function 1© observes decoupling of tasks whereas 2©
and 3© model their interdependencies, so as to learn joint
representation.

D. Optimization

In order to solve Eq. (6), the conventional approach is to
use standard gradient descent as an optimization algorithm.
However, standard gradient descent cannot be applied here

because the `1−norm is not differentiable at W = 0 and gra-
dient descent approach fails to provide sparse solutions [37].
Since the optimization function in the above equation has
both smooth and non-smooth convex parts, it can be solved
after replacing the non-smooth part with its estimates. In
other words, the `1-norm in the above equation is the non-
smooth part and the proximal operator can be used for its
estimation. For this purpose, we utilize accelerated proximal
gradient method [38], the first order gradient method having a
convergence rate of O(1/m2), where m controls the number
of iterations.

IV. UNSUPERVISED LEARNING METHODS

Since annotating medical images is laborious, expensive
and time-consuming, in the second part of this paper, we
explore the potential of unsupervised learning approaches for
tumor characterization problems. As illustrated in Figure 3, our
proposed unsupervised framework includes three steps. First,
we perform clustering on the appearance features obtained
from the images to estimate an initial set of labels. Then,
using the obtained initial labels, we compute label proportions
corresponding to each cluster. Finally, we use the initial cluster
assignments and label proportions to learn the categorization
of tumors.

A. Initial Label Estimation

Let X = [x1, x2 . . . xn]T ∈ Rn×d represent the input matrix
which contains features from n images such that x ∈ Rd.
We then cluster the data into 2 ≤ k < n clusters using k-
means algorithm. Let A represent |X| × k assignment matrix
which denotes the membership assignment of each sample to a
cluster. The optimal clustering would minimize the following
objective function:

argmin
µv,A

k∑
v=1

A(u, v) ‖xu − µv‖2 ,

s.t. A(u, v) = 0 ∨ 1,
∑
v

A(u, v) = 1

(7)

where µv is the mean of the samples in cluster v. The
assignment matrix A can then be used to estimate labels c.
These labels are only used for estimating label proportions
of the clustered data for the purpose of training a new algo-
rithm which we adapt for our problem, i.e., proportion-SVM
(∝SVM). The rationale behind this proportion comes from
the clustering notion where data is divided into groups/clusters
and each cluster corresponds to a particular class. In our work,
specifically, clustering is only an initial step to estimate cluster
assignments that are progressively refined in the subsequent
steps.

B. Learning with the Estimated Labels

Since our initial label estimation approach is unsupervised,
there are uncertainties associated with them. It is, therefore,
reasonable to assume that learning a discriminative model
based on these noisy instance level labels can deteriorate
classification performance. In order to address this issue, we
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Figure 3: An outline of the proposed unsupervised approach. Given the input images, we compute GIST features and perform
k-means clustering to get the initial set of labels which can be noisy. Using the set of labels, we compute label proportions
corresponding to each cluster/group (Eq. (9)). We finally employ ∝SVM to learn a discriminative model using the features
and label proportions.

TABLE I: List and details of different experiments performed for supervised and unsupervised learning along with their
evaluation sets.

Experiments Details Evaluation Set
E1 Supervised learning, 3D CNN based

Multi-task learning with attributes,
fine-tuning (C3D) network

3D dataset:
Malignancy score

regression of Lung
nodules (CT)

E2 Unsupervised learning, GIST features,
Proportion-SVM 2D dataset:

Lung nodules
(CT) and IPMN

classification
(MRI)

E3 Unsupervised learning, features from
different layers of 2D VGG network

E4 Supervised learning to establish
classification upper-bound, GIST and VGG

features with SVM and RF

model the instance level labels as latent variables and thereby
consider group/bag level labels.

Inspired by ∝SVM approach [39], which models the latent
instance level variables using the known group level label
proportions, we formulate our learning problem such that
clusters are analogous to the groups. In our formulation, each
cluster v can be represented as a group such that the majority
of samples belong to the class v. Considering the groups to
be disjoint such that

⋃k
v=1Ωv= 1, 2, . . . n , and Ω represents

groups; the objective function of the large-margin ∝SVM after
convex relaxation can be formulated as:

min
c∈C

min
w

(
1

2
wTw +K

n∑
u=1

L(cu, w
Tφ(x))

)

C =

{
c

∣∣∣∣ |p̃v(c)− pv| ≤ ε, cu ∈ {−1, 1} ∀kv=1

}
,

(8)

where p̃ and p represent the estimated and true label propor-
tions, respectively. In Eq. (8), c is the set of instance level
labels, φ(.) is the input feature, K denotes cost parameter and
L(.) represents the hinge-loss function for maximum-margin
classifiers such as SVM. An alternative approach based on
training a standard SVM classifier with clustering assignments
is discussed in Section V-D.

