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Abstract

In this work, we propose an end-to-end constrained clus-
tering scheme to tackle the person re-identification (re-
id) problem. Deep neural networks (DNN) have recently
proven to be effective on person re-identification task. In
particular, rather than leveraging solely a probe-gallery
similarity, diffusing the similarities among the gallery im-
ages in an end-to-end manner has proven to be effective
in yielding a robust probe-gallery affinity. However, exist-
ing methods do not apply probe image as a constraint, and
are prone to noise propagation during the similarity dif-
fusion process. To overcome this, we propose an intrigu-
ing scheme which treats person-image retrieval problem
as a constrained clustering optimization problem, called
deep constrained dominant sets (DCDS). Given a probe
and gallery images, we re-formulate person re-id problem
as finding a constrained cluster, where the probe image is
taken as a constraint (seed) and each cluster corresponds to
a set of images corresponding to the same person. By opti-
mizing the constrained clustering in an end-to-end manner,
we naturally leverage the contextual knowledge of a set of
images corresponding to the given person-images. We fur-
ther enhance the performance by integrating an auxiliary
net alongside DCDS, which employs a multi-scale ResNet.
To validate the effectiveness of our method we present ex-
periments on several benchmark datasets and show that the
proposed method can outperform state-of-the-art methods.

1. Introduction
Person re-identification aims at retrieving the most simi-

lar images to the probe image, from a large-scale gallery set
captured by camera networks. Among the challenges which
hinder person re-id tasks, include background clutter, pose,
viewpoint and illumination variation can be mentioned.

Person re-id can be considered as a person retrieval prob-
lem based on the ranked similarity score, which is ob-
tained from the pairwise affinities between the probe and
the dataset images. However, relying solely on the pair-
wise affinities of probe-gallery images, ignoring the under-
lying contextual information between the gallery images of-
ten leads to an undesirable similarity ranking. To tackle
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Figure 1. Shows a variety of existing classification and similarity-
based deep person re-id models. (a) Depicts a classification-based
deep person re-id model, where P i refers to the ith person. (b)
Illustrates a verification network whereby the similarity S and dis-
similarity D for a pair of images is found. (c) A Triplet loss based
DNN, where A,P,N indicate anchor, positive, and negative sam-
ples, respectively. (d) A quadruplet based DNN (e) Conventional
diffusion-based DNN, which leverages the similarities among all
the images in the gallery to learn a better similarity. (f) The pro-
posed deep constrained dominant sets (DCDS), where, P indicates
the constraint (probe-image); and, images in the constrained clus-
ter, the enclosed area, indicates the positive samples to the probe
image.

this, several works have been reported, which employ sim-
ilarity diffusion to estimate a second order similarity in or-
der to capture the intrinsic manifold structure of the given
affinity matrix [3], [18], [11], [4]. Similarity diffusion is
a process of exploiting the contextual information between
all the gallery images to provide a context sensitive simi-
larity. Nevertheless, all these methods do not leverage the
advantage of deep neural networks. Instead, they employ
the similarity diffusion process as a post-processing step
on the top of the DNN model. Only recently, some works
have incorporated a similarity diffusion process in an end-
to-end manner [20],[21],[7] in order to improve the discrim-
inative power of a DNN model. Following [5], which ap-
plies a random walk in an end-to-end fashion for solving
semantic segmentation problem, authors in [20] proposed
a group-shuffling random walk network for fully utilizing
the affinity information between gallery images in both the
training and testing phases. Also, the authors of [21] pro-
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posed similarity-guided graph neural network (SGGNN) to
exploit the relationship between several prob-gallery image
similarities.

However, most of the existing graph-based end-to-end
learning methods apply the similarity diffusion without con-
sidering any constraint or attention mechanism to the spe-
cific query image. Due to that the second order similar-
ity these methods yield is highly prone to noise. To tackle
this problem, one possible mechanism could be to guide the
similarity propagation by providing seed (or constraint) and
let the optimization process estimate the optimal similarity
between the seed and nearest neighbors, while treating the
seed as our attention point. To formalize this idea, in this
paper, we model person re-id problem as finding an inter-
nally coherent and externally incoherent constrained cluster
in an end-to-end fashion. To this end, we adopt a graph and
game theoretic method called constrained dominant sets in
an end-to-end manner. To the best of our knowledge, we
are the first ones to integrate the well known unsupervised
clustering method called dominant sets in a DNN model. To
summarize, the contributions of the proposed work are: 1)
for the very first time, the dominant sets clustering method
is integrated in a DNN and optimized in end-to-end fash-
ion. 2) a one-to-one correspondence between person re-
identification and constrained clustering problem is estab-
lished. 3) state-of-the-art results are significantly improved.

