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Abstract— Drones are enabling new forms of human actions
surveillance due to their low cost and fast mobility. How-
ever, using deep neural networks for automatic aerial action
recognition is difficult due to the need of humongous number
of aerial human action videos needed for training. Collecting
a large collection of human action aerial videos is costly,
time-consuming and difficult. In this paper, we explore two
alternative data sources to improve aerial action classification
when only a few training aerial examples are available. As a
first data source, we resort to video games. We collect plenty
of ground and aerial videos pairs of human actions from video
games. For the second data source, we generate discriminative
fake aerial examples using conditional Wasserstein Generative
Adversarial Networks. We integrate features from both game
action videos and fake aerial examples with a few available
aerial training examples using disjoint multitask learning. We
validate the proposed approach on several aerial action datasets
and demonstrate that aerial games and generated fake aerial
examples can be extremely useful for an improved action
recognition in real aerial videos when only a few aerial training
examples are available.

I. INTRODUCTION

Nowadays, drones are ubiquitous and actively being used
in several applications such as sports, entertainment, agri-
culture, forest monitoring, military, and surveillance [1]. In
video surveillance, drones can be much more useful than
CCTV cameras due to their freedom of mobility and low
cost. One critical task in video surveillance is monitoring
human actions using drones.

Automatically recognizing human action in drone videos is
a daunting task. It is challenging due to drone camera motion,
small actor size and most importantly the difficulty of collect-
ing large scale training aerial action videos. Computer vision
researchers have tried to detect human action in varieties
of videos including sports videos [2] , surveillance CCTV
videos [3], cooking and ego-centric videos [4]. Furthermore,
drones are recently being used to capture 3D human motion
[5] and autonomously capturing cinematic shots of human
action scenes [6]. However, despite being very useful and
of practical importance, not much research work is done to
automatically recognize human action in drone videos.

Deep learning models are data-hungry and need hundreds
of training videos examples for robust training. However,
collecting training dataset is quite challenging in several
robotic vision applications such as semantic segmentation
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Fig. 1: Figure shows examples of videos captured by UAVs.
In each video, different human action is being performed. We
aim to automatically recognize human action in these videos
when only a few training aerial examples are available.

[7], measuring 6D object pose [8], and depth image classifi-
cation [9]. Recently, computer graphics techniques and gam-
ing technology have improved significantly. For example,
GTA (Grand Theft Auto) and FIFA (Federation International
Football Association) gaming engines use photo-realistic
simulators to render real-world environment, texture, objects
(human, bicycle, car, etc) and human actions. We propose
to collect and use games action videos to improve human
action recognition in real-world aerial videos. Games videos
for action recognition are intriguing because 1) without
much effort, one can collect a large number of videos
containing environment and motion that looks very close to
real-world, 2) It is easy [10] to get detailed annotations for
action detection and segmentation which are otherwise very
expensive to obtain, 3) Most of the gaming engines allow the
players to capture the same action from the different views
(aerial, ground, front, etc.,) at the same time. This means that
we can easily collect multi-view dataset with exact frame-
by-frame correspondence. All three advantages make gaming
videos quite appealing for aerial action recognition where
data collection is difficult and expensive.

Another direction to address the scarcity of data is through
generating fake video examples using generative adversarial
network [11]. However, the quality of images and videos
generated by GAN is not yet good enough to train deep net-
works [12]. Therefore, we propose to generate fake discrim-
inative aerial features of different actions using conditional
Wasserstein GAN. We believe that the fake aerial examples,
when combined with a few real action examples, can help
learn a more generalized and robust aerial action classifier.

In this paper, we propose to utilize game videos and fake
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generated examples to improve aerial action classification
when a few real training examples are available. However,
one of the key challenges is the disjoint nature of the
problem. Video games are designed to address the interest
of game playing audience and contain human motions and
environments biased towards some few specific human ac-
tions. For examples, the majority of actions in FIFA games
are related to playing a soccer game in a soccer field and the
majority of actions in GTA are about fighting. Therefore, it
is highly likely that classes of actions in games are different
from the types of action classes we are interested to recognize
in the real world. Similarly, it is not easy to generate good
discriminative fake features for all types of action. However,
our key idea is that despite different classes in games and
real videos and the low-quality nature of fake aerial features,
all three data types (games, real and fake) capture similar
local motion patterns, human movements and human-object
interactions, and, if integrated properly, can help learn more
generalized aerial action classifiers. To achieve this, we
combine games and fake examples with a few available real
training examples using disjoint multitask learning.

