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Abstract—Attributes are semantically meaningful characteristics whose applicability widely crosses category boundaries. They are
particularly important in describing and recognizing concepts for which no explicit training example is given, e.g., zero-shot learning.
Additionally, since attributes are human describable, they can be used for efficient human-computer interaction. In this paper, we propose
to employ semantic segmentation to improve person-related attribute prediction. The core idea lies in the fact that many attributes
describe local properties. In other words, the probability of an attribute to appear in an image is far from being uniform in the spatial
domain. We build our attribute prediction model jointly with a deep semantic segmentation network. This harnesses the localization
cues learned by the semantic segmentation to guide the attention of the attribute prediction to the regions where different attributes
naturally show up. As a result of this approach, in addition to prediction, we are able to localize the attributes despite merely having
access to image-level labels (weak supervision) during training. We first propose semantic segmentation-based pooling and gating,
respectively denoted as SSP and SSG. In the former, the estimated segmentation masks are used to pool the final activations of the
attribute prediction network, from multiple semantically homogeneous regions. This is in contrast to global average pooling which is
agnostic with respect to where in the spatial domain activations occur. In SSG, the same idea is applied to the intermediate layers
of the network. Specifically, we create multiple copies of the internal activations. In each copy, only values that fall within a certain
semantic region are preserved while outside of that, activations are suppressed. This mechanism allows us to prevent pooling operation
from blending activations that are associated with semantically different regions. SSP and SSG, while effective, impose heavy memory
utilization since each channel of the activations is pooled/gated with all the semantic segmentation masks. To circumvent this, we
propose Symbiotic Augmentation (SA), where we learn only one mask per activation channel. SA allows the model to either pick one, or
combine (weighted superposition) multiple semantic maps, in order to generate the proper mask for each channel. SA simultaneously
applies the same mechanism to the reverse problem by leveraging output logits of attribute prediction to guide the semantic segmentation
task. We evaluate our proposed methods for facial attributes on CelebA and LFWA datasets, while benchmarking WIDER Attribute and
Berkeley Attributes of People for whole body attributes. Our proposed methods achieve superior results compared to the previous works.
Furthermore, we show that in the reverse problem, semantic face parsing significantly improves when its associated task is jointly
learned, through our proposed Symbiotic Augmentation, with facial attribute prediction. We confirm that when few training instances
are available, indeed image-level facial attribute labels can serve as an effective source of weak supervision to improve semantic face
parsing. That reaffirms the need to jointly model these two interconnected tasks.

Index Terms—Attribute Prediction, Semantic Segmentation, Semantic Gating, Facial Attributes, Person Attributes
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1 INTRODUCTION

NOWADAYS, state-of-the-art computer vision techniques
allow us to teach machines different classes of objects,

actions, scenes, and even fine-grained categories. However,
to learn a certain notion, we usually need positive and
negative examples from the concept of interest. This creates
a set of challenges as the instances of different concepts are
not equally easy to collect. Also, the number of learnable
concepts is linearly capped by the cardinality of the training
data. Therefore, being able to robustly learn a set of sharable
concepts that go beyond rigid category boundaries is of
tremendous importance. Visual attributes are one particular
type of these sharable concepts. They are human describable
and machine detectable. We can use attributes to describe a
variety of objects, scenes, actions, and events. For example,
we associate a person who is lying on a beach with the
attribute relaxed or a cat that is chasing after a wool ball
with the attribute playing.

• M. M. Kalayeh and M. Shah are with the Center for Research in Computer
Vision, University of Central Florida, Orlando, FL, 32816.
E-mails: mahdi@eecs.ucf.edu, shah@crcv.ucf.edu
This work updates and extends our previous work [1].

Attributes are different from category labels in three
major aspects. First, category labels are agnostic with respect
to the intra-class variations that exist among different in-
stances of a single category. Such flat representation cannot
distinguish between a grumpy cat and a joyful one as it
only sees them as cats. Second, attributes go across category
boundaries. Hence, they can be used to potentially describe
an exponential number of object categories (via different
combinations) even if the associated category has never
been observed before (e.g zero-shot learning). Third, unlike
category labels that can be effectively inferred from the
object itself, humans heavily rely on the contextual cues for
the attribute prediction. Take the examples shown in Figure
1. If we only consider the bounding box around the dog,
one would not assign the attribute catching to it. Instead,
running may even be a valid attribute. However, leveraging
contextual layout where the dog is floating in air, and close
to a frisbee, provides human with sufficient indications to
not only rule out the attribute running but also confidently
label the dog with the attribute catching. Similarly, the table,
food and plate, collectively serve as the context, building the
ground for associating attribute eating to the person.

Considering the aforementioned characteristics of at-



0162-8828 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2019.2956039, IEEE
Transactions on Pattern Analysis and Machine Intelligence

2

Fig. 1: Examples of how contextual layout assists attribute
prediction in wild. The person (on left) and the dog (on right)
should be respectively labeled with the attributes eating and
catching. This is hard to agree upon if we would have taken
these object instances in isolation, out of their contexts i.e
food and frisbee.

tributes, we hypothesize that the attribute prediction task
would benefit from contextual cues if they are properly
represented. One can organize the context supervision
into three levels: image-level, instance-level and pixel-level.
Image-level supervision represents the context as a binary
vector indicating whether an instance of a certain category
appears somewhere in the context. Therefore, it is blind
to the spatial relationships that exist between underlying
components i.e object instances in the scene. In the instance-
level supervision, context is available in terms of a set of
category label and bounding box tuples. That is, unlike the
image-level, instance-level context supervision can model
the spatial relationships in the scene. Lastly, in the pixel-
level context supervision, we have access to the category
labels in a per-pixel fashion. Obviously, this provides a
much stronger supervision signal compared to the other two
alternatives. In this work, we propose augmenting attribute
prediction by transferring weakly pixel-level context super-
vision, from an auxiliary semantic segmentation task.

So far, we’ve explained attributes in general when they
describe an instance of an object in a scene. However, the
same is valid when attributes characterize variations of a
certain object category. In this paper, we are interested in
person-related, specifically facial and full body attributes.
We view the concept of contextual cues, previously de-
tailed for attributes of objects in the scene, as the natural
correspondence of object attributes to the object parts and
their associated layout in the spatial domain of the object
boundary.

Naturally, attributes are “additive” to the objects (e.g.,
glasses for person). It means that an instance of an object
may or may not take a certain attribute, while in either
case the category label is preserved (e.g., a person with or
without glasses is still labeled as person). Hence, attributes
are especially useful in problems that aim at modeling
intra-category variations such as fine-grained classification.
Despite their additive character, attributes do not appear
in arbitrary regions of the objects (e.g., hat if appears, is
highly likely to show up on the top of person’s head).
This notion is the basis of our work. We hypothesize that the
attribute prediction can benefit from localization cues. Specifi-
cally, to detect an attribute, instead of processing the entire
spatial domain at once, one should focus on the region in
which that attribute naturally shows up. However, not all
attributes have precise correspondences. For example, it is

ambiguous from where in the face, we as humans, infer
if a person is young or attractive. Hence, instead of hard-
coding the correspondences, even where those seem clear
(e.g. glasses with nose and eyes), we allow the model to learn
how to leverage the localization cues that are transferred
from a relevant auxiliary task to the attribute prediction
problem.