The paper is structured as follow. In section 2, we re-
view the related works. In section 3, we discuss the pro-
posed method with a brief introduction to dominant sets and
constrained dominant sets. Finally, in section 4, we provide
an extensive experimental analysis on three different bench-
mark datasets.

2. Related Works
Person re-id is one of the challenging computer vision

tasks due to the variation of illumination condition, back-
grounds, pose and viewpoints. Most recent methods train
DNN models with different learning objectives including
verification, classification, and similarity learning [9], [36],
[26], [1]. For instance, verification network (V-Net) [16],
Figure 1(b), applies a binary classification of image-pair
representation which is trained under the supervision of bi-
nary softmax loss. Learning accurate similarity and robust
feature embedding has a vital role in the course of person
re-identification process. Methods which integrate siamese
network with contrastive loss are a typical showcase of deep
similarity learning for person re-id [8]. The optimization
goal of these models is to estimate the minimum distance
between the same person images, while maximizing the dis-
tance between images of different persons. However, these
methods focus on the pairwise distance ignoring the con-
textual or relative distances. Different schemes have tried
to overcome these shortcomings. In Figure 1(c), triplet

loss is exploited to enforce the correct order of relative dis-
tances among image triplets [9], [10], [36] . In Figure 1(d),
Quadruplet loss [8] leverages the advantage of both con-
trastive and triplet loss, thus it is able to maximize the intra-
class similarity while minimizing the inter-class similarity.
Emphasizing the fact that these methods entirely neglect the
global structure of the embedding space, [7], [20], [21] pro-
posed graph based end-to-end diffusion methods shown in
Figure 1(e).

Graph based end-to-end learning. Graph-based meth-
ods have played a vital role in the rapid growth of computer
vision applications in the past. However, lately, the advent
of deep convolutional neural networks and their tremen-
dous achievements in the field has attracted great attention
of researchers. Accordingly, researchers have made a sig-
nificant effort to integrate, classical methods, in particular,
graph theoretical methods, in end-to-end learning. Shen et
al. [21] developed two constructions of deep convolutional
networks on a graph, the first one is based upon hierarchical
clustering of the domain, and the other one is based on the
spectrum of graph Laplacian. Yan et al. [31] proposed a
model of dynamic skeletons called Spatial-Temporal Graph
Convolutional Networks (ST-GCN), which provides a ca-
pability to automatically learn both the spatial and temporal
pattern of data. Bertasius et al. [5] designed a convolutional
random walk (RWN), where by jointly optimizing the ob-
jective of pixelwise affinity and semantic segmentation they
are able to address the problem of blobby boundary and
spatially fragmented predictions. Likewise, [20] integrates
random walk method in end-to-end learning to tackle per-
son re-identification problem. In [20], through the proposed
deep random walk and the complementary feature grouping
and group shuffling scheme, the authors demonstrate that
one can estimate a robust probe-gallery affinity. Unlike re-
cent Graph neural network (GNN) methods [21], [15], [20],
[7], Shen et al. [21] learn the edge weights by exploiting the
training label supervision, thus they are able to learn more
accurate feature fusion weights for updating node features.

Recent applications of dominant sets. Dominant sets
(DS) clustering [19] and its constraint variant constrained
dominant sets (CDS) [34] have been employed in several
recent computer vision applications ranging from person
tracking [24], [25], geo-localization [35], image retrieval
[32], [2], 3D object recognition [27], to Image segmentation
and co-segmentation [33]. Zemene et al. [34] presented
CDS with its applications to interactive Image segmenta-
tion. Subsequently, authors in [33] use CDS to tackle both
image segmentation and co-segmentation in interactive and
unsupervised setup. Wang et al. [27] recently used dom-
inant sets clustering in a recursive manner to select repre-
sentative images from a collection of images and applied a
pooling operation on the refined images, which survive at
the recursive selection process. Nevertheless, none of the



above works have attempted to leverage the dominant sets
algorithm in an end-to-end manner.

In this work, unlike most of the existing graph-based
DNN models, we propose a constrained clustering based
scheme in an end-to-end fashion, thereby, leveraging the
contextual information hidden in the relationship among
person images. In addition, the proposed scheme sig-
nificantly magnifies the inter-class variation of different
person-images, while reducing the intra-class variation of
the same person-images. The big picture of our proposed
method is depicted in Figure 1(f), as can be seen, the ob-
jective here is to find a coherent constrained cluster which
incorporates the given probe image P .

