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ABSTRACT 

Recent breakthroughs in artificial intelligence (AI), specifically via its emerging sub-field 

“Deep Learning,” have direct implications for computer-aided detection and diagnosis 

(CADe/CADx) for colonoscopy. AI is expected to have at least 2 major roles in colonoscopy 

practice; polyp detection (CADe) and polyp characterization (CADx). CADe has the potential to 

decrease polyp miss rate, contributing to improving adenoma detection, whereas CADx can 

improve the accuracy of colorectal polyp optical diagnosis, leading to reduction of unnecessary 

polypectomy of non-neoplastic lesions, potential implementation of a resect and discard 

paradigm, and proper application of advanced resection techniques. A growing number of 

medical-engineering researchers are developing both, CADe and CADx systems, some of which 

allow real-time recognition of polyps or in vivo identification of adenomas with over 90% 

accuracy. However, the quality of the developed AI systems as well as that of the study designs 

vary significantly, hence raising some concerns regarding the generalization of the proposed AI 

systems. Initial studies were conducted in an exploratory or retrospective fashion using stored 

images and likely overestimating the results. These drawbacks potentially hinder smooth 

implementation of this novel technology into colonoscopy practice. The aim of this article is to 

review both contributions and limitations in recent machine learning based CADe/CADx 

colonoscopy studies and propose some principles that should underlie system development and 

clinical testing. 
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INTRODUCTION 

Artificial intelligence (AI) has the potential to improve the quality of medical diagnosis 

and treatment. Loosely inspired by neural networks in the human brain, “Deep Learning (DL)” is 

capable of autonomously extracting and learning features from big data of healthcare (ie, 

imaging, genetics, healthcare records, and most -omics data) by the means of  a multilayered 

system called convolutional neural networks.1–5 It usually outperforms the traditional (non-deep 

learning based) machine learning methods, which extract features that scientists themselves 

interpreted and picked up based on experience. Such features are often called as hand-crafted 

features in machine learning literature. 

In the field of gastrointestinal endoscopy, computer-aided detection and diagnosis 

(CADe/CADx) in colonoscopy is garnering increased attention and investigation.6,7 AI will have 

2 major initial roles in colonoscopy practice: (1) automated polyp detection (CADe) and (2) 

automated polyp histology characterization (CADx). CADe can minimize the probability of 

missing a polyp during colonoscopy, and thereby improving the adenoma detection rate (ADR) 

and potentially decreasing the incidence of interval cancer.8 CADx can improve colorectal polyp 

optical diagnosis, leading to reduction in the resection of clinically inconsequent distal non-

neoplastic lesions, potential implementation of a resect and discard paradigm and proper use of 

advanced resection methods such as endoscopic submucosal dissection and surgery.  

More than 100 studies regarding AI in colonoscopy have been published in both 

engineering and medical fields.6,7,9 However, the quality of the developed AI systems vary 

significantly as well as that of the study designs exploring their performance.  Most of the 

previous studies were conducted in an experimental or retrospective fashion and the performance 

of AI in colonoscopy has not been sufficiently assessed in terms of its effectiveness and 
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reproducibility in actual clinical practice, though such pre-clinical studies are considered 

indispensable in the early research phase.  

The goal of this review is to provide direction and facilitate appropriate research and 

development of CADe/CADx systems for colonoscopy. We especially highlight the following 

issues in this article: benefits and disadvantages of AI, published literature, current limitations, 

features of ideal CADe/CADx system, study design, training, and education, regulatory approval 

and legal issues. 

 

BENEFITS of AI 

a. CADe  

A major goal of CADe in colonoscopy is to prevent missing polyps during colonoscope 

withdrawal, potentially increasing ADR as well as the number of adenomas per colonoscopy 

(APC). Lower miss rates, and thus higher ADR are strongly associated with a reduced 

incidence of postcolonoscopy colorectal cancers (CRC) and CRC-related mortality.10  

b. CADx 

The purpose of CADx is to predict the pathology of the detected polyps during colonoscopy. 