Note that in this paper, we call the videos as ground action
videos if the person making the videos is on the ground and
the aerial videos are the one that are taken by UAVs. In
summary, this paper makes the following contributions:
• We propose to tackle the new problem of drone-based

human action recognition when only a few aerial training
examples are available.
•We demonstrate the feasibility of game action videos for

improving action recognition in real-world aerial videos.
•We show that game and fake action examples can help to

learn a generalized action classifier through disjoint multitask
learning framework.
• We present two new action datasets: 1) Aerial-Ground

game dataset containing 700 human action video pairs (1400
videos), 2) Real aerial dataset containing actions correspond-
ing to eight actions of UCF101.

II. RELATED WORK

Human action recognition in videos is one of the most
challenging and active vision problems [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [6], [5]. Classical approaches
used hand-crafted features [13], [14] to train generalized
human action recognition models that can perform well
across different action datasets [15], [16].

With the resurgence of deep learning, several deep learn-
ing approaches have been proposed for action recognition.
Simonyan et al. [20] proposed RGB and optical flow-based
networks for action recognition videos. Both RGB and
optical flow networks employ 2D convolution. Tran et al.
[18] demonstrated the feasibility of 3D convolution for action
recognition. In addition to presenting a new large scale
action recognition dataset of 400 classes, Carreira et al.
[17] proposed two-Stream inflated 3D ConvNet (I3D) that
is based on 2D convnet inflation and demonstrated state of
the art classification accuracy. Recently, an efficient action
recognition framework is proposed by Chen et al. [21].

Furthermore, there has been an increased interest to train the
generalized action recognition model using multi-task learn-
ing. Kataoka et al. [22] put forwarded a multi-task approach
for the out-of-context action understanding. Similarly, Kim
et al. [23] proposed disjoint multi-task learning to obtain
improved video action classification and captioning in a joint
framework.

Recently, Zhou et al. [5] proposed to analyze human
motion using videos that are captured through a drone
that orbits around the person. They demonstrated that, as
compared to static cameras, videos captured by drone are
more suitable for better motion reconstruction. Similarly,
Huang et al. [6] presented a system that can detect cinematic
human actions using 3D skeleton points employing a drone.

Although human action recognition is a quite active area
of research in computer vision, there are not many research
works dealing with aerial action recognition in the literature.
Wu et al., [19] proposed to use low-rank optimization to
separate objects and moving camera trajectories in aerial
videos. UCF-ARG dataset [24] contain ground, rooftop and
aerial triplets of 10 realistic human actions. This dataset is
quite challenging as it contains severe camera motion and
human in these videos occupy only a few pixels. Perera et al.
[25] proposed to use human pose features to detect gestures
in aerial videos. They introduced a dataset that is recorded
by a slow and low-altitude (around 10ft) UAV. Although
useful, their dataset only contains gestures related to UAV
navigation and aircraft handling. Recently, Barekatain et al.
[26] proposed a new video dataset for aerial view concurrent
human action detection. It consists of 43 minute-long fully-
annotated sequences with 12 action classes. They used single
shot detection approach [27] to obtain human bounding
boxes and then used the features within those bounding boxes
for action classification.

Gathering large-scale dataset and its annotation is difficult,
expensive and requires hundreds of human hours. To address
this challenge, there is increasing interest in using synthetic
data to train deep neural networks. Josifovski et al. [28]
proposed to use annotated synthetic data to train instance-
based object detector and object 3D pose estimator. Mercier
et al. [8] used weakly labeled images and synthetic images
to train deep network for object localization and 6D pose
estimation in real-world settings. Carlucci et al. [9] proposed
to use synthetic data for depth image classification. Recently,
Richter et al., [10] designed a method to automatically
gather ground truth data for semantic segmentation and [7]
presented an approach to use those game annotations for
semantic segmentation in real images. Finally, Mueller et al.,
[29] put forwarded photo-realistic simulators to render real-
world environment and provide a benchmark for evaluating
tracker performance.

