
International Journal of Computer Vision
https://doi.org/10.1007/s11263-019-01180-6

Multi-target Tracking in Multiple Non-overlapping Cameras Using
Fast-Constrained Dominant Sets

Yonatan Tariku Tesfaye1,2 · Eyasu Zemene1,3 · Andrea Prati5 ·Marcello Pelillo4 ·Mubarak Shah1

Received: 22 February 2018 / Accepted: 25 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper, a unified three-layer hierarchical approach for solving tracking problem in a multiple non-overlapping cameras
setting is proposed. Given a video and a set of detections (obtained by any person detector), we first solve within-camera
tracking employing the first two layers of our framework and then, in the third layer, we solve across-camera tracking by
associating tracks of the same person in all cameras simultaneously. To best serve our purpose, we propose fast-constrained
dominant set clustering (FCDSC), a novel method which is several orders of magnitude faster (close to real time) than
existingmethods. FCDSC is a parameterized family of quadratic programs that generalizes the standard quadratic optimization
problem. In our method, we first build a graph where nodes of the graph represent short-tracklets, tracklets and tracks in the
first, second and third layer of the framework, respectively. The edge weights reflect the similarity between nodes. FCDSC
takes as input a constrained set, a subset of nodes from the graph which need to be included in the extracted cluster. Given
a constrained set, FCDSC generates compact clusters by selecting nodes from the graph which are highly similar to each
other and with elements in the constrained set. We have tested this approach on a very large and challenging dataset (namely,
MOTchallengeDukeMTMC) and show that the proposed framework outperforms the state-of-the-art approaches. Even though
the main focus of this paper is on multi-target tracking in non-overlapping cameras, the proposed approach can also be applied
to solve video-based person re-identification problem. We show that when the re-identification problem is formulated as a
clustering problem, FCDSC can be used in conjunction with state-of-the-art video-based re-identification algorithms, to
increase their already good performances. Our experiments demonstrate the general applicability of the proposed framework
for multi-target multi-camera tracking and person re-identification tasks.
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1 Introduction

As the need for visual surveillance grows, a large number
of cameras are being deployed to cover large and wide areas
like airports, shoppingmalls, city blocks, etc. Since the fields
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Fig. 1 An overview of the proposed framework. A field of view (FOV)
of each camera is shown by a triangle and tracklets and tracks of each
camera are shown within each triangle. a First, tracks are determined
within each camera, thenb tracks of the same person fromdifferent non-
overlapping cameras are associated, solving the across-camera tracking.
Nodes in a represent tracklets and nodes in b represent tracks. T i

j is a

set of tracklets that form a cluster, resulting in the i th track of camera j .
Nodes in b represent tracks form different cameras. Each cluster shown
in color represents the tracks of the same person in non-overlapping
cameras. Similar color cluster represent the same person (best viewed
in color) (Color figure online)

of views of single cameras are limited, in most wide-area
surveillance scenarios,multiple cameras are required to cover
larger areas. Using multiple cameras with overlapping fields
of view is costly from both economical and computational
aspects. Therefore, camera networks with non-overlapping
fields of view are preferred and widely adopted in real-world
applications.

In this work, our goal is to trackmultiple targets andmain-
tain their identities as they move from one camera to another
camera with non-overlapping fields of views. In this context,
two problems need to be solved, that is, within-camera data
association (or tracking) and across-cameras data associa-
tion by employing the tracks obtained from within-camera
tracking.Although there has been significant progress in both
problems separately, tracking multiple targets jointly in both
within and across non-overlapping cameras remains a poorly
explored topic.

In this paper, we first determine tracks within each camera
(Fig. 1a), by solving data association, and later we associate
tracks of the same target in different cameras in a unified
approach (Fig. 1b), hence solving the across-camera track-
ing. Since appearance and motion cues of a target tend to
be consistent in a short temporal window in a single camera
tracking, solving tracking problems in a hierarchical man-
ner is common: tracklets are generated within short temporal
windows first and later they are linked or merged to form full
tracks (or trajectories).

We cast the tracking problem as finding a cluster of nodes
in a graph. Though graph-based approaches are efficient in
solving tracking problems, they have limitations with the

size of the graph. In this work, we propose a novel fast-
constrained dominant sets clustering (FCDSC) technique, a
parametrized version of standard quadratic optimization, to
solve both within- and across-camera tracking tasks. Typical
graph-basedmethods use thewhole graph to solve the cluster-
ing problem. In our approach, instead of employing thewhole
graph, we consider a sub-graph that is much smaller than the
original graph.This allowsour approach tohandle arbitrarily-
large graphs and also to be an order of magnitude faster.

Given a constrained set and a graph, FCDSC generates
a compact cluster, that is, it selects a subset of nodes from
the given graph, which form compact and coherent cluster.
Since the nodes in graphs in the first, second and third layers,
respectively, represent short-tracklets, tracklets and tracks,
corresponding clusters essentially solve the data association
among them and define tracklets, tracks and across camera
correspondences. The proposed within-camera tracker can
robustly handle long-term occlusions, does not change the
scale of original problem, as it does not remove nodes from
the graph during the extraction of compact clusters, and is
several orders of magnitude faster (close to real time) than
existing methods.

The proposed across-camera tracking method has several
other advantages. More specifically, FCDSC not only con-
siders the affinity (relationship) between tracks, observed in
different cameras, but also takes into account the affinity
among tracks from the same camera. As a consequence, the
proposed approach not only accurately associates tracks from
different cameras, but also makes it possible to link multiple
short broken tracks obtained during within-camera tracking,
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which may belong to a single target track. For instance, in
Fig. 1a track T 3

1 (third track from camera 1) and T 4
1 (fourth

track from camera 1) are tracks of the same person, which
weremistakenly broken from a single track. However, during
the third layer, as they are highly similar to tracks in cam-
era 2 (T 3

2 ) and camera 3 (T 3
3 ), they form a cluster, as shown

in Fig. 1b. Such across-camera formulation is able to asso-
ciate these broken tracks with the rest of tracks from different
cameras, represented with the green cluster in Fig. 1b.

The contributions of this paper are summarized as follows:

– Wepropose a novel fast-constrained dominant set cluster-
ing approach, which is highly scalable and 2000× faster
than previous constraint dominant set clustering (CDSC)
method.

– We formulate multi-target tracking in multiple non-
overlapping cameras as finding compact cluster from a
graph and simultaneously solving within- and across-
camera tracking.

– We propose a refinement step which is a principled way
to decide between ambiguous tracks and which overall
improves the results.

– Experiments are performed on MOTchallenge Duke-
MTMC and MARS datasets, which show improved
effectiveness of our method with respect to the state of
the art.

The rest of the paper is organized as follows. In Sect. 2,
we review relevant previous works. Following that, a brief
background on constrained dominant set clustering (CDSC)
is present in Sect. 3. The proposed approach for within- and
across-cameras tracking modules is summarized in Sect. 4.
In particular, in Sect. 4.1, we present the proposed fast-
constrained dominant set clustering method, while Sects. 5
and 6 provide details of within- and across-cameras tracking.
Next, Sect. 7 discusses our track refinement step. Experimen-
tal results are presented in Sect. 8. Finally, Sect. 9 concludes
the paper.

2 RelatedWork

Visual tracking is a very active area of research and has rich
literature. It is very difficult to cover all different approaches.
For the sake of this, we only cover a few relevant works in
the context of this paper and refer readers to some excellent
surveys on tracking (Li et al. 2013; Smeulders et al. 2013;
Yilmaz et al. 2006). We divide our review into the three fol-
lowing parts.