The potential benefit of CADx is to improve the accuracy of optical biopsy (eg, in vivo 

differentiation between neoplastic and non-neoplastic polyps using endoscopic light 

properties without tissue acquisition), thereby minimizing pathological assessment and 

unnecessary resection of distal non-neoplastic polyps leading to significant reduction in 

costs.11 In addition, it would facilitate the implementation of the “resect and discard” 

strategy12 into clinical practice even by inexperienced endoscopists. Future applications of 

CADx will include AI assessment of bowel preparation quality, lesion size measurement, 
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morphology description, identification of lesion features associated with deep and superficial 

submucosal invasion of cancer, real time guidance of therapeutic procedures, and automated 

report generation. 

 

DISADVANTAGES of AI 

There are potential drawbacks of AI in colonoscopy. One prospective study investigating 

real-time use of CADx pointed out that the time required for colonoscopy was estimated to 

increase by 35 to 47 seconds per polyp assessed with CADx.13 Also, the output from 

CADe/CADx might distract the concentration of the endoscopists, and if inaccurate, may lead to 

missing/mischaracterization of polyps.14 Reliance and/or dependence on AI may make the new 

generation of endoscopists less skillful and meticulous given the sense of security provided by 

this tool. Future prospective studies should assess the impact of these AI “pitfalls” in addition to 

its efficacy. 

 

PREVIOUS CONTRIBUTIONS 

In this section, we focus on clinically relevant, physician-initiated studies on AI in 

colonoscopy. Early research work mostly focused on technical development by computer-vision 

and engineering groups, and those are left outside the scope of this review.15–20  

a) CADe  

An early physician-initiated study on automated polyp detection was published by 

Fernandez-Esparrach et al in 2016. They used polyp boundaries information to identify polyps 
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effectively. They assessed their CADe model on video recordings of 31 polyps and obtained a 

sensitivity and specificity of >70%.19 After this study, three additional studies on automated 

polyp detection were published, all of which used DL algorithms. Misawa et al21 developed a 

real time CADe algorithm and assessed its performance using 50 polyp videos and 85 non-polyp 

videos, resulting in a sensitivity and a specificity of 90% and 63%, respectively. Urban et al22 

also developed a CADe model and reported an area under the curve of 0.991 (a measure in which 

values of 0.5 correspond to chance observation and 1.0 is perfect accuracy) and an accuracy of 

96%. Wang et al23 also developed a CADe model reporting over 90% values in both sensitivity 

and specificity. From a technical perspective, these researchers have dealt with polyp detection 

with already available or minimally changed DL models. Different from these retrospective 

analyses, Klare et al24 conducted a prospective evaluation of a CADe model based on hand-

drafted features. Their model achieved a 29.1% ADR in 55 colonoscopies, using the number of 

adenomas found by blinded experienced endoscopists as a reference standard. 

b) CADx 

Compared with CADe in which white-light endoscopy is used as the target of the image 

analysis, several optical technologies can be used for CADx: white light endoscopy,25,26 

magnifying narrow-band imaging (NBI),27–32 magnifying chromoendoscopy,33 

endocytoscopy,13,34–37 confocal laser endomicroscopy,38,39 spectroscopy,40,41 and 

autofluorescence endoscopy.42,43,44 Among these, the most extensively studied has been 

magnifying NBI;29 probably because it may have better diagnostic performance than 

nonmagnified NBI and does not require staining like dye-based chromoendoscopy that can be 

time consuming in routine clinical use.  
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CADx for magnifying NBI was first reported by Tischendorf  et al27 in 2010. After their 

work, several researchers developed CADx systems that were designed to differentiate adenomas 

from hyperplastic polyps based on conventional machine learning methods in early 2010s.28,30 

Their models focused on vascular patterns on the polyp surface for adenoma characterization and 

showed >90% sensitivities and specificities. Subsequently, Kominami et al29 successfully 

evaluated their model in a prospective study, showing a 93.0% sensitivity, 93.3% specificity, 