In this paper, in contrast to the above mentioned methods,
we address the problem of aerial action recognition when
only a few training examples are available and propose a
novel method to boost the classification accuracy using game
and fake generated examples employing disjoint multi-task
learning.
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Fig. 2: Sample frames from our game action dataset. The first row shows the videos recorded from aerial camera while the
second row depicts the same videos captured from ground camera.

III. PROPOSED APPROACH

In this section, we provide the details of our game action
videos collection, the method to generate fake aerial exam-
ples and finally disjoint multitask approach where we train
the aerial classifier using game aerial, fake aerial and a few
real aerial videos in a unified framework.

A. Games Action Dataset

We employ GTA-5 (Grand Theft Auto) or FIFA (Fed-
eration International Football Association) for collecting a
dataset. For each action, we record ground and aerial videos
pairs i.e., the same action frames captured from both aerial
and ground cameras. In total, we collect seven human actions
including cycling, fighting, soccer kicking, running, walking,
shooting and skydiving. Due to the availability of plenty
of soccer kicking in FIFA games, we collect kicking from
FIFA and the rests of the actions are collected from GTA-
5. For each action, the dataset contains 200 videos (100
ground and 100 aerial) with a total of 1400 videos for seven
actions. Note that most of the scenes and interactions in the
video games are biased towards actions related to fighting,
shooting, walking and running, etc. Therefore, the use of
these games action videos for action recognition in real-
world scenarios (which contain several different actions) is
not straightforward.

In addition, due to the recent success of unsupervised
image-to-image translations networks [30], we use pre-
trained couple GAN from [30] to convert game videos into
realistic-looking videos.

B. Fake Aerial Examples Generation

We generate fake aerial videos features employing Genera-
tive Adversarial Networks (GAN) [11]. Generative Adversar-
ial Networks is a powerful tool to generate realistic-looking
fake images and videos. However, the quality of fake videos
is still far from being used to train a deep architecture for
classification. However, several recent works demonstrated
that GAN can be used to generate good discriminative
features [12].

GAN consists of two networks: Generator and Discrimi-
nator. Generator tries to mimic the real data distribution and
fools the discriminator by producing realistic looking videos
or features while the discriminator job is to robustly classify

real and generated (fake) video or features. Both Generator
and discriminator can be simple multi-layer perceptrons. As
compared to vanilla-GAN, in conditional GAN [31], both
generator and discriminator are conditioned on auxiliary
information. Auxiliary information can be video labels or
some other video features. Our goal is to generate fake
aerial visual features given the real ground features (auxiliary
information). The objective function for our conditional
GAN is given by:

Lcgan = E[logD(fra |frg )]

+ E[log(1−D(G(z, frg )|frg ))],
(1)

where D represents discriminator and G represents generator,
in D(fra |frg ), fra and frg are real aerial and ground features
respectively. These features are randomly sampled from
given real aerial and ground features distributions. Note that
we do not assume any correspondence between fra and frg .
Given the noise vector z and frg , generator tries to fool
discriminator by producing fake examples.

To optimize the objective function, usually KL-divergence
or JS-divergence is employed to reduce the difference be-
tween real and generated data distributions. However, one of
the key limitations with KL-divergence or JS-divergence is
that the gradient of divergence decreases with the increase
of distance, and generator learns nothing through gradient
descent. To address this limitation, Wasserstein GAN is
introduced [32], which uses Wasserstein distance. WGAN
learns better because it has a smoother gradient every-
where. Finally, to make Wasserstein distance tractable, the
1-Lipschitz constraint is used through gradient penalty loss
[33]. The objective function of our conditional Wasserstein
GAN (WCGAN-GP) is given by:

Lcwgan = E[D(G(z, frg )|frg )]− E[logD(fra |frg )]

+ E[(
∥∥∇mD(m, (G(z, frg ))

∥∥
2
− 1)2]

(2)

where m = tG(z, frg )+(1−t)frg and t is uniformly sampled
between 0 and 1.

