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Abstract—Magnetic resonance imaging (MRI) is the
non-invasive modality of choice for body tissue composi-
tion analysis due to its excellent soft-tissue contrast and
lack of ionizing radiation. However, quantification of body
composition requires an accurate segmentation of fat,
muscle, and other tissues from MR images, which remains a
challenging goal due to the intensity overlap between them.
In this study, we propose a fully automated, data-driven
image segmentation platform that addresses multiple
difficulties in segmenting MR images such as varying inho-
mogeneity, non-standardness, and noise, while producing
a high-quality definition of different tissues. In contrast to
most approaches in the literature, we perform segmentation
operation by combining three different MRI contrasts and
a novel segmentation tool, which takes into account vari-
ability in the data. The proposed system, based on a novel
affinity definition within the fuzzy connectivity image seg-
mentation family, prevents the need for user intervention
and reparametrization of the segmentation algorithms. In
order to make the whole system fully automated, we adapt
an affinity propagation clustering algorithm to roughly
identify tissue regions and image background. We perform
a thorough evaluation of the proposed algorithm’s individ-
ual steps as well as comparison with several approaches
from the literature for the main application of muscle/fat
separation. Furthermore, whole-body tissue composition
and brain tissue delineation were conducted to show the
generalization ability of the proposed system. This new
automated platform outperforms other state-of-the-art
segmentation approaches both in accuracy and efficiency.
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I. INTRODUCTION

BODY composition changes are observed in aging and
may be related to the development of disorders such as

metabolic syndrome and diabetes. Sarcopenia, the progressive
loss of muscle mass with age tends to be associated with higher
amount of fat (adipose) in the thigh muscle (Fig. 1). It is note-
worthy that the rate of decline in muscle strength with age
exceeds what would be predicted based on muscle mass alone.
This suggests that perhaps age affects muscle quality by facili-
tating fat infiltration. These facts propel current investigations,
and research into the non-invasive quantification of body tissue
composition is the subject of a great deal of current research [1].
Magnetic resonance imaging (MRI) provides excellent soft tis-
sue contrast (Fig. 1) without exposing patients to ionizing ra-
diation, making it the preferred modality for body composition
studies.1 Previously, we developed segmentation methods for
abdominal, thoracic, and brown fat quantification [1]. Here, we
focus on fat/muscle quantification in thigh regions using multi-
ple MRI image contrasts.

A. Unmet Clinical Need and Summary of Challenges

Conventional methods of manual or semi-automated seg-
mentation methods either fail to provide high sensitivity and
specificity or require substantial user interaction with the seg-
mentation software. Because these methods are time consuming
and have limited inter-raters reliability, they cannot be used for
large-scale studies including those for routine clinical evalua-
tions. There are other difficulties such as noise, inhomogene-
ity, and variable intensity that are not completely avoidable
in MRI methodology that may affect any image-based quan-
tification task (i.e., this is specifically called “intensity non-
standardness”). It is highly desirable to have an automated

1Figure was created with the BioDigital Human Visualization Platform.
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Fig. 1. Fat and muscle are important outcome measures in the eval-
uation of several health conditions. (a) Muscular representation of the
whole-body where thigh regions are highlighted. (b) Coronal view of the
whole-body representation which shows bone, fat, and muscle distribu-
tion in thigh region (zoomed version is in (c)). Pre-defined thigh region
(c), (d) and (e) show MRI correspondences of the starting and ending
positions of the thigh. MRI is a non-invasive imaging modality, allowing
visualization of tissues with its excellent soft tissue contrast and optimal
discrimination between different tissue types.

method that can create standardized thigh MR images where
non-anatomical uncertainties are minimized while providing
accurate and efficient quantification of fat and muscle tissue
compartments in the thigh.

To the best of our knowledge, there is no algorithm reported
to conduct fat and muscle segmentation within a very short time
interval (i.e., seconds) and with high precision. Efficiency is of
particular importance because it may be one of the major reasons
that many algorithms are not adopted into clinical settings or
large research studies. Last, but not least, benefits of multi-
contrast MRI have not been fully explored for fat and muscle
quantification as yet. Here, we prove the complementary nature
of multi-contrast imaging quantitatively.

B. Background and Related Works

Prescott et al. [2] used level set segmentation methods by
utilizing various initialization templates to perform fat/muscle
segmentation of thigh MR images. This idea was built upon
the success of atlas-based segmentation methods in brain im-
ages and anatomical organs where tissue distribution played a
significant role [3], [4]. In another study, Ahmad et al. [5] per-
formed a semi-automated segmentation of quadriceps muscles
in thigh MRI. In addition to requiring user input, this method
relied heavily on proper segmentation from a single slice and
carefully defined prior information.

Shape models were also extensively reported in the literature,
particularly when tissue boundary separation was difficult. Es-
safi et al.’s [6] study can be categorized under this setting. The
proposed algorithm used diffusion wavelets and geometric con-
straints to optimize the position of anatomical landmarks which
helped separation of different tissues. The method achieved su-
perior performance in modeling the heterogeneity of the mus-
cle topology. However, it is unknown how this method will

perform under different MRI inhomogeneities and noise, which
were not tested in their study. In a similar fashion, the same
objective of modeling tissue heterogeneity was addressed in
[7], where a point distribution model along with higher or-
der Markov random field (MRF) model were used to represent
tissue boundaries. Yet, the performances of such methods of-
ten suffered when boundary points were not localized reliably.
Moreover, segmentation outcome was extremely sensitive to
initialization of the model assembly, as reported also in our
previous works [8], [9].