93.0% positive predictive value (PPV), and 93.3% negative predictive value (NPV). Their study 

also demonstrated >92.7% accuracies in predicting the surveillance interval based on optical 

diagnosis of diminutive polyps using CADx. Recently, 2 research teams conducted retrospective 

studies on newly developed CADx systems based on DL algorithms, both of which met the 

threshold that optical biopsy technologies require for implementation and adoption in clinical 

practice, namely >90% NPV for diagnosis of diminutive (≤5 mm) adenomas.31,32  

 CADx for endocytoscopy has also been investigated by a Japanese group. Endocytoscopy 

is performed with a colonoscope with a 520-fold ultra-magnifying function (CF-H290ECI, 

Olympus Corp). Although the availability of this technology is more limited than that of a 

magnifying colonoscope, endocytoscopy has ideal features for CADx. With endocytoscopy, 

endoscopists do not need to indicate the region of interest during polyp assessment given its 

ultra-magnification power once the tip of the device is in contact with the lesion. After several 

pilot studies,34,35,37,45,46 this research group conducted a large-scale prospective study using 

CADx, demonstrating 91.4% sensitivity, 91.7% specificity, 88.9% PPV, and 93.7% NPV in the 

classification of diminutive rectosigmoid adenomas. 
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 Laser-induced fluorescence (LIF) spectroscopy is another type of imaging modality 

investigated in this field. Rath et al. evaluated LIF spectroscopy CADx prospectively, reporting 

100% sensitivity, 80.6% specificity, 33.3% PPV, and 100% NPV for diminutive distal 

adenomas.41 However, another study by Kuiper et al40 demonstrated less-impressive results with 

83.0% sensitivity, 59.7% specificity, 71.6% PPV, and 74.2% NPV for diminutive adenomas. 

CADx for white-light endoscopy, the most common endoscopic modality, has not been as 

extensively investigated compared with other CADx.7 Recently, 2 research groups published 

preliminary results in this field; Komeda et al25 developed a DL model, providing 75.1% 

accuracy with a cross-validation method. Sanchez-Montes et al26 developed a handcrafted, 

predictive model based on 3 metrics (contrast, tubularity, and branching) of the polyp surface 

pattern, resulting in 95.0% sensitivity, 87.9% specificity, 82.6% PPV, and 96.7% NPV for 

diminutive rectosigmoid adenomas. 

CADx has also been explored for other modalities such as confocal laser endomicroscopy38,39 

and autofluorescence endoscopy.42,43 However, the number of publications and performance of 

the developed models are limited when compared with the aforementioned modalities. 

 

CURRENT LIMITATIONS of AI   

 Most studies to date have developed and evaluated CADe/CADx systems using stored static 

and video images. These are often selected as “ideal” images of endoscopist detected lesions, and 

therefore the results are not truly representative of real-world effectiveness and may not be 

reproducible in clinical practice.  
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 Also, pathology, which is usually used as “ground truth” for training CADx, is not always a 

gold standard. For example, considerable interobserver variation can be found in pathological 

diagnosis of sessile serrated lesions (SSLs), which creates a limitation for characterization of 

SSLs by means of AI. Another limitation is the lack of data on detection of inflammation and 

dysplasia in ulcerative and Crohn’s colitis, though pilot studies in this field can be found.47,48  

The black-box nature of the current DL algorithms can be another limitation; DL algorithms 

fail to reason the machine generated decision on polyp classification in CADx. Reasons causing 

the decision of the DL model are being investigated, and interpretable deep learning has already 

become an active area of research. 

 

IDEAL AI SYSTEM  

An ideal AI system includes at least five features: algorithm selection; ability to work real-

time; appropriate output styles; smart setup of the computer; and appropriately curated data set 

for machine learning.  

a) Algorithm selection 

Before the DL era, machine learning algorithms were developed by extracting hand-crafted 

features (ie, features that are determined by the users)  for classification of medical 

images.13,28,29,34 In the DL era, algorithms learn defining features thorough exposure of images to 

deep neural networks.21–23,31,32 Briefly, in the handcrafted algorithms, experts train computer 

systems with known features (eg, polypoid shape, surface features, vascular features) and use 

these features to detect and classify polyps later in test images. In contrast, DL algorithms 
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identify significant features from the image by a repetitive learning process. When using DL for 

