
Towards a Tamper-Resistant Kernel Rootkit Detector

Nguyen Anh Quynh, Yoshiyasu Takefuji
Graduate School of Media and Governance,

Keio university
5322 Endoh, Fujisawa, Japan 252-8520

{quynh,takefuji}@sfc.keio.ac.jp

ABSTRACT
A variety of tools and architectures have been developed to detect
security violations to Operating System kernels. However, they all
have fundamental flaw in the design so that they fail to discover
kernel-level attack. Few hardware solutions have been proposed
to address the outstanding problem, but unfortunately they are not
widely accepted. This paper presents a software-based method to
detect intrusion to kernel. The proposed tool named XenKIMONO,
which is based on Xen Virtual Machine, is able to detect many ker-
nel rootkits in virtual machines with small penalty to the system’s
performance. In contrast with the traditional approaches, XenKI-
MONO is isolated with the kernel being monitored, thus it can
still function correctly even if the observed kernel is compromised.
Moreover, XenKIMONO is flexible and easy to deploy as it abso-
lutely does not require any modification to the monitored systems.

Categories and Subject Descriptors
H.2.0 [General]: Security, integrity and protection; D.4.6 [Security
and Protection]: Invasive Software

Keywords
Kernel Rootkit, Intrusion Detection, Xen Virtual Machine, Linux

1. INTRODUCTION
Detecting the security violation is the fundamental goal of all

the Intrusion Detection System (IDS). Since the Operating Sys-
tem (OS) kernel provides the core functions for the whole system,
it is very important for IDS to protect the kernel as well. The
problem is that once the kernel is compromised, for example by
kernel-level rootkits, all the information returned from kernel is no
longer reliable. However, almost all the current approaches to dis-
cover and protect kernel-level attacks presuppose that the kernel
is not breached. This assumption is obviously flawed, because if
the attacker successfully penetrates the kernel, he might never fail
to patch its code and data to evade the detection, or even disable
it. To counter-attack, detection tools attempt to use the not-yet-
broken part of kernel to look for rootkits evidence. But then the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

attacker can study their techniques to adapt his rootkits accordingly
and goes on to disable the detection tool. Subsequently, the battle
might never finish ([9]).

The root of this trouble lies in the architecture of most OS ker-
nels: Modern kernels are typically designed in monolithic way,
which means it is basically a huge program in a whole. As a result,
there is no separation between kernel codes, as everything is in the
same protection domain. Hence any kernel code can read from or
write to any other part of kernel. Thus if a rootkit is inserted into
the kernel, it can disable the related code of the detection tool run-
ning inside kernel. This problem is well-known for a long time, but
cannot be completely fixed because of the in-use architecture in the
current OSes.

Recently researchers proposed several hardware-based solutions
to address the above problem: The system runs with special add-in
hardware (for example a PCI card), and they proposed to do the
detection from these hardware ([10], [26]). Because the OS has no
way to tamper the hardware, it is supposed that the attacker cannot
defeat the detection tool staying in these devices. However, this ap-
proach is quite impractical: it requires new and possibly expensive
hardware, and it also needs special support from the OS. All these
reasons make this approach hard to be deployed in large scale.

Another promising approach is to put the IDS into the Virtual
Machine Monitor (VMM) to detect intrusion inside Virtual Ma-
chine running on top of VMM ([6]). The idea is to exploit the
unique advantage of Virtual Machine (VM): while all the VMs are
separated and in different protection domain (so they cannot inter-
fere each other), we can inspect the memory of them from outside
1. As a result, if we put the detection tool outside of the observed
VMs, and inspect the memory of the VM at run-time, we can dis-
cover the security problems, while still guarantee that the detection
tool cannot be harmed by the attacker inside. Unfortunately the
authors only provided the high-level concept of their IDS, which
is based on VMWare Workstation, and the resulted IDS was never
released to the public.

Inspiring by the idea, our work examines in detail a software-
based solution to monitor memory to detect kernel security vio-
lation on Virtual Machine (VM) environment. Based on the above
principles, we have developed a kernel rootkit detector named XenKI-
MONO 2 for Xen Virtual Machine Monitor ([2]). In our experi-
ments, XenKIMONO is able to detect all kind of kernel rootkits
installed in Linux-based VMs run on Xen. While XenKIMONO
is made to run on Xen platform, the principle works for all other
hardware-level Virtual Machine Monitor as well.

The rest of this paper consists of 6 parts: part 2 briefly ana-

1Usually we can only do that with special access right, from a priv-
ileged VM.
2KIMONO stands for Kernel Integrity MONitOr.

276

lyzes few typical kernel rootkits and their infected techniques. Part
3 presents the architecture and implementation of XenKIMONO,
while part 4 discusses the advantages together with shortcoming of
our solution. Part 5 demonstrates the efficiency of XenKIMONO
by evaluating it with several popular kernel rootkits available in the
wild, then measures its performance impact. We summarize the
related work in the part 6. Eventually we conclude the paper and
outline future works in final section, part 7.

2. ROOTKIT OVERVIEW
Rootkits are malicious software that allow the attacker to keep

controlling the infected machine, and hide their presence from the
view of system administrator. Usually rootkits are installed into
the system after the attacker obtains the privileged access of the
host. Once running, rootkits modify the host to provide backdoors
through which the attacker can spy on the system’s activities, and
regain access to system in the future without legal authentication.
Rootkit is emerging as a major issue for computer users in the last
few years, and unfortunately there is no evidence that the problem
will stop very soon ([13]).