Recent investigations in this field have sought to address
the challenges described above using different methods. For
instance, Andrews et al. [10], included a generalized log-ratio
notion in their quantification algorithm to represent prior
information of anatomical volume and tissue adjacency in a
probabilistic space. Random decision forest algorithm was
used to learn intensity and texture characteristics of muscle and
fat tissues. Later, this information was combined with a shape
model in order to perform the final segmentation. Makrogiannis
et al. [11] used a Gaussian mixture model (GMM) for modeling
the muscle, fat, and inter-muscle adipose tissue (IMAT) jointly
from water and fat-suppressed MRI images. Due to the nature
of this problem, clustering-based approaches were better suited
for quantifying IMAT. However, clustering-based approaches
were not suitable for subcutaneous fat (i.e., fat under the skin)
and muscle separation, and a separate step for their delineations
was required. To address this challenge, the authors used active
contour-based approach with user-interventions to quantify fat
and muscle distributions from multiple MR image contrasts.
A subsequent study by the same authors on the same data set
included a modified active contour based delineation method,
which wasn’t completely successful in segmenting fat/muscle
in thigh regions for individual MRI modalities [12].

C. Overview of the Proposed Approach and
Our Contributions

We propose a generic image segmentation method based on a
novel fuzzy connectivity segmentation algorithm. Specifically,
we design a novel computational platform for joint segmenta-
tion of fat and muscle from multi-contrast MR images of the
thigh. Later, we show that the proposed algorithm is capable of
classifying tissues in whole body MRI and brain MRIs as well.
The proposed algorithm has two modules: automated seed se-
lection (i.e., detection/localization) and delineation (i.e., precise
boundary identification). Fig. 2 illustrates the overview of the
proposed method with its two modules for the main application
in this paper: muscle/fat separation from multi-contrast MRIs.
Prior to segmentation, each MR image is pre-processed, and the
three image contrasts are combined to form an input tensor (i.e.,
a vector including inputs from multiple sources is called as MRI
or input tensor from now on).

Briefly, pre-processing includes consecutive filtering op-
erations that remove bias-field (inhomogeneity) [13], mini-
mize noise [14], and stabilize intensity non-standardness (i.e.,
acquisition-to-acquisition signal intensity variations) [13], [15],
[16]. Resulting MRI images, referred to as “clean images”, are
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Fig. 2. An overview of the proposed framework is illustrated. First, the MRI images are pre-processed and cleaned using the approaches explained
in Section II-B. The cleaned images are then combined to create an input tensor, which is then fed into a seed selection scheme. We have discussed
two seeding strategies i.e. affinity propagation (AP) and morphology based operators. The final stage devises two alternative fusion strategies for
multi-object segmentation from multi-contrast MRI: fusion at the affinity space and fusion at the decision level (last column). While affinity combination
uses evidence based inference from probability density function and segmentation results of each contrast image, decision fusion uses Karnaugh
map based multi-label fusion strategy to refine the final tissue segmentation.

used for tissue segmentation and quantification. In the first mod-
ule, we propose to use affinity propagation (AP) (and alterna-
tively morphology based) seed generation approaches to iden-
tify sample locations for fat and muscle tissues as well as the
background.

The second module describes our efforts for segmenting fat
and muscle tissues based on sampled seeds in the first module
to make the segmentation algorithm fully automated. We utilize
the clean volumetric MRI in three different image contrasts
jointly, and apply a novel affinity function to drive multi-object
fuzzy connectivity (FC) image segmentation. This new affinity
function adaptively combines individual affinities pertaining to
each MRI contrast.

D. Our Contributions
� Our proposed method is completely data-driven and fully

automated.
� Unlike the most previous works, we consider multiple

MRI contrasts in a unified segmentation platform to op-
timize complementary information from those individual
contrasts. Compared to other studies that use multiple MRI
contrast, our proposed study is different and unique since
we perform the segmentation by combining strengths of
other contrast images through a multi-object affinity func-
tion within the FC image segmentation algorithm.

� Seed-based segmentation algorithms use different strate-
gies spanning from manual to automated approaches. In
our implementation, we optimize the seed selection pro-
cedure without the need for extensive search. Instead,
we adapt an unsupervised clustering method (i.e., AP)

to roughly and efficiently identify objects of interest prior
to the delineation procedure.

The remainder of this manuscript is organized as follows. Sec-
tion II describes the details of the proposed method along with
potential alternatives. Section III introduces experiments and
performance evaluations. The manuscript ends with a discus-
sion and concluding remarks in Section IV.

II. MATERIALS AND METHODS

A. Data and Reference Standards

Muscle/Fat separation application: MRI were acquired using
a 3T Philips Achieva MRI scanner (Philips Healthcare, Best,
The Netherlands) equipped with a Q-body radiofrequency coil
for transmission and reception. Three separate image volumes
were obtained using a spoiled gradient echo for readout, with
coverage from the proximal to distal ends of the femur using 80
slices in the foot to head direction, a field of view (FOV) of 440
× 296 × 400 mm3 and a voxel size of 1 × 1 mm2 in-plane,
and slice thickness varies from 1 mm to 3 mm in different scans
(one particular scan was with 5 mm slice thickness). Acquisition
parameters included: repetition time (TR) = 7.7 ms, echo time
(TE) = 2.4 ms, number of signal averages (NSA) = 2, flip angle
(FA) = 25 degrees, and the bandwidth of 452 Hz. The three
image acquisitions were tailored to yield images containing
signal from water-and-fat, fat-only, and water-only, respectively.
The first image containing water-and-fat was obtained with the
FFE sequence described above. For fat-only and water-only
images, water and fat suppression was obtained using spectral
pre-saturation with inversion recovery (SPIR). Fifty subjects’
150 MR images (three contrast images for each subject) were
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TABLE I
DETAILS ABOUT THE EXPERIMENTAL COHORT USED IN THE EXPERIMENTS