The optimization in Eq. (8) is, in fact, an instance of
Multiple Kernel Learning, which can be solved using the
cutting plane method where the set of active constraints is

incrementally computed. The goal is to find the most violated
constraint, however, the objective function still decreases even
by further relaxation and aiming for any violated constraint.
Further details about optimization can be studied in [39].

C. Calculating Label Proportions

In the conventional ∝SVM approach, the label proportions
are known a priori. Since our approach is unsupervised, both
instance level labels and group label proportions are unknown.
Moreover, establishing strong assumptions about the label
proportions may affect learning. It is, however, reasonable to
assume that a large number of instances in any group carry
the same label and there may be a small number of instances
which are outliers. The label proportions serve as a soft-label
for a bag where a bag can be considered as a super-instance.
In order to determine the label proportions in a data-driven
manner, we use the estimated labels obtained from clustering.
The label proportion pv corresponding to the group v can be
represented as:

pv = n−1
n∑
u=1

I(yu = v), (9)

where I(.) is the indicator function which yields 1 when
yu = v. The ∝SVM is trained using the image features and
label proportions to classify the testing data. It is important to
mention that the ground truth labels (benign/malignant labels)
are used only to evaluate the proposed framework and are
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Normal Pancreas 

Pancreas with IPMN 

Figure 4: Axial T2 MRI scans illustrating pancreas. The top row shows different ROIs of pancreas, along with a magnified
view of a normal pancreas (outlined in blue). The bottom row shows ROIs from subjects with IPMN in the pancreas, which
is outlined in red.

not used in estimating label proportions or training of the
proportion-SVM. In addition, clustering and label proportion
calculation are only performed on the training data and the
testing data remains completely unseen for ∝SVM. The num-
ber of clusters is fixed as 2, i.e. benign and malignant classes
and the result was checked to assign benign and malignant
labels to the clusters.

V. EXPERIMENTS

A. Data for Lung Nodules

For test and evaluation, we used LIDC-IDRI dataset from
Lung Image Database Consortium [32], which is one of the
largest publicly available lung nodule dataset. The dataset
comprises 1018 CT scans with a slice thickness varying from
0.45 mm to 5.0 mm. At most four radiologists annotated those
lung nodules which have diameters equal to or greater than 3.0
mm.

We considered nodules which were interpreted by at least
three radiologists for evaluations. The number of nodules
fulfilling this criterion was 1340. As a nodule may have
different malignancy and attribute scores provided by different
radiologists, their mean scores were used. The nodules have
scores corresponding to these six attributes: (i) calcification,
(ii) lobulation, (iii) spiculation, (iv) sphericity, (v) margin and
(vi) texture as well as malignancy (Figure 2). The malignancy
scores ranged from 1 to 5 where 1 denoted benign and 5
meant highly malignant nodules. To account for malignancy
indecision among radiologists, we excluded nodules with
a mean score of 3. The final evaluation set included 509
malignant and 635 benign nodules. As a pre-processing step,
the images were resampled to be isotropic so as to have 0.5
mm spacing in each dimension.

B. Data for IPMN
The data for the classification of IPMN contains T2 MRI

axial scans from 171 subjects. The scans were labeled by a
radiologist as normal or IPMN. Out of 171 scans, 38 subjects
were normal, whereas the rest of 133 were from subjects
diagnosed with IPMN. The in-plane spacing (xy-plane) of
the scan was ranging from 0.468 mm to 1.406 mm. As pre-
processing, we first employ N4 bias field correction [40] to
each image in order to normalize variations in image intensity.
We then apply curvature anisotropic image filter to smooth
image while preserving edges. For experiments, 2D axial slices
with pancreas (and IPMN) are cropped to generate Region
of Interest (ROI) as shown in Figure 4. The large intra-class
variation, especially due to varying shapes of the pancreas can
also be observed in Figure 4. A list of different supervised and
unsupervised learning experiments along with their evaluation
sets is tabulated in Table I.