2.1 Rootkit Categories
Basically we can categorize rootkits into 2 groups:

1. User-level rootkit: This kind of rootkit is also called application-
level rootkit. They replace critical system utilities like ls, ps,
netstat, ... with modified versions that hide the existence of
attacker’s files, processes and network connections. Fortu-
nately user-level rootkits are quite easy to uncover, because
they do not modify the OS kernel: we can get information
about files, processes and network connections from kernel,
and compare them with the output from user-level utilities to
detect the deviation.

2. Kernel-level rootkit: This kind of rootkit poses a lot of prob-
lem, and brings in the endless battle between anti-malware
researchers and bad guys. Kernel rootkit modifies the OS
kernel to provide faked information3. In that case, even if
the system utilities are intact, the information they produce
might still be falsified. As a result, the solutions used to track
down user-level rootkits are all useless.

Because user-level rootkits are quite easy to deal with and, most
importantly, can be technically detected, we do not try to counter
them in this paper. Instead, we focus on the kernel-rootkit and
attempt to address this kind of malware effectively.

2.2 Rootkit techniques
To understand about the applied techniques of kernel-rootkits,

we analyzed some of the most popular ones available in the wild.
While there are various other rootkits, they all use the same meth-
ods to infect the system and evade the current detection tools.

In general, to successfully install the kernel rootkit into kernel,
the attacker must overcome 2 challenges:

1. Insert rootkit into kernel: To insert rootkits into kernel, the
attacker usually puts the rootkit into a kernel module, then
load the module to kernel. Various well-known rootkits use
this technique, like Knark [14], Adore [20], vlogger [15] and
Sebek [21] 4. To thwart this problem, many systems choose

3Clearly the attacker must somehow gain privileged access before
this step.
4Though Sebek is proposed to use for honeypot purpose, it em-
braces a lot of blackhat tricks to function stealthily, hence Sebek
can be used as a rootkit.

not to support kernel module 5. The attacker counters the is-
sue by writing directly to kernel memory via memory devices
such as /dev/{kmem,mem} on Linux [17]. Unfortunately the
administrator cannot always disable these devices, because
they are necessary for some applications, such as X.

2. Hide its existence: The administrator of the system can de-
tect the kernel rootkit if it is not well covered. In case the
rootkit is a kernel module, this module must not be listed
from any user-space tool such as lsmod 6.

Besides covering itself, rootkit is usually employed to hide
other evidences or activities of attacker, such as backdoor
that opens secret ports for unauthorized remote access, or
hidden rootkit files. Similar to the case of kernel module
above, these activities must not be shown via usual adminis-
trative tools such as ls, ps, netstat.

To hide the rootkit presence, attacker usually employs the
following techniques: Replace system-calls, patch jump-tables,
patch kernel code and modify critical kernel objects.

(i) Replace system-calls: System-calls are kernel func-
tions responsible for system services. To access system
resource, user-space application must request services
from kernel, and the actual job is done by system-calls.
So obviously, if the attacker can replace the system-
calls with his code, he can maintain the control on the
whole system. In fact, this trick is widely used in many
kernel rootkits such as Adore, Knark, vlogger and Se-
bek.

(ii) Patch other kernel jump-tables: Jump-table is a widely-
used technique in implementation of many OSes. Ba-
sically jump-table is a list of entry points, which serves
as addresses of kernel functions. Reference to the en-
tries in table can be done via a numbered index. Linux
kernel provides some critical jump-tables, with notable
examples are Interrupt Descriptor Table and Page Fault
Handler exception table. Not surprisingly, these im-
portant tables are quickly abused by some sophisticated
rootkits ([11], [1]).

(iii) Patch kernel code: While replacing system-calls is a
very popular trick in rootkit world, this might expose
the rootkit itself. The reason is that the new system-
call is put in unusual place, and that is suspicious ([7]).
Hence another method is proposed: a system-call can
be hijacked by patching the first 7 bytes of its code
([19]). This technique can defeat the rootkit detectors
that only check the system-call table integrity.

(iv) Modify critical kernel objects: Besides modifying code
and jump-tables, another favorite target of rootkits is
kernel objects. Usually this trick is employed to hide
the existence of kernel module rootkits or user-space
rootkit processes. Rootkits can modify related objects
in some ways, so the whole system still function nor-
mally, but the objects are hidden from user-space. For
example in Linux, kernel modules are declared in a
structure of module type, and connected together by
a double linked-list. The attacker can disconnect the
rootkit module from the linked-list, so the module is

5In Linux, this can be achieved by compiling Linux kernel with
option CONFIG MODULES=n.
6lsmod is a tool used to list kernel modules on Linux systems.

277

not shown when user-space tool list them7 ([20], [15],
[21]). The same method is applicable with the linked-
list of task struct structure in Linux systems to hide
rootkit daemons ([23]).
As this technique does not require to patch kernel code
or jump-tables, it can evade quite a few rootkit detec-
tors. To detect them, we must foresee all the potential
places that can be abused, which is unfortunately not
easy in practice.

Simply put, all the rootkits either patch the kernel text or jump
table or kernel objects to infect the system, as well as hide their
presence. Thus if our IDS is able to detect the modification to these
parts of kernel, we might be confident that we can discover various
kind of kernel malware.

