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Abstract

In recent years the security of operations taking place over a computer network become
very important. It is necessary to protect such actions against “bad” users who may try to
misuse the system (e.g. steal credit card numbers, execute actions without authorization,
read personal mail, or impersonate other users). Many cryptographic protocols and schemes
were designed to solve problems of this type. This thesis deals with two fundamental cryp-
tographic tools that are useful in such contexts: generalized secret sharing schemes, and key
distribution schemes.

Both secret sharing schemes and key distribution schemes are used in multi-party sys-
tems. Secret sharing schemes enable some predetermined sets of parties to reconstruct a
given secret. These schemes make it possible to store secret information in a network, such
that only “good” (for example, large enough) subsets can reconstruct the information. Fur-
thermore, by using these schemes we can enable only “good” subsets to perform actions in a
system (e.g. sign a check). The secret sharing schemes that have received most attention are
threshold secret sharing schemes. These are schemes in which the sets which can reconstruct
the secret are those with of cardinality greater than a certain threshold. In this work we
consider these schemes, as well as generalized secret sharing schemes. In the generalized
schemes the subsets capable of reconstructing the secret constitute an arbitrary monotone
collection. The second type of schemes we consider are key distribution schemes which enable
every subset of parties to generate a secret key (different subsets have different keys). These
keys can be used, for example, in private key cryptosystems or for authentication.

In this thesis we consider (bad) parties which have unlimited power, i.e. we consider
the information theoretic setting (in contrast to the setting in which parties are limited to
probabilistic polynomial time computations). For the two types of schemes we assume that
there exists an off-line dealer which distributes private pieces of information to the parties
when the system is initialized. Since the security of the schemes is based on the secrecy of
these pieces of information, the pieces should be kept on a secure (and expensive) storage
medium. Therefore, minimizing the amount of information distributed to the parties is
significant for practical usages. Most of our research is concerned with the (space) efficiency
of the schemes, which is measured by the size of the of pieces (i.e. the length of their
binary representation). Many of the existing schemes require long pieces, and their size
is exponential in the number of parties in the system (e.g. the secret sharing schemes



of [16, 105]). Our main goal in the thesis is to understand when these schemes are inherently
exponential, and when they can be made more efficient.
In this work we consider four topics:

Communication in Key Distribution Schemes: We study the relationships between com-
munication and space efficiency of key distribution schemes. We prove that communication
does not help in unrestricted schemes. On the other hand, we show that for restricted
schemes, which are secure only when used by a limited number of conferences, communica-
tion can substantially improve the space efficiency. Furthermore, we prove lower bounds on
the space efficiency of restricted schemes.

Linear Secret Sharing Schemes and Monotone Span Programs: In the best secret sharing
schemes known to date for most access structures, the size of the pieces is exponential in
the number of parties in the system. No matching lower bounds are known. Therefore, we
restricted our attention to the class of linear secret sharing schemes. This class of secret
sharing schemes contains essentially all known secret sharing schemes. There is a close
relation between linear secret sharing schemes and a linear algebraic model of computation
called span programs. The existence of an efficient linear schemes for an access structure is
equivalent to the existence of a small monotone span programs for the characteristic function
of the access structure. In this work we prove Q(n??) lower bound on the size of pieces in
linear secret sharing schemes (and monotone span programs) for an explicit access structure.

Secret Sharing with Public Reconstruction: All known constructions of information theo-
retic t-out-of-n secret sharing schemes require secure, private communication channels among
the parties for the reconstruction of the secret. We investigate the cost of performing the
reconstruction over public communication channels. A naive implementation of this task dis-
tributes O(n) one time pads to each party. This results in pieces whose size is O(n) times the
secret size. We present several implementations of such schemes that are substantially more
efficient: (1) A scheme enabling multiple reconstructions of the secret by different subsets
of parties, with factor O(n/t) increase in the pieces’ size. (2) A one-time scheme, enabling
a single reconstruction of the secret, with O(log(n/t)) increase in the pieces’ size. We prove
that the first implementation is optimal (up to constant factors) by showing a tight Q(n/t)
lower bound for the increase in the pieces’ size.

Computing Functions of a Shared Secret: We introduce and study threshold (#-out-of-n)
secret sharing schemes with respect to a family of functions F. Such schemes allow any set
of at least ¢ parties to reconstruct privately the value f(s) of a (previously distributed) secret
s (for any f € F). Smaller sets of players “know nothing” about the secret. The goal is to
make the pieces as short as possible.



Notation
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The 2-th party in the system.

The number of parties in the system.

The domain of random strings.

A random string.

A field.

The finite field with ¢ elements.

A reconstructing (“Good”) set.

A “Bad” (curious) set.

The knowledge that a coalition B has.

The mutual information between the random variables X and Y.
The entropy of a random variable X.

The linear space spanned by the vectors in V.

The rank (dimension) of the linear space spanned by the vectors in V.
Concatenation of strings.

A secret in secret sharing schemes.

A secret sharing scheme.

The piece (share) of P; generated with secret s and random string r in the
secret sharing scheme II.

An access structure.

The domain of secrets in secret sharing schemes.

The size of a reconstructing set in threshold secret sharing schemes.

The length of the binary string that represents the secret.

A key distribution scheme.

The piece of P; generated from r in the key distribution scheme .

The domain of keys in key distribution schemes.

A key in key distribution schemes.

Upper bound on the number of “bad” parties in key distribution schemes.
The communication exchanged when the set G reconstructed the key.
The size of a reconstructing set in key distribution schemes.



Notations - (Continuation)

Family of functions.

The family of linear functions on GF(2%).

The function that returns the -th bit of z.

The family of bit functions {eq,...,es}.

The family of all functions with domain {0,1}".

The 2-out-of-2 secret sharing scheme XOR(s,r) = (r,s 4 r).

A vector in which every coordinate equals 1.

The size of the smallest span program over the field K computing f.
The size of the smallest monotone span program over the field K
computing f.

The family of all of the minterms of f.

The core of a minterm H (in Definition 5.5).

A critical family.



Chapter 1

Introduction

In recent years the security of operations taking place over a computer network become very
important. It is necessary to protect such actions against “bad” users who may try to misuse
the system (e.g. steal credit card numbers, execute actions without authorization, read
personal mail, or impersonate other users). Many cryptographic protocols and schemes were
designed to solve problems of this type. This thesis deals with two fundamental cryptographic
tools that are useful in such context: generalized secret sharing schemes, and key distribution
schemes.

Both secret sharing schemes and key distribution schemes are used in a multi-party sys-
tem. Secret sharing schemes enable only some predetermined sets of parties to reconstruct
a given secret. These schemes make it possible to store secret information in a network,
such that only “good” (for example, large enough) subsets can reconstruct the information.
Furthermore, by using these schemes we can enable only “good” subsets to perform actions
in a system (e.g. sign a check). The secret sharing schemes that have received most attention
in the literature are threshold secret sharing schemes. These are schemes in which the sets
which can reconstruct the secret are all the sets of cardinality greater than a certain thresh-
old. In this work we consider these schemes, as well as generalized secret sharing schemes.
In the generalized schemes the subsets capable of reconstructing the secret constitute an
arbitrary monotone collection!. The second type of schemes we consider are key distribution
schemes which enable every subset of parties to generate a secret key (different subsets have
different keys). These keys can be used, for example, in private key cryptosystems or for
authentication.