Using bounding boxes to show the boundary limits of
objects is a common practice in computer vision. However,
regions that different attributes are associated to drastically
vary in terms of appearance. For example, in a face image,
one cannot effectively put a bounding box around the region
associated to “hair”. In fact, the shape of the region can
be used as an indicative signal on the attribute. On top of
that, we have the partial occlusion of object parts which
introduces further challenges by arbitrarily deforming visi-
ble regions. Therefore, we need an auxiliary task that learns
detailed pixel-wise localization information without restrict-
ing the corresponding regions to be of certain pre-defined
shapes. Semantic segmentation has all the aforementioned
characteristics. It is the problem of assigning class labels to
every pixel in an image. As a result, a successful semantic
segmentation approach has to learn pixel-level localization
cues which implicitly encode color, structure, and geometric
characteristics in fine detail. In this work, since we are
interested in person-related attributes, we take face [2] and
human body [3] semantic parsing problems as auxiliary
tasks to steer the spatial focus of the attribute prediction
methods accordingly.

To perform attribute prediction, we feed an image to a
fully convolutional neural network which generates feature
maps that are ready to be aggregated and passed to the
classifier. However, global pooling [4] is agnostic to where,
in spatial domain, the attribute-discriminative activations
occur. Hence, instead of propagating the attribute signal to
the entire spatial domain, we funnel it into the semantic
regions. By doing so, our model learns where to attend
and how to aggregate the feature map activations. We refer
to this approach as Semantic Segmentation-based Pooling
(SSP), where activations at the end of the attribute prediction
pipeline are pooled within different semantic regions.

Alternatively, we can incorporate the semantic regions
into earlier layers of the attribute prediction network with
a gating mechanism. Specifically, we propose augmenting
max pooling operations such that they do not mix activa-
tions that reside in different semantic regions. Our approach
generates multiple versions of the activation maps that
are masked differently and presumably discriminative for
various attributes. We refer to this approach as Semantic
Segmentation-based Gating (SSG).

Since the semantic regions are not available for the
attribute benchmarks, we learn to estimate them using a
deep semantic segmentation network. In our earlier work
[1], we took a conceptually similar approach to [5] in which
an encoder-decoder model was built using convolution and
deconvolution layers. However, considering the relatively
small number of available data for the auxiliary segmen-
tation task, we had to modify the network architecture.
Despite being much simpler than [5], we found our semantic
segmentation network [1] to be very effective in solving the
auxiliary task of semantic face parsing. Examples of the
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segmentation masks generated for previously unseen im-
ages are illustrated in Figure 2. Once trained, such network
was able to provide localization cues in the form of masks
(decoder output) that decompose the spatial domain of an
image into mutually exclusive semantic regions. We show
that both SSP and SSG mechanisms outperform almost
all the existing state-of-the-art facial attribute prediction
techniques while employing them together results in further
improvements.

One issue with SSP and SSG is their memory utilization.
Since both architectures use the output of semantic segmen-
tation to create NS (referring to the number of semantic re-
gions) copies of the previous convolution layer activations.
Given limited GPU memory budget, this can restrict the
application of these layers when NS grows to large values.
Instead, we can circumvent this challenge by learning the
proper mask per channel. In contrast to SSP and SSG which
mask each and every channel of activations with all the
NS semantic probability maps, in this paper we propose
to learn one mask per channel, as weighted superposition
of different semantic probability maps (output of semantic
segmentation network). Such workaround that can be sim-
ply implemented by a 1 × 1 convolution, adds minimum
memory utilization overhead and also allows us to simplify
SSP and SSG, yielding a single unified architecture that
based on where it is applied in the architecture, can mimic
the behavior of SSP and SSG.

Following the recent trend in semantic segmentation,
instead of an encoder-decoder as in [1], here we utilize
a fully convolutional architecture, specifically Inception-V3
[6]. Hence, we can unify attribute prediction and semantic
segmentation networks by full weight sharing. As a result,
unlike [1], we do not need to pre-train the semantic segmen-
tation network before deploying it in attribute prediction
pipeline. Instead, both tasks are learned simultaneously in
an end-to-end fashion within a single architecture. We go
beyond facial attributes [1] and demonstrate the effective-
ness of employing semantic segmentation in person-related
attributes on multiple benchmarks. Finally, we provide
comprehensive quantitative evaluation for the case where
attributes are jointly trained with semantic segmentation
with the aim to boost the latter task.

In summary, the contributions of this work are as fol-
lows:

• We demonstrate the effectiveness of employing se-
mantic segmentation to improve person-related at-
tribute prediction.

• We propose a simple alternative to Seman-
tic Segmentation-based Pooling and Semantic
Segmentation-based Gating with focus on minimum
memory utilization overhead.

• We unify semantic segmentation and attribute pre-
diction through multi-tasking a single network and
training it in an end-to-end fashion.

• We achieve state-of-the-art results in person-related
attribute prediction on CelebA, LFWA, WIDER At-
tributes, and Berkeley Attributes of People datasets.

• We provide comprehensive experiments, detailing
how to improve semantic segmentation task by lever-
aging image-level attribute annotations.

Fig. 2: Examples of the segmentation masks generated by
our semantic segmentation network [1] for previously un-
seen images. From left to right: background, hair, face skin,
eyes, eyebrows, mouth and nose.

The remainder of this paper is organized as follows.
Section 2 offers a detailed review of attribute prediction and
semantic segmentation literature. In Section 3, we propose
semantic segmentation-based pooling and gating, followed
by a simple unifying view of them which benefits from con-
siderably lighter memory footprint. We end this section by
providing details of our architectures. Experimental results
are shown in Section 4. This includes evaluation of facial
and person attributes on four datasets, alongside with com-
prehensive experiments on the effectiveness of leveraging
image-level facial attribute annotations to boost semantic
face parsing. Finally, we conclude the paper in Section 5.

2 RELATED WORK

2.1 Attribute Prediction

Early works in modeling attributes [7] [8] [9] came around
with the intention to change the recognition paradigm from
naming objects to describing them. Therefore, instead of
directly learning the object categories, one begins with
learning a set of attributes that are shared among different
categories. Object recognition can then be built upon the
attribute scores. Hence, novel categories are seamlessly in-
tegrated, via attributes, with previously observed ones. This
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can be used to ameliorate label misalignment between train
and test data.

Considering the importance of human category, research
in person-related attribute prediction [10] [11] [12] [13] [14]
[15] has flourished over the years. To perform attribute
prediction, some of the previous works have invested in
modeling the correlation among attributes [16] [17] [18]
[19], while others have focused on leveraging the category
information [20] [21] [22]. There are also efforts to exploit
the context [23].

Another way to view the attribute prediction literature
is to divide it into holistic versus part-based methods. The
common theme among the holistic models is to take the
entire spatial domain into account when extracting features
from images. On the other hand, part-based methods begin
with an attribute-related part detection and then use the
located parts, in isolation from the rest of spatial domain, to
extract features. It has been shown that part-based models
generally outperform the holistic methods. However, they
are prone to the localization error as it can affect the quality
of the extracted features. Although, there are works that
have taken a hybrid approach benefiting from both the
holistic and part-based cues [24] [12]. Our proposed meth-
ods fall in between the two ends of the spectrum. While we
process the image in a holistic fashion, we employ localiza-
tion cues in form of pixel-level semantic representations.