3. XENKIMONO SOLUTION

3.1 Xen Virtual Machine
The original meaning of VM indicates a number of different

identical execution environments on a single computer, each of
which runs an OS. The host software which provides this capa-
bility is often referred to as a Virtual Machine Monitor (VMM) or
hypervisor.

Xen is such an open source and free VMM ([2]). Basically, Xen
is a thin layer of software operating above the bare hardware, and
Xen exposes a VM abstraction that is slightly different from the
underlying hardware. Xen introduces a new architecture called xen,
which is very similar to x86 architecture. The VM executing on
Xen are modified (at kernel level) to work with Xen architecture.

Running on top of Xen, VM is called Xen domain, or domain
in short. A special privileged domain named Domain0 (or Dom0
in short) always runs. Dom0 manages other domains (called User
Domain, or DomU in short), including jobs like start, shutdown,
reboot, save, restore and migrate them between physical machines.
The privileged Dom0 can inspect and modify other DomU’s mem-
ories. However, DomU cannot access memory of any other do-
main without permission explicitly granted by the corresponding
domain.

3.2 XenKIMONO Goals
The design of XenKIMONO is driven by the following goals:

(1) Tamper-resistant: XenKIMONO must be able to reliably de-
tect kernel rootkits, even if observed kernel is compromised.
Moreover, XenKIMONO must be able to resist the attack from
the attacker.

(2) System independence and flexibility: XenKIMONO must be
able to work without any cooperation from the monitored ma-
chine, which means it can work with any system without hav-
ing to install any special software, or modifying its internal
functions. Specifically, for Linux-based VM, XenKIMONO
should be able to work with any kernel version of any vendor,
as well as any compiled option. If we achieve these goals, our
IDS becomes portable and the maintenance cost is significantly
decreased.

3.3 XenKIMONO Design
7On Linux, this can be done with the lsmod tool.

3.3.1 Overview
We put the XenKIMONO, which is implemented in a form of a

daemon process named xenkimonod, into Dom0 and let it inspect
the kernels of other DomUs to detect potential rootkits. Because
Dom0 is separated from other domains, and in fact it is in different
security protection domain, XenKIMONO is tamper-resistant with
malicious attack from DomUs. With this strategy, we achieve the
goal (1).

Having XenKIMONO in Dom0 gives us another advantage: our
detection tool is invisible to the attacker in DomU, because there
is no way to discover another process running in Dom0. Thanks to
the strong isolation between the domains, the attacker cannot eas-
ily detect XenKIMONO presence, thus XenKIMONO might has a
better chance to do its job without the enemy’s awareness.

To inspect DomU, XenKIMONO must be able to access to the
kernel memory of DomUs. Fortunately this can be done in Xen
thanks to some Xen API: From Dom0, XenKIMONO can map the
kernel memory of any DomU ([25]) and does all the processing,
such as reading or writing, on the mapped memory .

Regarding the goal (2), XenKIMONO must overcome another
hurdle: how to understand the “meaning” of the raw memory it
has accessed to. Because all we have are only memory pages of
the kernel, we must still analyze its state to interpret the data to
a higher level, preferred at OS-level structures. For example, we
might want to know where in the memory the information about
kernel modules is located, and which kernel modules are loaded
in the VM. Simply put, we must parse the raw memory to extract
out meaningful information to understand what is going on in the
observed VM.

All of these requirements can be done thanks to kernel symbols
and other information extracted from DomU’s kernel binary: We
can extract the information about kernel objects from kernel binary,
and obtain information about their places in the DomU’s kernel
thanks to the help of their kernel symbol map file. Given the detail
information about kernel types and their addresses, XenKIMONO
is able to pinpoint the concerned kernel objects in the protected
VMs. Because we can have the necessary information independent
of kernel versions or compiled options, XenKIMONO is able to
achieve the goal (2).

3.3.2 Detection Methods
To detect the kernel rootkits in DomUs, XenKIMONO proposes

2 strategies: (1) Integrity checking to detect illegal changes to ker-
nel code and jump-tables; (2) Cross-view detection to detect the
malicious modifications to critical kernel objects.

(1) Integrity checking: XenKIMONO pays close attention to crit-
ical parts of observed kernels. If these parts are modified at
run-time, it might indicate that the kernel is being attacked by
a rootkit. XenKIMONO will fire alarms in that case, and let
the system decides what to do to react.

On the critical parts of kernel, XenKIMONO calculates the
hashes 8 of these memory areas at known-good time, when we
can make sure that the kernel is “clean”. Then at run-time it
periodically recalculates these hashes and compare against to
the saved values. As the hash algorithm guarantees the unique
value for all these kernel memories, any difference indicates
the monitored sections have been modified.

(2) Cross-view detection: The rootkits usually employ the “lie”
strategy to evade the detection, in which the information re-

8we use the MD5 algorithm for hashing.

278

turned to user-space is modified to hide their presence (for ex-
ample to hide rootkit processes or files). The kernel is thus
modified by the rootkit, which leads to the inconsistency be-
tween the system layers.

To find the inconsistency in kernel, XenKIMONO inspects the
VM’s kernel state and compare them to the information got
from user-level programs of that VM 9. In addition, to defeat
even more advanced attacks, XenKIMONO tries to collect the
same information from different places in kernel. Any conflict
between these views suggests the malicious tampering.

Besides the above tactics, XenKIMONO also tries to detect other
evidence of attacks, so hopefully we can discover the nasty activi-
ties even before the kernel is compromised. XenKIMONO employs
following methods: monitor critical processes, detect suspicious
activities and White-list based detection.