In this thesis we consider (bad) parties which have unlimited power, i.e. we consider
the information theoretic setting (in contrast to the setting in which parties are limited to
probabilistic polynomial time computations). For the two types of schemes we assume that
there exists an off-line dealer which distributes private pieces of information to the parties
when the system is initialized. Since the security of the schemes is based on the secrecy of

LA collection of sets is monotone if for every sets A and B, such that A is in the collection and A C B,
then B is also in the collection.



these pieces of information, the pieces should be kept on a secure (and expensive) storage
medium. Therefore, minimizing the amount of information distributed to the parties is
significant for practical usages. Most of our research is concerned with the (space) efficiency
of the schemes, which is measured by the size of the of pieces (i.e. the length of their
binary representation). Many of the existing schemes require long pieces, and their size
is exponential in the number of parties in the system (e.g. the secret sharing schemes
of [16, 105]). Our main goal in the thesis is to understand when these schemes are inherently
exponential, and when they can be made more efficient. In addition, we study whether
communication and interaction reduce the space requirements. Furthermore, we investigate
how the communication model (secure private channels vs. public channels) effects the space
requirements. While examining this questions, it is important to distinguish between one-
time schemes in which the action takes place only one time (e.g. one set will reconstruct the
secret), and unrestricted schemes in which the number of times an action can take place is
not restricted (e.g. many sets will reconstruct the secret). For example, we show that the
space requirements of a scheme in which only one set will generate a key is substantially
smaller than the space requirements of a scheme in which many sets will generate keys. In
the remaining of this introduction we give informal definitions of key distribution schemes
and of secret sharing schemes, and survey the results of this work.

1.1 Key Distribution Schemes

In various multi-party systems, the need for generating a secret key, common to a subset
of the parties, occasionally arises. Such key can be used, for example, in establishing a
secure private key cryptosystem among the members of the subset. A non-communicating
key distribution scheme for conferences of size g which is secure against any disjoint coalition
of b parties is a scheme where an off-line dealer initially distributes n pieces of information,
one per party. Each party receives his piece discretely. After this initial distribution takes
place, the parties can reconstruct keys in a secure fashion. That is:

1. Every conference (set) GG of ¢ parties has a common key which is called the key of the
conference (. Every member of (G can reconstruct the key from his piece (and the
conference identity) without any communication with other parties or with the dealer.
That is, the party applies some function to its piece and evaluates the key.

2. Every “bad” coalition B of at most b parties does not gain any information on the key
of any disjoint conference (¢. That is, the pieces of B do not expose any additional
knowledge on the key of G.

It might help the reader to remember that the size of conferences is denoted by ¢ which
stands for “good” parties, and the size of coalitions is denoted by b which stands for “bad”
parties. In these schemes, the size of the pieces is a function of the size of the keys, the



number of parties n, the size of conferences ¢, and the size of coalitions b. Formal definition
of key distribution schemes is given in Chapter 3.

The trivial key distribution scheme chooses an independent random key for every confer-
ence (¢, and gives party P; all the keys of the conferences that contain him. This scheme is

secure against coalitions of size n — g. However, the scheme is not efficient (the size of every
n—1
g—1
efficient schemes. Blom [24] was the first to consider information theoretic key distribution

piece in this scheme is ( ) times size of the keys), and for smaller values of b there are more

schemes. He presented an efficient non-communicating scheme, based on MDS codes, for
conferences of size 2 and coalitions of size b. The size of the pieces in Blom’s scheme is b + 1
times the size of the keys (compared with n —1 times the size of the keys in the trivial scheme
for ¢ = 2). Blundo et. al. [29] present key distribution schemes for larger conferences, based

on symmetric multinomials. Their multinomials have g variables and degree of at most b in
g+b—1
b

large values of ¢ and b, this expression is quite large (e.g. for ¢ = b = n/2 the size of pieces
is 2779 times the size of the keys). However, using entropy arguments, Blundo et. al. [29]
prove a tight lower bound on the size of the pieces. Therefore, their scheme is space-optimal.

each variable. The size of the pieces in their scheme is ( ) times the size of the keys. For

In this work, we apply direct combinatorial arguments (no entropy) to prove the same lower
bound. Our proof has two advantages. First, in our opinion, it is more intuitive and less
technical. Second, it actually applies to a weaker notion of security, thereby providing a
stronger result. This stronger result is used in proving our lower bound on communicating
schemes, which is described in the next paragraph.

The large lower bound (for big conferences and coalitions) raises the question whether
communication among the reconstructing parties could be of help in reducing the size of
pieces. Just like the non-communicating schemes, we first require that even if an unrestricted
number of conferences communicate in order to generate keys, these keys remain secure
with respect to disjoint coalitions of size b. Since no secure channels among parties can be
assumed, communication takes place via public channels. One problem which arises is that
the communication of one conference could leak information on the keys of other conferences.
Therefore, we require that even if a “bad” coalition overheard the communication of all the
conferences, the coalition does not gain information on any key of a disjoint conferences. We
prove that, regrettably, such unrestricted communicating schemes require pieces as large as
the pieces in non-communicating schemes.

This negative result motivates the introduction of restricted communicating schemes.
These schemes can be used only for a restricted number of conferences, whose identity is
not known beforehand. We construct an efficient one-time secure scheme, where the size of
the pieces is O(b/g) times the size of the keys. This is a substantial improvement over the
one-time communicating scheme of [29], where the size of the pieces is ¢ + b — 1 times the
size of the keys. Following [29], our schemes are non-interactive; each party sends messages
which depend only on his piece of information and not on messages received from other
parties. We prove a nearly tight lower bound on the size of the pieces in every one time key



distribution scheme; the size of each piece is at least b/(g — 1) times the size of keys. Using
7 copies of the one-time scheme, we construct a scheme which is secure for 7 conferences.
The size of pieces in this scheme is O(%) times the size of the keys. We show that the
domain of pieces of every party in a communicating key distribution scheme, which is secure
for 7 conferences, is at least max {7’, =19 (p — 1)/g} times the size of the keys. Hence, the
dependence on 7 of the domain of pieces in our scheme cannot be completely avoided, and for
T > (g+z—1) every T-restricted scheme cannot be more efficient then the non-communicating

(unrestricted) scheme.

1.2 Secret Sharing Schemes

In a generalized secret sharing scheme a dealer has a secret taken from some domain, which
he wants to share among a collection A of subsets of the n parties. The collection A is called
the access structure. The dealer discretely distributes private pieces of information (also
called shares) to the parties, such that any subset of parties in A can reconstruct the secret
from its pieces, while any subset not in A cannot reveal any partial information about the
secret in the information theoretic sense (formal definition of secret sharing schemes appears
in Chapter 3). A secret sharing scheme can only exist for monotone access structures. If
a subset B can reconstruct the secret (i.e. B € A), then every superset of B can also
reconstruct the secret. If the subsets that can reconstruct the secret are all the sets whose
cardinality is at least a certain threshold ¢, then the scheme is called t-out-of-n threshold
secret sharing scheme.

One of the most important issues when designing secret sharing schemes is the size of the
pieces. Even with the best known schemes (e.g. [16, 105]), most general access structures
require pieces of size exponential in the number of parties even if the domain of the secret
is binary (the length is at least 2% where n is the number of participants). Therefore,
the parties will not have enough memory to store their pieces even in fairly small networks
(leaving aside the question of secure storage). The question if there exist more efficient
schemes, or if there exists an access structure that does not have (space) efficient schemes
remains open. We conjecture that the later is true:

Conjecture 1.1:  There exists an ¢ > 0 such that for every positive integer n there is an
access structure with n parties, for which every secret sharing scheme distributes pieces of
length exponential in the number of parties n, that is 2°".

Proving (or disproving) this conjecture is one of the most important open questions concern-
ing secret sharing.

The best lower bound that is known to date is due to Csirmaz [44, 43]. His proof gives,
for every n, an explicit access structure with n parties for which the sum of the sizes of the
pieces in every secret-sharing scheme is (n?/logn) times the size of the secrets (for every
finite set of possible secrets).