WITH AGE (YEARS), WEIGHT (KG), HEIGHT (CM)
AND BODY MASS INDEX (BMI)

retrospectively collected from BLSA (Baltimore Longitudinal
Study of Aging) database [17]. Experiments were conducted
on a regular PC with Intel Core i5 at 2.9 GHz configuration
with 16 GB RAM at 1867 MHz speed. The details about the
experimental cohort including age, weight, height, and BMI of
the subjects are included in Table I.

Whole-Body tissue quantification: Whole-body MR imag-
ing was conducted using 3-D dual-echo, spoiled gradient echo
sequences with Dixon-type fat-water separation (Wollenweber
et al. [18]). The following protocol was used for determining
the images. FOV was 48 cm × 48 cm, TE1/TE2 was 1.15 ms
/ 2.3 ms, FA/TR = 12o/4.33 ms, acquisition matrix = 256 ×
128 with 3.8 mm slices, and volumetric images of in-phase, out-
phase, fat, and water were reconstructed using Dixon/IDEAL
processing on the GE MR systems with a breath hold acquisition
with a target of under 20 s. We have used 3 whole body MRI
scans to do our segmentation feasibility study.

Brain tissue delineation: For brain tissue segmentation, the
publicly available BRAINWEB dataset was used in our experi-
ments. The dataset comprises simulated phantom images which
were constructed from a high-resolution (1-mm isotropic vox-
els) data which was generated after registering T1-weighted
scans having gradient-echo acquisitions with TR/TE/FA =
18 ms/10 ms/30◦. The specificity and sensitivity results of the
whole body and brain tissue segmentations are given in Table IV
in results section.

B. Pre-Processing MR Images

MR images exhibit (1) acquisition-to-acquisition signal inten-
sity variations (called intensity non-standardness), (2) inherent
noise, and (3) intensity non-uniformity (i.e., bias-field or inho-
mogeneity). In our earlier work, we have shown that for precise
quantification, all three of these signal variations should be cor-
rected [9], [15], [19]–[21]. As the bias correction promotes
noise, denoising filters should be used after the inhomogeneity
correction step. Hence, the last step is the intensity standardiza-
tion for correcting non-standardness among images [9].

1) Inhomogeneity Correction: Inhomogeneity occurs due
to low spatial frequency intensity variations. Many MRI vendors
include simple inhomogeneity correction methods during image
acquisition process [15], [20]–[22]. However, those methods are
often based on physical phantoms that are not truly represen-
tative of patient anatomy and position. In our experiments, we
use post-processing filtering method based on nonparametric
nonuniform intensity normalization, called N4ITK [23], which
maximizes the high-frequency content of the tissue intensity

distribution. We use the following parameters in N4ITK for re-
producible results: order of spline (for fitting) = 3, number of
histogram bins = 200, full width at half maximum for Gaussian
convolution parameter = 0.15.

2) Denoising: Noise is ubiquitous in MRI scans. In addition
to inherent MRI noise, image enhancement algorithms such as
inhomogeneity correction can further intensify the noise. To
this end, we have used the ball-scale based diffusive filtering
method that preserves boundary sharpness and fine structures
as reported in [9], [14], [19], which is found to have superior
performance than anisotropic diffusion based filtering methods
[14], [24].

3) Intensity Standardization: Due to acquisition-to-
acquisition signal intensity variations, MR image intensities do
not possess a tissue-specific numeric meaning between subse-
quent scans even for images acquired from the same subject,
scanner, body region, or pulse sequence [16]. This phenomenon
is called non-standardness. Non-standardness has been largely
ignored in the literature until recently since many vendors have
started to offer various intensity standardization algorithms for
their image reconstruction processes [25]–[27]. Basically, these
algorithms (called intensity standardization) are pre-processing
techniques, which map image intensities into a standard inten-
sity scale. The mapping is done through a piece-wise linear
function which is obtained from a training step. In the current
study, we have followed the intensity standardization approach
as reported in [27]. For reproducible results, we set the min and
max intensity values into 1 and 4095, respectively, as suggested
by [16]. In addition, we set only a single foreground histogram
mode to be determined automatically from the imaging data.

Fig. 3 shows water-only, water-fat, and fat-only MR im-
ages obtained directly from the scanner in the first row. Im-
ages include inhomogeneity and noise distortion as expected.
In the second row, MR images have been cleaned through the
pre-processing steps in this order: inhomogeneity correction,
denoising, and intensity standardization. Substantial improve-
ments in the images can be readily observed in clean images.
Yellow arrows show inhomogeneity and noisy regions prior to
pre-processing step.

As a quantitative example, we have also provided the coeffi-
cient of variance (CoV) values for each image before and after
pre-processing steps in Fig. 7 of the experiments and results sec-
tion. As noted, the pre-processing approach improves not only
visual interpretation but also reduces intensity variation for each
tissue.