(1) Monitor critical processes: One of the popular methods of
rootkits to defeat the defense system is to shutdown the secu-
rity critical daemons ([8]). XenKIMONO counters this tactic
by continuously monitoring registered processes such as IDS,
system logger, and other application that system relies on. To
do that, XenKIMONO extracts the list of processes from the
observed kernel, and then compares them to the registered list.
If any process is absent, we can signal alarms.

A simple and naive way to monitor processes is to rely on their
file-paths. However, this solution can be defeated by some
tricks: the attacker can replace the “good“ executables with the
“bad“ executables of the same names. XenKIMONO defeat the
problems by registering each critical process with several data
such as file-path, text-size and hashed value of file text. As the
hashed value is very hard to faked, XenKIMONO is not easily
fooled.

(2) Detect suspicious activities and evidences: As we are able to
parse the kernel memory, we can observe the suspicious evi-
dences of intrusion in some kernel objects. XenKIMONO ap-
plies the following practices:

• Watching user privilege: Normally the uid of a process
remains unchanged throughout execution. Likewise other
credentials such as euid, suid should be same as the uid.
However some vulnerability in the kernel might allow the
attacker to elevate his privilege, so his uid or euid be-
comes 0, thus effectively gives him root access ([24]).
XenKIMONO tracks unregistered processes and alarms
if any of these values changes unexpectedly.

• Watching network interface: One of the popular tactics
of the intruder is to install a network sniffer on the sys-
tem to sniff pass-by network packets for valuable data like
user-name and password. However, the sniffer would put
the network interface into the promiscuous mode. XenKI-
MONO monitors the operation of network interface for
such a suspect.

(3) White-list based Detection: To help the inspection more ef-
fectively, it is a good idea to make clear which actions are ille-
gal on the monitored system. To realize that, XenKIMONO ap-
plies white-list technique to detect suspicious activities. Each
VM registers the following white-lists:

• Process white-list: List of applications that can have root
access.

9We get the user-level data via remote shell.

• Network white-list: List of network ports that the appli-
cations can bind to.

• Kernel module white-list: List of kernel modules that
can be loaded into kernel.

These white-lists are registered in a configuration file for each
VM, and the lists are loaded into memory for detection pro-
cedure by XenKIMONO when the corresponding VM boots
up. From the result of the inspection process, any activities not
in the above white-lists can be considered malicious by XenKI-
MONO. We believe that this strategy is effective to defeat many
evasion techniques emerging in the future,

3.3.3 Response to Attack
Once XenKIMONO detects the intrusion, it can response with

several methods, which is configurable for each protected VM:

• Report problems: XenKIMONO can fire alarm by writing
report to logging file. The administrator can use any logging
tool to analysis, and react accordingly.

• Stop infected VM: To mitigate damage to other systems,
XenKIMONO can exploit the unique advantage introduced
by Xen to stop or pause the VM, and have the administrator
come to investigate the problem.

• Checkpoint infected VM: Xen allows to checkpoint a VM
to a file, so the administrator can do forensic on the system
image later with a tool like crash-util ([16]). XenKIMONO
can ask Xen to do the job for it with xm save command.

3.4 XenKIMONO Implementation
At the moment XenKIMONO is only implemented in Linux.

The reason is that other OSes (like FreeBSD and NetBSD) are not
quite ready for Xen 3.0.2, the most advanced Xen version we are
working on, yet. So in this part we will present XenKIMONO’s im-
plementation specifically for Linux domains. The same techniques
can be applied for others, however.

3.4.1 Access DomU’s Kernel Memory
To access to a specific virtual address of DomU, we must first

translate it into physical address. Currently Xen support several
kinds of architecture: x86 32, x86 32p and x86 64, and each of
these platforms has different schemes of paging memory. Hence
XenKIMONO must detect the underlying hardware, and then trans-
lates the virtual memory accordingly by traversing the page table
tree.

To traverse the page table tree, it is imperative to know the phys-
ical address of the page directory. In Xen, we can have the vir-
tual control register cr3 of each virtual CPU of the VM by getting
corresponding CPU context via Xen function xc vcpu getcontext()
([25]). Besides, as Xen supports several architectures such as x86,
PAE and x86 64 (thus different page-table formats), XenKIMONO
must handle the page-table accordingly to convert the virtual ad-
dress to physical address.

Afterwards, XenKIMONO accesses the memory of DomU by
mapping the physical address with the function named xc map foreign range()
([25]). Then it goes on reading or writing to the mapped memory
10

For each DomU, XenKIMONO has a configuration file that spec-
ifies the interval time of checking (by default is 15 seconds). Ac-
cordingly, XenKIMONO is timed to periodically inspect the mapped
memory of the protected VMs to find rootkits.

10This depends on the mapped right is PROT READ (read) or
PROT WRITE (write).

279

3.4.2 Parsing Kernel Objects
A key challenge in inspecting the memory of VM is how to

bridge the semantic gap between the raw memory and kernel ob-
jects. To do that XenKIMONO must be able to have a good knowl-
edge about OS structure. And to understand in detail the layout
of DomU’s kernel and kernel objects, XenKIMONO must know
exactly their address and structure.

* Object’s address: Each object in the kernel is located at a
certain memory address, and kept unchanged during its life-
time11. To watch the integrity of the object, it is mandatory to
know its address. XenKIMONO finds the address of Linux
kernel objects via the kernel symbol file System.map coming
with the kernel binary.