Proving Conjecture 1.1 was one of the main goals of this research. We did not succeed in
this task. Therefore, we limited our attention to the class of linear secret sharing schemes,
which contains essentially all known secret sharing schemes. We proved lower bounds on the
size of pieces in linear secret sharing schemes. We discuss these schemes in Section 1.2.1. In
Section 1.2.2 we discuss secret sharing schemes in which reconstruction takes place on public
channels. In Section 1.2.3 we discuss secret sharing schemes in which not only the secret but
functions of the secret can be reconstructed without revealing any other information on the
secret.

1.2.1 Linear Secret Sharing Schemes and Monotone Span Pro-
grams

In most known secret sharing schemes every set in the access structure reconstructs the
secret using a linear function of its pieces. That is, every party gets a few elements from
some finite field as its piece, and every set in the access structure reconstructs the secret
using a linear combination of the elements held by its parties. We call such schemes linear.
For example, the following schemes are linear: Blakley’s threshold scheme [22], Shamir’s
threshold scheme [101], Kothari’s linear threshold schemes [72], Ito, Saito and Nishizeki’s
scheme based on decomposition of the access structure to threshold access structures [62],
Benaloh and Leichter’s schemes based on monotone formulas [16], Simmons, Jackson and
Martin’s schemes based on geometric configurations [103, 104, 105], Brickell and Davenport’s
schemes based on matroid representation [34, 35] (see also Karchmer and Wigderson [68]
and Bertilsson and Ingemarsson [19]), and the decomposition technique schemes proposed
in [27, 30, 36, 107, 108]. The survey of Stinson [106] contains a description of most of these
scheme. Jackson and Martin [64] proved that linear schemes are equivalent to the geometric
schemes of [103, 104, 105]. Counting arguments imply that for most access structures the
size of the pieces in every linear scheme is at least 2°/2. No such bound is known for an
explicit access structure.

There is a close relation between linear secret sharing schemes and a linear algebraic model
of computation called span programswhich was introduced by Karchmer and Wigderson [68].
The existence of an efficient linear schemes for a specific access structure is equivalent to the
existence of a small monotone span programs for the characteristic function of the access
structure. A span program for a Boolean function is presented as a matrix over some field.
Every row of the matrix is labeled by a literal (a variable or a negated variable). Given an
assignment 6 € {0,1}" we consider the rows of the matrix whose labels are consistent with
the assignment (that is, either rows labeled by some x; such that é; = 1 or rows labeled
by some &; such that 6; = 0). The span program accepts the assignment if and only if
the all-ones row is a linear combination of these rows. The size of a span program is the
number of rows in its matrix. (Definitions are given in Chapter 4). The class of functions
with polynomial size span programs is equivalent to the class of functions with polynomial



size counting branching programs [37, 68]. Span program size is a lower bound on the size
of symmetric branching programs [68].> Lower bounds for span programs also imply lower
bounds for formula size.

Monotone span programs have only positive literals (non-negated variables) as labels of
the rows. They compute only monotone functions, even though the computation uses non-
monotone linear algebraic operations. Karchmer and Wigderson [68], following [35], proved
that if there is a monotone span program for some function then there exists a linear secret
sharing scheme for the corresponding access structure in which the sum of the sizes of the
pieces of all the parties is the number of rows in the span program, i.e. the size of the span
program. Therefore, every lower bound on the total size of pieces in a linear secret-sharing
scheme is also a lower bound on the size of monotone span programs for the same function.
On the other hand, lower bounds for monotone span programs imply the same lower bounds
for linear secret-sharing schemes [6, 8, 52]. We will prove these connections in Chapter 4.

It is known that every function with a polynomial size span program is in NC (this
follows from [18, 37, 68, 83]). The monotone analogue of this statement does not hold:
Babai et. al. [4] exhibit a function that is computable by monotone span programs whose
size 1s linear but requires super-polynomial size monotone circuits. On the other hand, the
reduction in [68] from symmetric branching programs to span programs preserves monotonic-
ity, and thus lower bounds for monotone span programs imply lower bounds for monotone
symmetric branching programs and for monotone formula size. We note that if P Z non-
uniform-NC then there are functions with small monotone circuit complexity that cannot
be computed by polynomial size span programs. Consider the following language MVAL
= {(C,w) : C is a monotone Boolean circuit that accepts w }. If MVAL has a polynomial
size span program then it has a polynomial size NC circuit. Since MVAL is P-complete, this
would imply that P C non-uniform-NC. On the other hand, with the proper representation
MVAL has a small (but not shallow) monotone circuit.

The Q(n?/logn) lower bound for monotone span program size, implied by the lower
bound for any secret sharing scheme of [44], is the strongest previously known lower bound
for an explicit function on n variables. The method presented in [44] cannot give lower bounds
larger than Q(n?). In Chapter 5 we present a new technique for proving lower bounds for
monotone span programs. Using this technique, we present an 2(n*?) lower bound for an
explicit function on n variables. We obtain this bound for the Boolean function that is 1
if and only if an input graph contains a 6-clique. We present several other applications of
our technique to explicit functions. A recent result [4] demonstrates that our technique can

logn) for monotone span programs by considering

yield super-polynomial lower bounds of n
a problem in extremal set theory. It remains open whether our method could yield strictly
exponential lower bounds.

2The model of symmetric branching programs is essentially the same as that of (undirected) contact
schemes (for definitions, see Example 4.5 and [68]).

10



1.2.2 Secret Sharing Schemes with Public Reconstruction

When reconstructing a secret, an authorized subset of the parties collects their pieces, and
uses them to reconstruct the secret. It is required that after a reconstruction, only the
parties which participated in the reconstruction will know the secret. All known schemes
that guarantee information theoretic secrecy require the use of secure, private communication
channels between the parties that participate in the reconstruction. The question we raise
is whether reconstruction can be done without assuming that the channels are secure, while
maintaining the security of the schemes. We consider the scenario in which the “bad” parties
can overhear any communication, so from their point of view the channels are public. On
the other hand, “good” parties hear only messages sent to them. (In particular, from the
point of view of the “good guys”, the channels do not carry any of the potential advantages
of a broadcast channel.) For simplicity, we will consider only threshold (t-out-of-n) secret
sharing schemes in this introduction.

The simplest way to implement such public reconstruction securely is to hand to each
party upon system initialization, in addition to his original piece, 2(n — 1) one time pads.
These pads are used in order to simulate a private channel on a public one. In the pri-
vate channel scenario, reconstruction is typically done by exchanging pieces among parties.
To enable such exchange with every other participant, each party will need two pads per
participant: one for receiving a piece, and one for sending the piece. Thus the simple imple-
mentation results in an O(n) multiplicative factor increase in the size of each piece.

We design substantially more efficient schemes of three types. The first type is unre-
stricted schemes. In these schemes, any number of authorized sets (each containing at least ¢
parties) may reconstruct the secret, after communicating on the public channel. Any disjoint
coalition of at most ¢t — 1 parties does not gain any partial information on the secret, given
the coalition’s pieces and the communication of the sets that reconstructed the secret. We
describe unrestricted schemes in which the size of the pieces is O(n/t) times the size of the
original secret. We complement this result by proving a nearly tight n/t lower bound on the
increase in the pieces’ size for any unrestricted scheme. Our construction (upper bound) has
the property that in order to participate in more than one reconstruction, every party that
has already reconstructed the secret must store it. This is problematic in applications where
an adversary might break into the computer of the secret holder. (One of the advantages
of traditional secret sharing is that breaking into the computer of a “piece holder” does not
compromise the secret.) The unrestricted non-interactive schemes of Section 7.4 solve this
problem, but the piece size there is n times the secret size.