Single Camera Tracking: Single camera tracking associates
target detections across frames in a video sequence in order
to generate the targetmotion trajectory over time. Zamir et al.

(2012) formulate tracking problem as generalized maximum
clique problem (GMCP), where the relationships between all
detections in each frame of a temporal window are consid-
ered. In Zamir et al. (2012), a cost is assigned to each clique,
which is a complete graph such that one node is selected from
each frame, results in a compact cluster corresponding to a
track. Then, a clique which maximizes their score function is
selected. Nonetheless, the approach is prone to local optima
as it uses greedy local neighbourhood search. Dehghan et al.
(2015) cast tracking as a generalized maximum multi clique
problem (GMMCP) and follow a joint optimization for all
the tracks simultaneously. In order to handle outliers and
weak-detections associations, they introduce dummy nodes.
However, this solution is computationally expensive. In addi-
tion, the hard constraint in their optimization makes the
approach impractical for large graphs. Authors in Leibe et al.
(2007) simultaneously optimized detection and tracking by
coupling them into a Quadratic Boolean Problem. In Bren-
del et al. (2011), they apply a maximum-weight independent
set algorithm to hierarchically merge small tracklets into
long tracks. In Wang et al. (2014) they formalize tracking
as solving min-cost network flow problem by first group-
ing detections into tracklets and then combining those into
tracks. Authors of Hamid Rezatofighi et al. (2015) revisit the
Joint Probabilistic Data Association (JPDA) formulation and
address the issue of its complexity by leveraging the latest
developments in finding the m-best solutions of an integer
linear program. The authors in Yu et al. (2016) propose an
identity-awaremulti-object tracker based on the solution path
algorithm. The tracker is formulated as a quadratic optimiza-
tion problem with l0 norm constraints, which they solve with
the solution path algorithm. The authors in Maksai et al.
(2016) formulate ball tracking problem in sport events and
related physical constraints in terms of mixed integer pro-
gramming. However, most of the above approaches suffer
computationally when the number of target increases, while
our approach can handle arbitrarily-large graphs, as it oper-
ates on selected sub-graphs of the bigger graph.

Multi Camera Tracking: Across-camera tracking is a chal-
lenging problem due to the illumination and pose changes
across cameras, or track discontinuities due to the blind areas
or miss detections. Existing across-camera tracking methods
try to deal with the above problems using appearance cues.
The variation in the appearance due to illumination changes
has been dealt with using different techniques, such as bright-
ness transfer functions (BTFs) (Javed et al. 2008). Authors
of Gilbert and Bowden (2006) used an incremental learn-
ing method to model the color variations, and Prosser et al.
(2008) proposed a Cumulative BTF, which is a better use of
the available color information from a very sparse training
set. Performance comparison of different variations of BTFs
can be found in D’Orazio et al. (2009). Authors in Srivas-
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tava et al. (2011) tried to achieve color consistency using
colorimetric principles, where the image analysis system is
modelled as an observer and camera-specific transformations
are determined, so that images of the same target appear sim-
ilar to this observer.

Obviously, learning BTFs or color correction models
require large amount of training data and they may not be
robust against drastic illumination changes across different
cameras. Therefore, recent approaches have combined them
with spatio–temporal cues,which improvemulti-target track-
ing performance (Cai and Medioni 2014; Chen et al. 2014;
Cheng et al. 2017; Gao et al. 2014; Kuo et al. 2010; Zhang
et al. 2015). Cheng et al. (2017) utilized human part con-
figurations for every target track from different cameras to
describe the across-camera spatio–temporal constraints for
across-camera track association, which is formulated as a
multi-class classification problem via Markov random fields
(MRFs). In Cai andMedioni (2014) spatio–temporal context
is used for collecting samples for discriminative appearance
learning. Authors in Chen et al. (2014) learn across-camera
transfer models including both spatio–temporal and appear-
ance cues.

However, using only low-level information (appearance
and spatio–temporal information) is unreliable for tracking
across non-overlapping cameras. Therefore, in this work, for
associating tracks across different cameras, besides using
their pairwise similarity computed using appearance and
spatio–temporal cues, we employ their relative similarity,
enforcing that their corresponding FCDSC clusters should
also be similar. Also, most of the approaches mentioned
above assume within-camera tracking results for all cam-
eras are given. Conversely, the work proposed in this paper
addresses a more realistic problem by solving both within-
and across-camera tracking in one joint framework.

Recently, the problem of target tracking across multiple
non-overlapping cameras has been also tackled in Ristani
et al. (2016), by extending their previous single camera track-
ingmethod (Ristani and Tomasi 2014), where they formulate
the tracking task as a graph partitioning problem. However,
their approach gets impractical as their graph gets larger,
whilewe propose a highly-scalable approach,which can han-
dle arbitrarily-large graphs. In Maksai et al. (2017), authors
impose global consistency of trajectories by using behav-
ioral patterns to guide the tracking algorithm. They showed
that when their approach is used together with the existing
state-of-the-art tracking algorithms, it further improves their
performance. However, in this approach the initial trajec-
tories are assumed to be given which is a big limitation.
In Ristani and Tomasi (2018), authors showed that learn-
ing high-quality appearance features lead to good clustering
solutions and proposed adaptive weighted triplet loss to learn
better feature embeddings. Authors in Yoon et al. (2018)
used track-hypothesis trees to solve tracking inmultiple cam-

eras. Within-camera tracking is performed simultaneously
with the tree formation by manipulating a status of each
track hypothesis. However, their approach suffers in handling
crowded scenes.

Person Re-Identification: Another recent popular research
topic, video-based person re-identification (ReID) (Cong
et al. 2009; Farenzena et al. 2010; Liao et al. 2015; Ma
et al. 2014; McLaughlin et al. 2016; Wang et al. 2014;
Xiong et al. 2014; You et al. 2016; Zheng et al. 2015), is
closely related to across-camera multi-target tracking. Both
problems aim tomatch tracks of the same persons across non-
overlapping cameras. However, across-camera tracking aims
at 1–1 correspondence associationbetween tracks of different
cameras. Moreover, person ReID approaches mainly focus
on building a strong appearance model to match the same
person observed in different views or learning a distance
metric (Köstinger et al. 2012; Liao et al. 2015) to maxi-
mize the differences between different people. To this end,
ReID approaches have made impressive advances. However,
most video-based ReID approaches exploit only pairwise
affinities between the probes and gallery to get final sorting.
By employing FCDSC in conjunction with state-of-the-art
video-based ReID algorithms, and by formulating the prob-
lem as a constrained quadratic optimization problem, we
show that performance of ReID methods can be further
increased.

3 Background on Constrained Dominant Set
Clustering

In this section, we briefly introduce the basic definitions and
formulations of constrained dominant set clustering frame-
work.

As introduced in Zemene and Pelillo (2016), constrained
dominant set clustering, a constrained quadratic optimiza-
tion program, is an efficient approach that has been originally
applied to interactive image segmentation.The approachgen-
eralizes the dominant set clustering framework (Pavan and
Pelillo 2007), which is a well-known generalization of the
maximal clique problem to edge weighted graphs. Given
an edge-weighted graph G(V , E, w) and a constraint set
Q ⊆ V , where V , E and w, respectively, denote the set
of nodes (of cardinality n), edges and edge weights. The
objective is to find for sub-graphs that contain all or some of
elements of the constraint set, which form a compact cluster.