Among earlier works we refer to [10] [14] [15] [25]
as successful examples of part-based attribute prediction
models. More recently, in an effort to combine part-based
models with deep learning, Zhang et al. [25] proposed
PANDA, a pose-normalized convolutional neural network
(CNN) to infer human attributes from images. PANDA em-
ploys poselets [15] to localize body parts and then extracts
CNN features from the located regions. These features are
later used to train SVM classifiers for attribute prediction.
Inspired by [25], while seeking to also leverage the holistic
cues, Gkioxari et al. [24] proposed a unified framework that
benefits from both holistic and part-based models through
utilizing a deep version of poselets [15] as part detectors.
Liu et al. [12] have taken a relatively different approach.
They show that pre-training on massive number of object
categories and then fine-tuning on image level attributes
is sufficiently effective in localizing the entire face region.
Such weakly supervised method provides them with a
localized region where they perform facial attribute pre-
diction. In another part-based approach, Singh et al. [26]
use spatial transformer networks [27] to localize the most
relevant region associated to a given attribute. They encode
such localization cue in a Siamese architecture to perform
localization and ranking for relative attributes. Rudd et al.
[28] have addressed the widely recognized data imbalance
issue in attribute prediction, by introducing mixed objective
optimization network (MOON). The proposed loss function
mixes multiple task objectives with domain adaptive re-
weighting of propagated loss. [29] and [30] are more ex-
amples of recent works that have tried similarly to address
the class imbalance in the multi-label problem of attribute
prediction. Li et al. have recently proposed lAndmark Free
Face AttrIbute pRediction (AFFAIR) [31], a hierarchy of
spatial transformation networks that initially crop and align
the face region from the entire —assumed to be in the wild

—input image and then localize relevant parts associated
with different attributes. Separate neural network architec-
tures then extract feature representations from global and
part-based regions where their fusion is used to predict
different facial attributes.

In our earlier work [1], we proposed employing seman-
tic segmentation to capture local characteristics for facial
attribute prediction. We utilized semantic masks, obtained
from a separate pre-trained semantic segmentation network,
to gate and pool the activations, respectively at middle
and the end of the attribute prediction architecture. In this
journal version of the paper, we extend and improve the
proposed framework in [1] beyond face, and to the human
body within the context of person-related attribute predic-
tion. Our driving force in obtaining local cues is semantic
parsing of face and human body. Meanwhile, unlike [1] that
uses two separate networks for the main and auxiliary tasks,
here we employ a heavy weight sharing strategy, unifying
the semantic segmentation and attribute prediction architec-
tures into one. Next, we discuss the semantic segmentation
literature.

2.2 Semantic Segmentation

Semantic segmentation can be seen as a dense pixel-level
multi-class classification problem, where the spatial (spatio-
temporal) domain of images (videos) is partitioned using
fine contours (volumes) into clusters of pixels (voxels) with
homogeneous class labels. Prior to the wide-spread popular-
ity of deep convolutional neural networks (CNN), semantic
segmentation used to be solved via traditional classifiers
such as Support Vector Machine (SVM) or Random Forest
applied to the super-pixels [32] [33]. Conditional Random
Field (CRF) was often used in these methods as the post
processing technique to smooth the segmentation results,
based on the assumption that pixels which fall within a
certain vicinity, with similar color intensity, tend to be
associated with the same class labels.

Among earlier efforts in using deep convolutional neural
networks for semantic segmentation, we can refer to Ciresan
et. al [34] work on automatic segmentation of neuronal
structures in electron microscopy images. Although, since
the number of classes was limited to only membrane and
non-membrane, their problem in fact reduces to foreground
detection task. Later, upon tremendous success of deep
convolutional neural networks in image classification, re-
searchers began designing semantic segmentation models
on the top of CNN models, which were previously trained
for other tasks, mainly image classification [35] [36] [37]
[38] [39]. These methods, by leveraging supervised pre-
training on strongly correlated tasks (e.g. often labels in two
tasks have some overlap), were able to facilitate training
procedure for semantic segmentation. However, such an
adoption introduces its very own challenges.

Unlike image classification where the activations just
before the classifier are flattened via fully connected layer or
global average pooling, semantic segmentation task requires
the spatial domain to be maintained, specifically the output
segmentation maps should be at least of the same size as
the input image. Fully Convolutional Networks [35] popu-
larized CNN architectures for semantic segmentation. Long
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et. al [35] proposed transforming fully connected layers into
convolution layers along with up-sampling intermediate
and final activations, whose spatial domain have reduced
due to pooling layers through the network architecture.
These techniques enable a classification model to output
segmentation maps of arbitrary size when operating on
input images of any size. Almost all the subsequent state-
of-the-art semantic segmentation methods adopted this
paradigm. The performance of semantic segmentation task
will be compromised if the spatial information is not well
preserved through the network architecture. In contrast,
architectures designed for image classification very often
use pooling layers to aggregate the context activations while
discarding the precise spatial coordinates. To alleviate this
conceptual discrepancy, two different classes of architec-
tures have evolved.

First is the encoder-decoder based approach [5] in which
the encoder gradually reduces the spatial domain through
successive convolution and pooling layers, to generate the
bottleneck representation. Then the decoder recovers the
spatial domain by applying multiple layers of deconvo-
lution or convolution followed by up-sampling, to the
aforementioned bottleneck representation. There are usually
shortcut connections from the encoder to the decoder, lever-
aging details at multiple scales, in order to help decoder
recovering fine characteristics more accurately. U-Net [40]
SegNet [36], and RefineNet [41] are the popular architec-
tures from this class.

The second class of architectures developed around the
idea of Dilated or Atrous convolutions [37]. Specifically, one
can avoid using pooling layers in order to preserve detailed
spatial information, but this will dramatically increase the
computation cost as the following layers must operate on
larger activation maps. However, using Atrous convolution
[37] with dilation rate equal to the stride of the avoided
pooling layer, results in the exact same number of operations
as the regular convolution operating on pooled activations1.
In other words, dilated or Atrous convolution layer allows
for an exponential increase in effective receptive field with-
out reducing the spatial resolution. In a series of works
[42] [38], Chen et. al. demonstrated how Atrous convolution
and its multi-scale variation, namely Atrous spatial pyramid
pooling (ASPP) can be utilized within the framework of
fully convolutional neural networks to improve the perfor-
mance of the semantic segmentation task. While in earlier
efforts [38], Dense CRF [39] has been used, more recent
works [42] have shown comparable results without using
such post-processing technique.

Semantic segmentation can be applied at a finer gran-
ularity where instead of the entire scene, an object is se-
mantically parsed into its parts. Among popular examples,
readers are encouraged to refer to [2] [43] [44] [45] for face,
[46] [47] [48] [49] [50] [51] for general objects, and [3] [52]
[53] [54] [55] [56] [57] [58] [59] for human body and clothing
semantic parsing.

In this work, since we are interested in attributes describ-
ing human, when alluding to semantic segmentation, we
specifically mean face and human body semantic parsing.

1. It is worth pointing out that while the computation cost remains
the same, employing dilated convolution demands more memory since
the size of activation maps remains intact.

Our semantic segmentation model is a fully convolutional
neural network based on Inception-V3 [6] architecture,
where following [38] [42] we have also incorporated Atrous
spatial pyramid pooling (ASPP). In addition to utilizing
semantic parsing for person-related attribute prediction, we
will provide results on semantic face parsing as well. We
show that, training an attribute prediction network with
image-level supervision can effectively serve as an initial-
ization for semantic parsing task, when the the number of
training instances is limited.