C. Background on FC Image Segmentation

FC defines the “hanging togetherness” between any two vox-
els p and qwithin an image [28]. A binary adjacency relationship
(μα ) determines adjacent voxels in α-adjacency. For any two
adjacent voxels pi and pi+1 , their local hanging togetherness is
generally defined using an affinity function μk (pi, pi+1). This
allows us to create probability maps when one of the voxel’s
label is known. When two voxels are more closely related,
their affinity becomes greater and this can be used for labeling
purposes (i.e., segmentation). To generalize this concept from
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Fig. 3. First row includes water-only, water-fat, and fat-only MR images with inherent noise and bias-field (marked with yellow arrows). The second
row shows cleaned MRI correspondences after the preprocessing steps: inhomogeneity correction, denoising, and intensity standardization. We
trained standardization parameters (i.e., histogram landmarks) separately for different image modality.

adjacent two voxels to a set of voxels, FC considers a “path”. A
path π between p and q is identified as a sequence of adjacent
voxelsπ = 〈p0 = p, p1 , . . . , pl = q〉, where for an arbitrary path
π, the strength of the path is defined as the “minimum affinity”
along that path:

μ (π) = min
0≤i≤l

μk (pi, pi+1) . (1)

Assuming P (p, q) is the set of all possible paths between p
and q, then FC between them is the strength of the strongest
path (indicating closely connected voxels with strong affinities
as belonging to the same object):

μκ (p, q) = max
π∈P(p,q)

μ (π) . (2)

Defining a proper affinity function for two adjacent voxels
is the key for a successful FC operation. Generally, the affinity
function consists of three components: adjacency-based affin-
ity μd , homogeneity-based affinity (μψ ), and object-based
affinity (μφ ) which are defined as:

μk (pi, pi+1) = μd (pi, pi+1)
√
μψ (pi, pi+1)μφ (pi, pi+1).

(3)
A wide range of mathematical functions can be used for affini-
ties [29]. Herein, we use Euclidean distance for μd , and adopt
the following form of μψ and μφ for representing tissue class
intensity properties:

μψ (pi, pi+1) = exp

(
−|f (pi) − f (pi+1)|2

2σ2
ψ

)
, (4)

and

μφ (pi, pi+1) =

min

(
exp

(
−|f (pi) −m|2

2σ2
ψ

)
, exp

(
−|f (pi+1) −m|2

2σ2
φ

))
,

(5)

where σψ and σφ control the variance, and m controls the ex-
pected mean intensity of the target object. In our implementa-
tion, these values are all determined in the training step.

FC segmentation is obtained by generating a fuzzy object
O corresponding to a set of seed points s ∈ S . The fuzzy
object membership value at a voxel p is then determined as the
maximum FC value of all seed points:

μO (p) = max
s∈S

μκ (p, s) . (6)

The final object is derived from a probability map (i.e., the fuzzy
object O) by thresholding.

D. Novel Affinity Function for FC

The FC algorithm is based on affinity functions. The
most prominent affinities explained so far in the literature
are adjacency-based (μd ), homogeneity-based (μψ ), and
object-feature based (μφ ). In this work, we propose to combine
different affinities of different MRI contrasts and utilize the
combined affinity function set to conduct segmentation. Fig. 4
shows fat and muscle intensity distribution (after images
are corrected for noise and inhomogeneity) for water-only
(MRI1), water-fat (MRI2), and fat-only (MRI3) images. As it
is depicted, the standard deviations of intensities pertaining to
muscle are quite different across different contrasts. Similarly,
fat intensity patterns have different mean and variance across
different image contrasts. It is also worth mentioning that
fat-only and water-fat contrasts show large overlaps in fat
histograms as would be expected for non-fat suppressed image
types. However, infiltrated fat inside the muscle tissue can still
be observed in the Fig. 4 (first row, the difference between
blue and green density distributions indicates infiltrated fat).
For precise muscle analysis, it would be more appropriate to
choose MRI2 as it follows a balanced Gaussian distribution
which is easier to analyze and incorporate into segmentation
and/or tissue characterization algorithms (Fig. 4, second row).

Based on all these qualitative observations and density his-
tograms where intensity patterns follow distinct distributions,
we propose to combine the affinity functions derived from each
MRI contrast to quantify muscle and fat tissues jointly. More-
over, we also test the alternative hypothesis where individual
segmentation from each image contrast will be combined as a
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Fig. 4. Probability density estimations of fat and muscle intensities
in water-only (MRI1), water-fat (MRI2), and fat-only (MRI3) images are
shown. All images in the dataset (N = 150) were used for this analysis.
In the first row, although water-fat and fat-only have similar variances, the
intensity distribution in water-only is quite different from the other two.
In the second row, water-only, water-fat and fat-only have different dis-
tributions with different variances. Complementary information is noted
therein, with water-fat contrast is better suited for Gaussian modeling,
which is highly desirable in many statistical analysis settings.

decision fusion process. Here in this subsection, we confine our-
selves to unifying affinity functions. In multi-contrast MRI of
the thigh, let us have a fuzzy object membership affinity for each
contrast: μMRI1

O , μMRI2
O , μMRI3

O . Assume that there is a fuzzy
object membership function μnewO that combines the comple-
mentary strength of muscle and fat tissue intensity distributions
from different MRI contrasts. One straightforward way to com-
bine multiple affinities is the weighted summation approach as:

μnewO =
3∑
i=1

wiμ
MRIi
O , s.t.