3. Our Approach
In this work, we cast probe-gallery matching as optimiz-

ing a constrained clustering problem, where the probe im-
age is treated as a constraint, while the positive images to
the probe are taken as members of the constrained-cluster.
Thereby, we integrate such clustering mechanism into a
deep CNN to learn a robust features through the lever-
aged contextual information. This is achieved by travers-
ing through the global structure of the given graph to in-
duce a compact set of images based on the given initial
similarity(edge-weight).

3.1. Dominant Sets and Constrained Dominant Sets

Dominant sets is a graph theoretic notion of a cluster,
which generalizes the concept of a maximal clique to edge-
weighted graphs. First, the data to be clustered are repre-
sented as an undirected edge-weighted graph with no self-
loops, G = (V,E,w), where V = {1, ...,M} is the ver-
tex set, E ⊆ V × V is the edge set, and w : E → R∗+
is the (positive) weight function. Vertices in G correspond
to data points, edges represent neighborhood relationships,
and edge-weights reflect similarity between pairs of linked
vertices. As customary, we represent the graph G with
the corresponding weighted adjacency (or similarity) ma-
trix, which is the M ×M nonnegative, symmetric matrix
A = (aij), defined as aij = w(i, j), if (i, j) ∈ E, and
aij = 0 otherwise. Note that the diagonal elements of the
adjacency matrix A are always set to zero indicating that
there is no self-loops in graph G. As proved in [19], one
can extract a coherent cluster from a given graph by solving
a quadratic program f(x) as,

maximize f(x) = xTAx,
subject to x ∈ ∆

(1)

where, ∆ is the standard simplex of Rn. Zemene et. al
[34] proposed an extension of dominant sets, which allows
one to constrain the clustering process to contain intended
constraint nodes P . Constrained dominant set (CDS) is an
extension of dominant set which contains a parameterized

regularization term that controls the global shape of the en-
ergy landscape. When the regularization parameter is zero
the local solutions are known to be in one-to-one correspon-
dence with the dominant sets. A compact constrained clus-
ter could be easily obtained from a given graph by defining
a paramertized quadratic program as,

maximize fαP (X) = xT (A− αÎP )x,
subject to x ∈ ∆

(2)

where, ÎP refers to M × M diagonal matrix whose di-
agonal elements are set to zero in correspondence to the
probe P and to 1 otherwise. Let α > λmax(AV \P ), where
λmax(AV \P ) is the largest eigenvalue of the principal sub-
matrix of A indexed by the elements of V \P. If x is a lo-
cal maximizer of fαP (x) in ∆, then δ(x) ∩ P 6= ∅, where,
δ(x) = i ∈ V : xi > 0. We refer the reader to [34] for
the proof. Equations 1 and 2 can be simply solved with
a straightforward continuous optimization technique from
evolutionary game theory called replicator dynamics, as fol-
lows:

xi(t+ 1) = xi(t)
(Ax(t))i

x(t)
T
Ax(t)

. (3)

3.2. Modeling Person Re-Id as a Dominant Set

Recent methods [7], [5] have proposed different models,
which leverage local and group similarity of images in an
end-to-end manner. Authors in [7] define a group similarity,
which emphasizes the advantages of estimating a similarity
of two images, by employing the dependencies among the
whole set of images in a given group. In this work, we es-
tablish a natural connection between finding a robust probe-
gallery similarity and constrained dominant sets. Let us first
elaborate the intuitive concept of finding a coherent subset
from a given set based on the global similarity of given im-
ages. For simplicity, we represent person-images as vertices
of graph G, and their similarity as edge-weight wij . Given
vertices V, and let S ⊆ V be a non-empty subset of vertices
and i ∈ S, average weighted degree of each i with regard to
S is given as

φS(i, j) = aij −
1

|S|
∑
k∈S

aik ,

where φS(i, j) measures the (relative) similarity between
node j and i, with respect to the average similarity between
node i and its neighbors in S. Note that φS(i, j) can be
either positive or negative. Next, to each vertex i ∈ S we
assign a weight defined (recursively) as follows:

WS(i) =

{
1, if |S| = 1,∑
j∈S\{i} φS\{i}(j, i)WS\{i}(j), otherwise

(4)
where W{ij}(i) = W{ij}(j) = aij for all i, j ∈ V (i 6= j).
Intuitively, WS(i) gives us a measure of the overall simi-
larity between vertex i and the vertices of S \ {i}, with re-
spect to the overall similarity among the vertices in S \ {i}.
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Figure 2. Let S = {P, g1, g2, g3} comprises probe, P, and gallery images gi. As can be observed from the above toy example, the proposed
method assess the contribution of each participant node i ∈ S with respect to the subset S\i. (1) shows graph G, showing the pairwise
similarities of query-gallery images. (2-5) show the relative weight, WΓ}(i) ( Equ. 4), of each node with respect to the overall similarity
between set Γ\i (shaded region) and i. (2) shows that if the Node {g3} is added with Node {P, g1, g2} it has a negative impact on the
coherency of the cluster, since Wp,g1,g2,g3(g3) < 0. (3) shows that clustering {P} with {g1} and {g2} has a positive contribution to
the compactness of set {P, g1, g2}. (4), similarly, shows the relative weight of g1, Wp,g1,g2(g1) > 0. (5) shows the relative weight of
g2,Wp,g1,g2(g2) > 0. And, (6) is a coherent subset (dominant set cluster) extracted from the graph given in (1).
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Figure 3. Workflow of the proposed DCDS. Given n number of gallery images, G, and probe image P , we first extract their Resent101
features right before the global average pooling (GAP) layer, which are then fed to CDS-Net (upper stream) and V-Net (lower stream)
branches. In the CDS-branch, after applying GAP, we compute the similarity betweenM2 pair of probe-gallery image features, fp and fT

Gi

using their dot products, where T denotes a transpose. Followed by a ReLu operation. Thereby, we obtain M ×M affinity matrix. Then,
we run CDS taking the probe image as a constraint to find the solution x∗ ∈ IRM×1 (similarity), and the dissimilarity, x∗d, is computed
as an additive inverse of the similarity x∗. Likewise, in the lower stream (V-Net) we apply elementwise subtraction on M pair of probe-
gallery features. This is followed by GAP, batch normalization (BN), and fully connected layer (FC) to obtain probe-gallery similarity
score, R ∈ IRM×1, and probe-gallery dissimilarity score, D ∈ IRM×1. Afterwards, we elementwise multiply x∗ and R, and x∗d and D,
to find the final similarity, Fs, and disimilarity, Fd, scores, respectively. Finally, to find the prediction loss of our model, we apply a cross
entropy loss, the ground truth (Gt) is given as Gt ∈ IRM×1.

Hence, a positive WS(i) indicates that adding i into its
neighbors in S will raise the internal coherence of the set,
whereas in the presence of a negative WS(i) value we ex-
pect the overall coherence to decline. In CDS, besides the
additional feature, which allows us to incorporate a con-
straint element in the resulting cluster, all the characteristics
of DS are inherited.

3.2.1 A Set of Person Images as a Constrained Cluster

We cast person re-identification as finding a constrained
cluster. Given a probe and gallery images, we treat the
probe image as a constraint to find a constrained clus-
ter; where the elements of the cluster refer to the rele-
vant images to the probe image. As customary, let us
consider a given mini-batch with M number of person-
images, and each mini batch with k person identities
(ID), thus, each person-ID has Ω = M/k images in the

given mini-batch. Note that, here, instead of a random
sampling we design a custom sampler which samples k
number of person IDs in each mini-batch. Let B =
{I1
p1 , ...I

Ω
p1 , I

1
p2 , ...I

Ω
p2 , ...I

1
pk
, ...IΩ

pk} refers to the set of im-
ages in a single mini-batch. Each time when we consider
image I1

p1 as a probe image P , images which belong to the
same person id, {I2

p1 , I
3
p1 ...I

k
p1}, should be assigned a large

membership score to be in that cluster. In contrast, the re-
maining images in the mini-batch should be assigned sig-
nificantly smaller membership-score to be part of that clus-
ter. Note that our ultimate goal here is to find a constrained
cluster which comprises all the images of the corresponding
person given in that specific mini-batch. Thus, each partic-
ipant in a given mini-batch is assigned a membership-score
to be part of a cluster. Furthermore,

∑M
i=1 zi = 1, where zi

denotes the membership score of each image in the cluster.