Consider a graph, G, with n vertices (set V ), and its
weighted adjacency matrix A. Given a parameter α > 0,
let us define the following parametrized quadratic program:

maximize f α
Q(x) = x�(A − α IQ)x

subject to x ∈ Δ
(1)
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where Δ = {x ∈ R
n : ∑

i xi = 1, and xi ≥ 0 for all i =
1 . . . n}. From now onwards we will be calling x state,
distribution (since elements sum to one, it can be called dis-
tribution) and membership score vector interchangeably. IQ
is the n×n diagonal matrix whose diagonal elements are set
to 1 in correspondence to the vertices contained in V \Q (a
set V without the elements in Q) and to zero otherwise.

Let Q ⊆ V , with Q �= ∅ and let α > λmax(AV \Q),
where λmax(AV \Q) is the largest eigenvalue of the principal
submatrix of A indexed by the elements of V \Q. If x is a
local maximizer of f α

Q in Δ, then σ(x) ∩ Q �= ∅, where,
σ(x) = {i ∈ V : xi > 0} (Zemene and Pelillo 2016).

The above result provides us with a simple technique to
determine clusters containing user-specified query vertices,
Q. Indeed, if Q is a vertex selected by the user, by setting

α > λmax(AV \Q) (2)

we are guaranteed that all local solutions of (1) will have a
support that necessarily contains elements of Q.

Standard Quadratic Program (StQP) Solvers: The above
Standard quadratic program (1) can be solved using dynam-
ics from evolutionary game theory. In Zemene and Pelillo
(2016), replicator dynamics, a well-known family of algo-
rithms from evolutionary game theory inspired byDarwinian
selection processes (Smith 1988), is employed to solve stan-
dard quadratic program.Despite their effectiveness in finding
good solutions in a variety of applications, however, replica-
tor dynamics suffer from being computationally expensive,
as they require a number of operations per step which grows
quadratically with the dimensionality of the problem being
solved,O(n2), whichmakes it inefficient for large scale prob-
lems. Efficient out-of-sample (Pavan and Pelillo 2004), an
extension of dominant set methods, is used to reduce the
computational cost by sampling nodes of the graph using
a given sampling rate, which affects the efficiency of the
framework. Liu et al. (2013) proposed an iterative clustering
algorithm, which operates in two steps: Shrink and Expan-
sion. These steps are used to reduce the run time of replicator
dynamics, however they require the whole graph, which
makes it slow. The approach has many limitations, such as
its preference of sparse graphes with several small clusters
and the results are sensitive to several additional parameters.

All the above formulations, with their limitations, try to
minimize the computational complexity of StQP using stan-
dard game dynamics, whose complexity is O(n2) for each
iteration. Rota Bulò et al. (2011) proposed a new class of
evolutionary game dynamics, called Infection and Immu-
nizationDynamics (InfImDyn). It simulates the infection and
immunization process. The processwhich finds a distribution
able to infect the population and the process which finds the
immune state are all linear processes. Therefore, InfImDyn

solves the problem in linear time O(n). However, it needs
the whole affinity matrix to extract a cluster.

In our approach, we further reduce the computational time
by running InfImDyn on a very small sub-graph selected out
from the original graph. We propose a principled technique
to select sub-graph which contains all possible solutions. We
also show that the solution from the sub-graph is a valid
solution in the larger graph, which makes the dynamics even
more faster, O(r), where r 	 n, by significantly reducing
the search space. Note that, the proposed approach can be
used with all other solvers discussed above to improve their
efficiency as it helps reducing the search space.

4 Overall Approach

In our formulation, in the first layer each node in a graph rep-
resents a short-tracklet along a temporal window (typically
15 frames) (Fig. 2a). We apply fast-constrained dominant
set clustering to determine clusters in this graph, which cor-
respond to tracklets. Likewise, each node in a graph in the

(c)

(a) (b)

Fig. 2 The figure shows within-camera tracking where short-tracklets
(s) fromdifferent segments are used as input to our first layer of tracking.
The resulting tracklets (t) from the first layer are inputs to the second
layer, which determine tracks (T ) for each person. The three dark green
short-tracklets (s21 , s

10
1 , s71 ), shown by dotted ellipse in the first layer,

form a cluster resulting in a tracklet (t21 ) in the second layer, as shown
with the black arrow. In the second layer, each cluster, shown in purple,
green and dark red colors, form tracks of different targets, as can be seen
on the top row, tracklets and tracks with the same color indicate same
target. The two green clusters (with two tracklets and three tracklets)
represent tracks of the person going in and out of the building (tracks
T p
1 and T 2

1 respectively) (Color figure online)

123



International Journal of Computer Vision

second layer represents a tracklet (Fig. 2b), obtained from
the first layer, and FCDSC is applied here to determine clus-
ters, which correspond to tracks (Fig. 2c). Finally, in the third
layer, nodes in a graph correspond to tracks from different
non-overlapping cameras, obtained from the second layer,
and FCDSC is applied to determine clusters, which relate
tracks of the same person across non-overlapping cameras.

In this section, first we present our proposed fast-
constrained dominant set clustering approach. This is fol-
lowed by formulation of within- and across-camera tracking.

4.1 Fast-Constrained Dominant Set Clustering

In this paper, we propose an algorithm that reduces the
search space using the Karush–Kuhn–Tucker (KKT) con-
dition of the constrained quadratic optimization, effectively
enforcing the user constraints. In the constrained optimiza-
tion framework (Zemene and Pelillo 2016), the algorithm
computes the eigenvalue of the submatrix for every extrac-
tion of the compact cluster, which contains the user constraint
set. Computing eigenvalues for large graphs is computation-
ally intensive, which makes the whole algorithm inefficient.
In our approach, instead of operating over the whole graph,
we localize it on the sub-matrix, selected using the dominant
distribution, that is much smaller than the original one. To
alleviate the issue with the eigenvalues, we utilize the proper-
ties of eigenvalues; a good approximation for the parameterα
is to use the maximum degree of the graph, which, of course,
is larger than the eigenvalue of corresponding matrix. The
computational complexity, apart from eigenvalue computa-
tion, is reduced toO(r) where r is the size of the sub-matrix
which is employed, which is much smaller than the dimen-
sion of the original affinity matrix.

Let us summarize the KKT conditions for quadratic pro-
gram reported in Eq. (1). By adding Lagrangian multipliers,
n non-negative constants μ1, . . . , μn and a real number λ,
its Lagrangian function is defined as follows:

L(x, μ, λ) = f α
Q(x) + λ

(

1 −
n∑

i=1

xi

)

+
n∑

i=1

μi xi .

For a distribution x, x ∈ Δ, to be a KKT-point, that is, in
order to satisfy the first-order necessary conditions for local
optimality (Solow 2007), it should satisfy the following two
conditions: the derivative of the LagrangianL should be zero

2 ∗ [(A − α IQ)x]i − λ + μi = 0,

for all i = 1 . . . n, and

n∑

i=1

xiμi = 0.

Since both the xi and the μi are nonnegative, the latter con-
dition is equivalent to saying that i ∈ σ(x) which implies
that μi = 0, from which we obtain:

[(A − α IQ)x]i
{= λ/2, if i ∈ σ(x)

≤ λ/2, if i /∈ σ(x)
(3)

We now need to define a dominant distribution.