CADe/CADx in colonoscopy, researchers should bear in mind several issues: DL algorithms 

usually but not necessarily outperform handcrafted algorithms49; although most DL algorithms 

are openly available (eg, Le-Net, AlexNet, VGG, GoogLeNet, ResNet) and can be installed even 

by “non-experts,” they still require expertise and time to tune numerous parameters to achieve 

the best performance. This process usually entails support from industrial or engineering partners.  

b) Ability to work real-time during colonoscopy 

Ideally the detection and characterization of colorectal polyps should be performed by the AI 

system real-time during colonoscopy. For this purpose, the computer that analyzes the 

endoscopic images should be directly connected to the endoscopy unit. In addition, latency from 

capturing endoscopic image frames to outputting the analyzed results should be as short as 

possible, because detection of polyps with CADe later than endoscopist’s detection will not be 

really useful.24 To shorten the latency, it is necessary to improve the computer algorithms and 

use high-specification computer systems. 

c) Appropriate output styles 

CADe is capable of outputting 2 variables including the presence and location of polyps. 

Polyp presence is indicated by audible or visible alarm outside the endoscopic monitor (Figure 1-

a)21, whereas polyp location is indicated by a visible rectangle or circle that highlights the polyp 

(Figure 1-b).22,23 Each type of output has pros and cons. The former method provides no 

information regarding polyp location, thus endoscopist has to search for them. On the other hand, 

its output does not distract endoscopists’ attention during optical assessment of the polyp. The 
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latter method that makes it easier for the endoscopist to localize the polyp, but may be distracting 

for histology assessment. 

Output of CADx also includes 2 kinds of patterns: pathology prediction34,37,50 (eg, non-

neoplastic or neoplastic) and endoscopic classification that can then be extrapolated to the 

histopathology of the polyp29,31 (eg, NICE classification51, Sano’s classification52, or Hiroshima 

classification53). Similarly, each type of output has pros and cons. The former method is 

considered more clinically beneficial and relevant because histopathological prediction is most 

useful in decision making, whereas the latter is not always a perfect indicator of pathology.54 

However, because the pathology prediction can directly influence clinical decision making, 

regulatory approval may be more difficult.  

Regarding monitor number, dual monitor-based system (one for endoscopic image, the other 

for CADe/CADx) is discouraged. Taking human’s visual fields into consideration, the output of 

AI and endoscopic image should be displayed preferably in one monitor. Several studies have 

demonstrated that certain visual gaze patterns on the monitor are associated with higher adenoma 

detection.55 It is not yet known if CADe systems will alter visual gaze patterns and if this will 

improve or worsen lesion detection. Thus, visual display is an important area for research.  

 

d) Smart setup of the computer  

Assembling a stand-alone type computer in an endoscopy room is the most suitable way of 

implementing AI into practice smoothly. However, emerging DL technologies require high-

specification in hardware setup, imposing constraints on size of the workstation and create 

cooling challenges. Server-based computing or cloud-computing are attractive alternatives 

because they may solve such installation hurdles in the endoscopy room. Nonetheless, latency 
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related with internet-connection speed and risk of leakage of patient’s personal information are 

some pitfalls of cloud-computing systems. 

 

e) Appropriately curated data set for machine learning 

Whether CADe/CADx employs a conventional hand-crafted feature extraction based 

algorithm or a DL algorithm, both quality and quantity of the machine learning material is 

important to enhance its performance. Regarding the quality of the material, 3 factors should be 

noted: imaging modality (static images or video recordings), prevalence of positive images, and 

quality of annotation (ie, labeling each image frame with true data such as neoplastic/non-

neoplastic or polyp/non-polyp). 

Importantly, video recordings are the ideal and recommended learning material. Video 

contains a much larger number of image frames than static images (1second video usually 

includes 30 image frames). Video recordings also contain valuable low-quality images which 

usually cannot be found in static image collections because endoscopists tend to capture good-

quality endoscopic static pictures (eg, non-blur, less stool, polyp is centered). Learning from 

low-quality images contributes to the robustness of the AI system. 