The second type of schemes we consider here are one time schemes, in which only a
single authorized set (containing at least ¢ parties) will reconstruct the secret securely. It is
not known during system initialization which set will reconstruct the secret, and the dealer
has to accommodate any possible set. For example, these schemes can be used to enable
one time activities like the firing of a ballistic missile or the opening of a sealed safe. We
describe one-time schemes in which the size of the pieces in O(log(n/t)) times the original

11



secret size. Next, we consider one time schemes where one authorized set of size evactly t
will reconstruct the secret. Additional parties in supersets with more than ¢ parties jointly
have enough information to reconstruct the secret. However, they cannot reconstruct the
secret over the public channel, because communicating it from members of the authorized
set is not possible in a secure way. This means that the authorized sets that can securely
reconstruct the secret do not necessarily form a monotone access structure. We design such
schemes with just O(1) multiplicative increase in the piece size (for any threshold ).

In light of our results, one may wonder if the initial distribution of pieces can also be done
over public channels. By the properties of “regular” schemes, each participant requires a
piece whose conditional mutual information with the secret (given ¢t — 1 pieces) is at least the
entropy of the secrets [69]. It is not possible to start with pieces of smaller conditional entropy
and increase it by communicating over public channels, even if interaction is allowed [77, 2].
Thus in our model, it is necessary to have secure initial distribution of pieces from the dealer
to the participants. However, from practical point of view the distribution stage is an off-line
process which is typically done upon system initialization (unlike the reconstruction stage).
Thus, assuming private initial distribution is reasonable.

1.2.3 Computing Functions of a Shared Secret

Suppose that we are interested in sharing a secret file among n parties in a way that will
later allow any ¢ of the parties to test whether a particular string (not known in the sharing
stage) appears in this file. This test should be done without revealing the content of the
whole file, or giving any other information about the file. This problem is an extension of the
traditional problem of threshold (#-out-of-n) secret-sharing (over secure private channels).
In this work we introduce a more general definition of t-out-of-n secret-sharing schemes with
respect to a family of functions F. These schemes, in addition to traditional requirements
of secret sharing schemes, allow authorized sets of parties to reconstruct some information
about the secret without revealing the secret itself. More precisely, sets of size at least ¢
can evaluate f(s) for any function f € F in a way that after the evaluation of f(s) any
coalition of size less than ¢ gets no information about the secret s which is not implied by
f(s). In other words, the parties in the coalition might know the value f(s), but they know
nothing more than that, even though they have heard all the communication during the
reconstruction of f(s).

Clearly, if we consider a family F that includes only the identity function f(s) = s, then
we get the traditional notion of secret-sharing schemes. Simultaneous sharing of many secrets
is also a special case of our setting: let sq1,..., sy be secrets we want to share simultaneously.
Construct the secret s2 sjos90...05,, and the functions which can be reconstructed are the
functions f;(s)£s;. The question of sharing many secrets simultaneously was considered
(with some differences in the definitions) by several researchers [26, 31, 59, 65, 66, 69, 79].

Threshold cryptography [46, 48, 49] is also a special case of secret sharing with respect
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to a family of functions.® A typical scenario of threshold cryptography is the following: We
want to enable every ¢ parties to sign a document such that any coalition of less than ¢ parties
cannot sign any other document (even if the coalition knows signatures of some documents).
To achieve this goal the key is shared such that every ¢ parties can generate a signature from
their pieces without revealing any information on the key except the signature. Specificly,
assume we have a signature function SIGN : M x K’ — O where M is the domain of messages,
K the domain of keys, and O the domain of signatures. For every m € M define f,, : K — O
as fm(k) = SIGN(m, k). The previous scenario is simply sharing the key with respect to the
family {f, : m € M}. This shows that secret sharing with respect to a family of functions
is a natural primitive.

Obviously, a possible solution to the problem of sharing a secret with respect to a family
F is by sharing separately each of the values f(s) (for any f € F) using known threshold
schemes. While this solution is valid, it is very inefficient, in particular when |F| is large.
Therefore, an important goal is to realize such schemes while using “small” pieces. For
example, to share a single bit the average (over the parties) length of pieces is at least
log(n —t +2) (for 2 <t < n—1) [71] and logn bits are sufficient [101] (where n is
the number of parties in the system). Therefore, the obvious solution for sharing ¢ bits
simultaneously will require (log n bits. By [69], it can be shown that pieces of at least ¢ bits
are necessary. We show that (-bit pieces are also sufficient if interactive reconstruction on
private channels is allowed, and O({)-bit pieces are sufficient if non-interactive reconstruction
(on public channels) is used®.

We present an interactive scheme in which {-bit secrets are distributed using ¢-bit pieces;
this scheme allows the reconstruction of the exclusive-or of every subset of the bits of the
secret (and not only the bits themselves). We use this scheme to construct schemes for other
families of functions. The length of the pieces in these schemes can be much longer than the
length of the secret (this is the case for the strings and signatures examples). An interesting
family of functions that we shall consider is the family of all functions of the secret. For
this family, we construct a scheme in which the length of the pieces is &~ 2°logn (where /
is the length of the secret and 2° is the length of the description of a function which is the
input for the reconstruction). That is, the length of the pieces is linear in the description
of a function in the family which is the input for the reconstruction stage. In this scheme
the reconstruction requires no interaction and can be held on public channels. If we allow
interaction on private channels during the reconstruction, then the length of the pieces can
be reduced to 2°. We do not know whether for the family of all functions there is a scheme
in which the length of the piece (which is the amount of space required by the parties) is
polynomial in the length of the secret.

While considering the question of computing functions of a secret, we deal mainly with

3The functions considered in [49, 46] are however very limited and the scenario in [46] is restricted to
computational security.

*In fact, both results require ¢ to be “sufficiently large”: ¢ > logn in the interactive case and ¢ >
log nloglogn in the public channels model.
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two models: the private channels model in which the reconstruction might require a few
rounds of communication; and the public channels model in which the reconstruction is
non-interactive. On one hand, in the private channel model, a coalition that does not
intersect the reconstructing set will know nothing on f(s). On the other hand, the public
channels model does not require secure private channels and synchronization; hence, the
reconstruction is more efficient. Unlike Section 1.2.2, while reconstructing a function over
the public channels, every party in the system might learn the value of the function (but no
additional information).

Interaction seems to be useful in the reconstruction stage. It enables us to reduce the
length of the pieces by a factor of logn. We also demonstrate this fact by studying ideal
threshold schemes; these are schemes in which the size of the pieces equals the size of the
secrets® (see, e.g., [8, 34, 35, 63, 100]). We deal with the characterization of the families of
functions F that can be evaluated in an ideal threshold scheme. For the interactive private
channel model, we prove that these functions are “essentially” only the linear functions. For
the public channels model, we prove that F cannot even contain any Boolean function (for
every family that contains the identity function).

Relation to private computation. In our schemes we require that authorized sets of
parties can reconstruct a function of the secret without leaking any other information about
the secret. This resembles the requirement of (n, k)-private protocols [13, 39] in which the
set of all n parties can evaluate a function of their inputs in a way that no set of less than
k parties will gain any additional information. Indeed, in some of our schemes a set B of
size t uses a (f,1)-private protocol. However, it is not necessary to use private protocols in
the reconstruction, since the parties are allowed to leak information about their inputs (the
pieces) as long as they do not leak additional information about the secret. Moreover, using
private protocols does not solve the problem of efficiently sharing a secret with respect to
all functions, since not all functions can be computed (¢,¢) privately [13, 40]. Furthermore,
the parties cannot use the (¢,%/2)-private protocols of [13] or [39] since this means that
coalitions of size greater than ¢/2 (but still smaller than t) gain information. However, if we
only require that coalitions of at most ¢/2 parties should not gain any partial information
on the secret then we can share the secret with any traditional scheme and reconstruct any
function of the secret using the private protocols of [13] or [39] (since we want to evaluate a
function of the secret which is a function of the pieces).