Our ultimate goal is to train discriminative action clas-
sifiers using fake features which are generated through
generative networks. Although the above objective function
generates realistically looking features, it does not guarantee



generating the discriminative features suitable for classifi-
cation. To accomplish this, we first train soft-max classifiers
using a few available real aerial examples. In order to enforce
WCGAN-GP to produce discriminative features, we use
classification loss computed over the fake aerial examples
given as:

Lcl = −E[logP(yrg |G(z, frg ); θ)], (3)

where P(yrg |G(z,frg ) denotes the probability of correct la-
bel prediction of generated examples. Since labels for real
ground and fake aerial examples are the same, we use the
labels of real ground ( yrg ) as ground truth.
Reconstruction loss Recent works such as [34] demon-
strated that the quality of generated examples could be
improved by using traditional reconstruction loss (L2 or L1)
in addition to GAN loss. In our case, the reconstruction loss
needs exact corresponding pairs of aerial and ground videos.
Unfortunately, it is quite difficult to obtain such aerial-ground
pairs in the real-world scenario. Our key idea here is that we
can empower the generator with reconstruction loss that is
computed over the game videos. This mean, in addition to
fooling discriminator and producing discriminative examples,
the generator needs to produce an exact aerial visual feature
for the corresponding ground visual feature of game videos.
As discussed in Section III-A, it is easy to collect plenty of
such aerial-ground game video pairs. The reconstruction loss
is given as:

Lrec =
∥∥(G(z, fkg )− fkg

∥∥
1
, (4)

where fkg represent game ground features and (G(z, fkg )
represents generated fake aerial game features.

The overall objective function for fake aerial examples
generation is given by

L = Lcwgan + Lcl + βLrec. (5)

C. Aerial videos classification using Disjoint Multi-Task
learning

Multitask learning improves the generalization capabilities
of the model by effectively learning multiple related tasks. It
has been used in several computer vision problems to learn
the joint model such as; simultaneous object detection and
segmentation [35], surface normal and pixel labels [36] and
joint pose estimation and action recognition [37]. One of
the limitations of multitask learning is the requirement of
availability of multiple labels for each task for the same
data. However, most of existing action datasets do not have
such labels and hence restraining multitask learning on these
datasets. To address this, recently disjoint multitask learning
[23] is introduced. In the disjoint multi-instance framework,
we can utilize different datasets to improve the generalization
of the deep network.

In this paper, we propose to employ game aerial videos
and fake aerial videos to perform disjoint multitask learning
for action recognition. Since the two datasets are different
(games and real) and secondly, we do not assume any

common action classes, this fits well in context of disjoint
multitask learning.

We have three tasks in total; action classification on real,
fake and games videos. We first compute deep features of a
few available real aerial videos and game videos using 3D
convolutional neural network [21]. Furthermore, we obtain
fake aerial features using the method described in Section
III-B. We have two fully connected layers shared between
all three tasks and one dedicated fully connected layer for
each task.

Assume that the real, game and fake dataset videos fea-
tures respectively are denoted by r ∈ R, k ∈ K m ∈ M
respectively . To denote ground or aerial videos, we use
subscript a and g such that ra and rg represents the real
aerial and ground video features respectively. We denote
the number of actions classes in the real, game, and fake
data as N , M, and F respectively. Note that we do not
assumeM=R=F . We train all branches for the classification
using softmax as a final activation function along with cross-
entropy loss given by:

L = −E[logP(y|f ; θ)], (6)

where f denotes visual feature, P (y|f) denotes the proba-
bility of true prediction of f and θ denotes the parameters
to be learned

Our disjoint multitask framework is shown in Figure 3.
Branch 1©, 5©, 9© are trained using ground truth labels of
the real, game and fake data respectively. Branch 4© and 7©
respectively predicts the real labels for the game and fake
data; similarly branch 2© and 8© predicts the games labels
for real and fake data respectively; and finally branch 3©, 6©
respectively predicts the fake labels for real and game data.