Definition 1 A distribution y ∈ Δ is said to be a dominant
distribution for x ∈ Δ if

⎧
⎨

⎩

n∑

i, j=1

xi y j ai j − α

n∑

i=1

xi yi

⎫
⎬

⎭
>

⎧
⎨

⎩

n∑

i, j=1

xi x j ai j − α

n∑

i=1

x2i

⎫
⎬

⎭
,

(4)

where ai j is the similarity between node i and j .
Let the “support” be σ(x) = {i ∈ V : xi > 0} and ei the

i th unit vector (a zero vector whose i th element is one).

Proposition 1 Given an affinity A and a distribution x ∈ Δ,
if (Ax)i > x′Ax − αx′

QxQ, for i /∈ σ(x),

1. x is not the maximizer of the parametrized quadratic pro-
gram of (1)

2. ei is a dominant distribution for x

Proof To show that the first condition holds, let us assume x
is a KKT point

x�(A − α IQ)x =
n∑

i=1

xi [(A − α IQ)x]i

Since x is a KKT point

x�(A − α IQ)x =
n∑

i=1

xi ∗ λ/2 = λ/2.

From the second condition, we have:

[(A − α IQ)x]i ≤ λ/2 = x�(A − α IQ)x

Since i /∈ σ(x)

(Ax)i ≤ x�(A − α IQ)x.

Which concludes the proof showing that the inequality does
not hold.

As for the second condition, if ei is a dominant distribu-
tion for x, it should satisfy the inequality

{
e�
i (A − α IQ)x

}
>

{
x�(A − α IQ)x

}
.
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Since i /∈ σ(x) following should hold:

(Ax)i >
{

x�(A − α IQ)x
}

.

Which concludes the proof. �
The proposition provides us with an easy-to-compute

dominant distribution.
We summarize the details of our proposed algorithm in

Algorithm 1. Given a subset of verticesQ ⊆ V , the face ofΔ
corresponding to Q is given by: ΔQ = {x ∈ Δ: σ(x) ⊆ Q}.
Here the function G(A,Q) returns the local maximizer of
program (1). S(A, x) returns a dominant distribution, xd , for
distribution, x. xd is a distribution whose support contains all
possible indices i ∈ V , which satisfy the second condition
from the Proposition 1. Then, H is computed by taking the
union of the support of xd with the set of indices which are
considered as constraint set Q, which gives us the final sub-
graph nodes on which we run the dynamics.

Algorithm 1: FCDSC
INPUT: Affinity A, Constraint set Q;
Initialize x to the barycenter of ΔQ;
xd ← x, initialize dominant distribution ;
while true do

xd ← S(A, x), Find dominant distribution for x ;
if σ(xd ) = ∅ break ;
H ← σ(xd ) ∪ Q, subgraph nodes;
B ← AH, extract sub matrix from A corresponding to indices
in H;
xl ← G(B,Q);
x ← x*0;
x(H) ← xl ;

end
OUTPUT: {x}

The selected dominant distribution always increases the
value of the objective function.Moreover, the objective func-
tion is bounded, which guarantees the convergence of the
algorithm.

5 Within-Camera Tracking

Figure 2 shows the proposed within-camera tracking frame-
work. First, we divide a video into multiple short segments,
each segment contains f frames (typically 15), and generate
short-tracklets, where human detection bounding boxes in
two consecutive frames with large (typically 70%) overlap,
are connected (Dehghan et al. 2015). Then, short-tracklets
from N (typically 10) different non-overlapping segments
are used as input to our first layer of tracking. Here the nodes
are short-tracklets (Fig. 2a). Resulting tracklets from the first

layer are used as an input to the second layer, that is, a track-
let from the first layer is now represented by a node in the
second layer (Fig. 2b). In the second layer, tracklets of the
same person from different segments are associated forming
tracks of a person within a camera.

5.1 Formulation Using Fast-Constrained Dominant
Sets

We build an input graph,G(V , E, w), where nodes represent
short-tracklet (s ji , that is, j th short-tracklet of camera i) in the
case of first layer (Fig. 2a) and tracklet (t lk , that is, lth tracklet
of camera k), in the second layer (Fig. 2b). The corresponding
affinity matrix A = {

ai, j
}
, where ai, j = w(i, j) is built. The

weight w(i, j) is assigned to each edge, by considering both
motion and appearance similarity between the two nodes.
Fine-tuned CNN features are used to model the appearance
of a node. These features are extracted from the last fully-
connected layer of Imagenet pre-trained 50-layers Residual
Network (ResNet 50) (He et al. 2016) fine-tuned using the
Trainval sequence of DukeMTMC dataset. Similar to Zamir
et al. (2012), we employ a global constant velocity model to
compute motion similarity between two nodes.

Determining Clusters: In our formulation, a cluster from
graph G represents tracklet (track) in the first (second) layer.
Using short-tracklets/tracklets as a constraint set (in Eq. 1),
we enumerate all clusters, employing the proposed approach,
by utilizing intrinsic properties of fast-constrained dominant
sets. Note that we do not remove the nodes of found clusters
from the graph, this keeps the scale of our problem the same
(number of nodes in a graph), which guarantees that all the
local solutions found are the local solutions of the (original)
graph. After the extraction of each cluster, the constraint set
is changed in such a way as to make the extracted cluster less
favored by the dynamics. This is achieved by enforcing that
our algorithmwill not be able to select sets of nodes from the
previous solutions. The within-camera tracking starts with
all nodes as constraint set. Let us say Γ i is the i th extracted
cluster, Γ 1 is then the first extracted cluster which contains
a subset of elements from the whole set. After our first clus-
ter extraction, we change the constraint set to a set V \Γ 1,
hence rendering its associated nodes unstable. The proce-
dure iterates, updating the constraint set at the i th extraction
as V \⋃i

l=1 Γ l , until the constraint set becomes empty. Since
we are not removing the nodes of the graph (after each extrac-
tion of a cluster), wemay end upwith the solution that assigns
a node to more than one cluster, which results in overlapping
clusters.

To find the final solution, we use the notion of centrality
of fast-constrained dominant sets. The true class of a node
j , which is assigned to K > 1 cluster, ψ = {

Γ 1 . . . Γ K
}
, is

computed as:
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arg max
Γ i∈ψ

(
|Γ i | ∗ δij

)
,

where the cardinality |Γ i | is the number of nodes that forms
the i th cluster and δij is the membership score of node j

obtained when assigned to cluster Γ i . The normalization
using the cardinality is important to avoid any unnatural bias
to a smaller set.

Algorithm 2, setting the number of cameras under consid-
eration (I) equal to 1 andQ as short-tracklets (tracklets) set
in the first(second) layer, is used to determine a cluster which
corresponds to tracklet (track) in the first (second) layer.

6 Across-Camera Tracking

6.1 Graph Representation of Tracks and the Payoff
Function

Given tracks T j
i of different cameras from the previous step,

we build the graph G ′(V ′, E ′, w′), where nodes represent
tracks and their corresponding affinity matrix A depicts the
similarity between tracks.

Assuming we have I cameras and Ai× j represents the
similarity among tracks of camera i and j , the final track
based affinity A, is built as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1×1 . . . A1× j . . . A1×I

. . . . .

Ai×1 . . . Ai× j . Ai×I

. . . .

AI×1 . . . AI× j . . . AI×I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Figure 3 shows an example of a graph for across-camera
tracking among three cameras. Black and orange edges,
respectively, represent within- and across-camera relations
of the tracks. From the affinity A, Ai× j represents the black
edges of camera i if i = j , which otherwise represents the
across-camera relations using the orange edges. The colors
of the nodes depict the track ID: nodes with similar color rep-
resent tracks of the same person. Due to several reasons such
as long occlusions, severe pose change of a person, reappear-
ance and others, a person may have more than one track (a
broken track) within a camera. The green nodes of camera 1
(the second and the pth tracks) typify two broken tracks of
the same person, due to reappearance as shown in Fig. 2. The
proposed unified approach, as discussed in the next section,
is able to deal with such cases.