AI systems should be trained with images that have an adequate representation of the target 

patient population, with a balanced proportion of polyp and non-polyp images; neoplastic and 

non-neoplastic images, and high- and low-quality images. It cannot be extrapolated to 

populations with “unnatural” disease prevalence unless the likelihood ratio is adjusted in the 

developed algorithm.56 
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The quality of annotations is extremely important. For fully supervised learning process, 

researchers should precisely annotate all the image frames (eg, non-polyp or polyp image), 

which will be used for machine learning. Especially when researchers use video recordings as 

learning material (sometimes exceed 100,000 image frames21), the annotation process will be 

likely performed by research-assistants. In that case, confirmation by expert endoscopists is 

mandatory to ensure the quality and accuracy of the learning material. On that premise, accurate 

annotations for such “big data” may require significant investment of time and resources. 

Finally, a larger number of learning images contribute to a higher diagnostic accuracy, 

though the minimum number to reach learning plateau is still in an exploratory stage. The DL 

model type is another parameter that will affect the data size. Newer algorithms (such as 

Tiramisu57 and SegCaps 58) require 50% to 90% fewer parameters than conventional DL 

methods. To alleviate big data problems in medical imaging, DL researchers often use 2 

strategies: (1) transfer learning, and (2) data augmentation. In transfer learning59,60, the new DL 

model is updated from a pretrained network model which is obtained from other fields such as 

computer vision ImageNET where millions of natural images are made available with precise 

labels to train a typical neural network. In data augmentation, on the other hand, new data are 

artificially generated by using the available data with certain realistic manipulations such as 

rotating, translating, adding noise, flipping, etc. By this way, the data size can be increased 

considerably.61 

 

STUDY DESIGN 
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a) Endpoints 

CADe  

i) Preferable endpoints  

ADR is considered one of the best quality metric and endpoints to assess endoscopists’ 

performance in clinical practice.62 However, a limitation of ADR is that it only addresses the 

first adenoma found, and thus does not consider the possibility of missing subsequent adenomas. 

Adenoma per colonoscopy (APC) may be a more suitable endpoint to assess the ability of a 

CADe system to improve adenoma detection as it includes all adenomas detected per 

procedure.63 In addition, polyp miss rate (PMR) is also a good option as a primary endpoint 

for clinical validation  

 

ii)  Definition and threshold of endpoint metrics: 

ADR: defined as the proportion of screening colonoscopies performed by a physician that detect 

at least one histologically confirmed adenoma or adenocarcinoma.64 The guidelines recommend 

ADR minimum thresholds of 25%,65 which might be used for the performance threshold of 

CADe. One relevant measure of success would be to increase ADR from a lower group (e.\g, 

quintile as defined by Corley et al62) to a higher group.  

APC: defined as the total number of adenomas found in all colonoscopies divided by the total 

number of colonoscopies. APC has a shown a good correlation with ADR in several studies.66 A 

study by Kahi et al suggested that APC of 0.5 for males and 0.2 for females correspond to the 

current benchmarks for ADR.67  

PMR: Defined as the total number of polyps missed from the first colonoscopy/the total number 

of polyps detected by both the first and the second (tandem) colonoscopy. Studies have shown 
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roughly 20%68 of polyps were missed during colonoscopy, thus, a PMR of <20% may be used as 

a threshold for assessment of CADe. PMR can be evaluated in data sets in which 2 

colonoscopies are performed on the same patients in a back-to-back manner, the second 

procedure may serve as a reference standard for missed lesions. In this case, missed lesions 

likely need to be subclassified as recognition errors (polyp on screen but not recognized) or 

demonstration errors (polyp hidden from view by fold, shadow, mucous, etc).  

 ADR, APC, and PMR should be evaluated with in vivo use of CADe during 

colonoscopy, but additional effect of CADe can also be independently identified in a prospective 

fashion if 2 rooms are prepared for the assessment (one for an endoscopist, the other for a CADe 

assessor)24. 