We train different branches of multi-task framework using
the aerial, game and fake data in iterations. First, using a
few real aerial videos, we compute the loss for 1©, 2© and
3© only (see Figure 3), whereas 1© predicts the real data

labels, 2© predicts the game data labels and 3© predicts the
fake data labels. Note that the input to the network is a
few real aerial videos only. Although we have ground truth
labels for the real videos, we do not have the game and fake
action labels for real videos due to disjoint nature of the
problem. Therefore, we use the prediction of 5© (train for
game ground truth labels) and 9© (train for fake ground truth
labels) and consider them as ground truth for computing the
classification loss of 2© and 3©. The loss function for this
scheme is given by:

min
Θ

∑
ra∈Ra

1©︷ ︸︸ ︷
L(yra , P (yra |ra))

+

2©︷ ︸︸ ︷
L( ˆyka

, P (yka
|ra) +

3©︷ ︸︸ ︷
L( ˆyfa , P (yfa |ra),

(7)

yra is ground truth labels of real aerial videos, P (yra |ra)
represents predicted real labels for real videos, ˆyka

are the
labels obtained from the layer trained with game ground truth
labels ( 4©)and P (yka

|ra) is predicted game action labels for



3D CNN 

Games Aerial Videos Real Aerial Videos 

WGAN 

Fake aerial features Real aerial features 

Game aerial features 

1	
   4	
   7	
   2	
   5	
   8	
   3	
   6	
   9	
  

Fully connected layers 

Game labels 
Game data 

Game labels 
Fake data 

Real labels 
Real data 

Real labels 
Game data 

Real labels 
Fake data 

Fake labels 
Real data 

Game labels 
Real data 

Fake labels 
Game data 

Fake labels 
Fake data 

Fig. 3: Disjoint Multitasking Framework. Given the real and game and generated fake examples, we train different task
specific layers in iterations. See the Section III-C for the detailed description of this figure.

real videos. Similarly, ˆyfa are the labels obtained from the
layer trained with ground truth labels for fake video ( 9©),
and P (yfa |ra) is predicted fake action labels for real videos
and finally Θ represents network parameters.

After this, we train the networks using game aerial videos
and compute the loss for 4©, 5© and 6©. 4© predicts the real
data labels, 5© predicts the game data labels and 6© predicts
the fake data labels. Note that the input to the network is
game aerial videos and only 5© enjoys the ground truth game
labels. As done before, we use the prediction of 1© (train for
real ground truth labels) and 9© (train for fake ground truth
labels) and consider them as ground truth for computing the
classification loss of 4© and 6©. The loss function for this
scheme is given by:

min
Θ

∑
ka∈Ka

4©︷ ︸︸ ︷
L(yka

, P (yka
|ka))

+

5©︷ ︸︸ ︷
L( ˆyra , P (yra |ka) +

6©︷ ︸︸ ︷
L( ˆyfa , P (yfa |ka),

(8)

where yka
and P (yak

|ka) are ground truth and predicted
action labels of game aerial videos, ˆyra is obtained from
1© and P (yra |ka) is predicted real action labels for game

videos. Similarly, ˆyfa is obtained from 9© and P (yfa |ka) is
predicted action labels for fake data.

Finally, the loss function for the generated fake aerial data

is given as:

min
Θ

∑
fa∈Fa

7©︷ ︸︸ ︷
L(yfa , P (yfa |fa))

+

8©︷ ︸︸ ︷
L( ˆyra , P (yra |fa) +

9©︷ ︸︸ ︷
L( ˆyka

, P (yka
|fa),

(9)

where yfa and P (yfa |fa) are ground truth and predicted
action labels of fake aerial videos, ˆyra is obtained from 1©
and P (yra |fa) is predicted real action labels for fake videos.
Similarly, ˆyka is obtained from 5© and P (yka |fa) is predicted
game action labels. Note that the number over the equations
represents the corresponding numbers in Figure 3.

We repeat the above procedure for several epochs and fine-
tune the parameters on the validation data. Note that we did
not observe the forgetting effect [38] in our experiments.

IV. EXPERIMENTS

The main goal of our experiments is to quantitatively
evaluate the proposed approach and analyze the different
components. To this end, we perform extensive experiments
on the two aerial action datasets i.e., UCF-ARG [24] and
YouTube-Aerial (collected by us).