* Object structure: To know only the object address is far
from enough. For example, if we want to get the list of ker-
nel modules, we can first reach the address of the first kernel
module, the Linux variable modules. But then to get the next
kernel module pointed by a field named list.next in the mod-
ule structure, we must know the relative address of this field
in module structure. This job is not trivial, as the module
structure depends on kernel compiled option, and it might
also change between kernel versions12.

To address this problem, we propose to exploit the kernel
debugging information stored in kernel binary. If the kernel
is compiled with debug option, the kernel binary stores detail
information in DWARF format about all the kernel-types and
variables ([3]).

To extract data about kernel-types, we leverage part of code
of LKCD project ([18]). LKCD is an open source tool to
save and analyze the Linux kernel dump. LKCD can parse
the dump thanks to an internal library libklib. This library
parses the kernel symbols and extracts kernel-types from de-
bugged kernel binary, then caches the data in the memory for
its tool, lcrash to use. Besides, libklib also interprets lcrash
user command, and serves as a disassembly engine for vari-
ous hardware platforms. Because of these reasons, libklib is
a very big and complicated code, thus cannot be employed
as it is for XenKIMONO. Another problem is that libklib is
designed to analyze kernel dump, but not to cope with hostile
data. So if somehow the attacker modifies the kernel struc-
ture in malicious way, libklib might crash.

In our implementation, we only reused part of libklib, in
which we only keeps the code that extracts and parses kernel-
type information from kernel binary. The library is also hard-
ened to resist potential attacks. Finally, our kernel parse code
is around only 14000 lines of C source code, which is about
30% size of the original libklib.

3.4.3 Critical Kernel Areas
Regarding the critical parts of kernel that XenKIMONO needs to

pay attention to, we noted that the kernel rootkits usually attempt to
patch the jump tables modify kernel text. Hence if XenKIMONO
can detect the modifications to these parts, it can detect these rootk-
its.

In the current shape, XenKIMONO keeps close watch on the
following parts of VM’s kernel:

11Note that Linux kernel memory is never swapped out.
12Linux kernel never tries to keep compatible between different ver-
sions. The Linux kernel developers argue that backward compati-
bility might block its continuous innovation.

• Kernel text: To detect modification to kernel code, XenKI-
MONO monitors the memory within the range of [text, etext],
and [sinittext, einittext]. The virtual address of these sym-
bols can be found in the kernel symbol map file System.map
accompanying the kernel.

• Hypercall-page: DomU requests service from VMM via hy-
percalls, which is similar to system-call in native OSes. All
the hypercall addresses are put in a memory of 4KB starting
from kernel symbol hypercall page . XenKIMONO observes
for the change to this critical area to detect malicious modi-
fication to DomU’s hypercalls.

• Popular jump-tables: XenKIMONO detects modification
to following jump-tables, which can be addressed by the start
address and length:

– System-call table: System-call table is one of the most
favorite targets of rootkits. This table starts at the ker-
nel symbol sys call table, and spans in a range of 1240
bytes for Linux kernel 2.6.16.

– Interrupt Descriptor Table: This table saves the ad-
dress of system interrupts, and can be abused by rootk-
its ([11]). This table starts at symbol idt table, with
length of 2048 bytes.

– Page-Fault Handler exception table: Linux uses ex-
ception table to handle page fault in memory manage-
ment. The attacker can modify the fix-up address in the
table to redirect the handler to his malicious code ([1]).
The exception-table is laid out in the range [start ex table,

stop ex table].

In all the above cases, the virtual addresses of the related ker-
nel symbols can be found from the kernel symbol map (Sys-
tem.map) coming with the kernel binary of the corresponding
VM.

To detect the more advanced rootkits of the future, it is very
important to keep tight control on the all the possible places
in kernel that can be abused. We plan to support other jump-
tables in the future ([4])

3.4.4 Cross-view Detection
As almost all the rootkits try to hide its presence of in the sys-

tem, XenKIMONO can discover them with following cross-view
inspections: kernel module, user process and network socket.

• Kernel module: Cross-checking kernel modules is a tech-
nique used to defeat the trick of removing modules from the
linked-list to hide malicious module in kernel ([15]).

XenKIMONO gets the list of kernel modules thanks to the
kernel symbol modules, which points to the linked-list of
modules. Knowing that kernel module has the type of mod-
ule structure, XenKIMONO can walk the list and get all the
modules loaded in the system. This list is checked against
the list of modules get from user-space with the command
lsmod.

• User Process: Rootkits usually run hidden processes on the
system. To detect this kind of rootkit, XenKIMONO cross-
checks the list of processes by comparing the list got from
kernel and the list got from user-space. While the user-space
view can be easily got by the command ps, the list of pro-
cesses can be extracted from kernel via the kernel symbol
init task: XenKIMONO can walk the linked-list of processes

280

pointed to by this symbol and get all the information about
processes, such as process name, pid.

• Network socket: Another favorite trick of rootkit is to run
hidden daemon to provide remote access to outside. To cover
the daemon, it needs to hide the network sockets and ports
from user-space view.

XenKIMONO detects this kind of hack by comparing the list
of sockets and ports got from kernel and user-space. User-
space can provide this information with the popular tool net-
stat. Whereas, the list of UDP sockets can be achieved by
walking the hash table udp hash, and the list of TCP sockets
can be got through the tcp hashinfo hash table.

