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In the supplementary material, we provide additional ex-
periments on cross-dataset person-re-identification (re-id)
using the proposed deep constrained dominant sets (DCDS)
on Market1501 dataset. In section one, we summarize
the datasets we used in our experiments. In section two,
we present the experiments we have performed on cross-
dataset person re-id. And, in section three, we provide hy-
per parameter analysis on DukeMTMC-reID and CUHK03
datasets. Figure 1 illustrates an example of our method
training-output (left) and learning objective, target matrix,
(right). Figure 2 demonstrates the similarity fusing process,
between the V-Net and CDS-Net, alongside sample qualita-
tive results.

1. Datasets

In multiple dataset (MD) setup, we first train our model
on eight datasets: CUHK03 [4], CUHK01 [3], Market1501
[7], DukeMTMC-reID [9], Viper [1], MSMT17 [6], GRID
[5], and ILIDS [8]. Next, we fine-tune and evaluate on each
of CUHK03 [4], Market1501 [7], and DukeMTMC-reID
[9] datasets.

2. Experiments on Cross-datasets Evaluation

Due to the lack of abundant labeled data, cross-dataset
person re-id has attracted great interest. Recently, Fan et al.
[2] have developed a progressive clustering-based method
to attack cross-dataset person re-id problem. To further val-
idate our proposed DCDS, we apply our method on cross-
dataset person re-id problem and compare it with progres-
sive unsupervised learning (PUL) [2]. To this end, we train
our model on DukeMTMC-reID and CUHK03 datasets and
test it on Market1501 dataset. We then compare it with
PUL [2], which has also been trained on CUHK03 and
DukeMTMC-reID datasets. As can be observed from Ta-
ble 1, even though our proposed method is not intended for
cross-dataset re-id, it has gained a substantial improvements
over PUL [2], that was mainly designed to attack person re-
id problem in a cross-dataset setup.

Target

Same	person	Images Different	person		Images	

Output	(,-.	/0123) Output	(56.3	/0123)

Figure 1. On the right hand side, the target matrix is shown. There
are total 16 persons in the mini-batch and 4 images per ID (Ω = 4),
batch size = 64. In the target matrix, the white-blocks represent
the similarity between the same person-images in the mini-batch,
whereas the black-blocks of the matrix define the dissimilarities
between different person images. In the similarity matrix shown
left ( after one epoch) and middle (after 70th epochs) each row
of the output matrix denotes the fused similarity obtained from
the CDS-Net and V-Net, per Equ. (6) in the main manuscript.
Thus, we optimize our model until we obtain an output with a
similar distribution of the target matrix. As can be seen, our model
has effectively learned and gives a similarity matrix (shown in the
middle) which is closer to the target matrix.

3. Parameter Analysis
Similar to the parameter analysis reported in the

main manuscript, we report hyper parameter analysis on
DukeMTMC-reID and CUHK03 dataset. The performance
of our method with respect to the fusing parameters on
DukeMTMC-reID and CUHK03 are shown in Figure 3
(a) and Figure 3 (b), respectively. Thereby, as can be
observed, the results show similar phenomena as in Mar-
ket1501, where the mAP increases with a larger β value.
Figure 4 shows the similarity distribution given by the base-
line and the proposed DCDS using three different probe-
images, with a batch size of 64, and setting Ω to 4, 8 and
16.
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Figure 2. Exemplar results obtained as a result of the similarity fusion between the V-Net and CDS-Net. The Upper-row shows the probe
and gallery similarity (R) obtained from the V-Net, where the green circles show persons similar to the probe (shown by purple-circle),
while the red circles denote persons different from the probe image. Middle-row shows the workflow in CDS-Net. First, graph G is formed
using the similarity obtained from the dot products. We then construct the modified affinity matrix B, followed by application of replicator
dynamics on A to obtain the probe gallery similarity (X∗). Finally, We elementwise multiply X∗ and R to find the final probe-gallery
similarity (Fs), shown in the third row. The intensity of the edges in, G, R, x∗, and Fs define the similarity value, where the bold ones
denote larger similarity values, whereas the pale-edges depict smaller similarity values.
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Figure 3. Performance of our model with respect to fusing parameter β, on (a) CUHK03, and (b) DukeMTMC-reID, datasets.

Train on Duke, CUHK03 → Test on Market1501
Methods mAP rank-1
PUL [2] 20.5 45.5
Ours 24.5 51.3

Table 1. A comparison of the proposed method with PUL [2] on
Market1501 dataset.
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Figure 4. Shows experimental analysis performed on CUHK03 (1a,b), and DukeMTMC-reID (2a,b) datasets. 1a, 2a and 1b, 2b illustrate
the similarity between the probe-gallery images obtained from the baseline and DCDS method, respectively. It can be observed that the
baseline method has assigned larger similarity values for false positive samples (red asterisks above the blue dashed-line) and smaller
similarity values for false negative samples (green circles below the blue dashed-line). On the other hand, the proposed DCDS has
efficiently assigned the appropriate similarity scores to the true positive and negative samples. Note that, for better visibility, we have
randomly assigned a large (close to 1) self-similarity value to the probe (blue-circle).
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