    

CADx  

i) Preferable endpoints  

The recommended thresholds proposed by the American Society of Gastrointestinal 

Endoscopy (ASGE) PIVI are appropriate targets to be achieved by CADx.69  

ii)  Definition and threshold of endpoint metrics 

PIVI-1– resect and discard paradigm: To assess whether endoscopic optical biopsy 

technologies―when used with high confidence―provide ≥90% agreement in assignment of 

post-polypectomy surveillance compared with decisions based on histopathology. 69 

PIVI-2 – diagnose and leave paradigm: To assess whether the technology - when used with high 

confidence - provides a 90% or greater NPV for adenomatous histology in diminutive 

rectosigmoid polyps.69   
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  A caveat to AI systems is that they can both detect and classify polyps70, both of which may 

alter the surveillance interval. Thus, when measuring the CADx outcome, this can be assessed 

either separately (eg, the surveillance prediction when the CADx classifies only human-detected, 

and pathologically confirmed polyps) or comprehensively (eg, the surveillance prediction based 

on CADe plus CADx).  

b. Frequently adopted study design and its issues  

The vast majority of CADe/CADx systems have been evaluated in an experimental or 

retrospective fashion, whereas only a couple of studies were conducted prospectively with in 

vivo use of AI.13,24,41,71 The steps of such experimental/retrospective studies include (1) 

Retrospective/prospective collection of colonoscopy images or videos. (2) Dividing the dataset 

into training, validation, and test data. (3) AI training with the training data and evaluated with 

the validation data for ensuring the correctness of the training procedure, and subsequently 

evaluated with test data. (4) Comparison of AI’s performance with the endoscopists’ 

performance for the same test data.  

The most problematic issue of this kind of study design is the risk of selection bias; 

researchers tend to exclude low-quality images from the test set or omit “difficult-for-AI” cases. 

In addition, retrospective studies are not able to detect limitations of real-time use of AI such as 

additional time for the examination, endoscopist’s stress burden, level of expertise and 

confidence, performance with low quality images and control for missing data.14  In this regard, 

prospective studies on AI can provide more reliable information13,24,29,40,41. However, selection 

bias was still not eliminated in such prospective studies because they were single-arm with no 

controls for comparison. In the United States, the National Institutes of Health (NIH) classifies 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 16

diagnostic trials into 4 categories: phase I to phase Ⅳ. A similar classification should be used for 

AI trials and should be accurately reported in scientific manuscripts.   

c. Optimal study design 

Consideration of epidemiological factors is crucial to the interpretation of the model’s output. 

Randomized controlled clinical trials (RCTs) comparing colonoscopy with AI versus 

colonoscopy without AI represent the best methodology to analyze the tool’s performance, safety 

and limitations.72,73 This assessment should not be limited to centers with high experience in 

colonoscopy, otherwise, results should be adjusted to the level of expertise to preserve 

generalizability of recommendations. In addition, testing the model’s performance in different 

datasets with diverse content to what was used for machine training is important to ensure 

external validation.56 

      Currently, there has been no RCT on AI in colonoscopy published, except for one as an 

abstract.74 An example of a successfully performed RCT assessing CADx in the gynecology field 

was published in 2017. Pregnant women (N=47,062) were randomized to fetal heart rate 

machine interpretation and no machine interpretation, evaluating neonatal outcomes as the 

primary endpoint.75 The study was not positive for machine interpretation, though the pilot 

studies provided good results.76 This study emphasizes the need for full, real-world validation of 

AI systems before their routine use in clinical practice.  

 

TRAINING AND EDUCATION  

a. Required training to use AI 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 17

Because AI serves just as an adjunct to both detection and characterization of colorectal 

polyps (by no means an autonomous robot), basic insertion and withdrawal skill for colonoscopy 

is still required, though some AI software was designed to improve the quality of mucosal 

exposure during colonoscopy withdrawal.77 In addition, if the AI is designed for special 

endoscopy such as magnifying endoscopy, endocytoscopy, or confocal laser endomicroscopy, 

training to capture stable endoscopic images is also required. Once endoscopists acquire these 

basic skills, they may be able to achieve a high diagnostic performance with the use of AI 

comparable with that of experts. According to a prospective study that evaluated the use of 