A. Datasets

UCF-ARG[24]: UCF-ARG dataset contain 10 human ac-
tions. This dataset includes: boxing, carrying, clapping, dig-
ging, jogging, open-close trunk, running, throwing, walking
and waving. This is multi-view dataset where videos are
collected from an aerial camera mounted on Helium balloon,
ground camera, and rooftop camera. All videos are of high
resolution 1920 × 1080 and recorded at 60fps. The aerial



Method Boxing Carrying Clapping Digging Jogging Open-close-Trunk Running Throwing Walking Waving Avg

Ground 33.3 00.0 20 00.0 40.0 00.0 60.0 6.70 20 0.00 18.0
DML using Games 53.3 13.3 00.0 26.7 26.7 41.7 66.7 6.70 00.0 13.3 24.8
DML using Games+Fake 13.3 26.7 00.0 00.0 6.70 58.3 66.7 6.70 40.0 80.0 29.8

TABLE I: Quantitative results for UCF-ARG dataset. Top row shows class-wise action recognition accuracy on aerial testing
videos when training is done on video recorded by ground cameras. The second row demonstrates accuracy using disjoint
multitask learning (DML) along with game videos. Finally, the last row demonstrates the same when game and fake examples
are used together.

Method Band-marching Biking Cliff Diving Golf Swing Riding Horse Kayaking Skateboarding Surfing Avg

Ground 33.3 26.7 93.3 53.3 6.00 53.3 26.7 93.3 48.2
DML using Games 53.3 73.3 66.7 100.0 13.3 66.7 53.3 86.7 64.2
DML using Games+Fake 66.7 33.3 86.7 80.0 60.0 66.7 40.0 86.7 65.0

TABLE II: Quantitative results on YouTube-Aerial dataset. Similar to the Table I, the top row shows class-wise action
recognition accuracy on aerial testing videos when trained on ground videos, the second row demonstrates accuracy using
game videos and third row shows the same when game and fake examples are used together.

videos contain severe camera shake and large camera motion.
On average, each action contains 48 videos. We use 60% of
videos of each action for training, 10% for validation and
30% for testing. Figure 4 shows some of the videos from
UCF-ARG dataset.
YouTube-Aerial Dataset: We collect this new dataset our-
selves from the drones videos available on YouTube, and
will be made publicly available. This dataset contains actions
corresponding to eight actions of UCF101 [2]. The actions
include cycling, cliff-diving, golf-swing, horse-riding, kayak-
ing, running, skateboarding, surfing, swimming, and walking.
The videos in this dataset contain large and fast camera
motion and aerial videos are captured at variable heights. A
few examples of videos in this dataset are shown in Figure
1. Each action contains 50 videos. Similar to UCF-ARG
dataset, we use 60%, 10%, and 30% of videos for training,
validation, and testing respectively.

B. Implementation details

For visual features computation, we use 3D multi-fiber
network [39]. Authors in [39] showed that multi-fiber net-
work provides stat-of-the-art results on several competitive
datasets and is the order of magnitude faster than several
other video features networks. It achieves high computational
efficiency by dividing the complex neural network into small
lightweight networks. We extract the features (768D) for all
videos from the second last layer of the network.

For disjoint multitask learning, we have two shared fully
connected (fc) layers (512 and 256 units respectively). We
have nine task-specific layers: three fc layers each with the
number of units equal to the number of actions in the real
dataset (shown in green color in Figure 3), games dataset
(shown in orange color in Figure 3) and fake dataset (shown
in blue color in Figure 3).

To generate fake examples, both our generator and dis-
criminator contain four fully connected (fc) layers where
the first three fc layers have Leaky ReLU activation. In the

OpenCloseTruck OpenCloseTruck Throwing 
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  Digging	
  

Throwing 

Digging Digging Waving Waving 

Fig. 4: Examples of videos from UCFAG dataset. The first
two columns show the videos captured by the ground camera
while the last two column show the same actions captured
by a UAV.

case of the generator, the last fc has ReLU activation. The
noise vector z (312D) is drawn from unit Gaussian. For
all networks, we use Adam optimizer. The β in Equation
5 is chosen 0.001 and finally we weight the loss for fake
data in Equation 9 with 0.1. For YouTube Aerial dataset,
we weight the loss for game data in Equation 8 with 0.01.
Note that all parameters are chosen over validation data. We
use five videos of each action (named as a few available
training examples in the above sections) in disjoint multitask
learning. We ran the experiments several times with random
initialization of the network (fc layers) and report the average
results.