As can be seen from the toy example in Figure 2, the



initial pairwise similarities between the query and gallery
images hold valuable information, which define the rela-
tionships of nodes in the given graph. However, it is not
straightforward to redefine the initial pairwise similarities
in a way which exploit the inter-images relationship. Domi-
nant Sets (DS) overcome this problem by defining a weight
of each image g3, p, g1, g2 with regard to subset S\i as de-
picted in Figure 2, (2−5), respectively. As can be observed
from Figure 2, adding node g3 to cluster S degrades the
coherency of cluster S = {p, g1, g2, g3}, whereas the rela-
tive similarity of the remaining images with respect to set
{p, g1, g2} has a positive impact on the coherency of the
cluster. It is evident that the illustration in Figure 2 verifies
that the proposed DCDS could easily measure the contri-
bution of each node in the graph and utilize it in an end-
to-end learning process. Thereby, unlike a siamese, triplet
and quadruplet based contrastive methods, DCDS consider
the whole set of images in the mini-batch to measure the
similarity of image pairs and enhance the learning process.

3.3. CDS Based End-to-End Learning

In this section, we discuss the integration of CDS in
end-to-end learning. As can be seen from Figure 3, there
are two main branches: CDS-Net and V-Net. We adopt a
siamese based Resent101, V-Net, with a novel verification
loss to find probe-gallery similarity (ri) and dissimilarity
(di) scores. Given probe and gallery images, V-Net out-
puts two vectors which are probe-gallery similarities R and
dissimilarities D. In the CDS-Net, the elements of pair-
wise affinity matrix are computed first as a dot product of
the global pooled features of a pair of images; that is fol-
lowed by a ReLu operation. Afterward, the replicator dy-
namics [30] is applied, which is a discrete time solver of the
parametrized quadratic program, Equ. 5 (that is equivalent
to Equ. 2), whose solution corresponds to the CDS. Thus,
assuming that there are M images in the given mini-batch,
the replicator dynamics, Equ. 3, is recursively applied M
times taking each image in the mini-batch as a constraint.
Consider a graph G = (V,E,w) and its corresponding ad-
jacency matrix A ∈ RM×M , and probe P ⊆ V. First, a
proper modification of the affinity matrix A is applied by
setting the diagonal elements corresponding to the subset
V \P to parameter α and diagonal elements corresponding
to the constraint image P zero. Next, the modified ad-
jacency matrix, B, is fed to the Replicator dynamics, by
initiating the dynamics with a characteristic vector of uni-
form distribution xt0 , such that initially all the images in
the mini-batch are assigned equal membership probability
to be part of the cluster. Then, to find a constrained cluster
a parametrized quadratic program is defined as:

maximize fαP (x)i = xTBx where, B = A− αÎp.
subject to x ∈ ∆

(5)
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Figure 4. Illustrates the auxiliary net, which consists of two
branches which are jointly trained. We first use features at differ-
ent layers, S1, S2, S3, and then feed these to Maxpooling (MP),
Conv, BN, ReLu and FC layers for further encoding. We then
compute triplet losses employing the features from the lower
three streams after ReLu, shown by yellow, blue, and red circles.
Next, after the final FC layer, we compute the cross-entropy loss
(CE1, ..., CE6) for each of the six different outputs, Oi, from
the upper and lower stream shown by distinct colored-boxes. Note
that even if the upper and lower stream apply the same operations,
on S1, S2 and S3, they do not share the weights; thus the encoding
is different. We compute the final loss as the sum of the average
of the triplet and cross entropy losses.

The solution, x∗i , of fαP (x)i is a characteristics vector
which indicates the probability of each gallery image to be
included in a cluster, containing the probe image P i. Thus,
once we obtain the CDS, x∗i = [zig1 , z

i
g2 ...z

i
gM ], for each

probe image, we store each solution x∗i , in Y ∈ IRM×M , as

Y =

 x∗i
...

x∗M

 =

z
1
g1 z1

g2 · · · z1
gM

...
. . .

...
zMg1 zMg2 · · · zMgM

 .

Likewise, for each probe, P i, we store the probe-gallery
similarity, R, and dissimilarity, D, obtained from the V-Net
(shown in Figure 3) in S′ and D′ as, S′ = [R1, R2, ...RM ]
and D′ = [D1, D2, ...DM ]. Next, we fuse the similarity
obtained from the CDS branch with the similarity from the
V-Net as

Fs = βY ⊗ (1− β)(S′),
Fd = βYd ⊗ (1− β)(D′), where, Yd = δ − Y

(6)
δ is empirically set to 0.3 and β is a fusing parameter, which
will be discussed in Experiments. We then vectorize Fs and
Fd into IR(M2×2),where, the first column stores the dissim-
ilarity score, while the second column stores the similarity
score. Afterward, we simply apply cross entropy loss to find
the prediction loss. The intriguing feature of our model is
that it does not need any custom optimization technique,
it can be end-to-end optimized through a standard back-
propagation algorithm. Note that, Figure 3 illustrates the
case of a single probe-gallery, whereas Equ. 6 shows the
solution of M probe images in a given mini-batch.
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Figure 5. During testing, given a probe and gallery images, we
extract DCDS and auxiliary net features and concatenate them to
find a single vector. Afterward, we build M ×M affinity matrix
and run CDS with constraint expansion mechanism to find the final
probe-gallery similarity rank.