CADx for optical biopsy in-vivo, the nonexpert group provided 95.0% NPV for diminutive 

rectosigmoid adenomas whereas the expert group showed 91.3% NPV.13  

 

b. Education  

Because AI is new to most endoscopists, education programs are considered mandatory 

before it is adopted in clinical practice. Knowledge of strengths and weaknesses of AI can 

contribute to the effective use of AI and also prevent unnecessary adverse events related to its 

use. Especially, through an education program, endoscopists should recognize that AI sometimes 

outputs wrong predictions and endoscopists’ final diagnosis can be strongly influenced and 

swayed by them.78 For example, a study of 30 internal medicine residents showed that they 

exhibited a decrease in diagnostic accuracy from 57% to 48% when electrocardiograms were 

annotated with inaccurate CADx.79 Importantly, endoscopists should be trained and educated 

about the legal responsibilities they might face before AI is implemented. 
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On the other hand, CADx can potentially be a valuable tool for education and training of the 

lesser experienced endoscopists as the endoscopist might be able to compare their thought 

process and diagnostic suspicion with CADx output.  

 

REGULATORY APPROVAL AND LEGAL ISSUES 

a) Regulatory approval 

Because CADe/CADx for colonoscopy potentially affects the endoscopists’ decision 

making, obtaining regulatory approval will be required for its practical use. The hurdle of 

obtaining approval differs according to countries and role of AI in clinical practice.80 East et al81 

proposed three roles of CADx for colonoscopy. A second observer, a concurrent observer, or an 

independent decision maker. If CADx is aimed to be used independently, outstanding results 

from rigorously designed clinical trials will be required for its approval. In the United States, the 

Food and Drug Administration (FDA) recently moved to reclassify CADe software for radiology 

to allow an easier regulatory path to market82,83. For example, CADe for mammography will 

require class II approval, which used to require class III approval. This means that industries will 

no longer be required to submit a premarket approval application (PMA) for which conduct of 

either nonclinical or clinical trial under supervision of FDA is requested but can instead submit a 

less burdensome premarket notification (510(k)) before marketing their device.82  CADe for 

colonoscopy may be able to follow a similar pattern in its approval and regulation process. 

b) Legal issues 
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AI is not always beneficial for patients’ care.78 Some previous studies on CADe for 

mammography82 and CADx for electrocardiography79 demonstrated a negative effect in practice 

(CADe/CADx contributed to misdiagnosis). Such unintended, potentially negative effects of AI 

can result in legal challenges, therefore, medical malpractice insurance needs to be clear about 

coverage when healthcare decisions are made in part by AI.7,84 Public guidance for the 

development of AI devices is now available from FDA in the United States and the Ministry of 

Economy, Trade and Industry of Japan; however, these documents do not establish legally 

enforceable responsibilities.7 

 
SUMMARY  

AI is expected to significantly enhance and supplement the endoscopists’ performance in 

polyp detection and characterization. Such improvement could contribute to higher ADR 

(ultimately reduction of colorectal cancers) and potential implementation of a resect and discard 

paradigm. Although AI powered CADe/CADx systems have shown a great premise in 

colonoscopy, the quality of reported AI systems varies significantly. Once the efficacy and 

reproducibility of AI systems are validated in rigorously designed trials, they may have a 

significant impact on colonoscopy practice. 
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FIGURE LEGENDS 

Figure 1. Two types of outputs for automated polyp detection. A, Presence of the polyp is 

indicated by a visible alarm outputting color outside the endoscopic monitor. B, Polyp location is 

indicated by putting a visible rectangle. 
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ABBREVIATIONS: 

 

ADR: adenoma detection rate. AI: artificial intelligence. APC: adenoma per 

colonoscopy. CADe: computer aided detection. CADx, computer aided characterization. 

CRC: colorectal cancer. DL: Deep Learning. FDA: Food and Drug Administration. LIF: 

laser-induced fluorescence. NBI: narrow band imaging. NPV: negative predictive value. 

PIVI: preservation and incorporation of valuable endoscopic innovations. PMR: polyp 

miss rate. PPV: positive predictive value. SSLs: sessile serrated lesions. 

 