3 METHODOLOGY

The underlying idea of this work is to exploit semantic
segmentation in order to improve person-related attribute
prediction. To do so, we first revisit semantic segmentation-
based pooling (SSP) and gating (SSG), initially proposed in
our earlier work [1]. Then, we propose a considerably sim-
pler architecture, which unifies SSP and SSG designs while
approximately mimicking their behavior with drastically
smaller memory footprint. Furthermore, unlike [1], where
there were two networks, one for semantic segmentation
and the other for attribute prediction, here we unify two
networks with fully sharing the weights among two tasks,
and train in an end-to-end fashion. Note that in [1], once
trained independently, the semantic segmentation network
was frozen during the attribute prediction task. Moving
towards more modern architectures than those used earlier
in [1], we describe our new models based on modern
Inception-V3 [6] as their backbone. This choice will allow us
to further push performance boundaries in person-related
attribute prediction task.

3.1 SSP: Semantic Segmentation-based Pooling

We argue that attributes usually have a natural correspon-
dence to certain regions within the object boundary. Hence,
aggregating the visual information from the entire spatial
domain of an image would not capture this property. This is
the case for the global average pooling used in our baseline
as it is agnostic to where, in the spatial domain, activations
occur. Instead of pooling from the entire activation map,
we propose to first decompose the activations of the last
convolution layer into different semantic regions and then
aggregate only those that reside in the same region. Hence,
rather than a single vector representation, we obtain multi-
ple features, each representing only one semantic region.
This approach has an interesting intuition behind it. In
fact, SSP funnels the back-propagation of the label signals,
via multiple paths, associated with different semantic re-
gions, through the entire network. This is in contrast with
global average pooling that rather equally affects different
locations in the spatial domain. We later explore this by
visualizing the activation maps of the final convolution
layer.

We can simply concatenate the representations associ-
ated with different regions and pass it to the classifier; how-
ever, it is interesting to observe if attributes indeed prefer
one semantic region to another. Also, whether what our
model learns matches human expectation on what attribute
corresponds to which region. To do so, we take a similar
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Fig. 3: Left: Semantic segmentation-based Pooling (SSP).
Right: Semantic segmentation-based Gating (SSG). NS and
NA, respectively, indicate the number of labels in semantic
segmentation and attribute prediction tasks. We assume that
the output tensor of activations from the previous layer to
either SSP or SSG is of shape C×H×W where C, H and W ,
respectively represent the number of channels, height and
width of the activations. Alternatively, in Sec. 3.3, we will
show that instead of using all NS semantic regions for every
channel, one can learn a single semantic mask per channel.
This would also unify the SSP and SSG architectures.

approach to [60] where Bilen and Vedaldi employed a two
branch network for weakly supervised object detection. We
pass the vector representations, each associated with a dif-
ferent semantic region, to two branches one for recognition
and another for localization. We implement these branches
as linear classifiers that map vector representations to the
number of attributes. Hence, we have multiple detection
scores for an attribute each inferred based on one and only
one semantic region. To combine these detection scores, we
normalize outputs of the localization branch using softmax
non-linearity across different semantic regions. This is a per-
attribute operation, not an across-attribute one. We then
compute the final attribute detection scores by a weighted
sum of the per-region logits (i.e. outputs of recognition
branch) using weights generated by the localization branch.
Figure 3 (Left) shows the SSP architecture.

3.2 SSG: Semantic Segmentation-based Gating

Max pooling is used to compress the visual information in
the activation maps of the convolution layers. Its efficacy
has been proven in many computer vision tasks, such as
image classification and object detection. However, attribute
prediction is inherently different from image classification.
In image classification, we want to aggregate the visual in-
formation across the entire spatial domain to come up with

a single label for the image. In contrast, many attributes are
inherently localized to specific image regions. Consequently,
aggregating activations that reside in the “hair” region with
the ones that correspond to “mouth”, would confuse the
model in detecting “smiling” and “wavy hair” attributes.
We propose SSG to cope with this challenge.

Figure 3 (Right), shows our proposed SSG architecture
Cout may or may not be the same as C (similarly for H
and W ). To gate the output activations of the convolution
layer, we broadcast element-wise multiplication for each of
the semantic regions with the entire activation maps. This
generates multiple copies of the activations that are masked
differently. In other words, such mechanism spatially de-
composes the activations into copies, where large values
cannot simultaneously occur in two semantically different
regions. For example, gating with the semantic mask that
corresponds to the “mouth” region, would suppress the
activations falling outside its area while preserving those
that reside inside it. However, the area which a semantic
region occupies varies from one image to another.

We observed that, directly applying the output of the
semantic segmentation network results in instabilities in
the middle of the network. To alleviate this, prior to the
gating procedure, we normalize the semantic masks such
that the values of each channel sums up to 1. We then
gate the activations right after the convolution and before
the batch normalization [61]. This is very important since
the batch normalization [61] enforces a normal distribution
on the output of the gating procedure. Then, we can apply
max pooling on these gated activation maps. Since, given a
channel, activations can only occur within a single semantic
region, max pooling operation cannot blend activation val-
ues that reside in different semantic regions. We later restore
the number of channels using a 1×1 convolution. It is worth
noting that SSG can potentially mimic the standard max
pooling by learning a sparse set of weights for the 1 × 1
convolution. In a nutshell, semantic segmentation-based
gating allows us to process the activations of convolution
layers in a per-semantic region fashion while it also learns
how to blend the pooled values back in.

3.3 A Simple Unified View to SSP and SSG

In both SSP and SSG architectures, we use the output
of semantic segmentation to create NS copies of the ac-
tivations. Each copy, assuming semantic parsing outputs
are perfect, preserves the activation values residing in one
semantic region while suppressing those that are outside
that. Hence, both SSP and SSG should maintain NS times
the size of activation maps in the memory. As NS value
grows, this can certainly become problematic due to limited
GPU memory budget. A simple workaround for this is to
learn the masks per channel. Specifically, instead of mask-
ing each and every channels of the previous convolution
activations by all the NS semantic probability maps, we
learn one mask per channel (ref. ΦS in Figure 4). This can
be simply implemented via a 1 × 1 convolution on the top
of semantic segmentation probability maps. However, in
practice, we observed that larger kernels can result in slight
performance gain. Similar to SSG, the output logits of the
semantic segmentation classifier must be normalized, via
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ASPP + Conv (1 x 1, NS) lS

ΦA 
Conv (3 x 3, NS)

Conv (1 x 1, NA)

ΦS 
Conv (3 x 3, NA)

lAXA

2048 x 17 x 17

XS
2048 x 17 x 17

NS x 17 x 17

NA x 17 x 17

BN

BN

spatial 
softmax

log 
softmax

NS x 17 x 17

NA x 17 x 17

pooling

softmax

sigmoid

NA x 1 x 1

NS x 17 x 17

Fig. 4: Architecture of the Symbiotic Augmentation (SA). The embedding layers, ΦS and ΦA, respectively utilize the
output of semantic segmentation and attribute prediction classifiers to augment the other task. Similar to Figure 3, NS

and NA denote the number of output labels for semantic segmentation and attribute prediction, where, lS and lA are
their corresponding loss functions (per-pixel softmax cross entropy, image-level sigmoid cross entropy). Addition and
multiplication are element-wise operations.

batch normalization, prior to being passed to the embedding
convolution layer. The output of the embedding should also
be spatially normalized. Such embedding allows the model
to either pick one or combine (weighted superposition)
multiple semantic maps, in order to generate proper mask
for each channel. We initialize the convolution kernels ΦS

of the embedding layers with zeros and no bias. This is
inspired by the idea that each channel should start by
using all the semantic regions equally. However, through
training, it has the freedom to change towards combining
only a selected number of regions. We later visualize how
the learned convolution kernels of ΦS look like in Figures 9
and 8a.