1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2 we discuss previous
works on key distribution schemes and secret sharing schemes. In Chapter 3 we present the
exact definitions of the models and the schemes we consider. In Chapter 4 we define linear
secret sharing schemes and monotone span programs and we discuss the equivalence between

SBy [69], the size of each piece is at least the size of the secret.
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these two models. In Chapter 5 we present lower bounds for monotone span programs. In
Chapter 6 we discuss the roll of communication in key distribution schemes. In Chapter 7
we deal with secret sharing with public reconstruction. In Chapter 8 we deal with sharing
a family of function of a secret. Finally, in Chapter 9 we conclude this work and state some
open problems. Background on information theory and private computations is given in the
appendices.
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Chapter 2

History

In this chapter we give a short description of works dealing with secret sharing schemes and
key distribution schemes.

2.1 Secret Sharing Schemes

Threshold secret sharing schemes were first introduced in 1979 by Shamir [101] and Blak-
ley [22]. The size of the pieces in Shamir’s scheme is equal to the size of the secrets.
Other threshold schemes were described in [69, 72, 79]. Their properties were studied
in [15, 41, 50, 69, 72, 79, 109]). They were used in many applications, e.g., Byzantine
agreement in [93], private computations (e.g. [13, 39, 59]), threshold cryptology (e.g. [49]),
and zero knowledge (e.g [47]). Secret sharing in which the secret can be reconstructed by the
human visual system was presented in [85]. Reducing the size of the pieces by compromising
on computational security was considered in [73].

[to, Saito, and Nishizeki [62] generalized the notion of secret sharing to general access
structures. They show that every monotone access structure has a secret sharing scheme
that realizes the access structure. Benaloh and Leichter [16] describe more efficient schemes
which are based on monotone formulas that describe the access structure. Many other
schemes were presented. Simmons [103, 104], and Simmons, Jackson and Martin [105] de-
scribe schemes based on geometric configurations. Brickell and Davenport describe schemes
based on matroid representation [34, 35] (see also Karchmer and Wigderson [68] and Bertils-
son and Ingemarsson [19]). These are the schemes we call linear since in these schemes the
pieces are linear combinations of random strings. Jackson and Martin [64] proved that lin-
ear schemes are equivalent to the geometric schemes. Schemes based on the decomposition
technique were discussed in [16, 27, 30, 36, 107, 108]. The survey of Stinson [106] contains a
description of most of these scheme. Naor and Wool [86] suggest the use of these generalized
schemes to enable access to a secure database. Other applications in which secret sharing
are used are described in the survey of Simmons [104].
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We briefly describe some results concerning lower bounds on the size of the pieces. The
first observation is that in every secret sharing scheme realizing any access structure the
size of the piece of every party is at least the size of the secret [69, 38] (actually, this result
follows from Shanon’s classical result [102] about perfect encryption systems). Benaloh and
Leichter [16] describe an explicit access structure I', that cannot achieve this lower bound.
The description of I" appears in Fig. 2.1, where the edges represents the minimal authorized
sets.

Figure 2.1: Description of the access structure I'.

I wanin man DY NN 2.1 N

Brickell [34] defined the notion of ideal secret sharing schemes. These are secret sharing
schemes that achieve the lower bound, that is schemes in which the size of the piece of every
party equals the size of the secret. Brickell and Davenport [35] “almost” characterized ideal
schemes in terms of matroids. Access structures, which have ideal schemes over any finite
domain of secrets are called universally ideal. In my M.Sc. thesis [6, 8], we defined this
notion and gave an exact characterization of these access structures. Ideal schemes were also
considered in [36, 63, 75, 100].

Capocelli, De Santis, Gargano, and Vaccaro [38], using the entropy function, prove better
lower bounds on the size of the pieces for the access structure I' (see Fig. 2.1). They prove
that in every secret sharing scheme realizing [' there exists a party that receives pieces of size
at least 1.5 times the size of the secret (for every domain of secrets). Better lower bounds
(for other access structures) were presented in [27, 28, 53]. The best lower bound is due to
Csirmaz [44, 43]. His proof gives, for every n, an access structure with n parties for which
the sum of the sizes of the pieces in every secret sharing scheme is £(n?/logn) times the
size of the secret (for every finite set of possible secrets).

An important lower bound is given by Kilian and Nisan [71] for threshold schemes. They
prove that in every t-out-of-n threshold secret sharing scheme there exists a party with pieces
of size at least log(n —t + 2) (for 2 <t < n —1). Unlike the previous results, this lower
bound does not increase as the secrets become longer. This lower bound explains why in
Shamir’s scheme [101] the cardinality of the domain of pieces has to be larger than n.
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A subject related to sharing a secret with respect to a family of functions is multi-secret
sharing schemes. That is, there are many secrets that should be shared simultaneously.
There are a few variations of this question. In [65, 66] each set of cardinality at least ¢
should be able to reconstruct some of the secrets (but not all). In non-perfect secret sharing
schemes (considered in [23, 59, 69, 79]) coalitions of at most ¢ parties know nothing on the
secrets, sets of at least ¢ party can reconstruct all secrets (where ¢ and ¢ are parameters such
that ¢ < t). Sets of size between ¢ and t know nothing about each secret, but are allowed
to have some information on the dependence between the different secrets. In [26, 31, 66]
each set B in an access structure is able to reconstruct any of the distributed secrets. The
security requirement considered in [31, 66, 26] is somewhat weak: after revealing one of the
secrets, limited information about other secrets may be leaked. Similar scenarios to sharing
with respect to a family of functions, in which sharing is viewed as a form of encryption and
the security is computationally bounded, have been considered in [1, 5, 98].

Public channels have been used in secret sharing (in addition to private channels) in
dynamic sharing of secrets. These are schemes where the dealer enables parties to reconstruct
different secrets in different time instants (e.g. [104, 21, 25]). A different scenario in which
a public broadcast channel is used (in addition to private channels) is to protect against
Byzantine parties [14]. Unlike our scenario, in that work the broadcast channel is heard by
all parties.

2.2 Key Generation and Key Distribution Schemes

The problem of key generation is one of the basic problems in cryptology. Therefore, it
received a lot of attention. The idea of key exchange was introduced by Merkle [80] and
in the pioneering work of Diffie and Hellman [51] on public key cryptography. Diffie and
Hellman [51] suggested a key generation protocol for conferences of size two. The Diffie
Hellman protocol is as follows: Let p be a prime number, and let a be a primitive element in
the field GF(p). Party P; (respectively P;) chooses a random number r; € GF(p) (respectively
r;) and sends the message m; = ot (respectively m; = a’7). The joint key of P, and P; is

ol

, which P; easily computes from m; and r; using the equality m} = a""7. A short list
of papers that deal with this subject in the computational model are [78, 113, 12]. Practical
key distribution systems are Kerboros [89] and KryptoKnight [82, 20]. A recent survey on
key distribution is [99].

Blom [24] was the first to consider information theoretic key distribution schemes. He
presented an efficient non-communicating scheme, based on MDS codes, for conference of
size 2 and coalitions of size b. Matsumoto and Imai [76] suggested the use of symmetric
linear functions for schemes for larger conferences. The most efficient scheme for larger
conferences was presented by Blundo et. al. [29]. They generalize Blom’s construction and
present schemes based on symmetric multinomials. Their multinomials have ¢ variables and

degree b in each variable. The size of the pieces in their scheme is (g+b_1

) times the size of
g—1
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the keys. For large values of ¢ and b, this expression is quite large. However, using entropy
arguments, Blundo et. al. [29] prove a tight (gizl) times size of keys lower bound on the size
of pieces. Therefore, their scheme is space-optimal. The number of random bits required in
these schemes was analyzed in [32]. Other non-communicating schemes in this setting were
presented in [81, 90, 61, 92].