3∑
i=1

wi = 1,

where each affinity is weighted based on the effects of that
particular MRI contrast on the final segmentation. Assuming
that the segmentation accuracy is measured by dice similarity
coefficient (DSC), then w can be set as:

wi =
DSC(MRIi)∑3
i=1 DSC(MRIi)

This step is conducted off-line, as once the weights are
determined from each contrast based on the goodness of

Fig. 5. Truth table for different combinations of multicontrast MRI. The
final segmentation output is 1 either if MRI2 (water-fat) is available or
MRI1 (water-only) and MRI3 (fat-only) are available. The simplified output
is obtained using Karnaugh Map which gives FC-Fusion segmentation
result.

segmentation results; the system uses the same set of weights
for the segmenting different images.

E. Fusion of Multiple Segmentations (FC-Fusion)

As mentioned in the previous section, we also explore an
alternative segmentation method based on fusion of multiple
segmentations (namely, label or decision fusion). In decision
fusion process, for designing FC fusion segmentation, we use
a truth table for different input combinations. Fig. 5 illustrates
this process by indicating 0 or 1 for each entry of the truth label
where 1 in output column indicates that both tissues (muscle
and fat) can be recovered from the quantification process and 1
in left columns simply indicates if that particular image is used
in fusion process or not. As can be seen from output column,
to get fusion segmentation results, we need to use either MRI1
and MRI3 or sole MRI2 so as to maximize benefits of multi-
contrast MRI. This indicates that, in the absence of MRI2, we
need to use both MRI1 and MRI3 to generate the segmentation
output. The truth table is simplified using a Karnaugh map (K-
Map) to formulate the decision fusion and the resulting output
map is determined as (MRI2 + MRI1.MRI3). The main reason
for fusion of FC segmentation results is to compensate for any
segmentation errors while performing segmentation over each
modality separately.

F. Automatic Seed Selection

The proposed algorithm needs foreground and background
seeds to initiate segmentation. Seed selection is critical in many
medical image segmentation problems where literature is vast
in proposing automatic seed selection procedures [30]. In this
study, we devise three strategies for background and foreground
seed sampling: manual, morphological filtering, and affinity
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propagation based seeding. We also evaluate these strategies’
comparative performances in the proposed delineation frame-
work.

1) Manual Seed Selection: Although our proposed method
is fully automated, sometimes user interaction may be necessary
for very challenging cases. In addition, it is often desirable to
compare the fully automated method with interactive methods
for efficiency purposes. Manual interaction is the most popular
and perhaps the most reliable foreground and background seed
sampling method. The strength of the manual seed selection
comes from the superior recognition performance of human ob-
servers compared to automated methods. Sensitivity and speci-
ficity of manual seed selection in our experiments are 100% as
observers are not required to differentiate vague boundaries be-
tween fat and muscle. However, it is also important to note that
manual seed selection is the localization/detection part of the
segmentation process and it is completely different from man-
ual annotation of the objects, which is often called “manual seg-
mentation”. The drawback of this strategy is the computational
overhead when multiple seeds are required to complete segmen-
tation. As summarized in Table V, manual seeding takes around
27 seconds, which is more than three times of the proposed seg-
mentation’s processing time. This duration may increase sub-
stantially for other methods, such as graph-cut segmentation
where the user may need to put several seeds at locations where
the segmentation algorithm is underachieving.

2) Morphological Image Filtering For Seed Generation:
Clustering and morphology filtering based methods have been
shown successful in segmenting tissues. Due to the unique chal-
lenges of the problem at hand, it may be desirable to have more
advanced methods than manual seeding. In our particular prob-
lem, clustering and morphology filtering based methods can
identify tissue classes up to a certain level, even if they fail to
segment whole tissue labeling. Fig. 2 second row shows how
this information can be obtained through morphology based
filtering methods such as thresholding, erosion, and connected
component analysis. Parameters of thresholding and connected
component analysis are optimized for fat and muscle tissues
only in water-fat images due to a better contrast between fat
and muscle tissues. Once fat and muscle tissues are roughly
identified by morphological filtering, we detect sample voxels
for muscle and fat tissue locations from the largest connected
components of the output. We also ensure that the sampled
seeds have neighboring voxels which have the same label. This
constraint avoids seed selection from uncertain locations (i.e.,
boundaries) which are vulnerable to mis-segmentations.

3) Affinity Propagation For Seed Generation: Affinity
propagation (AP) is an unsupervised learning task which is
used to partition data into meaningful and similar groups while
considering the similarity between pairs of data points [31]. Al-
though the AP clustering algorithm is used successfully in many
areas like image segmentation [32], auto-detection of genes;
automatic seed generation via AP clustering is a novel contri-
bution. Moreover, the proposed seed generation methodology
through AP is based on multi-objects (i.e., fat and muscle) on
multiple MR image contrasts. Herein, we first estimate the prob-
ability density functions of multiple MR image contrasts and

Fig. 6. Evidence obtained from the individual delineations of fat and
muscle tissue show that highest accuracy was obtained when water-fat
(MRI2) is used. Especially in muscle delineation, the standard deviation
of the water-fat image is extremely small compared to the other modal-
ities. Fat-only images (MRI3) gave similar accuracy as that of water-fat
images in fat delineation but with larger variation. Water-only images
(MRI1) seem to contain least discriminative information about the fat
tissue. All images in the dataset (N = 150) were used for this analysis.

roughly localize fat and muscle regions by sampling the most
discriminative intensity values (Fig. 2). To test the reliability of
the sampled intensity locations, we use a connected component
analysis to check the size of the object that the sampled voxel
may belong to. Among the three MR image contrasts, experi-
mental results and qualitative judgments show that water-fat and
fat-only images provide the best contrast for seeding procedure
which is described in the experiments and results section.