We now go one step further as the same idea can be used
when we reverse the roles of tasks. In particular, we can use
the output of attribute prediction to guide the semantic seg-
mentation task. We refer to this joint semantic augmenting
model, illustrated in Figure 4, as Symbiotic Augmentation
(SA). The architecture of the embedding module in this
case, ΦA, is the same as ΦS except the normalization opera-
tions are done differently. Figure 4 shows that in Symbiotic
Augmentation, each task augments the other task’s repre-
sentation, through its corresponding output logits, while
simultaneously being trained in an end-to-end fashion. This
is different than SSP and SSG, where only a pre-trained
semantic segmentation model, while frozen at deployment,
augments attribute prediction task. Note that, in addition
to a lower memory footprint2, this approach allows us to
simplify the SSP by unifying the recognition and localization
branches. That is because the learned masks can properly
weigh each channel and the order of consecutive linear
operations (matrix multiplication through fully connected
layer and scaling through weights of localization branch) is

2. The memory footprint of SSP is ofO(NSCHW )+O(NSNA) while
SA’s is of O(NSHW ) + O(NAHW ). Here C refers to the number
of output channels in last (before classifier) convolution layer, while
H and W respectively denote height and width of the final spatial
resolution.

interchangeable.

3.4 Network Architectures
We use Inception-V3 [6] as the convolutional backbone of
Symbiotic Augmentation (SA), for both semantic segmen-
tation and attribute prediction models. Its architecture is 48
layers deep and uses global average pooling instead of fully-
connected layers which allows operating on arbitrary input
image sizes. Inception-V3 [6] has a total output stride of 32.
However, to maintain low computation cost and memory
utilization, the size of activation maps quickly reduces by a
factor of 8 in only first seven layers, referred to as STEM [6]
in Figure 5. This is done by one convolution and two max
pooling layers that operate with the stride of 2. The network
follows by three blocks of Inception layers separated by two
grid reduction modules. Spatial resolution of the activations
remains intact within the Inception blocks, while grid re-
duction modules halve the activation size and increase the
number of channels. For more details on the Inception-V3
[6] architecture, readers are encouraged to refer to [6]. Note
that, for SSP, SSG and SSP+SSG experiments which were
initially reported in [1], a VGG16-like backbone architecture
has been used. Further details are provided in [1].

In this work, we use a single architecture to simul-
taneously learn semantic parsing and attribute prediction
tasks. This is different than [1] where semantic segmentation
model was pre-trained and then deployed (weights were
frozen) into attribute prediction pipeline. Specifically, we
share the weights of the Inception-V3 [6] while training
with a mixed minibatch that is comprised of equal instances
associated to attribute prediction and semantic segmen-
tation tasks. Figure 5 illustrates how we obtain feature
representations for both tasks using a single architecture.
Note that each element in the minibatch has only one type
of annotations, either attribute or semantic segmentation
labels. Hence, when XA and XS are passed to the Symbiotic
Augmentation (SA), shown in Figure 4, depending on the
annotation type, either lS or lA are calculated.
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STEM inc1 red1 inc2 red2 inc3

ℓ2 𝜑2ℓ2 𝜑1ℓ2 𝜑0

concatenation

Conv(1x1) + BN + ReLU

input image
3 x 299 x 299

768 x 17 x 17 1280 x 8 x 8 2048 x 8 x 8

resize

resize resize

1280 x 17 x 17 2048 x 17 x 17

XA

2048 x 17 x 17

4096 x 17 x 17

XS
2048 x 17 x 17

Fig. 5: Inception-V3 [6] backbone architecture used in the Symbiotic Augmentation (SA) experiments. XA and XS are used
as input features to SA (ref. Figure 4). In order to generate XS , we `2 normalize the intermediate activations and scale them
by learnable ϕ∗ parameters. Refer to [6] for the details of the Inception-V3 architecture.

4 EXPERIMENTS

4.1 Datasets and Evaluation Measures

We evaluate our proposed attribute prediction models
on multiple benchmarks. Specifically, we use CelebA and
LFWA [12] for facial attributes, while benchmarking on
WIDER Attribute [23] and Berkeley Attributes of People [15]
for person attribute prediction.

Liu et al. [12] have used classification accuracy/error as
the evaluation measure on CelebA and LFWA. However,
we believe that due to significant imbalance between the
numbers of positive and negatives instances per attribute,
such measure cannot appropriately evaluate the quality of
different methods. Similar point has been raised by [28],
[29], [30] as well. Therefore, in addition to the classification
error, we also report the average precision (AP) of the pre-
diction scores. Following the literature, we solely report AP
for WIDER Attribute [23] and Berkeley Attributes of People
[15]. Since attribute benchmarks do not come with pixel-
level labels, we train our semantic segmentation model on
auxiliary datasets. For experiments corresponding to facial
attributes, we use Helen Face [43] along with segment label
annotations supplemented by [2]. For person attribute pre-
diction experiments, we train the semantic parsing model
on Look into Person (LIP) [3] dataset. We use the standard
data split of each corresponding dataset.

CelebA [12] consists of 202,599 images partitioned into
training, validation and test splits with approximately 162K,
20K and 20K images in the respective splits. There are a total
of 10K identities (20 images per identity) with no identity

overlap between evaluation splits. However, we do not use
identity annotations. Images are annotated with 40 facial
attributes such as, “wavy hair”, “mouth slightly open”,
and “big lips”. In addition to the original images, CelebA
provides a set of pre-cropped images. We report our results
on both of these image sets.

LFWA [12] has a total of 13,143 images of 5,749 identities
with pre-defined train and test splits, which divide the
entire dataset into two approximately equal partitions. Each
image is annotated with the same 40 attributes used in
CelebA [12].

WIDER Attribute [23] is collected from 13,789 WIDER
images [62], containing usually many people in each image
with huge human variations. Each person in these images is
then annotated with a bounding box and 14 distinct human
attributes such as “longhair”, “sunglasses”, “hat”, “skirt”,
and “facemask”. This results in a total of 57,524 boxes. Out
of 13,789 images, WIDER Attribute [23] is split into 5,509
training, 1,362 validation and 6,918 test images. There are
30 scene-level labels that each image is annotated with.
However, we do not use them and solely train and evaluate
on bounding boxes of people. We evaluate on the 29,179
bounding boxes from testing images, after training on 28,345
person boxes extracted from aggregation of training and
validation images. Unlike CelebA and LFWA [12], missing
attributes are allowed in WIDER Attribute [23] dataset.

Berkeley Attributes of People [15] contains 4,013 train-
ing and 4,022 test instances. The example images are cen-
tered at the person and labeled with 9 attributes namely,
“is male”, “has long hair”, “has glasses”, “has hat”, “has
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tshirt”, “has long sleeves”, “has shorts”, “has jeans”, “has
long pants”. Similar to the WIDER Attribute [23], here
unspecified attributes are also allowed.

Helen Face [43] consists of 2,330 images with highly
accurate and consistent annotations of the primary facial
components. Smith et. al [2] have supplemented Helen Face
[43] with 11 segment label 3 annotations per image. Images
are divided into splits of 2000, 230 and 100, respectively
for training, validation and test. We train our semantic
segmentation model on the aggregation of training and
validation splits and evaluate on the test split.

LIP [3] consists of ∼30,000 and 10,000 images respec-
tively for train and validation. Each images is annotated
with 20 semantic labels4.