3.4. Auxiliary Net

We integrate an auxiliary net (Figure 4) to further im-
prove the performance of our model. The auxiliary net
is trained based on the multi-scale prediction of ResNet50
[13]. It is a simple yet effective architecture, whereby we
can easily compute both triplet and cross entropy loss of
different layers of ResNet50 [13], hence further enhancing
the learning capability. Consequently, we compute the aver-
age of both losses to find the final loss. As can be observed
from Figure 4, we employ three features from different lay-
ers of ResNet50 and then we fed these three features to the
subsequent layers, MP, Conv, BN, and FC layers. Next, we
compute triplet and cross entropy loss for features from the
ReLu and FC layers, respectively. During testing phase we
concatenate the features from the DCDS and Auxiliary Net
to find 4,096 dimensional feature vector. We then apply
CDS to find the final ranking score, (See Figure 5).

3.5. Constraint Expansion During Testing

We propose a new scheme (illustrated in Figure 6) to ex-
pand the number of constraints in order to guide the simi-
larity propagation during the testing phase. Given an affin-
ity matrix, which is constructed using the features obtained
from the concatenated features (shown in Figure 5), we first
collect k-NN’s of the probe image. Then, we run CDS
on the graph of the NNs. Next, from the resulting con-
strained cluster, we select the one with the highest member-
ship score, which is used as a constraint in the subsequent
step. We then use multiple-constraints and run CDS.

4. Experiments
To validate the performance of our method we have

conducted several experiments on three publicly available
benchmark datasets, namely CUHK03 [16], Market1501
[37], and DukeMTMC-reID [38].

4.1. Datasets and Evaluation Metrics

Datasets: CUHK03 [16] dataset comprises 14,097 man-
ually and automatically cropped images of 1,467 identi-
ties, which are captured by two cameras on campus; in
our experiments, we have used manually annotated images.
Market1501 dataset [37] contains 32,668 images which are
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Figure 6. a) given a constraint (probe-image) P j , we first collect
k-NNs to P j , based on the pairwise similarities. Subsequently,
we run CDS on the graph of the k-NN. Then, we choose a cluster-
member with the highest membership-score, Ii. b) we re-run CDS,
considering P j and Ii as constraints, over the graph of the all set
of images. Afterward, we consider the solution as our final rank.

split into 12, 936 and 19,732 images as training and test-
ing set, respectively. Market1501 dataset has totally 1501
identities which are captured by five high-resolution and
one low-resolution cameras, the training and testing sets
have 751 and 750 identities respectively. To obtain the per-
son bounding boxes, Deformable part Model (DPM) [12]
is utilized. DukeMTMC-reID is generated from a track-
ing dataset called DukeMTMC; that is captured by 8 high-
resolution cameras, and person-bounding box is manually
cropped; it is organized as 16,522 images of 702 person for
training and 18, 363 images of 702 person for testing.
Evaluation Metrics: Following the recent person re-id
methods, we use mean average precision (mAP) as sug-
gested in [37], and Cumulated Matching Characteristics
(CMC) curves to evaluate the performance of our model.
Furthermore, all the experiments are conducted using the
standard single query setting [37].

4.2. Implementation Details

We implement DCDS based on ResNet101 [13] archi-
tecture, which is pretrained on imagenet dataset. We adopt
the training strategy of Kalayeh et al. [14], and aggre-
gate eight different person re-id benchmark datasets to train
our model. In total, the merged dataset contains 89,091
images, which comprises 4,937 person-ID (detail of the
eight datasets is given in the supplementary material). We
first train our model using the merged dataset (denoted as
multi-dataset (MD)) for 150 epochs and fine-tune it with
CUHK03, Market1501, and DukeMTMC-reID dataset. To
train our model using the merged dataset, we set image res-
olution to 450 × 150. Subsequently, for fine-tuning the
model we set image resolution to 384 × 128. Mini-batch