Blundo et. al. [29] also presented one-time secure communicating scheme in which the
size of the pieces is ¢ + b — 1 times the size of the keys. (The fact that this scheme is only
one-time secure was not mentioned in [29]). One time secure communicating schemes based
on a random deal of cards are discussed in [55, 56, 57, 58].
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Chapter 3

Definitions

In this chapter we define our model, secret sharing schemes, and key distribution schemes.

3.1 The Model

We consider a system with n parties denoted by { Py, P», ..., P,}. In addition to the parties,
there is a dealer in the system, who has an input . A scheme is a probabilistic mapping,
which the dealer applies to the input, and generates n pieces of information. For example,
x 18 a secret whom the dealer wants to share. Formally,

Definition 3.1 [Scheme]: Let X be a set of inputs, R be a set of random inputs, and
p: R —[0,1] be a probability distribution on the random inputs R. A scheme Il is a mapping
IT: X xR — 51 x5 x...x 5, from the cross product of the inputs and the random inputs
to a set of n-tuples, called the pieces (sometimes referred to as shares). The coordinate i of
the n-tuple 1l(x,r) is called the piece of P;, and is denoted by Il;(x,r), and S; is the domain
of pieces of P;. We refer to 11 as the dealer, which has an input © and generates the pieces.
Given an input x € X, the dealer chooses a random input r according to the distribution pu,
and generates the vector of pieces Il(x,r). The dealer gives the i-th piece to P; in a private
way, i.e. the other parties have no information on the piece of P; other than the information
inferred from their pieces.

In the scenario we consider, the dealer is only active during the initialization of the
system. After the initialization stage, the parties can communicate. We next define the two
models of communication we consider.

Definition 3.2 [Communication Models]: The parties communicate via a complete syn-
chronous network of point-to-point communication channels. We consider two models of the
security of the channels:
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o The secure private channels model in which the parties communicate via secure com-
munication channels with no eavesdropping.

e The insecure channels model in which the “curious” parties can overhear all commu-
nications exchanged between all parties in the system. So, from the point of view the
“curtous” parties the channels are public. On the other hand, “good” parties hear only
messages sent to them. (In particular, from the point of view of the “good guys”, the
channels do not carry any of the potential advantages of a broadcast channel.)

In both cases the channels are reliable, that is, the messages are received as they are sent and
no party can change these messages, or impersonate other parties.

A subset of the parties can communicate in order to compute a function of their pieces
(e.g. the shared secret, a common key). We now define how they evaluate this function.

Definition 3.3 [Protocol]: A subset of the parties execute a protocol to evaluate a function
f. At the beginning of an execution, each P; has an input x; and a random input r;. The
parties exchange messages, as prescribed by the protocol. In each round every party sends a
message to every other party. Fach message sent by a party is determined by its input, its
random input, the messages it received so far, and the identity of the receiver. We say that
a protocol computes the function f if each party that took part in the protocol can evaluate
the correct value of [ from its input and the communication it heard. A protocol is non-
interactive if the messages sent by each party depend only on his input and his random input
(and not on messages received during the execution of the protocol). That is, the protocol
has only one-round of communication. If the protocol has more than one round then it is
called interactive. In this case we require that the protocol terminates after a finite number
of rounds (that is, we do not allow infinite runs).

In this work we consider only honest parties (no Byzantine parties). That is, the parties
follow their protocols. However, they are curious and after the protocol has ended some of
them can collude and try to gain some partial information (e.g. on the pieces of parties or on
the input of the dealer). We consider the information theoretic model in which the “curious”
parties, which have unlimited power, are not allowed to gain any information, as defined in
the next definition:

Definition 3.4 [No Information]: Let B be a (curious) coalition (set of parties). The
view of B, denoted by VIEWEg, after an execution of a protocol is all the information it has,
i.e. the pieces of the parties in the coalition, their local random inputs, and the messages
they heard. In the secure private channels these are the messages that are sent to parties in
the coalition. In the insecure channels model these are the messages exchanged by all parties
over the communication channels (here the insecurity of the communication is manifested).
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The coalition B has no information on a random variable X if for every two possible values

x1, 29 of X, and every value of VIEWg:
Pr[ VIEWE | X =21 ] = Pr[ VIEWE | X =2, ],

where the probability is taken over the random inputs of the dealer, and the random inputs
of the parties outside the coalition. Notice that we do not make any assumptions on the
distribution of X.

We will be interested in efficient schemes. More precisely we shall consider space efficiency
of the schemes. That is, we consider the pieces of the parties as binary strings, and the (space)
efficiency of a scheme is the size of the strings that represent the pieces of the parties.

3.2 Secret Sharing Schemes

We define (generalized) secret sharing scheme. The definition does not specify the communi-
cation model during the reconstruction of the secret. We require that after the reconstruction
the secret remains unknown to parties not participating in the reconstruction. Therefore,
implicitly the definition assumes secure private channels between the parties. (In latter
chapters we will define other variations of this schemes.) We first define the notion of an
access structure. This is a collection of sets of parties which should be able to reconstruct
the secret.

Definition 3.5 [Access Structure]: Let {P,..., P,} be the set of parties. A collection
A C 2WPPak s monotone if B € A and B C C implies C € A. An access structure is a
monotone collection A of non-emply subsets of {Py,..., P,} (that is, A C 2{PrFrk\ L0} ),
The sets in A are called the authorized sets, and the sets not in A are called the unauthorized
sets.

A secret sharing scheme realizing an access structure A is a scheme, in which the dealer
has a secret input s € S, and generates private pieces for the parties. Any authorized set of
parties can reconstruct the secret from its pieces, and any unauthorized set not in A cannot
reveal any partial information about the secret. Formally,

Definition 3.6 [Secret Sharing]: Let S be a finite domain of secrets. A secret-sharing
scheme realizing an access structure A is a scheme in which the input of the dealer is a secret
s € S such that the following two requirements hold:

Reconstruction requirement The secret s can be reconstructed by any authorized set.
That is, for any set G € A (G = {il,...,i|G|}), there exists a reconstruction function

ha Sy X ..o X Sig) — 5 such that for every secret s, and every random input r,

if W(s,r) = (s1,80,...,50) then hg(si,...,84,) = s.
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Security requirement FEvery unauthorized sel of parties cannot reveal any partial in-
formation about the secret as defined in Definition 3.4. We state this condition explicitly:
for any set B & A, for every two secrets ay,az € S, and for every vector of possible pieces
{si}ien’

Pr[ A Wi(ar,r)=s;] = Pr[ A Wi(ag,r) =s;].
P;eB P.eB

Where the probabilities are taken over the random input of the dealer.

A secret sharing scheme realizing the access structure {G : |G| > t} is called a t-out-of-n
threshold secret sharing scheme. These are the schemes which were defined by Blakley [22]
and Shamir [101] and have received most attention.

3.3 Key Distribution Schemes

In this section, we present formal definition of key distribution schemes. In these schemes
every set (& of size g can generate a common key. This key should be known to each party of
(. On the other hand, every coalition of at most b parties should not have any information
about this key. We consider two variants:

e a non-communicating scheme in which, after the initial distribution of the pieces, the
generation of the keys is done without any communication. That is, every party in the
set reconstructs the key from his piece.

o A communicating scheme in which the parties are allowed to communicate during the
generation of the key.