4.2 Evaluation of Facial Attribute Prediction
For all the numbers reported here, we want to point out that
FaceTracer [11] and PANDA [25] use groundtruth landmark
points to attain face parts. Wang et al. [63] use 5 million
auxiliary image pairs, collected by the authors, to pre-train
their model. Wang et al. [63] also use state-of-the-art face
detection and alignment to extract the face region from
CelebA and LFWA images. However, we train all our models
with only attribute and auxiliary face/human parsing labels.

We compare our proposed method with the exist-
ing state-of-the-art attribute prediction techniques on the
CelebA [12]. To prevent any confusion and have a fair com-
parison, Table 1 reports the performances in two separate
columns distinguishing the experiments that are conducted
on the original image set from those where the pre-cropped
image set have been used.

Experimental results indicate that under different set-
tings and evaluation protocols, our proposed semantic
segmentation-based pooling and gating mechanisms can
be effectively used to boost the facial attribute prediction
performance. That is particularly important given that our
global average pooling baselines already beat almost all the
existing state-of-the-art methods. To see if SSP and SSG are
complementary to each other, we also report their com-
bination where the corresponding predictions are simply
averaged. We observe that such process further boosts the
performance.

To investigate the importance of aggregating features
within the semantic regions, we replace the global aver-
age pooling in our basic model with the spatial pyramid
pooling layer [65]. We use a pyramid of two levels and
refer to this baseline as SPPNet∗. While aggregating the
output activations in different locations, SPPNet∗ does not
align its pooling regions according to the semantic context
that appears in the image. This is in direct contrast with
the intuition behind our proposed methods. Experimental
results shown in Table 1 confirm that simply pooling the
output activations at multiple locations is not sufficient. In
fact, it results in a lower performance than global average

3. “background”, “face skin” (excluding ears and neck), “left eye-
brow”, “right eyebrow”, “left eye”, “right eye”, “nose”, “upper lip”,
“inner mouth”, “lower lip” and “hair”

4. “Background”, “Hat”, “Hair”, “Glove”, “Sunglasses”, “Upper-
clothes”, “Dress”, “Coat”, “Socks”, “Pants”, “Jumpsuits”, “Scarf”,
“Skirt”, “Face”, “Right-arm”, “Left-arm”, “Right-leg”, “Left-leg”,
“Right-shoe” and “Left-shoe”

Classification Error(%)

Method Original Pre-cropped

FaceTracer [11] 18.88 –
PANDA [25] 15.00 –
Liu et al. [12] 12.70 –
Wang et al. [63] 12.00 –
Zhong et al. [64] 10.20 –
Rudd et al. [28]: Separate – 9.78
Rudd et al. [28]: MOON – 9.06
AFFAIR [31] 8.55 –

SPPNet∗ – 9.49
Naive Approach 9.62 9.13
BBox – 8.76
Avg. Pooling 9.83 9.14
SSG 9.13 8.38
SSP 8.98 8.33
SSP + SSG 8.84 8.20
Inception-V3: baseline 8.68 –
Symbiotic Augmentation (SA) 8.53 –

Average Precision(%)

Method Original Pre-cropped

AFFAIR [31] 79.63 –

SPPNet∗ – 77.69
Naive Approach 76.29 79.74
BBox – 79.95
Avg. Pooling 77.16 79.74
SSG 77.46 80.55
SSP 78.01 81.02
SSP + SSG 78.74 81.45
Inception-V3: baseline 79.28 –
Symbiotic Augmentation (SA) 80.10 –

Balanced Accuracy(%) [29]

Method Original Pre-cropped

Huang et al. [29] – 84.00
CRL(C) [30] – 85.00
CRL(I) [30] – 86.00

Avg. Pooling – 86.73
SSG – 87.82
SSP – 88.24

TABLE 1: Attribute prediction performance evaluated by the
classification error, average precision and balanced classifi-
cation accuracy [29] on the CelebA [12] original and pre-
cropped image sets.

pooling. This verifies that the improvement obtained by
our proposed models is due to their content aware pool-
ing/gating mechanisms.

Naive Approach A naive alternative approach is to con-
sider the segmentation maps as additional input channels.
To evaluate its effectiveness, we feed the average pooling
basic model with 10 input channels, 3 for RGB colors and
7 for different semantic segmentation maps. The input is
normalized using Batch Normalization [61]. We train the
network using the same setting as other aforementioned
models. Our experimental results indicate that such naive
approach cannot leverage the localization cues as good as
our proposed methods. Table 1 shows that at best, the naive
approach is on par with the average pooling basic model.
We emphasize that feeding semantic segmentation maps
along with RGB color channels to a convolutional network
results in blending the two modalities in an additive fash-
ion. Instead, our proposed mechanisms take a multiplicative
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Method Classification Error(%) AP(%)

FaceTracer [11] 26.00 –
PANDA [25] 19.00 –
Liu et al. [12] 16.00 –
Zhong et al. [64] 14.10 –
Wang et al. [63] 13.00 –
AFFAIR [31] 13.87 83.01

Avg. Pooling 14.73 82.69
SSG 13.87 83.49
SSP 13.20 84.53
SSP + SSG 12.87 85.28

TABLE 2: Attribute prediction performance evaluated by the
classification error and the average precision (AP) on LFWA
[12] dataset.

approach by masking the activations using the semantic
segmentation probability maps.

Semantic Masks vs. Bounding Boxes To analyze the
necessity of semantic segmentation, we generate a baseline,
namely BBox, which is similar to SSP. However, we replace
the semantic masks in SSP with the bounding boxes on the
facial landmarks. Note that we use the groundtruth location
of the facial landmarks, provided in CelebA dataset [12], to
construct the bounding boxes. Hence, to some extent, the
performance of BBox is the upper bound of the bounding
box experiment. There are 5 facial landmarks including left
eye, right eye, nose, left mouth and right mouth. We use
boxes with area 202 (402 gives similar results) and 1:1, 1:2
and 2:1 aspect ratios. Thus, there are a total of 16 regions
including the whole image itself. From Table 1, we see that
our proposed models, regardless of the evaluation measure,
outperform the bounding box alternative, suggesting that
semantic masks should be favored over the bounding boxes
on the facial landmarks.

Balanced Classification Accuracy Given the significant
imbalance in the attribute classes, also noted by [28], [29],
[30], we suggested using average precision instead of classi-
fication accuracy/error to evaluate attribute prediction. In-
stead, Huang et al. [29] and later [30] have adopted balanced
accuracy measure. To evaluate our proposed approach in
balanced accuracy measure, we fine-tuned our models with
the weighted (∝ imbalance level) binary cross entropy loss.
From Table 1, we observe that under such measure, all the
variations of our proposed model outperform both [29] and
[30] with large margins.

To better understand the effectiveness of our proposed
approach on facial attributes, we also report experimental
results on the LFWA dataset [12] in Table 2. Here, we
observe a similar trend to the one in CelebA, where all the
proposed models which exploit localization cues success-
fully improve the baseline. Specifically, SSP + SSG achieves
considerably better performance than the average pooling
model with margins of 1.86% in classification accuracy and
2.59% in average precision. Our best model also outper-
forms all other state-of-the-art methods.