Methods mAP rank-1 rank-5
SGGNN [21] ECCV18 82.8 92.3 96.1
DKPM [22] CVPR18 75.3 90.1 96.7
DGSRW [20] CVPR18 82.5 92.7 96.9
GCSL [7] CVPR18 81.6 93.5 -
CPC [28] CVPR18 69.48 83.7 -
MLFN [6] CVPR18 74.3 90.0 -
HA-CNN [17] CVPR18 75.7 91.2 -
PA [23] ECCV18 74.5 88.8 95.6
HSP [14] CVPR18 83.3 93.6 97.5
Ours 85.8 94.81 98.1
RAW−RR [29] CVPR18 86.7 90.9 -
PAW−RR [23] ECCV18 89.9 93.4 96.4
HSPW−RR [14] CVPR18 90.9 94.6 96.8
OursW−RR 93.3 95.4 98.3

Table 1. A comparison of the proposed method with state-of-the-
art methods on Market1501 dataset. Upper block, without re-
ranking (Wo-RR). Lower block, with re-ranking method,W−RR,
[39].

Methods rank-1 rank-5
SGGNN [21] ECCV18 95.3 99.1
DKPM [22] CVPR18 91.1 98.3
DGSRW [20] CVPR18 94.9 98.7
GCSL [7] CVPR18 90.2 98.5
MLFN [6] CVPR18 89.2 -
CPC [28] CVPR18 88.1 -
PA [23] ECCV18 88.0 97.6
HSP [14] CVPR18 94.3 99.0
Ours 95.8 99.1

Table 2. A comparison of the proposed method with state-of-the-
art methods on CUHK03 dataset.

size is set to 64, each mini-batch has 16 person-IDs and each
person-ID has 4 images. We also experiment only using a
single dataset for training and testing, denoted as single-
dataset (SD). For data augmentation, we apply random hor-
izontal flipping and random erasing [40]. For optimization
we use Adam, we initially set the learning rate to 0.0001,
and drop it by 0.1 in every 40 epochs. β, is set to 0.9.

4.3. Results on Market1501 Datasets

As can be seen from Table 1, on Market1501 dataset,
our proposed method improves state-of-the-art method [14],
Wo-RR, by 2.5%, 1.21%, and 0.6% in mAP, rank-1 and
rank-5 scores, respectively. Moreover, compared to state-
of-the-art graph-based DNN method, SGGNN [21], the im-
provement margins are 3%, 2.5%, and 2% in mAP, rank-1,
and rank-5 score, respectively. Thus, our framework has
significantly demonstrated its benefits over state-of-the-art
graph-based DNN models. To further improve the result we
have adapted a re-ranking scheme [39], and we compare our

Methods mAP rank-1 rank-5
SGGNN [21] ECCV18 68.2 81.1 88.4
DKPM [22] CVPR18 63.2 80.3 89.5
DGSRW [20] CVPR18 66.4 80.7 88.5
GCSL [7] CVPR18 69.5 84.9 -
CPC [28] CVPR18 59.49 76.44 -
MLFN [6] CVPR18 62.8 81.0 -
RAPR [29] CVPR18 80.0 84.4 -
PA [23] ECCV18 64.2 82.1 90.2
HSP [14] CVPR18 73.3 85.9 92.9
Ours 75.5 87.5 -
PAW−RR [23] ECCV18 83.9 88.3 93.1
HSPW−RR [14] CVPR18 84.9 88.9 94.27
Ours W−RR 86.1 88.5 -

Table 3. A comparison of the proposed method with state-of-the-
art methods on DukeMTMC-reID dataset.Upper block, Wo-RR.
Lower block, with re-ranking method [39].
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Figure 7. Illustrates different experimental analysis performed on
Market1501 dataset. a) shows the impact of β. b) shows the per-
formance of our model with varying the number of images per per-
son in a given batch. c) and d) illustrate the similarity between the
probe and gallery images obtained from the baseline and DCDS
method, respectively. It can be observed that the baseline method
has given larger similarity values for false positive samples (red
asterisks above the blue dashed-line) and smaller similarity values
for false negative samples (green circles below the blue dashed-
line). On the other hand, the proposed DCDS has efficiently as-
signed the appropriate similarity scores to the true positive and
negative samples.

method with state-of-the art methods which use a re-ranking
method as a post-processing. As it can be seen from Table
1, our method has mAP gain of 2.4% over HSP [14], and
10.5 % over SGGNN[21], 10.8 % over DGSRW.