C. Experiments Results

Table I and II demonstrate the experimental results on
UCFARG and YouTube-Aerial datasets. All the classification
results are of testing on real aerial videos. The first row
demonstrates classification results when training is done on
ground camera videos only. Note that UCFARG dataset
contains ground cameras videos for the corresponding aerial
actions videos. Some examples of ground camera videos are



shown in Figure 4. For YouTube-Aerial dataset, we use the
videos of eight actions from UCF101 ground camera videos.
The second row demonstrates the experimental results when
the network is trained using games videos employing disjoint
multi-task learning. Finally, the last row demonstrates the
same when both games and fake data is used. In case of DML
(Disjoint Multi-task Learning), we also use five available
training examples as shown in Figure 3. As compared to
YouTube-Aerial, low recognition accuracy on UCF-ARG
dataset is due to videos containing non-discriminative back-
grounds and very small actors size. It can be seen that for
the most of the actions, the proposed approach results in
improved action classification accuracy. The results empha-
size the strength of the proposed approach and suggest that
aerial video games and fake aerial features, when integrated
properly, can improve the classification accuracy when a few
training examples are available. Figure 5 shows the confusion
matrix between different action for YouTube Aerial dataset.
The results suggest that in addition to training on ground
data only, using game and generated fake aerial examples
significantly reduces the testing network confusion between
different actions.
Comparison with Fine-tuning: We compute the classification
accuracy when fine-tuning the network with only five aerial
videos of each action without disjoint multitask learning.
It can be seen in Table III that the proposed approach
performs much better than simple fine-tuning the network.
These results demonstrate the significance of disjoint multi-
task learning using games and fake aerial data. Finally, the
rightmost column demonstrates the upper bound classifica-
tion accuracy when all training aerial examples (30 aerial
examples for each action) are used.

Few(5) Aerial DML All Aerial
UCF-ARG 17.3 29.8 32.5

YouTube-Aerial 60.8 65.0 68.3

TABLE III: Second column shows the classification accuracy
when training is done only on five aerial videos. Third
column shows proposed approach and the forth column
depicts the accuracy when all training aerial examples are
used (upper bound).

Impact of games on generating good fake aerial examples:
To analyze the significance of using games for generating
fake examples (Equation 4), we perform experiments with
and without game reconstruction loss. The experimental
results in Table IV demonstrate that the game reconstruction
loss does help in generating good fake aerial examples. Note
that to fully analyze the reconstruction loss contribution, in
these experiments, we train the network with only fake aerial
examples without employing disjoint multitasking learning.

V. CONCLUSION

Recently, low cost and lightweight hardware makes drones
a good candidate for monitoring human actions. However,
training the deep neural network for action recognition needs

Without-Reconst With-Reconst
YouTube-Aerial 61.92 63.33

TABLE IV: Classification accuracy on YouTube-Aerial
dataset using fake aerial examples only. We observe the
employing game reconstruction loss (right) produce more
discriminative fake examples as compared to not using game
reconstruction loss (left)
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Fig. 5: Confusion matrix between actions in YouTube-Aerial
dataset. (a) shows the confusion matrix when network is
trained on ground videos. (b) shows the confusion matrix
when network is trained using proposed approach.

lots of training examples which are difficult to collect.
In this paper, we explore two alternative data sources to
increase the generalization capabilities of neural network
classifiers. Our experimental results and thorough analysis
demonstrated that game action videos and generated fake



examples, when integrated properly, can help to get improved
aerial classification accuracy. The future works will aim at
spatio-temporal localization of actor in drone videos, which
will need granular deep features. Another future direction is
to recognize human action in drone videos an unsupervised
manner.
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