C. Evaluation and Results- Supervised Learning
We fine-tuned the 3D CNN network trained on Sports-

1M dataset [34] which had 487 classes. In order to train
the network with binary labels for malignancy and the six
attributes we used the mid-point as a pivot and labeled samples
as positive (or negative) based on their scores being greater
(or lesser) than the pivot. In our context, malignancy and
attributes are characterized as tasks. The C3D was fine-tuned
with these 7 tasks and 10 fold cross-validation was conducted.
The requirement to have a large amount of labeled training
data was evaded by fine-tuning the network. Since the input
to the network required 3 channel image sequences with at
least 16 slices, we concatenated the gray level axial channel
as the other two channels.

Additionally, in order to ascertain that all input vol-
umes have 16 slices, we performed interpolation where war-
ranted. The final feature representation was obtained from the
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TABLE II: The comparison of the proposed approach with other methods using regression accuracy and mean absolute score
difference for lung nodule characterization.

Methods Accuracy Mean Score
% Difference

GIST features + LASSO 76.83 0.675
GIST features + RR 76.48 0.674
3D CNN features + LASSO (Pre-trained) 86.02 0.530
3D CNN features + RR (Pre-trained) 82.00 0.597
3D CNN features + LASSO (Fine-tuned) 88.04 0.497
3D CNN features + RR (Fine-tuned) 84.53 0.550
3D CNN MTL with Trace norm 80.08 0.626
Proposed (3D CNN with Multi-task Learning- Eq. 7) 91.26 0.459

first fully connected layer of 3D CNN consisting of 4096-
dimensions.

For computing structure matrix S, we calculate the corre-
lation between different tasks by estimating the normalized
coefficient matrix W via least square loss function with lasso
followed by the calculation of correlation coefficient matrix
[36]. In order to get a binary graph structure matrix, we
thresholded the correlation coefficient matrix. As priors in
Eq. (6) we used ρ1 and ρ2 as 1 and 10 respectively. Finally, to
obtain the malignancy score for test images, the features from
the network trained on malignancy were multiplied with the
corresponding task coefficient vector W .

We evaluated our proposed approach using both classifi-
cation and regression metrics. For classification, we consid-
ered a nodule to be successfully classified if its predicted
score lies in ±1 of the ground truth score. For regression,
we calculated average absolute score difference between the
predicted score and the true score. The comparison of our
proposed MTL approach with approaches including GIST
features [41], 3D CNN features from pre-trained network +
LASSO, Ridge Regression (RR) and 3D CNN MTL+trace
norm is tabulated in Table II. It can be observed that our
proposed graph regularized MTL performs significantly better
than other approaches both in terms of classification accuracy
as well as the mean score difference. The gain in classification
accuracy was found to be 15% and 11% for GIST and trace-
norm respectively. In comparison with the pre-trained network,
we obtain an improvement of 5% with proposed MTL. In
addition, our proposed approach reduces the average absolute
score difference for GIST by 32% and for trace-norm by 27%.

D. Evaluations and Results- Unsupervised Learning

For unsupervised learning, evaluations were performed on
both lung nodules and IPMN datasets. In order to compute
image level features, we used GIST descriptors [41]. The
number of clusters is fixed as 2, which accounts for benign
and malignant classes. The clustering result was checked to
assign benign and malignant labels to the clusters. We used 10
fold cross-validation to evaluate our proposed approach. The
training samples along with the label proportions generated

using clustering served as the input to ∝SVM with a linear
kernel.

To evaluate our unsupervised approach we used accuracy,
sensitivity and specificity as metrics. It can be observed
in Table III that the proposed combination of clustering
and ∝SVM significantly outperforms other approaches in
accuracy and sensitivity. In comparison with clustering+SVM,
the proposed framework yields almost 21% improvement in
sensitivity for lung nodules and around 7% improvement for
IPMN classification. The low sensitivity and high specificity
of clustering, clustering+SVM, and clustering+RF approaches
can be explained by disproportionate assignment of instances
as benign (normal) by these approaches, which is not found
in the proposed approach. At the same time, the proposed
approach records around 24% and 9% improvement in
accuracy as compared to clustering for lung nodules and
IPMN, respectively.