4.4. Results on CUHK03 Datasets

Table 2 shows the performance of our method on
CUHK03 dataset. Since most of the Graph-based DNN
models report their results on the standard protocol [16],
we have experimented on the standard evaluation protocol,



Methods Market1501 CUHK03 DukeMTMC-reID
mAP rank-1 rank-5 rank-1 rank-5 mAP rank-1 rank-5

Baseline SD 72.2 86.5 94.0 87.1 94.3 61.1 77.6 87.3
Baseline MD 74.3 87.5 95.3 87.7 95.2 62.3 79.1 88.8
DCDS (SD ) 81.4 93.3 97.6 93.1 98.8 69.1 83.3 89.0
DCDS (MD) 82.3 93.7 98.0 93.9 98.9 70.5 84.0 90.3
Ours (SD + Auxil Net) 83.0 93.9 98.2 95.4 99.0 74.4 85.6 93.7
Ours (MD + Auxil Net) 85.8 94.1 98.1 95.8 99.1 75.5 86.1 93.2

Table 4. Ablation studies on the proposed method. SD and MD respectively refer to the method trained on single and multiple-aggregated
datasets. Baseline is the proposed method without CDS branch.

to make fair comparison. As can be observed from Table 2,
our method gains a marginal improvement in the rank-1 and
rank-5 scores.

4.5. Results on DukeMTMC-reID Dataset

Likewise, in DukeMTMC-reID dataset, the improve-
ments of our proposed method is noticeable (see Table
3). Our method has surpassed state-of-the-art method [14],
without applying a re-ranking (Wo-RR), by 2.2%/1.6% in
mAP/rank-1 scores. Moreover, compared to state-of-the-art
graph-based DNN our method outperforms DGSRW [20],
SGGNN [21] and GCSL [7] by 9.1%, 7.3%, and 6% in
mAP, respectively. Using a reranking method [39], we re-
port competitive results in all evaluation metrics.

4.6. Ablation Study

To investigate the impact of each component in our ar-
chitecture, we perform an ablation study. Thus, we report
the contributions of each module in Table 4. To make a fair
comparison with the baseline and graph-based DNN mod-
els, the ablations study is conducted on SD setup.

Improvements over the baseline. As our main contri-
bution is the DCDS, we examine its impact over the baseline
method. The baseline method refers to the lower branch
of our architecture that incorporates the verification net-
work, which has also been utilized in [22], [20], [21]. On
Market1501 dataset, in SD setup, DCDS provides improve-
ments of 9.2%, 6.8% and 3.6% in mAP, rank-1, and rank-
5 scores, respectively, over the baseline method; whereas
in DukeMTMC-reID dataset the proposed DCDS improves
the baseline method by 8.0%, 5.5% and 1.7% in mAP, rank-
1, and rank-5 scores, respectively.
Comparison with graph-based deep models. We com-
pare our method with recent graph-based-deep models,
which adapt similar baseline method as ours, such as
[20],[21]. As a result, on DukeMTMC-reID dataset our
method surpass [20] by 9.1%(6.8%),Wo-RR, and [21] by
17.9 % ( 7.4 %), W-RR, in mAP (rank-1) scores. In light
of this, We can conclude that incorporating a constrained-
clustering mechanism in end-to-end learning has a signifi-
cant benefit on finding a robust similarity ranking. In ad-
dition, experimental findings demonstrate the superiority of

DCDS over existing graph-based DNN models.
Parameter analysis. Experimental results by varying sev-
eral parameters are shown in Figure 7. Figure 7(a) shows
the effect of β on the mAP. Thereby, we can observe that
the mAP tends to increase with a larger β value. This shows
that the result gets better when we deviate much from the
CDS branch. Figure 7(b) shows the impact of the number
of images per person-ID (Ω) in a given batch. We have ex-
perimented setting Ω to 4, 8, and 16, as can be seen, we
obtain a marginal improvement when we set Ω to 16. How-
ever, considering the direct relationship between the run-
ning time and Ω, the improvement is negligible. c) and d)
show probe-gallery similarity obtained from baseline and
DCDS method, using three different probe-images, with a
batch size of 64, and setting Ω to 4, 8 and 16.

5. Conclusion
In this work, we presented a novel insight to enhance

the learning capability of a DNN through the exploitation
of a constrained clustering mechanism. To validate our
method, we have conducted extensive experiments on sev-
eral benchmark datasets. Thereby, the proposed method not
only improves state-of-the-art person re-id methods but also
demonstrates the benefit of incorporating a constrained-
clustering mechanism in the end-to-end learning process.
Furthermore, the presented work could naturally be ex-
tended to other applications which leverage a similarity-
based learning. As a future work, we would like to investi-
gate dominant sets clustering as a loss function.
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