We start with non-communicating schemes:

Definition 3.7 [Non-Communicating Key Distribution Schemes]: Let ¢ and b be
positive integers such that g +b < n, the set K be a set of keys, P be an a-priori probability
distribution on K, and U; be the domain of pieces for party P;. A non communicating (g, b)
key distribution scheme is a scheme U : R — Uy x Uy x ... x U, such that:

Reconstruction requirement Fvery conference (set) G of cardinality g has a common
key; this key is determined by the random input of the dealer and is denoted kq(r). It is
required that this key is distributed according to the a-priori probability distribution P; that
is for every k € K

Pr [ ka(r) = k] = P(k)

where the probability is taken over the random input of the dealer r. Fach member of GG
can deterministically reconstruct G'’s key from his piece without any communication with the
dealer or other parties.
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Non-communicating security requirement Fvery (“curious”) coalition B of cardi-
nality b does not gain any information from its pieces about a key of a disjoint conference GG
(GNB =10). That is, for every vector of pieces (uy,...,u,), and every two keys ki, ky € K:

Pr A\ U(r)=w) | ka(r) =k ]=Pr [ \ U(r)=u;) | ka(r) =k ].

P;eB P;eB
The probability is taken over r — the random input of the dealer.

It is not guaranteed that keys of different conferences are independent random variables.
The security requirement does imply some independence between the keys. For example, it
is true that every b 4+ 1 keys are independent. Otherwise, there are b parties knowing the
first b keys, and therefore gain some information on the (b+ 1) key of a disjoint conference.
Claim 6.2 gives another scenario in which this independence is guaranteed. In the rest of
this work we assume that the a-priori probability of each key is positive. That is, for every
key k € K it holds that P(k) > 0.

Next we consider communicating schemes. In this case the communication in the gen-
eration of one key might leak information on keys of other conferences. Therefore, unlike
non-communicating schemes, we consider two security requirements:

o Restricted schemes in which the secrecy of the generated keys is guaranteed only if a
restricted number of sets generate a key.

o Unrestricted schemes in which the secrecy of the generated keys is guaranteed even
if an unrestricted number of conferences (possibly all) generate a key (however, each
conference is allowed to generate only one key).

Before going any further, we remark that the notion of key distribution schemes re-
stricted to a limited number of conferences is meaningful only with respect to communicating
schemes. For non-communicating schemes, the generation of a conference key does not add
any information to any party (either in the conference or not). Therefore a one-time secure
non-communicating scheme would also be secure in the unrestricted sense, and no saving can
be expected. On the other hand, the communication in communicating schemes is heard by
all parties (not only conference members), and could reduce the uncertainty of the remain-
ing pieces. It is possible that after some communications took place, no uncertainty is left,
and the pieces become useless for additional conferences. This implies that the amount of
initial secrecy in restricted communicating schemes can be smaller than that of unrestricted
schemes. We first define unrestricted communicating schemes:

Definition 3.8 [Unrestricted Communicating Key Distribution Schemes]: An un-
restricted communicating (g, b) key distribution scheme with n parties and domain of keys
K is a scheme U : R — Uy x Uy x ... x U, in which every conference (set) G of cardinality
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g can generate a common key after communicating over insecure channels. We denote the
communication which is exchange while G generates the key by Ca(r, 7).t

Reconstruction requirement At the end of the conversation, each member of G can
deterministically reconstruct a key from the conversation and his piece. The key that every
member of G reconstructs is the same, and is denoted by kq(r,7g), where r is the random
input of the server, and 7 is the vector of random inputs of the parties in G. It is required
that this key is distributed according to the a-priori probability distribution P; that is for
every k € K

Pr [ kG(rv FGO) =k ] = P(k) )

where the probability is taken over r, the random input of the server, and Tg the random
inputs of the parties of G.

Unrestricted security requirement Any (“curious”) coalition B of cardinality b, hav-
ing their pieces and random inputs, and knowing the conversations of all possible conferences,
does not gain any information on the key of any disjoint subset Gy (i.e. GoN B =10). That
is, the view of the coalition B is

V[EWB:FB/\ /\ u]‘/\ /\ Cg,

P;eB |Gl=g

where (uj)p,ep s any vector of pieces; ¥'g is any set of random inpuls of the coalition mem-
bers; and Cy,...,Cny are any possible conversations of all sets of cardinality g. We require

that for every two kegys ki, ke € K:
Pr [ V]EWB | kGO(T,FGO) == kl ] = Pr [ V]EWB | kGO(T,FGO) == kz ] .

The probability is taken over r — the random input of the server, and over ¥ — the random
inputs of all the parties for all conferences; rg is the restriction of ¥ to the coalition B.

We continue with the definition of 7-restricted key distribution scheme. These are com-
municating key distribution scheme in which the secrecy of the key is guaranteed only if at
most 7 conferences generated a key.

Definition 3.9 [Restricted Communicating Key Distribution Schemes]: A4 7-
restricted communicating (g,b) key distribution scheme is a communicating (g,b)-scheme
in which the security property is replaced by the following one:

r-restricted security property Any (“curious”) coalition B of cardinality b, hav-
ing their pieces and random inputs, and knowing the conversations of any T conferences

Tt is a function of the g pieces and the local random inputs, but since the pieces are determine by the
random input of the dealer then we shall also consider 1t as a function of the dealer’s random input and the
local random inputs.
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Glo,...,Gr_1, does not gain any information on the key of the disjoint subset Gy (i.e. Gy N
B=10). That is, the view of the coalition B is

V[EWB :FB/\ /\ u]‘/\ /\ CG] 5

P,eB 0<j<r—1

where (u;)pep is any vector of pieces; T is any set of random inpuls of the coalition
members; and Cy,Cy,...,Co__,
Goy ..., Gr_1 of cardinality g. We require that for every two keys ki, kq € K :

are any possible conversations of any combination of T sets

Pr [ V]EWB | kGO(T,FGO) == kl ] = Pr [ V]EWB | kGO(T,FGO) == kz ] .
The probability is taken over r — the random input of the server, and over ¥ — the random

inputs of all the parties for all conferences; ¥p is the restriction of ¥ to the coalition B. We
denote 1-restricted scheme by one-time scheme.
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Chapter 4

Linear Secret Sharing Schemes and
Monotone Span Programs

In this chapter we consider linear secret sharing schemes. These are schemes in which the
reconstruction functions are linear. That is, every piece is a vector over some finite field, and
every set in the access structure reconstructs the secret using a linear combination of the
coordinates of its pieces. Most secret sharing schemes that were proposed are linear, e.g. [16,
19, 22, 27, 30, 35, 36, 52, 62, 68, 72, 101, 103, 104, 105, 107, 108]. The existence of an efficient
linear schemes for a specific access structure is equivalent to the existence of a small monotone
span programs — a computation model presented in [68]. Span programs are a linear algebraic
model of computation. Monotone span programs provide an easier model for proving lower
bounds for linear secret sharing schemes. Lower bounds for monotone span programs also
imply lower bounds for monotone formulae, monotone symmetric branching programs, and
for monotone contact schemes. In this chapter we define linear secret sharing schemes and
monotone span programs, and prove the equivalence between them. In Chapter 5 we prove
lower bounds on the size of span programs.

4.1 Linear Secret Sharing Schemes

We first define linear secret sharing schemes. These are a special class of secret sharing
schemes in which the reconstruction functions are linear.