3.4.5 Detect Suspicious Activities and Evidences
XenKIMONO detects suspicious problems by parsing the criti-

cal kernel objects and discover abnormal activities.

• Watching user privilege: To monitor the uid/euid/suid of
system processes, XenKIMONO needs to access to the pro-
cesses and their data fields in the kernel. The linked-list of
processes start at the kernel symbol init task, and the uid/euid/suid
can be extracted out from the corresponding fields of the
task struct structure derived from the list.

• Watching network interface: XenKIMONO can monitor
the operation status of network interfaces thanks to the ker-
nel symbol dev base, which points to the linked-list to all
the interfaces available on the system. As each entry in the
list is of netdev structure, XenKIMONO can track down to
the promiscuity field in the structure to get the promiscuous
mode of each interface.

4. DISCUSSIONS
To make XenKIMONO work, the VM’s kernel (DomU’s kernel)

must be compiled with kernel debugging information. That is sim-
ply the only requirement for VM’s kernel, and can be easily done
by enable an option at compile time. In fact all Linux distributions
provides the debugged kernels in addition to the normal kernels,
so XenKIMONO users can avoid recompiling their kernels by in-
stalling the debugged kernels.

Though XenKIMONO can effectively detect all kind of rootk-
its, it might suffer from the timing attack limitation as follows: as
XenKIMONO is scheduled to run periodically (the interval time
is configurable for each VM), a smart attacker might quickly load
then unload the rootkit in between the inspected time, so he can
evade the detection. However, inconsistent operation might signif-
icantly impair rootkit’s functionality. We can mitigate this problem
by varying the interval checking time (in random way) to reduce the
predictability, so it is hard to know when it is safe for the attacker
to install the rootkit.

The cross-view detection has a potential flaw: XenKIMONO
might produce fall-positive when it compares information collected
from user-space and from different places in kernel at different
time. To mitigate the issue, we can exploit another unique advan-
tage of Xen: before doing the check, XenKIMONO pauses the VM
to gather information from its kernel, and then resumes the machine
after it finishes the job.

However, this trick does not help to fix the race problem when
comparing the information from kernel and user-space: this is due
to the fact that when the VM is paused, we cannot get data from
user-space. To decrease this problem, we run the collection infor-
mation tool in user-space 2 times: first time before pausing the VM,

and second time after resuming it. If the gathered data is persistent,
we can be quite confident to ignore the potential race problem.

Because all the access to the kernel needs to pause the VM, this
solution causes negative impact on the performance. We address
the problem by running the inspection in 2 phases:

1. Phase 1: Pause the VM to collect all the necessary infor-
mation for integrity checking and white-list based detection
from its kernel. This includes all the data about kernel mod-
ules, processes, network sockets, etc.

2. Phase 2: Resume the VM, and get necessary information for
cross-view detection from user-space of that VM via remote
shell.

This process repeats the in the next loop, and as a result each
time of inspection requires pausing the VM only 1 time. Our exper-
iments demonstrated that this method greatly reduces the overhead
generated when running XenKIMONO, while the system becomes
more scaleable even if we carry more checking procedures in the
future for emerging rootkits.

5. EVALUATION
This section first presents the security evaluation results of XenKI-

MONO, then measures its performance impact.

5.1 Detect Kernel Rootkits
This section presents the security evaluation the efficiency of

XenKIMONO: we test 5 well-known kernel rootkits to see if they
are detected by XenKIMONO. These rootkits are installed on a
VM, which is under the watched of XenKIMONO in Dom0.

We evaluated 5 popular rootkits as followings.

(i) Adore: Adore rootkit ([20]) functions as a Linux kernel mod-
ule (LKM) and it can hide files and process specified by the
attacker. It opens a backdoor for the attacker to connect to, so
he can get in without having to authenticate. To keep control-
ling the system, Adore modifies the kernel by replacing 12
system-calls, such as fork, read, write, stat, kill, getdent, etc
...

(ii) Knark: Knark ([14]) employs the similar tactic to Adore to
hide its own files put in /proc. It replaces the getdent system-
call and modifies the output, so file-system utilities such as ls
cannot see the hidden files. Besides, Knark runs 3 backdoors
and open 2 hidden ports for unauthorized remote access.

(iii) vlogger: vlogger ([15]) is a cool Linux keylogger, which is
able to capture all the keystrokes and stealthily send them out
to a remote machine via UDP protocol. Functioning as a hid-
den LKM, vlogger can cover itself quite well: it replaces the
open system-call to hijack the TTY subsystem, and injects
its code to gather keyboard data. vlogger even modifies the
network stack to hide its own UDP traffic from the network
sniffer tools, and to normalize the network statistics that can
be exposed to the user-space.

As the latest version of vlogger only works on Linux kernel
2.4, we had to modify its source code to have it run on 2.6
kernel.13

13vlogger 2 hooks into kernel 2.4 by patching system-calls thanks
to the exported symbol sys call table, but that symbol is no longer
exported in 2.6 kernel.

281

(iv) Sebek: Sebek ([21]) is a data capture tool of modern hon-
eynet architecture. Running as a hidden LKM, Sebek tries
to capture all the I/O system activities, including keystrokes,
I/O at file-system level and network traffic. The latest version
3.1.2b of Sebek supports the Linux 2.6 kernel, thus available
for Linux-based domains

(v) SuckIT: SuckIT ([17]) is one of the more advanced kernel
rootkits available. It can function without LKM support by
directly patching the OS kernel memory via /dev/kmem. In-
stead of modifying system-call tables as others, it patches the
Interrupt Descriptor Table handler, which is triggered when-
ever a system-call is executed. The pointer to the system-call
table is changed and redirected to SuckIT’s own table else-
where.