III. EXPERIMENTS AND RESULTS

A. Evaluation Metrics

We have evaluated the experimental results both qualitatively
and quantitatively. For qualitative evaluations, two participat-
ing expert interpreters use their visual assessment to evaluate
the segmentation results. Furthermore, we have used dice sim-
ilarity coefficient (DSC) to evaluate how well the segmented
regions overlap with the ground truth provided by the partic-
ipating interpreters. Intra- and inter-operator agreement rates
between expert interpreters were found to be 85.7% and 83.5%,
respectively. We have also used the coefficient of variance (CoV)
to determine how effectively intensity variations can be elimi-
nated. Lower CoVs indicate improved quality in images due to
pre-processing (i.e., inhomogeneity correction).

B. Model Evidence for MRI Information Content, and
Effects of Pre-Processing

To quantitatively study the information content of different
MRI image contrasts, we calculate DSC pertaining to each im-
age type. As shown in Fig. 6, the highest DSC is obtained when
water-fat (MRI2) is used. The lowest segmentation accuracy is
obtained with water-only images (MRI1) as they contain the
least discriminative information about the fat tissue.

It can be seen in Fig. 7 that pre-processing makes CoV of fat
and muscle tissues smaller. Since intensity variations are mini-
mized prior to segmentation procedure with the pre-processing
framework, segmentation quality is improved. In summary, the
pre-processing will be substantially affecting the output not only
for FC based segmentation methods but also for any segmenta-
tion approach that utilizes image intensities.
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Fig. 7. Intensity variations prior to pre-processing steps and after-
wards are represented as coefficient of variance (CoV). CoV of water-
only (MRI1), water-fat (MRI2), fat-only (MRI3) images are summarized
both for fat and muscle tissues, respectively. All images in the dataset
(N = 150) were used for this analysis.

C. Evaluation of the Segmentation Accuracy

When segmentation accuracies are compared, the most im-
portant property is to have high mean accuracy with low standard
deviation. We have compared our two proposed methods with
the baseline FC segmentation as well (Table II). Furthermore,
we have quantitatively tested the effectiveness of the seeding
procedure in terms of accuracy and robustness with respect to
different seeding strategies. For automated seeding, we have
proposed two procedures: AP and morphology based seed-
ing strategies. The proposed method achieves the best results
with high mean and low standard deviation as summarized in
Table II. All FC based segmentation results with the proposed
AP seed generation are substantially better than other segmen-
tation results, which are either based on manual or morphology
based seed generation. In the proposed method, the segmenta-
tion with the automated AP seed generation gives the best DSC
because the combination of weighted affinity functions further
improved the segmentation quality. This is primarily due to the
improved nonparametric modeling of the tissue class with AP
clustering method.

Once segmentations are finalized, we have conducted a lin-
ear regression analysis for volumetric quantification of com-
puted and true fat/muscle tissues. The correlation between the
computed muscle-fat volumes and the ground truth volumes is
shown in Fig. 8. As it can be observed, the computed volumes
are highly correlated with the ground truth volumes (R2 > 0.8
and R2 > 0.95 for muscle and fat volumes, respectively).

TABLE II
DICE SIMILARITY COEFFICIENTS (DSC) ARE LISTED FOR THE PROPOSED

METHOD(S). TWO PROPOSED METHODS (FC-FUSION AND NOVEL AFFINITY
BASED FC) ARE COMPARED WITH THE BASELINE METHOD (FC

SEGMENTATION) WITH RESPECT TO SEEDING METHODOLOGIES. HIGHER
DSC VALUES INDICATE BETTER SEGMENTATION ACCURACIES. NOVEL

AFFINITY FUNCTION BASED FC ALGORITHM OUTPERFORMED BASELINE
AND ALTERNATIVELY CREATED ALGORITHM (FC-FUSION). THE BEST

SEEDING PROCEDURE WAS AP-SEEDING IN ALL CASES. ALL IMAGES IN THE
DATASET (N = 150) WERE USED FOR THIS ANALYSIS

D. Comparison to Other Methods

As briefly summarized in Section I-B, available approaches
for segmentation of fat and muscle for thigh MRI can be
categorized under boundary based methods [11], region
based methods such as Markov random field (MRF) [33],
graph-cut [34] and clustering [35], and machine learning based
methods such as random (decision) forest (RF) [36], multilayer
perceptron (MLP) [37], SVM [38], BayesNET [39], Hoeffding
trees [40], Random committee [41], and AdaBoost [42].
We compare our proposed method with several existing
methods both qualitatively and quantitatively. Table III lists
the quantitative comparisons of the proposed method’s DSCs
for fat and muscle segmentation with Boykov’s graph-cut [34],
active contour [11], [12] and machine learning based methods
of random forest [36] and random committee [41].