Fig. 3 Exemplar graph of tracks from three cameras. T i
j represents the

i th track of camera j . Black and colored edges, respectively, repre-
sent within- and across-camera relations of tracks. Colors of the nodes
depict track IDs, nodes with similar color representing tracks of the
same person, and the thick lines show both within- and across-camera
association (Color figure online)

6.2 Across-Camera Track Association

In this section, we discuss how we simultaneously solve
within- and across-camera tracking. Our framework is natu-
rally able to deal with the errors listed above. In our exemplar
graph (Fig. 3), targets represented by a green and red nodes
in camera 1 and 2, respectively, has two tracks which are dif-
ficult to merge during within-camera tracking; however, they
belong to a cluster with track(s) in camera 2 and 3 in the case
of the green target and camera 1 for the red target, since they
are highly similar. The algorithm applied to a such across-
camera graph is able to cluster all the correct tracks. This
helps us linking broken tracks of the same person occurring
during within-camera track generation stage.

Using the graph with nodes of tracks from a camera
as a constraint set, data association for both within- and
across-camera are performed simultaneously. Let us assume,
in our exemplar graph (Fig. 3), that our constraint set Q
contains nodes corresponding to tracks of camera 1, Q =
{T 1

1 , T 2
1 , T i

1 , T p
1 }. IQ is then a n × n, where n is number of

tracks in all cameras, diagonal matrix, whose diagonal ele-
ments are set to 1 in correspondence to the vertices contained
in all cameras, except camera 1 which takes the value zero.
That is, the sub-matrix IQ, that corresponds to A1×1, will
be a zero matrix of size equal to number of tracks of the
corresponding camera. SettingQ as above, we have guaran-
teed that the maximizer of program in Eq. (1) contains some
elements from set Q: i.e., C11 = {

T 2
1 , T p

1 , T q
2 , T 2

3

}
forms a

cluster which contains set
{
T 2
1 , T p

1

} ∈ Q. This is shown in
Fig. 3, using the thick green edges (which illustrate across-
camera track association) and the thick black edge (which
typifies the within-camera track association). The second set
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C21 contains tracks shownwith the dark red color, which illus-
trates the case where within- and across-camera tracks are in
one cluster. Lastly, the C31 = T 1

1 represents a track of a per-
son that appears only in camera 1. As a general case, Ci

j
represents the i th track set using tracks in camera j as a con-
straint set and C j is the set that contains track sets generated
using camera j as a constraint set, e.g. C1 = {

C1
1 ,C

2
1 ,C

3
1

}
.

We iteratively process all the cameras and then apply track
refinement step, described in Sect. 7.

Though Algorithm 2 is applicable to within-camera track-
ing also, here we show the specific case for across-camera
track association. Let T represents the set of tracks from all
the cameras we have and C is the set which contains sets
of tracks, as Ci

p, generated using our algorithm. T ϑ
p typifies

the ϑ th track from camera p and Tp contains all the tracks
in camera p. The function F(Q,A) takes as an input a con-
straint set Q and the affinity A, and provides as output all
the m local solutions X n×m of program (1) that contain ele-
ment(s) from the constraint set. This can be accomplished by
iteratively finding a local maximizer of equation (program)
(1) in Δ, e.g. using game dynamics, and then changing the
constraint setQ, until all members of the constraint set have
been clustered.

Algorithm 2: Track Association
INPUT: Affinity A, Sets of tracks T from I cameras;
C ← ∅ Initialize the set with empty-set ;
Initialize x to the barycenter and i and p to 1;
while p ≤ I do

Q ← Tp , define constraint set;
X ← F(Q,A);
Ci

p = ← σ(X i ), compute for all i = 1 . . .m;
p ← p + 1;

end

C =
I⋃

p=1
Cp;

OUTPUT: {C}

7 Track Refinement

During cross camera tracking, tracking results using tracks
fromdistinct cameras as different constraint sets,might result
in overlapping clusters (clusters with some common nodes),
since we are not removing nodes of extracted clusters from
the graph at every iteration. Thus, we propose a refine-
ment step to help assign those ambiguous nodes (which are
assigned tomultiple clusters) to their right cluster. To achieve
this, we employ the notion of centrality of fast-constrained
dominant sets and the notion of reciprocal neighbors, that
is, if two nodes (from different camera) are similar to each
other, then their corresponding neighbors (nodes which are
in their respective cluster) are expected to be similar too.

Let us assume we have I cameras and Ki represents the
set corresponding to track i , whileKi

p is the subset ofKi that

corresponds to the pth camera.Mli
p is the membership score

assigned to the lth track in the set Cip.
We use two constraints during track refinement stage,

which helps us refining false positive association.

Constraint 1: A track can not belong to two different sets
generated using the same constraint set, i.e. it must hold
that:

|Ki
p| ≤ 1

Sets that do not satisfy the above inequality should be refined,
as there is one or more tracks that exist in different sets of
tracks collected using the same constraint, i.e. Tp. The cor-
responding track is removed from all the sets which contain
it and is assigned to the right set based on its membership
score in each of the sets. Let us say the lth track exists in
q different sets, when tracks from camera p are taken as a
constraint set, |Kl

p| = q. The right set which contains the
track, Cr

p, is chosen as:

Cr
p = arg max

Ci
p∈Kl

p

(
|Ci

p| ∗ Mli
p

)
.

where i = 1, . . . , |Kl
p|. This must be normalized with the

cardinality of the set to avoid a bias towards smaller sets.

Constraint 2: The maximum number of sets that contain
track i should be equal to the number of cameras under con-
sideration. For I cameras, the cardinality of the set which
contains sets with track i is not larger than I, i.e.:

|Ki | ≤ I.

If there are sets that do not satisfy the above condition, the
tracks are refined based on the cardinality of the intersection
of sets that contain the track by enforcing the reciprocal prop-
erties of the sets which contain a track. Assume we collect
sets of tracks considering tracks from camera q as constraint
set, and assume track ϑ in the set C j

p, p �= q exists in more
than one sets of Cq . The right set, Cr

q , for ϑ considering
tracks from camera q as constraint set is chosen as:

Cr
q = arg max

Ci
q∈Kϑ

q

(
Ci
q ∩ C j

p

)
.

where i = 1, . . . , |Kϑ
q |.

8 Experimental Results

The proposed framework has been evaluated on a recently-
released large dataset, MOTchallenge DukeMTMC (Ristani
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Fig. 4 Camera topology for DukeMTMC dataset. Detections from the overlapping fields of view of Cameras (#2 and #8) and (#3 and #5) are not
considered

et al. 2016; Solera et al. 2016; Ristani and Tomasi 2014).
Even though the main focus of this paper is on multi-target
tracking in multiple non-overlapping cameras, we also per-
form additional experiments on MARS (Zheng et al. 2016),
one of the largest and most challenging video-based person
re-identification dataset, to show that the proposed across-
camera tracking approach can efficiently solve this task too.