All of the above rootkits are quickly detected by XenKIMONO
when they are installed into the tested VM. Moreover, some of them
are caught in more than 1 checking procedures, like below:

• Adore, Knark, vlogger and Sebek are detected when XenKI-
MONO checks the integrity of the system-call table.

• Adore, vlogger and Sebek are detected when XenKIMONO
detects a hidden kernel module in the checking procedure of
cross-view detection.

• Knark is detected because it opens 2 unregistered TCP ports
(number 18667 and 31221), which violates the White-list de-
tection of registered ports that processes on the VM can bind
to.

• Knark is detected because when XenKIMONO detects 3 hid-
den processes (which are 3 backdoor daemons opening to
outside for unauthorized access).

• SuckIT is detected by the integrity checking procedure on
jump-tables (specifically, the IDT table).

Because other kernel rootkits more or less use the same methods
we described above to infect system, we believe that XenKIMONO
can effectively detect most (if not all) of the kernel rootkits.

5.2 Performance Overhead
To measure the performance penalty, we choose a classical bench-

mark: decompress the Linux kernel. The test chooses the Linux
kernel 2.6.16.13, which is supported by Xen 3.0.2. We run this
benchmark on a normal VM and compare the result with the VM
protected by XenKIMONO installed. The benchmark is run 10
times, then we get the average results. The configuration of the
domains in the benchmarks are as below:
Dom0: Memory: 600MB RAM, CPU: Pentium3 900MHZ, IDE
HDD: 40GB, NIC: 100Mbps
DomU: Memory: 128MB RAM, file-backed swap partition: 512MB,
file-backed root partition: 2GB

All the domains in the tests run Linux Ubuntu distribution (ver-
sion Breezy Badger), with the latest updates.

Table 1 shows the result of the benchmarks (all the numbers are
in seconds):

e user 1m25.540s
We can see that though the VM protected by XenKIMONO takes

52% time more than the normal VM to finish the work, the overall
overhead is 6.92%. The reason of the slowdown is that each time
XenKIMONO inspected for rootkits, it must pause the VM, then
resumes it after the job is done.

All in all, the fact that XenKIMONO costs acceptable overhead
makes it practical for production systems.

Normal VM VM protected by XenKIMONO
real 1m57.541s 2m5.680s
user 1m23.860s 1m30.541s
sys 0m15.390s 0m23.466s

Table 1: Measurements on unzip the Linux kernel

6. RELATED WORKS
T.Garfinkel et.al introduced the concept of Introspection IDS based

on VM ([6]), which inspires our work. However, the proposed
IDS was designed for VMWare Workstation, which is very dif-
ferent from Xen in architecture. One example is that their IDS
is able to intercept system-calls of VMs, and that is feasible be-
cause on VMWare Workstation, the virtualization is done on top
of the VMM’s OS. Meanwhile, it is impossible to do that on Xen,
as the virtualization is done at hardware level. Besides, the proto-
type of their concept is never released to the public, but our work
XenKIMONO is planned to be published under the open source
GPL license for everybody to use.

In another attempt to detect malicious activities on VM environ-
ment, M.Laureano et al. has also proposed a solution for User-
Mode Linux (UML) ([12]). Unfortunately, like in the above case,
we could not find any code of the paper released to the public.
Besides, UML architecture is based on virtualizing Linux system-
calls, and their IDS relies on this feature to intercept information
for detecting intrusion. Clearly this cannot be done in Xen, because
Xen is a hardware-level virtualization.

Copilot ([10]) is another solution close to our approach. Being a
hardware-based solution, Copilot is in the form of a PCI card that is
installed on the host being monitored for rootkit activity. The goal
of the PCI card is to remain as independent of the potentially sub-
verted operating system as possible. To do this, the PCI card has
its own CPU and uses Direct Memory Access (DMA) to periodi-
cally scan the physical memory of the computer looking for rootkit
behavior.

Because it is a hardware based solution, Copilot provides a high
degree of assurance; however, this is not without a price: The
firmware on Copilot card needs to have intimate knowledge of the
kernel layout, thus requires updating whenever the kernel is recom-
piled. Last but not the least, any hardware based solution is going
to be more costly to purchase and to maintain, hard to widely de-
ploy. Moreover, a machine needs to be dedicated to be adminis-
trator host. All these problems make Copilot less attractive. In
contrast, XenKIMONO is a totally software approach and requires
no hardware to function.

Zhang et al. proposed using a secure coprocessor as an intrusion
detection system for kernel memory ([26]). Specifically, the au-
thors describe a method for kernel protection that consists of iden-
tifying invariants within kernel data structures and then monitoring
for deviations. This strategy of interpreting and comparing kernel
data structures is very similar to that of Copilot.

Kstat ([5]) is a kernel analysis tool that checks /dev/kmem for
information about LKMs and the status of the system-call table.
It can slo be used to extract other information directly from the
memory image, like the running processes or the network interface
state. However, Kstat can be undermined if the attacker has access
to kernel.