Are Deep Features good for Unsupervised Classification?
Given the success of deep learning features for image classifi-
cation and their popularity with the medical imaging commu-
nity, we explored their performance to classify lung nodules
and IPMN in an unsupervised manner. For this purpose, we
used a pre-trained deep CNN architecture to extract features
and then perform clustering to obtain baseline classification
performance. We extracted features from fully-connected lay-
ers 7 and 8 of Fast-VGG [42] with and without applying
ReLU non-linearity. Classification accuracy, using clustering
over these features is shown in Figure 5.

It can be seen in Figure 5 that the features with non-
linearity (ReLU) are more discriminative for classification
using clustering as compared to without ReLU. The same
trend can be observed for both lung nodules and IPMN
classification using VGG-fc7 and VGG-fc8 layers. Owing
to the larger evaluation set, the influence of ReLU is
more prominent for lung nodules as compared to IPMN.
Although the results between VGG-fc7 and VGG-fc8 are
not substantially different, the highest accuracy for IPMN
can be obtained by using VGG-fc7-ReLU features and
for lung nodules by using VGG-fc8-ReLU features. The
non-linearity induced by ReLU clips the negative values to
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TABLE III: Average classification accuracy, sensitivity, and specificity of the proposed unsupervised approach for IPMN and
lung nodule classification with other methods

Evaluation Set Methods Accuracy Sensitivity Specificity

IPMN
Classification

Clustering 49.18% 45.34% 62.83%
Clustering + RF 53.20% 51.28% 69.33%

Clustering + SVM 52.03% 51.96% 50.5%
Proposed approach 58.04% 58.61% 41.67%

Lung Nodule
Classification

Clustering 54.83% 48.69% 60.04%
Clustering + RF 76.74% 58.59% 91.40%

Clustering + SVM 76.04% 57.08% 91.28%
Proposed approach 78.06% 77.85% 78.28%
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Figure 5: Influence of deep learning features obtained from different layers of a VGG network with and without ReLU
non-linearities. The graph on the left shows accuracy, sensitivity and specificity for unsupervised lung nodule classification
(clustering), whereas the right one shows the corresponding results for IPMN.

zero, which can sparsify the feature vector and can reduce
overfitting. Additionally, it can be seen that GIST features
yield comparable performance than deep features (Table III).
This can be explained by the fact that the deep networks were
trained on ImageNet dataset so the filters in the networks were
more tuned to the variations in natural images than medical
images. Classification improvement can be expected with
unsupervised feature learning techniques such as GANs [30].

Classification using Supervised Learning
In order to establish the upper-bound on the classification
performance, we trained linear SVM and Random Forest
using GIST and different deep learning features with ground
truth labels on the same 10 fold cross-validations sets.
Table IV lists the classification accuracy, sensitivity, and
specificity using GIST, VGG-fc7 and VGG-fc8 features
for both IPMN and lung nodules. For both VGG-fc7 and
VGG-fc8, we used features after ReLU since they are found
to be more discriminative (Figure 5). Interestingly, for lung
nodules, VGG-fc7 features along with RF classifier are
reported to have comparable results to the combination of
GIST and RF classifier. This can be explained by the fact
that deep networks are pre-trained on ImageNet dataset as
compared to handcrafted features such as GIST, which don’t

require any training. On the other hand, for smaller datasets
such as IPMN, deep features are found to perform better
as compared to GIST. In order to balance the number of
positive (IPMN) and negative (normal) examples, which can
be a critical drawback otherwise, we performed Adaptive
Synthetic Sampling [43]. This was done to generate synthetic
examples in terms of features from the minority class (normal).

VI. DISCUSSION AND CONCLUDING REMARKS

In this study, we present a framework for the malignancy
determination of lung nodules with 3D CNN based graph
regularized sparse MTL. To the best of our knowledge, this
is the first work where MTL and transfer learning are studied
for 3D deep networks to improve risk stratification of lung
nodules. Usually, the data sharing for medical imaging is
highly regulated and the accessibility of experts (radiologists)
to label these images is limited. As a consequence, the access
to the crowdsourced and publicly gathered and annotated data
such as videos may help in obtaining discriminative features
for medical image analysis.