We report statistical validation of FC based (proposed) and
other methods’ segmentation using DSC in Table III. Proposed
FC based algorithm showed higher DSCs compared to other
methods. Among the widely used methods, Boykov’s Max Flow
Min Cut works better than active contour for fat segmentation
but worse for muscle segmentation. While analyzing the clas-
sifier based segmentation results, although random forest and
random committee show quite similar DSCs, random commit-
tee is a little better as it has higher mean and lower deviation.
Among the proposed FC based-methods, the best results were
obtained when fusion was conducted at the affinity function
level: arranging the weight of the affinity functions for each
imaging modality (i.e., image contrast of the MRI) significantly
improved the DSC for fat and muscle to around 84% and 87%,
respectively (Table II). The results from our proposed and alter-
native segmentation methods prove the efficacy and feasibility
of our proposed solution.
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Fig. 8. Correlation between muscle volumes and fat volumes with respect to ground truth measured volumes.

TABLE III
DICE SIMILARITY COEFFICIENTS (DSC) ARE LISTED FOR THE PROPOSED
AND ALTERNATIVE METHODS TO SHOW THEIR EFFICACY IN DELINEATING

FAT AND MUSCLE TISSUES. HIGHER DSC VALUES INDICATE BETTER
SEGMENTATION ACCURACIES. ALL ALGORITHMS WERE REPRODUCED,
OPTIMIZED, AND APPLIED TO OUR DATA FOR A FAIR COMPARISON. ALL
IMAGES IN THE DATASET (N = 150) WERE USED FOR THIS ANALYSIS

For qualitative comparison with other methods, Fig. 9 illus-
trates an example of the segmentation performance for several
different methods. We have selected a representative image slice
from a single image contrast of the thigh MRI in Fig. 9(a),
and segmentation results of region based, boundary based, and
machine learning based methods are shown in Fig. 9(b–m).
The proposed algorithm shows improved segmentation results
in Fig. 9(i) compared to others. Several of the other methods
were not able to capture large fat regions in the subcutaneous
compartment while leakages (i.e., over-segmentation to other
tissues) were inevitable in most cases.

E. Feasibility Studies: Brain and Whole-Body Tissue
Segmentation

To evaluate the generalizability of our proposed approach
both for different MRI type and body regions, we performed two
additional experiments. In the first experiment, we applied our
algorithm into Dixon MRI sequences for whole body tissue seg-
mentation. Briefly, for a given sample whole-body MRI (Dixon,
Fig. 10(a)-left), its 3-class tissue segmentation (Fig. 10(a)-
right) was obtained within seconds. In our implementation, we
considered fat, muscle, and lung fields in the segmentation.

Resulting tissue delineations were visually evaluated (and found
to be clinically feasible) by the participating experts of this
study.

In the second experiment, our proposed method was vali-
dated using 20 simulated brain MRI scans (T1-weighted) [43],
with the ground truth known. Various noise and smoothing lev-
els were also used to evaluate the robustness of the proposed
method. Three smoothing levels (small, medium, and large)
were applied to the images using a Gaussian smoothing filter.
Three noise levels (small, medium, and large) were applied to
the images as well. With the proposed approach, considering all
20 brain MRI scans, Gray Matter (GM) and White Matter (WM)
segmentation accuracies were excellent with the sensitivity and
specificity rates above 90%; Cerebrospinal fluid (CSF) segmen-
tation was good with the sensitivity and specificity always above
85%. The literature demonstrates that CSF is challenging to
segment, with sensitivities generally in the 80%–88% range
and specificities between 51% to 88% [44]. Fig. 10(b) shows
segmented brain tissues. These feasibility results (both whole
body and brain tissue segmentations) demonstrate the promis-
ing generic aspects of our proposed method in segmentation and
quantification of different body regions, and type of MRI scans.
The segmentation results are shown in Table IV.

F. Computational Efficiency

Proposed segmentation and seeding (AP) methods have
achieved the lowest computational time while guaranteeing
higher accuracy as listed in Table V. The slowest segmenta-
tion procedure took only 57 seconds, of which 27 seconds were
spent on seeding and 30 seconds were used for fusion strategy.
The shortest segmentation duration was 10.33 seconds provided
by the proposed AP-seeding based FC segmentation algorithm
integrating adjusted affinities. Manual seeding was restricted
to a real clinical setting where a few seeds were often desired
to initiate the segmentation; otherwise, seeding process itself
can be time-consuming. Increasing the number of seeds led to
similar segmentation results as that obtained through AP based
seeding method but at the expense of an increase in the analysis
time.
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Fig. 9. Comparison of fat and muscle tissue segmentation results for a given MRI slice (a) Machine learning algorithms: SVM in (b) [38], BayesNET
in (c) [39], Hoeffding tree in (d) [40], Random committee in (e) [41], Random forest in (f) [36], AdaBoost in (g) [42] and Multilayer perceptron in (h) [37]
are trained separately and optimized results are used for comparison with respect to the proposed algorithm (i). The selected MRI slice was used
to qualitatively illustrate the impact of image inhomogeneity and fat tissue distribution on segmentation accuracy of each algorithm; the proposed
approach (i) shows a dramatic improvement (no over- or under-segmentation issue observed) compared to all other methods. Other segmentation
methods such as level set (j) [45] and MRF (k) [33] are also illustrated. The uncertainty map of the given slice (calculated based on homogeneity of
the tissue distribution during FC formulation) indicates potential locations where an algorithm may fail (m).

Fig. 10. The generalizability of the proposed approach is shown via (a) whole-body tissue segmentation and (b) brain tissue segmentation. The
whole-body tissue segmentation is performed on Dixon MRI sequences, whereas in (b), brain tissue segmentation with varying levels of noise and
smoothing is depicted.