Symbiotic Augmentation (SA) All the results reported
so far were using a VGG16-like architecture for attribute
prediction and a separate pre-trained encoder-decoder ar-
chitecture for semantic segmentation [1]. However, in SA-
based models, we have unified the two architectures and

Method AP(%)

Fast R-CNN [66] 80.00
R*CNN [67] 80.50
Deep Hierarchical Contexts [23] 81.30
VeSPA [68] 82.40
ResNet-101 [69] 85.00
ResNet-SRN-att [69] 85.40
ResNet-SRN [69] 86.20
Sarafianos et. al. [70] 86.40

Inception-V3: baseline 85.86
Symbiotic Augmentation (SA) 87.58

TABLE 3: Attribute prediction performance evaluated by the
average precision(%) on WIDER Attribute [23] dataset.

Method AP(%)

Fast R-CNN [66] 87.80
R*CNN [67] 89.20
Gkioxari et al. [24] 89.50
Deep Hierarchical Contexts [23] 92.20

Inception-V3: baseline 92.87
Symbiotic Augmentation (SA) 94.80

TABLE 4: Attribute prediction performance evaluated by the
average precision(%) on Berkeley Attributes of People [15]
dataset.

train simultaneously with two objective functions. Table 1
shows that simply using a stronger convolutional backbone
like Inception-V3 [6] boosts the performance on CelebA
original image set. Furthermore, SA-based model which is
built on the top of such backbone, despite heavily sharing
all the weight across two tasks, can achieve even better
results, outperforming SSP+SSG and current state-of-the-art
AFFAIR [31]. However, on LFWA dataset [12], we observed
that Inception-V3 [6] baseline performs on par with Avg.
Pooling baseline reported in Table 2 and SA cannot obtain
a meaningful gain over its counter global average pooling
baseline. We also tried (not reported here) solely using
LFWA training instances, without pre-training on CelebA,
and observed that SA was indeed effective. However it was
not able to reach the performance of the model initialized
with CelebA. Detailed per-attribute results of our top mod-
els for both CelebA and LFWA datasets are shown in Table
5.

4.3 Evaluation of Person Attribute Prediction
Table 3 compares our proposed method with the state-of-
the-art on WIDER Attribute [23] dataset. We observe that
the Inception-V3 [6] baseline, despite being considerably
shallower, performs on par with ResNet-101. Symbiotic
Augmentation (SA) which employs semantic segmentation
yields a ∼2% performance gain over our Inception-V3 [6]
baseline surpassing [70], the current state-of-the-art. For de-
tailed performance comparison between varieties of ResNet
[71] and DenseNet [72] architectures on WIDER Attribute
[23] dataset, readers are encouraged to refer to [70].

Table 4 compares our proposed method with the state-
of-the-art on Berkeley Attributes of People [15] dataset.
Note that [23] leverages the context in the image while our
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method solely operates on the bounding box of each person,
yet it still outperforms [23] with 2.6% margin. Similar to
WIDER Attribute [23] dataset, here utilizing semantic seg-
mentation through our proposed Symbiotic Augmentation
(SA) results in 2% gain in AP over our already very compet-
itive Inception-V3 [6] baseline. Detailed per-attribute results
of our models are shown in Table 6.

4.4 Visualizations

Unlike the global average pooling which equally affects
a rather large spatial domain, we expect SSP to generate
activations that are semantically aligned. To evaluate our
hypothesis, in Figure 6, we show the activations for the top
fifty channels of the last convolution layer. Top row corre-
sponds to our basic network with global average pooling,
while the bottom row is generated when we replace global
average pooling with SSP. We observe that, activations gen-
erated by SSP are clearly more localized than those obtained
from the global average pooling.

To better understand how attribute prediction and se-
mantic segmentation models have learned their correspond-
ing tasks, we visualize the embedding convolution layers
ΦS and ΦA (ref. Figure 4) for simultaneously training of
CelebA [12] (original image set) with Helen face [43], and
WIDER Attribute [23] with LIP [3]. Figure 9 shows how
for each facial attribute (vertical axis), network has learned
to employ different semantic regions of face (horizontal
axis) in order to predict attributes. Note that these weights
are learned through back-propagation and are not hard
coded, yet they reveal very interesting observations. First,
almost all the attributes give “background” the lowest im-
portance, except attribute “Wearing Necklace” which makes
sense as neck falls outside the face region and counted as
background in Helen face dataset [43]. Second, the learned
importance for the majority of attributes are aligned with
human expectations. For instance, all the hair-related at-
tributes are inferred with the most attention of the model
being paid to the “Hair” region. The same is true for “Big
Nose”, “Pointy Nose” and “Eyeglasses” as the model learns
to focus on the “Nose” region. Figure 7 illustrates ΦA for the
reverse problem where attributes are supposed to improve
semantic face parsing. Figure 8a and 8b show the learned
weights of the embedding convolution layer for person
attribute prediction and human semantic parsing tasks.

We observe that simultaneously training for attribute
prediction and semantic segmentation within Symbiotic
Augmentation framework, in addition to the performance
gains, provides us with meaningful tools to study how a
complex deep neural network infers and relate different
semantic labels across multiple tasks.

4.5 Attribute Prediction for Semantic Segmentation

In this work, we have established how semantic segmenta-
tion can be used to improve person-related attribute predic-
tion. What if we reverse the roles. Can attributes improve
semantic parsing problem? To evaluate this, we focus on
facial attributes and compare the performance of semantic
face parsing on Helen face [43]. We consider three scenarios.
First, initializing Inception-V3 [6] backbone with ImageNet

[73] pre-trained weights. Second, training a baseline at-
tribute prediction network on CelebA [12] and using the
corresponding weights, once training finished, to initialize
semantic face parsing network. Third, training facial at-
tribute and semantic face parsing simultaneously through
Symbiotic Augmentation (SA) framework. For the sake of
simplicity, solely in this experiment, SA only uses the final
activations of the CNN backbone instead of concatenating
them with intermediate feature maps as shown in Figure
5. We observed that upgrading to full SA model boosts
mean class accuracy by ∼5% and also achieves similar
mean IoU. Table 7 shows that pre-training on image-level
facial attribute annotations delivers a large performance
gain over ImageNet based initialization. This shows that
there exists an interrelatedness between attribute prediction
and semantic segmentation. Furthermore, it suggests that
while collecting annotations for semantic parsing is labori-
ous and expensive, instead one can use relevant image-level
attribute annotations to initialize a semantic parsing model.
The last row in each block of the Table 7 demonstrates how
training facial attributes and semantic face parsing jointly,
through our proposed Symbiotic Augmentation (SA), can
further push the performance boundary with significant
margin. Therefore, it is easy to see that when few training
instances are available, indeed image-level facial attribute
labels can serve as an effective source of weak supervision
to improve semantic face parsing task. In fact such interrelat-
edness plays a major role in allowing us to successfully unify
semantic segmentation and attribute predictions networks
(ref. Section 3) without sacrificing the performance. Jointly
training on LIP [3] and WIDER Attribute [23], we did not
observe meaningful gain in semantic segmentation task on
LIP [3]. We hypothesize that, this is due to the fact that LIP
[3] itself already has huge (∼30,000 instances) number of
training annotations. In order to confirm this, conducting
an experiment where only a small portion of LIP [3] training
instances are utilized is needed.