We also analyzed the significance of different imaging
attributes corresponding to lung nodules including spiculation,
texture, calcification and others for risk assessment. Instead
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TABLE IV: Classification of IPMN and Lung Nodules using different features and supervised learning classifiers.

Evaluation Set Features Classifiers Accuracy (%) Sensitivity (%) Specificity (%)

IPMN
Classification

GIST SVM 76.05 83.65 52.67
RF 81.9 93.69 43.0

VGG-fc7 SVM 84.18 96.91 44.83
RF 81.96 94.61 42.83

VGG-fc8 SVM 84.22 97.2 46.5
RF 80.82 93.4 45.67

Lung Nodule
Classification

GIST SVM 81.56 71.31 90.02
RF 81.64 76.47 85.97

VGG-fc7 SVM 77.97 75.2 80.6
RF 81.73 78.24 84.59

VGG-fc8 SVM 78.76 74.67 82.29
RF 80.51 76.03 84.24

of manually modeling these attributes we utilized 3D CNN
to learn rich feature representations associated with these
attributes. The graph regularized sparse MTL framework was
employed to integrate 3D CNN features from these attributes.
We have found the features associated with these attributes
complementary to those corresponding to malignancy.

In the second part of this study, we explored the potential
of unsupervised learning for malignancy determination. Since
in most medical imaging tasks radiologists are required to
get annotations, acquiring labels to learn machine learning
models is more cumbersome and expensive as compared to
other computer vision tasks. In order to address this challenge,
we employed clustering to obtain an initial set of labels
and progressively refined them with ∝SVM. We obtained
promising results and our proposed approach outperformed
the other methods in evaluation metrics.

Following up on the application of deep learning for almost
all tasks in the visual domain, we studied the influence of dif-
ferent pre-trained deep networks for lung nodule classification.
For some instances, we found that commonly used imaging
features such as GIST have comparable results as those
obtained from pre-trained network features. This observation
can be explained by the fact that the deep networks were
trained on ImageNet classification tasks so the filters in CNN
were more tuned to the nuances in natural images as compared
to medical images.

To the best of our knowledge, this is one of the first and the
largest evaluation of a CAD system for IPMN classification.
CAD systems for IPMN classification are relatively newer
research problems and there is a need to explore the use of dif-
ferent imaging modalities to improve classification. Although
MRI remains the most common modality to study pancreatic
cysts, CT images can also be used as a complementary imaging
modality due to its higher resolution and its ability to capture
smaller cysts. Additionally, a combination of T2-weighted,
contrast-enhanced and unenhanced T1-weighted sequences can
help improve detection and diagnosis of IPMN [44]. In this
regard, multi-modal deep learning architectures can be deemed
useful [45]. The detection and segmentation of pancreas can
also be useful to make a better prediction about the presence
of IPMN and cysts. Due to its anatomy, the pancreas is a

challenging organ to segment, particularly in MRI images.
To address this challenge, other imaging modalities can be
utilized for joint segmentation and diagnosis of pancreatic
cysts and IPMN. Furthermore, visualization of activation maps
can be quite useful for the clinicians to identify new imaging
biomarkers that can be employed for diagnosis in the future.

The future prospects of using different architectures to
perform unsupervised representation learning using GAN are
promising. Instead of using hand-engineered priors of sam-
pling in the generator, the work in [46] learned priors using
denoising auto-encoders. For measuring the sample similarity
for complex distributions such as those in the images, [47]
jointly trained variational autoencoders and GANs. Moreover,
the applications of CatGAN [48] and InfoGAN [49] for semi-
supervised and unsupervised classification tasks in medical
imaging are worth exploring as well.

Medical imaging has unique challenges associated with the
scarcity of labeled examples. Moreover, unless corroborated
by biopsy, there may exist a large variability in labeling
from different radiologists. Although fine-tuning has helped
to address the lack of annotated examples, the performance is
limited due to large differences in domains. It is comparatively
easier to obtain scan level labels than slice level labels. In
this regard, weakly supervised approaches such as multiple
instance learning (MIL) can be of great value. Active learning
can be another solution to alleviate the difficulty in labeling. In
addition to these directions, unsupervised learning approaches
will surely be pursued to address unique medical imaging
challenges.
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