G. Quantification From a Single Image Slice

In clinical practice, radiologists frequently use a single slice
to estimate the whole volume for a region in an object. For in-
stance, in abdominal fat quantification, instead of segmenting
the whole abdomen and separating subcutaneous tissue from
visceral, which is a challenging problem, a single slice at the

umbilical level is often selected and used to quantify abdomi-
nal fat volume [1], [46]. The main reasons for this practice are
two-fold. First is a lack of software algorithms that can work
efficiently and accurately. This is because many algorithms fail
to provide exact quantification, and thus user interaction is nec-
essary for a better quantification. It is time-consuming for ra-
diologists to correct each segmentation failure for volumetric
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TABLE IV
SEGMENTATION PERFORMANCE OF THE PROPOSED APPROACH FOR WHOLE BODY AND BRAIN TISSUE SEGMENTATION

Fig. 11. Fat and muscle volumes are correlated with a single slice from its stack. Pearson correlation is maximized when the single slice is in the
mid-thigh region.

TABLE V
COMPUTATIONAL EFFICIENCIES OF THE PROPOSED FRAMEWORK’S

SUBSEQUENT STEPS (SEEDING AND SEGMENTATION) ARE SUMMARIZED
FOR FAT AND MUSCLE TISSUES, RESPECTIVELY

images. Second, the anatomy does not change abruptly from
slice to slice. Thus, it is a reasonable assumption that the con-
tent of the tissue distribution in a single slice will be correlated
with the whole volume. Then, based on a known correlation
between a single slice and volume, creating a linear regression
equation will estimate the volumetric tissue distribution from
a single slice. Inspired by this clinical practice and to explore
the inter-relationship of thigh MRI slices, we perform a Pearson
correlation test between fat and muscle volume extracted from
a single slice with its volumetric surrogate truths. Fig. 11 shows
correlation value for each slice when estimating the volumet-
ric distribution of fat and muscle, respectively. As indicated,
each slice contributed more than R = 0.97 correlation value,
and the highest correlations R > 0.99 were obtained when mid
slice of the thigh region was selected. This indicates that the
proposed system can be used for much faster muscle and fat
volume estimation from a single slice for practical purposes.

IV. DISCUSSIONS AND CONCLUDING REMARKS

A. Limitations and Future Works

Our study has a few limitations to be noted. With its success in
almost all tasks of visual domain and its extensive use for med-
ical image analysis, deep learning can serve as an alternative to
our proposed approach. The joint segmentation of multi-contrast
images in deep neural network framework can lead to accurate
and robust performance. In addition, the parameters in our pro-
posed approach were learned offline, which can be estimated
in an online manner for reliable performance. Moreover, in the
context of skeletal muscle composition studies, more advanced
MRI acquisition methods like Dixon imaging can be used which
provide an improved correspondence between the image signal
and the fat and water fractions within a given voxel. Lastly, it
is worth mentioning that partial volume can be an issue to be
solved for separating water and fat signals when their contribu-
tions are roughly equal at a given voxel. Especially when the
resolution is limited, this effect should be corrected. Although
we did not observe large errors due to partial volumes, conven-
tional partial volume correction methods for MR images such
as [47] can be applied to minimize such errors in volumetric
quantification. Furthermore, Dixon can be used for fat/muscle
quantification in sub-voxel level unlike our method where we
used voxel level quantification.

Our future study will involve exploring another important
imaging marker, called biomechanical muscle quality (BMQ),
for a potential association of aging and age-related metabolic
diseases. In order to calculate BMQ, we will identify the intra-
muscular adipose tissue (IMAT), which is associated with a
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reduction in force production and suggested to affect BMQ.
For this purpose, a unified framework to perform segmenta-
tion and quantification of the three tissues (muscle, fat, and
IMAT) can be utilized in the clinical evaluation of BMQ. The
current work also suggests a potential for application of deep
learning based methods for improved multi-contrast image seg-
mentation approaches. Inspired by the recent success of purely
machine learning methods and the current methods’ limited
achievement on IMAT quantification (i.e., around 70–80% suc-
cess bands [11], [12], [35]), we aim to explore the joint segmen-
tation of these three tissues using a deep learning framework in
our future study. Moreover, given a limited number of images,
we performed evaluations on a small dataset for whole-body
tissue classification as well as brain tissue segmentation. Al-
though the results are quite promising, with a larger dataset,
deep learning based approaches can be explored for improved
segmentation of whole-body and brain tissues.

B. Summary

Conventional methods for the tissue delineation and quan-
tification mostly rely on manual or semi-automated algorithms,
having low accuracy and efficiency. In the case of multi-contrast
MRI scans, conventional approaches use isolated frameworks
for each imaging modality; thus, leading to suboptimal results.
Given the clinical importance of fat and muscle segmentation
and quantification in thigh MRI, as well their utility in other re-
search settings, we proposed a novel approach to address unique
challenges associated with these images and showed the gen-
eralization ability of the proposed system for the whole-body
tissue composition and the brain tissue delineation. We pro-
vided a complete quantification framework that automatically
minimizes extreme challenges (inhomogeneity, noise, and non-
standardness) of the MRI automatically. To maintain the unsu-
pervisory and automated nature of our proposed approach, we
performed automatic seed generation using an affinity propa-
gation clustering algorithm. In the delineation step, to the best
of our knowledge, the proposed approach is the first to explore
the utility of multiple affinity functions to perform a unified
segmentation of multiple objects from multi-contrast MRI. Our
automated seed selection approach also evades the need for fil-
tering approaches which can be prone to subjectivities.
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