StMichael ([22]) is another tool to perform integrity checks on
portions of Linux kernel, including sys call table. Same as Kstat,
StMicheal can be defeated if the attacker gains privileged access to
to the kernel memory and disables it.

LKCD ([18]) is an open source tool to save and analyze the

282

Linux kernel dump. To do that LKCD must have a good under-
standing about kernel architecture and its object structure. XenKI-
MONO reuses part of its library libklib to parse the VM kernel
image.

7. CONCLUSIONS AND FUTURE WORKS
This paper proposes the design and implementation of XenKI-

MONO solution to detect the security violation to the Operating
System kernel at run-time. XenKIMONO exploits the unique ad-
vantage of Virtual Machine to stay separately with the monitored
systems. As a result, XenKIMONO is in completely different pro-
tection domain, and our detection is reliable even in the case the
attacker takes over the kernel. XenKIMONO employs and com-
bines different strategies to detect different kinds of kernel rootkits
in a reliable way.

The security evaluation proves that XenKIMONO is able to de-
tect all of 5 popular kernel rootkits in almost instant way (the win-
dow time is configurable). Because all other rootkits have the same
methods of infection, we strongly believe that they all can be de-
tected by XenKIMONO once they attempt to install themselves
into the kernel. Though the solution is not perfect as we discussed
in the section 4, we can mitigate the problems with different tactics.

The performance evaluation also demonstrates the small penalty
of XenKIMONO on the monitored VMs. We believe that this is
an advantage, and XenKIMONO can be launched into production
systems without causing any negative impact.

When we implemented XenKIMONO, we studied and evaluated
the most popular rootkits available to make sure that XenKIMONO
can detect all of them. In the future, we will closely follow the
emerging rootkit technique to extend XenKIMONO capability, so
it can adapt to the new trick of rootkits.

8. REFERENCES
[1] buffer. Hijacking Linux Page Fault Handler Exception Table.

http://www.phrack.org/show.php?p=61&a=7,
August 2003.

[2] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the art
of virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, October 2003.

[3] DWARF Workgroup. DWARF Debugging Format Standard.
http://dwarf.freestandards.org/Home.php,
January 2006.

[4] T. Fraser. Automatic discovery of integrity constraints in
binary kernel modules. Technical report, University of
Maryland Institute for Advanced Computer Studies,
December 2004.

[5] FuSyS. KSTAT: Kernel Security Therapy Anti-Trolls.
http://www.s0ftpj.org/tools/kstat.tgz,
February 2002.

[6] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection. In
Network and Distributed Systems Security Symposium,
February 2003.

[7] T. Holz. Detecting honeypots and other suspicious
environments. In Proceedings of the 6th IEEE Information
Assurance Workshop, June 2005.

[8] S. Inc. W32/Sdbot-ADD Worm. http://www.sophos.
com/virusinfo/analyses/w32sdbotadd.html,
September 2005.

[9] Joris Evers. Rootkits get better at hiding.
http://news.com.com/2100-7355 3-6095762.

html?part=rss&tag=6095762&subj=news, July
2006.

[10] N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh. Copilot
- a coprocessor-based kernel runtime integrity monitor. In
USENIX Security Symposium, pages 179–194, August 2004.

[11] kad. Handling Interrupt Descriptor Table for fun and profit.
http:
//www.phrack.org/phrack/59/p59-0x04.txt,
December 2002.

[12] M. Laureano, C. Maziero, and E. Jamhour. Intrusion
detection in virtual machine environments. In Procceedings
of the 30th EUROMICRO Conference, September 2004.

[13] McAfee Avert Labs. Rootkits, Part 1 of 3: The Growing
Threat. http://www.mcafee.com/us/
local content/white papers/threat center/
wp newappleofmalwareseye en.pdf, April 2006.

[14] T. Miller. Analysis of the Knark rootkit.
www.ossec.net/rootkits/studies/knark.txt,
2001.

[15] rd. Writing Linux kernel keylogger. http:
//www.phrack.org/phrack/59/p59-0x0e.txt,
July 2002.

[16] Redhat Inc. Crash-util.
http://people.redhat.com/anderson/, July
2006.

[17] sd. Linux on-the-fly kernel patching.
http://www.phrack.org/show.php?p=58&a=7,
July 2002.

[18] SGI Inc. LKCD - Linux Kernel Crash Dump.
http://lkcd.sf.net, April 2006.

[19] Silvio Cesare. SysCall redirection without modifying the
SysCall table.
http://vx.netlux.org/lib/vsc05.html, 1999.

[20] stealth. adore-ng rootkit.
http://stealth.7530.org/rootkits/, March
2004.

[21] The Honeynet Project. Know your enemy: Sebek.
http://www.honeynet.org/papers/sebek.pdf,
November 2003.

[22] Tim Lawless. StMichael: Kernel-level IDS.
http://sourceforge.net/projects/stjude,
December 2005.

[23] ubra. Process hiding and the Linux scheduler.
http://www.phrack.org/show.php?p=63&a=12,
August 2005.

[24] Wojciech Purczynski. Linux kernel ptrace/kmod local root
exploit. http://www.securiteam.com/exploits/
5CP0Q0U9FY.html, March 2003.

[25] Xen project. Xen interface manual. http:
//www.cl.cam.ac.uk/Research/SRG/netos/
xen/readmes/interface/interface.html,
August 2006.

[26] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer.
Secure coprocessor-based intrusion detection. In
Proceedings of the 10th ACM SIGOPS European workshop,
September 2002.

283