DukeMTMC has been recently released to evaluate the
performance of multi-target multi-camera tracking systems.
It is the largest (to date), fully-annotated and calibrated high
resolution 1080p, 60 fps dataset that covers a single outdoor
scene from 8 fixed synchronized cameras. The topology of
cameras is shown in Fig. 4. The dataset consists of 8 videos
of 85min each from the 8 cameras, with 2700 unique iden-
tities (IDs) in more than 2 millions frames in each video,
containing from 0 to 54 people. The videos are split in
three parts: (1) Trainval (first 50min of the video), which is
for training and validation; (2) Test-Hard (next 10min after
Trainval sequence); and (3) Test-Easy, which covers the last
25min of the video. Some of the properties which make the
dataset challenging include: huge amount of data to process;
it contains 4159 hand-overs; there are more than 1800 self-
occlusions (with 50% or more overlap); there are 891 people
walking in front of only one camera.

MARS (Motion Analysis and Re-Identification Set) is an
extension of the Market-1501 dataset (Zheng et al. 2016).
It has been collected from six near-synchronized cameras. It
consists of 1261 different pedestrians, who are captured by at
least 2 cameras. The variations in poses, colors and illumina-

tions of pedestrians, as well as the poor image quality, make
it very difficult to yield high matching accuracy. Moreover,
the dataset contains 3248 distractors in order to make it more
realistic. Deformable part model (DPM) (Felzenszwalb et al.
2010) and GMMCP tracker (Dehghan et al. 2015) were used
to automatically generate the tracklets (mostly 25–50 frames
long). Since the video and the detections are not available we
used the generated tracklets as an input to our framework.

Performance Measures: In addition to the standard multi-
target multi-camera tracking performance measures, we
evaluate our framework using additional measures recently
proposed in Ristani et al. (2016): identification F-measure
(IDF1), identification precision (IDP) and identification
recall (IDR). The standard performance measures, such as
CLEARMOT, report the amount of incorrect decisionsmade
by a tracker. Ristani et al. (2016) argue and demonstrate that
some system users may instead be more interested in how
well they candeterminewho iswhere at all times.After point-
ing out that different measures serve different purposes, they
proposed the three measures (IDF1, IDP and IDR) which can
be applied both within- and across-cameras. These measure
tracker’s performance not by how often ID switches occur,
but by how long the tracker correctly tracks targets.

Identification precision IDP (recall IDR) is the fraction
of computed (ground truth) detections that are correctly iden-
tified.

Identification F-measure IDF1 is the ratio of correctly
identified detections over the average number of ground-truth
and computed detections.
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SinceMOTA and its related performancemeasures under-
report across-camera errors (Ristani et al. 2016), we use them
for the evaluation of our single camera tracking results.

The performance of the algorithm for re-identification is
evaluated employing rank-1 based accuracy and confusion
matrix using average precision (AP).

Implementation: In the implementation of our framework,
we do not have parameters to tune. The affinity matrix A
is constructed as follows (by adapting kernel trick distance
function from Grossman et al. 2005):

Ai, j = 1 −
√
K(xi , xi ) + K(x j , x j ) − 2 ∗ K(xi , x j )

2
,

where K(xi , x j ) is chosen as the Laplacian kernel

K(xi , x j ) = exp
(−γ ‖ xi − x j ‖1

)
.

The kernel parameter γ is set as the inverse of the median of
pairwise distances.

In our similarity matrix for the final layer of the frame-
work, which is sparse, we use spatio–temporal information
based on the time duration and the zone of a person moving
from one zone of a camera to other zone of another camera,
which is learned from the Trainval sequence of DukeMTMC
dataset. The affinity between track i and track j is different
from zero if and only if they have a possibility, based on the
direction a person is moving and the spatio–temporal infor-
mation, to be linked and form a trajectory (across-camera
tracks of a person). However, this may have a drawback due
to broken tracks or track of a person who is standing and talk-
ing or doing other activities in one camera, which results in a
track that does not meet the spatio–temporal constraints. To
deal with this problem, we add, for the across-camera track’s
similarity, a path-based information as used in Zemene and
Pelillo (2015), i.e. if a track in camera i and a track in camera
j have a probability to be linked, and similarly j in turn have
a possibility to be linked with a track in camera z, the tracks
in camera i and camera z are considered to have a possibility
to be linked.

The similarity between two tracks is computed using
the Euclidean distance of the max-pooled features. The
max-pooled features are computed as the row maximum
of the feature vector of individual patches of the given
track, extracted from the last fully-connected layer of Ima-
genet pre-trained 50-layers Residual Network (ResNet_50)
(He et al. 2016), fine-tuned using the Trainval sequence of
DukeMTMC dataset. The network is fine-tuned with clas-
sification loss on the Trainval sequence, and activations of
its last fully-connected layer are extracted, L2-normalized
and taken as visual features. Cross-view Quadratic Dis-
criminant Analysis (XQDA) (Liao et al. 2015) is then used

for pairwise distance computation between instances. For
the experiments on MARS, patch representation is obtained
using CNN features used in Zheng et al. (2016). The pairwise
distances between instances are then computed in XQDA,
KISSME (Köstinger et al. 2012) and Euclidean spaces.

8.1 Evaluation on DukeMTMC Dataset

In Tables 1 and 2, we compare quantitative performance of
our method with state-of-the-art multi-camera multi-target
tracking method on the DukeMTMC dataset. As the ground
truth for the test set is not publicly available, we compared
with approaches whose results are present on the scoring
board.1 The symbol ↑ means higher scores indicate better
performance, while↓means lower scores indicate better per-
formance. The quantitative results of the trackers shown in
Table 1 represent the performance on theTest-Easy sequence,
while those inTable 2 show the performance on theTest-Hard
sequence. For a fair comparison, we use the same detection
responses obtained fromMOTchallenge DukeMTMC as the
input to our method. In both cases, the reported results of row
‘Camera 1’ to ‘Camera 8’ represent the within-camera track-
ing performances. The last row of the tables represent the
average performance over 8 cameras. Both tabular results
demonstrate that the proposed approach improves tracking
performance for both sequences. In the Test-Easy sequence,
the performance is improved by 11.5% in MOTA and 5.8%
in IDF1 metrics, while in that of the Test-Hard sequence, our
method produces 5% higher average MOTA score than (Ris-
tani et al. 2016), and 0.4% improvement is achieved in IDF1
w.r.t. (Maksai et al. 2017). Tables 3 and 4, respectively,
present Multi-Camera performance of our and state-of-the-
art approaches (Ristani et al. 2016;Maksai et al. 2017) on the
Test-Easy and Test-Hard sequence of DukeMTMC dataset.
We have improved IDF1 for both Test-Easy and Test-Hard
sequences by about 4% and 3%, respectively.

Figures 5, 6, 7 and 8 depict sample qualitative results.
Each person is represented by (similar color of) twobounding
boxes, which represent the person’s position at some specific
time, and a track which shows the path s(he) follows. In
Fig. 5, all the four targets, even under significant illumination
and pose changes, are successfully tracked in four cameras,
where they appear. In Fig. 6, target 714 is successfully tracked
through three cameras. Observe its significant illumination
and pose changes from camera 5 to camera 7. Figure 7 shows
targets that move through camera 1, 6, 7 and 8. Finally, Fig. 8
shows sample tracks of targets that appear in cameras 1–4.