5 CONCLUSION

Aligned with the trend of part-based attribute prediction
methods, we proposed employing semantic segmentation
to improve person-related attribute prediction. Specifically,
we jointly learn attribute prediction and semantic segmen-
tation in order to mainly transfer localization cues from
the latter task to the former. To guide the attention of our
attribute prediction model to the regions which different
attributes naturally show up, we introduced SSP and SSG.
While SSP is used to restrict the aggregation procedure of
final activations to regions that are semantically consistent,
SSG carries the same notion but applies it to the earlier
layers. We then demonstrate that there exist a single unified
architecture that can mimic the behavior of SSP and SSG,
depending on where in the network architecture it is being
used. We evaluated our proposed methods on CelebA,
LFWA, WIDER Attribute and Berkeley Attributes of People
datasets and achieved state-of-the-art performance. We also
showed that attributes can improve semantic segmentation
(in case of few training instances) when properly used
through our Symbiotic Augmentation (SA) framework. We
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Classification Accuracy(%) Average Precision(%)

5 o Clock Shadow 94.50 95.07 94.34 94.62 79.72 80.36 83.96 80.42 81.63 83.61
Arched Eyebrows 83.06 84.56 83.88 84.12 83.74 77.98 81.17 78.93 79.64 73.07
Attractive 82.25 83.28 82.21 82.27 80.89 91.14 92.50 91.18 91.36 83.83
Bags Under Eyes 85.42 86.15 85.26 85.60 85.09 67.68 70.05 67.24 67.96 95.19
Bald 98.79 99.02 98.92 98.95 92.76 76.43 84.03 79.11 79.40 71.09
Bangs 95.51 96.23 95.72 95.86 91.82 93.86 95.54 94.16 94.65 82.46
Big Lips 71.67 72.45 71.35 72.16 80.20 62.85 62.97 62.30 63.01 81.83
Big Nose 84.50 85.38 84.77 85.01 84.67 68.62 72.25 69.13 71.43 95.92
Black Hair 90.06 90.63 89.96 90.15 92.81 89.75 90.79 89.55 90.13 77.13
Blond Hair 95.82 96.30 95.90 95.94 97.72 91.45 92.73 91.54 91.67 78.77
Blurry 95.67 96.44 95.65 95.85 87.49 53.61 65.87 53.95 57.03 63.88
Brown Hair 89.25 89.95 88.42 88.46 82.72 76.58 78.97 75.22 75.18 83.76
Bushy Eyebrows 92.36 93.20 92.34 92.50 85.77 76.47 81.00 76.36 76.91 94.45
Chubby 95.61 96.02 95.80 95.94 77.66 56.24 62.54 59.63 62.39 76.48
Double Chin 96.28 96.61 96.23 96.47 81.86 58.42 63.92 58.49 61.86 85.80
Eyeglasses 99.27 99.67 99.51 99.48 92.79 98.43 99.20 98.52 98.49 86.96
Goatee 97.28 97.58 97.41 97.55 84.08 74.89 81.64 79.08 80.86 75.74
Gray Hair 98.22 98.37 98.16 98.30 89.24 77.32 80.49 77.65 79.32 71.69
Heavy Makeup 90.83 92.17 91.03 90.99 95.90 96.26 97.31 96.29 96.30 88.80
High Cheekbones 87.13 88.13 87.09 87.48 89.48 94.94 95.78 94.92 95.23 91.68
Male 97.67 98.51 98.00 98.08 94.42 99.59 99.83 99.69 99.73 99.08
Mouth Slightly Open 92.25 94.19 92.61 92.79 84.29 97.97 98.87 98.10 98.29 88.36
Mustache 96.96 97.01 96.94 97.16 94.01 64.14 67.94 65.45 67.01 86.11
Narrow Eyes 86.68 87.92 86.86 87.17 84.68 52.35 59.31 53.22 55.11 95.22
No Beard 95.66 96.52 95.77 95.74 83.63 99.74 99.82 99.76 99.79 94.98
Oval Face 77.83 76.83 77.15 77.50 77.89 66.25 63.84 65.40 65.75 87.21
Pale Skin 97.08 97.29 96.78 96.69 91.15 67.25 70.65 60.60 60.32 97.77
Pointy Nose 76.50 77.86 77.14 77.45 84.99 60.67 65.93 62.74 63.67 95.69
Receding Hairline 93.31 94.14 93.42 93.81 86.60 60.24 67.80 62.05 63.79 95.57
Rosy Cheeks 94.78 95.39 94.75 94.77 86.28 67.66 72.40 64.33 65.41 74.02
Sideburns 97.70 98.00 97.75 97.82 83.21 82.92 86.78 83.16 85.17 81.54
Smiling 91.92 93.39 92.00 92.45 92.51 97.97 98.62 98.07 98.23 97.00
Straight Hair 83.59 84.46 85.16 85.21 81.58 63.56 66.22 68.82 69.21 83.26
Wavy Hair 84.79 84.62 86.13 85.93 81.22 88.46 88.73 90.15 90.27 87.69
Wearing Earrings 89.99 90.94 90.41 90.56 95.23 83.40 85.71 84.79 85.18 89.11
Wearing Hat 98.78 99.11 99.07 99.07 91.08 92.87 95.89 95.21 95.59 75.11
Wearing Lipstick 93.58 94.56 93.61 93.88 95.19 98.67 99.10 98.70 98.76 90.52
Wearing Necklace 88.72 88.01 89.65 89.57 90.15 59.05 52.89 62.92 62.71 82.38
Wearing Necktie 97.15 97.02 97.17 97.12 83.87 86.81 87.51 87.45 88.31 94.47
Young 87.85 89.01 88.52 88.37 86.95 96.89 97.60 97.13 97.19 74.02

Avg. 91.16 91.80 91.32 91.47 87.13 78.74 81.45 79.28 80.10 85.28

TABLE 5: Detailed per-attribute classification accuracy(%) and average precision(%) results of our proposed models for
facial attribute prediction. Note that SSP+SSG? indicates the experiment using pre-cropped images of CelebA.

Fig. 6: Top fifty activation maps of the last convolution layer sorted in descending order w.r.t the average activation values.
Top: Basic attribute prediction model using global pooling. Bottom: SSP.
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Fig. 7: Learned weights of ΦA in Symbiotic Augmentation (SA), trained on CelebA and Helen. Note: 9 values associated
with 3× 3 kernels are averaged. For better visualization, values in each row are normalized between 0 and 1.

WIDER Attribute [23]

Inception-V3:
baseline

Symbiotic
Augmentation (SA)

Male 95.60 96.64
Long Hair 86.98 89.25
Sunglasses 70.56 78.31
Hat 92.87 95.04
T-shirt 83.36 84.77
Long Sleeve 96.71 97.64
Formal 83.82 85.38
Shorts 91.96 93.87
Jeans 79.60 81.76
Long Pants 97.18 97.74
Skirt 85.74 87.65
Face Mask 76.51 79.18
Logo 91.07 90.87
Stripe 70.15 68.04

Avg. 85.86 87.58

Berkeley Attributes of People [15]

Inception-V3:
baseline

Symbiotic
Augmentation (SA)

Is Male 96.29 96.73
Has Long Hair 93.71 94.41
Has Glasses 79.57 88.41
Has Hat 92.97 96.31
Has T-shirt 86.28 88.15
Has Long sleeves 96.96 98.01
Has Shorts 95.43 95.82
Has Jeans 95.34 95.80
Has Long Pants 99.33 99.55

Avg. 92.87 94.80

TABLE 6: Detailed per-attribute AP(%) results of our pro-
posed models for person attribute prediction.

hope to encourage future research works to invest more in
the interrelatedness of these two problems.
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Note: 9 values associated with 3 × 3 kernels are averaged.
For better visualization, values in each row are normalized
between 0 and 1.

Fig. 9: Learned weights of ΦS in Symbiotic Augmentation
(SA), trained on CelebA and Helen. Note: 9 values associ-
ated with 3×3 kernels are averaged. For better visualization,
values in each row are normalized between 0 and 1.
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