1 https://motchallenge.net/results/DukeMTMCT/ (standing 01/13/
2018).
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Table 1 The results show detailed (for each camera) and average performance of our and state-of-the-art approaches (Ristani et al. 2016; Maksai
et al. 2017) on the Test-Easy sequence of DukeMTMC dataset

Methods MOTA↑ MOTP↑ FAF↓ MT↑ ML↓ FP↓ FN↓ IDS↓ IDF1↑ IDP↑ IDR↑
Camera 1

Ristani et al. (2016) 43.0 79.0 0.03 24 46 2713 107,178 39 57.3 91.2 41.8

Maksai et al. (2017) 42.9 79.0 0.03 24 46 2911 107,156 41 57.8 91.9 42.2

Ours 69.9 76.3 0.06 137 22 5809 52,152 156 76.9 89.1 67.7

Camera 2

Ristani et al. (2016) 44.8 78.2 0.51 133 8 47,919 53,74 60 68.2 69.3 67.1

Maksai et al. (2017) 44.7 78.2 0.51 133 39 47,788 54,125 52 69.2 70.4 68.0

Ours 71.5 74.6 0.09 134 21 8487 43,912 75 81.2 90.9 73.4

Camera 3

Ristani et al. (2016) 57.8 77.5 0.02 52 22 1438 28,692 16 60.3 78.9 48.8

Maksai et al. (2017) 57.8 77.5 0.02 52 22 1438 28,692 19 59.8 78.2 48.4

Ours 67.4 75.6 0.02 44 9 2148 21,125 38 64.6 76.3 56.0

Camera 4

Ristani et al. (2016) 63.2 80.2 0.02 36 18 2209 19,323 7 73.5 88.7 62.8

Maksai et al. (2017) 63.2 80.2 0.02 36 18 2209 19,323 9 76.0 91.7 64.9

Ours 76.8 76.6 0.03 45 4 2860 10,689 18 84.7 91.2 79.0

Camera 5

Ristani et al. (2016) 72.8 80.4 0.05 107 17 4464 35,861 54 73.2 83.0 65.4

Maksai et al. (2017) 72.6 80.4 0.05 107 7 4713 35,849 46 73.3 83.0 65.6

Ours 68.9 77.4 0.10 88 11 9117 36,933 139 68.3 76.1 61.9

Camera 6

Ristani et al. (2016) 73.4 80.2 0.06 142 27 5279 45,170 55 77.2 87.5 69.1

Maksai et al. (2017) 73.4 80.2 0.06 142 27 5279 45,170 58 80.9 91.7 72.4

Ours 77.0 77.2 0.05 136 11 4868 38,611 142 82.7 91.6 75.3

Camera 7

Ristani et al. (2016) 71.4 74.7 0.02 69 13 1395 18,904 23 80.5 93.6 70.6

Maksai et al. (2017) 71.4 74.7 0.02 69 13 1395 18,904 23 80.5 93.6 70.6

Ours 73.8 74.0 0.01 64 4 1182 17,411 36 81.8 94.0 72.5

Camera 8

Ristani et al. (2016) 60.7 76.7 0.03 102 53 2730 52,806 46 72.4 92.2 59.6

Maksai et al. (2017) 60.9 76.6 0.03 103 52 2901 52,370 42 72.7 92.2 60.0

Ours 63.4 73.6 0.04 92 28 4184 47,565 91 73.0 89.1 61.0

Average

Ristani et al. (2016) 59.4 78.7 0.09 665 234 68,147 316,672 300 70.1 83.6 60.4

Maksai et al. (2017) 59.3 78.7 0.09 666 234 68,634 361,589 290 71.2 84.8 61.4

Ours 70.9 75.8 0.05 740 110 38,655 268,398 693 77.0 87.6 68.6

The best results are marked in bold

8.2 Evaluation onMARS Dataset

In this experiment, given the query (constraint), we first
extract a cluster which is guaranteed to contain the query and
othermembers from the gallerywhich are highly similarwith
each other. We then use the notion of centrality of FCDSC,
where a membership score (which depicts their proximity to
the query) is assigned to each element in the cluster. These
scores are then used to sort the extracted tracks. In Table 5 we

compare our results (using the same settings as in Zheng et al.
(2016)) on MARS dataset. The proposed approach achieves
about 3% of improvement. In Table 6 the results show per-
formance of our and state-of-the-art approach (Zheng et al.
2016) in solving the within-(average of the diagonal of the
confusion matrix, Fig. 9) and across-camera (off-diagonal
average) ReID using average precision. Our approach shows
up to 10% improvement in the across-camera ReID and up
to 6% improvement in the within-camera ReID.
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Table 2 The results show detailed (for each camera) and average performance of our and state-of-the-art approaches (Ristani et al. 2016; Maksai
et al. 2017) on the Test-Hard sequence of DukeMTMC dataset

Methods MOTA↑ MOTP↑ FAF↓ MT↑ ML↓ FP↓ FN↓ IDS↓ IDF1↑ IDP↑ IDR↑
Camera 1

Ristani et al. (2016) 37.8 78.1 0.03 6 34 1257 78,977 55 52.7 92.5 36.8

Maksai et al. (2017) 37.4 78.1 0.04 6 35 1575 79,189 61 52.5 91.9 36.7

Ours 63.2 75.7 0.08 65 17 2886 44,253 408 67.1 83.0 56.4

Camera 2

Ristani et al. (2016) 47.3 76.5 0.74 68 12 26,526 46,898 194 60.6 65.7 56.1

Maksai et al. (2017) 46.6 76.5 0.76 66 12 27,354 47,123 194 61.0 66.0 56.7

Ours 54.8 73.9 0.24 62 16 8653 54,252 323 63.4 78.8 53.1

Camera 3

Ristani et al. (2016) 46.7 77.9 0.01 24 4 288 18,182 6 62.7 96.1 46.5

Maksai et al. (2017) 46.7 77.9 0.01 24 4 288 18,182 6 62.7 96.1 46.5

Ours 68.8 75.1 0.06 18 2 2093 8701 11 81.5 91.1 73.7

Camera 4

Ristani et al. (2016) 85.3 81.5 0.04 21 0 1215 2073 1 84.3 86.0 82.7

Maksai et al. (2017) 85.5 81.4 0.04 21 0 1304 1948 2 92.3 93.6 91.0

Ours 75.6 77.7 0.05 17 0 1571 3888 61 82.3 87.1 78.1

Camera 5

Ristani et al. (2016) 78.3 80.7 0.04 57 2 1480 11,568 13 81.9 90.1 75.1

Maksai et al. (2017) 78.3 80.7 0.04 57 2 1480 11,568 13 81.9 90.1 75.1

Ours 78.6 76.7 0.03 47 2 1219 11,644 50 82.8 91.5 75.7

Camera 6

Ristani et al. (2016) 59.4 76.7 0.14 85 23 5156 77,031 225 64.1 81.7 52.7

Maksai et al. (2017) 59.4 76.7 0.14 85 23 5170 76,981 230 64.7 82.4 53.3

Ours 53.3 76.5 0.17 68 36 5989 88,164 547 53.1 71.2 42.3

Camera 7

Ristani et al. (2016) 50.8 73.3 0.08 43 23 2971 38,912 148 59.6 81.2 47.1

Maksai et al. (2017) 50.6 73.3 0.09 42 23 3090 38,995 145 59.8 81.4 47.2

Ours 50.8 74.0 0.05 34 20 1935 39,865 266 60.6 84.7 47.1

Camera 8

Ristani et al. (2016) 73.0 75.9 0.02 34 5 706 9735 10 82.4 94.9 72.8

Maksai et al. (2017) 73.0 75.9 0.02 34 5 717 9718 10 82.4 94.9 72.8

Ours 70.0 72.6 0.06 37 6 2297 9306 26 81.3 90.3 73.9

Average

Ristani et al. (2016) 54.6 77.1 0.14 338 103 39,599 283,376 652 64.5 81.2 53.5

Maksai et al. (2017) 54.4 77.1 0.14 335 104 40,978 283,704 661 65.0 81.8 54.0

Ours 59.6 75.4 0.09 348 99 26,643 260,073 1637 65.4 81.4 54.7

The best results are marked in bold

Table 3 Multi-camera performance of our and state-of-the-art
approaches (Ristani et al. 2016; Maksai et al. 2017) on the Test-Easy
sequence of DukeMTMC dataset

Methods IDF1↑ IDP↑ IDR↑
Multi-camera

Ristani et al. (2016) 56.2 67.0 48.4

Maksai et al. (2017) 34.9 41.6 30.1

Ours 60.0 68.3 53.5

The best results are marked in bold

Table 4 Multi-Camera performance of our and state-of-the-art
approaches (Ristani et al. 2016; Maksai et al. 2017) on the Test-Hard
sequence of DukeMTMC dataset

Methods IDF1↑ IDP↑ IDR↑
Multi-camera

Ristani et al. (2016) 47.3 59.6 39.2

Maksai et al. (2017) 32.9 41.3 27.3

Ours 50.9 63.2 42.6

The best results are marked in bold
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Fig. 5 Sample qualitative results of the proposed approach on
DukeMTMC dataset. All the four targets [with id, 216 (pink), 212 (light
blue),202 (blue) and 171 (red)], even under significant illumination and

pose changes, are successfully tracked in four cameras (cam 1,5,2 and
6), where they appear (best viewed in color and zoomed) (Color figure
online)

Fig. 6 Target 714 (blue) is successfully tracked through camera 5,7 and 4. Discern its significant illumination and pose changes from camera 5 to
camera 7. Similarly, Target 238 (red) is correctly tracked in camera 2,5 and 7 (best viewed in color and zoomed) (Color figure online)
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Fig. 7 Regardless of the change in pose and illumination, targets 1404 (light blue), 1162 (red) and 1360 (blue) are tracked correctly in camera 6, 8,
and 7. Similarly, target 59 (pink) and 79 (green) are correctly tracked as they appear in camera 1 and 8 (best viewed in color and zoomed) (Color
figure online)

Fig. 8 The proposed approach is able to track target 219 (red), with
heavy change in pose and illumination, correctly in all four cameras (3,
4, 1 and 2). Target 256 (blue) is correctly tracked in camera 3, 1 and 2.

Similarly, our method correctly identity target 343 (light blue) as she
appears in camera 3, 4 and 2 (best viewed in color and zoomed) (Color
figure online)
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Table 5 The table shows the comparison (based on rank-1 accuracy)
of our approach with the state-of-the-art approaches on MARS dataset

Methods rank 1

HLBP (Xiong et al. 2014)+XQDA 18.60

BCov (Ma et al. 2014)+XQDA 9.20

LOMO (Liao et al. 2015)+XQDA 30.70

BoW (Zheng et al. 2015)+KISSME 30.60

SDALF (Farenzena et al. 2010)+DVR 4.10

HOG3D (Kläser et al. 2008)+KISSME 2.60

CNN+XQDA (Zheng et al. 2016) 65.30

CNN+KISSME (Zheng et al. 2016) 65.00

Ours 68.22

The best result is marked in bold

Table 6 The results show performance of our, using pairwise distance
(PD) andmembership score (MS), and state-of-the-art approach (Zheng
et al. 2016) in solving within- and across-camera ReID using average
precision on MARS dataset using CNN feature and different distance
metrics

Feature+distance Methods Within Across

CNN+Eucl Zheng et al. (2016) 0.59 0.28

Ours (PD) 0.59 0.29

Ours (MS) 0.60 0.29

CNN+KISSME Zheng et al. (2016) 0.61 0.34

Ours (PD) 0.64 0.41

Ours (MS) 0.67 0.44

CNN+XQDA Zheng et al. (2016) 0.62 0.35

Ours (PD) 0.65 0.42

Ours (MS) 0.68 0.45

The best results are marked in bold

To show how much meaningful the notion of centrality
of fast-constrained dominant set is, we conduct an experi-
ment on theMARS dataset computing the final ranking using
the membership score and pairwise distances. The confusion
matrix in Fig. 9 shows the detail result of both the within-
cameras (diagonals) and across-cameras (off-diagonals), as
we consider tracks from each camera as query. Given a
query, a set which contains the query is extracted using
the fast-constrained dominant set framework. Note that fast-
constraint dominant set comes with the membership scores
for all members of the extracted set. We show in Fig. 9
the results based on the final ranking obtained using mem-
bership scores (left) and using pairwise Euclidean distance
between the query and the extracted nodes (right). As can
be seen from the results in Table 6 (average performance)
the use of membership score outperforms the pairwise dis-
tance approach, since it captures the interrelation among
targets.

Fig. 9 The results show the performance of our algorithm on MARS
(both using CNN+XQDA) when the final ranking is done using mem-
bership score (left) and using pairwise Euclidean distance (right)
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Fig. 10 CPU time taken for each track association using our proposed
approach (FCDSC) and CDSC (Color figure online)

8.3 Computational Time

Figure 10 shows the time taken for each track—from 100
randomly selected (query) tracks fromMARS dataset—to be
associated with the rest of the (gallery) tracks, after running
CDSC (Zemene and Pelillo 2016) and the newly proposed
FCDSC over the constructed graph. The vertical axis is the
CPU time in seconds and horizontal axis depicts the track
IDs. As it is evident from the plot, our approach takes a
fraction of second (red points in Fig. 10). Conversely, the
CDSC takes up to 8 s for some cases (green points in Fig. 10).
Figure 11 further elaborates how fast our proposed approach
is over CDSC, where the vertical axis represents the ratio
between CDSC (numerator) and FCDSC (denominator) in
terms ofCPU time. This ratio ranges from2000 (the proposed
FCDSC 2000× faster than CDSC) to a maximum of above
4500.

In our non-optimized Matlab code, with 60GB RAM, i7,
3.1GHz windows machine, the whole tracking algorithms
(excluding detection), runs at 18 fps.
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Fig. 11 The ratio of CPU time taken between CDSC and proposed
approach (FCDSC), computed as CPU time for CDSC/CPU time for
FCDSC

9 Conclusions

In this paper we presented a novel fast-constrained dominant
set clustering (FCDSC) framework for solving multi-target
tracking problem in multiple non-overlapping camera set-
tings. The proposed method utilizes a three-layers hierarchi-
cal approach, where within-camera tracking is solved using
first two layers of our framework resulting in tracks for each
person, and later in the third layer the proposed across-camera
tracker merges tracks of the same person across different
cameras. Experiments on a challenging real-world dataset
(MOTchallenge DukeMTMCT) validate the effectiveness of
our model.

We performed additional experiments to show effec-
tiveness of the proposed approach on one of the largest
video-based people re-identification dataset (MARS). Here,
each query is treated as a constraint set and its corresponding
members in the resulting constrained dominant set cluster
are considered as possible candidate matches to their corre-
sponding query.

There are few directions we would like to pursue in our
future research. In this work, we considered a static cam-
eras with known topology (layout of the scene, including
the positions of the cameras in the scene), but it is impor-
tant for the approach to be able to handle more challenging
scenarios, where some views are from cameras with ego
motion (e.g., PTZ cameras or taken from mobile devices)
with unknown camera topology. Moreover, here we consid-
ered features from static images, however, we believe video
features which can be extracted using LSTM could boost
the performance and help us extending the method to handle
challenging scenarios.
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