Definition 4.1 [Linear secret sharing schemes|: Let K be a finite field, and II be a
secret sharing scheme with domain of secrets S C K realizing an access structure A. We say
that 11 is a linear secret sharing scheme over K if:

1. The piece of each party is a vector over K. That is, for every: there exists a constant d;
such that the piece of P; is taken from K%. We denote by I, ;(s,7) the j-th coordinate
in the piece of P; (where s € S is a secret and r € R is the dealer’s random input).
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2. For every authorized set, the reconstruction function of the secret from the pieces is
linear. That is, for every G € A there exist constants {o;; : P, € G,1 <j <d;},
such that for every secret s € S and every choice of random inputs r € R,

s= 2 2 aig-i(sr)
PeG1<;5<d;
where the constants and the arithmetic are over the field K.
The total size of the pieces in the scheme is defined as d= Y d;.

To show that the definition of linear schemes is natural, we show that it is equivalent to
a few alternative definitions. In Section 4.4 we show that it equivalent to the existence of
monotone span programs. Jackson and Martin [64] proved that linear schemes are equivalent
to geometric schemes introduced in [103, 104, 105]. Furthermore, we state an alternative
definition, and show that this definition is equivalent to the original definition. While in the
original definition the reconstruction of the secret is linear, in the alternative definition the
generation of the pieces by the dealer is linear. Formally,

Definition 4.2 [Alternative Definition]|: A secret sharing scheme is linear (linear gen-
eration of pieces) if:

1. The piece of each party is a vector over K.

2. During the generation of the pieces, the dealer chooses independent random vartables,
denoted rq,...,1¢, each one distributed uniformly over K. Fach coordinate of the piece
of every party is a linear combination of r1,...,r, and the secret s.

We show that the latter definition implies the original definition:

Claim 4.3: FEvery scheme that is linear according to Definition 4.2 is linear according to

Definition 4.1.

Proof:  Consider an authorized set G € A. FEach coordinate of the pieces of the parties in
(G is a linear combination of the random inputs of the dealer and the secret. We can write
these combinations as a system of linear equations in which the unknowns are the secret and
the random inputs of the dealer. Since G can reconstruct the secret there is only one secret
S0 € S that is consistent with this system (by consistent we mean that there exists a solution
to the system in which the secret equals sg). However, S C K and, presumably, there can
be an element s; € K \ S that is consistent with this system. In this case, for every o € K
the element asg + (1 — «)sy is consistent with the system. But asg + (1 — a)s; ranges over
all the field K and all secrets would have been consistent with the system. Therefore, s¢ is
the only value in K for the secret that is consistent with the system. Thus, the equation
s = 8g is a linear combination of the equations in the linear system, and the secret is a linear
combination of the coordinates of the pieces in (. []

In Claim 4.9 and Claim 4.7 we prove the converse of this claim; that is if there exists
a linear scheme according to Definition 4.1 then there exists a linear scheme according to
Definition 4.2 whose size is the same.
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4.2 Examples of a Linear Secret Sharing Schemes

In this section we describe two known secret sharing scheme, and show that they are linear.

Example 4.4 [Shamir {-out-of-n threshold scheme [101]]: Let ¢ be the size of the
domain of secrets, where ¢ is a prime-power that is bigger than n (the number of parties
in the access structure). Let s € GF(gq) be the secret. The dealer chooses independently
with uniform distribution ¢ — 1 random elements in GF(q¢), which are denoted by ry,...,ri_1.
These elements and the secret s define a polynomial

plx)eri ™ Fr 2P b s

Observe that p(0) = s. The dealer gives the piece p(i) to party FP,. This piece is a linear
combination of the random inputs and the secret. Now each set of cardinality at least ¢
can reconstruct p(x) by interpolation. That is, the set {F;,..., P;,} holding the pieces
{Siys---, 8}, can compute the polynomial p(x) since

o) =3, T

J=1  dg#j td T

— X

The secret is reconstructed by substituting 0 for x in this polynomial. That is, the secret is
a linear combination of the pieces {s;,...,s; }, where the coefficient of the piece s;; of party
Py, is Tlaz, Z.dl_di . Therefore, Shamir’s scheme is linear (according to both definitions).

J

Example 4.5 [Scheme for Monotone Symmetric Branching Programs [17]]: We
next describe an interesting linear scheme which was originally presented by Benaloh and
Rudich [17] (see also [68]). We first describe a computation model called monotone symmetric
branching programs, also known as monotone undirected contact schemes and switching
networks (for more details on this subject the reader can refer to [68, 97]). Let H = (V, F)
be an undirected graph, p : £ — {x1,...,2,} be a labeling of the edges by variables, and v
and vy be two special vertices in the graph. A monotone symmetric branching programs is
defined as (H, p,vo,v1). This program computes the following Boolean function: Given an
assignment 6 € {0,1}" define H; to be the subgraph whose vertices are the same vertices as
H ., and the edges are all the edges whose labels are variables z; such that the :-th bit of ¢
equals 1. The program accepts ¢ if in Hy there exists a path from vy to vy. Similarly, this
program defines the access structure whose parties are { Py, ..., P,} and its authorized sets
are all the sets whose characteristic vectors! are accepted by the contact scheme.

We show that every access structure defined by a monotone symmetric branching program
with d edges has a linear scheme in which the total of the pieces size is d. Let K be the
domain of secrets (where K is any finite field), and {Tz, . ,T|V|_1} e KIVI=1 be random

lGiven a set G € {P,...,P,} its characteristic vector g € {0,1}" is the vector in which the i-th
coordinate equals 1 if and only if P; € GG.
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inputs of the dealer. Define 120 and ry £s. For every edge (v;,v;) € E assign the value
ri —r; . The piece of P; are all the values assigned to edges labeled by x;. We can represent
this scheme by an |E| x |V| matrix in which each row is indexed by an edge and every
column is labeled by a vertex. The row indexed by the edge (v;,v;) (where ¢ < j) is 1 in the
v; coordinate, —1 in the v; coordinate and is 0 otherwise. Using the notation of the following
section, this matrix is a monotone span program for the function.

We claim that this scheme realizes the access structure defined by the monotone sym-
metric branching program. For every simple path which starts at vg, and ends at vy , it is
possible to assign +1 weights to the values assigned to edges along the path, such that the
weighted sum is equal to the secret s. Therefore, every authorized set can reconstruct the
secret. On the other hand, since every unauthorized set does not contain at least one cut in
the graph?, the unauthorized set has no information on the secret.

4.3 Span Programs

We state the definition of the model of span programs from [68]. A span program for a
Boolean function is presented as a matrix over some field with rows labeled by literals of the
variables. The span program accepts an assignment if and only if the all-ones row is a linear
combination of the rows whose labels are consistent with the assignment.

Definition 4.6 [Span Programs]: Let K be a field, and {z1,...,2,} be a set of variables.
A span program over K is a labeled matriz M(M, p) where M is a matriz over K, and p is
a labeling of the rows of M by literals from {x1,..., 2, T1,...,&,} (every row is labeled by
one literal).

A span program accepts or rejects an input by the following criterion. For every input
sequence 6 € {0,1}" define the submatriz Ms of M consisting of those rows whose labels are
set to 1 by the input 6, i.c., either rows labeled by some x; such that 6; = 1 or rows labeled
by some x; such that 6; = 0. The span program M accepts ¢ if and only fo € span(Ms),
i.e., some linear combination of the rows of My gives the all-one vector 1. (The row vector
1 has the value 1 in each coordinate.) A span program computes a Boolean function f if it
accepts exactly those inputs 6 where f(6) = 1.

A span program is called monotone if the labels of the rows are only the positive literals
{x1,...,2,}. Monotone span programs compute monotone functions.

The size of M is the number of rows in M. We denote by SPx(f) (respectively mSPx(f))

the size of a smallest span program (respectively monotone span program) over K that com-
putes f.

The vector 1 in the definition above can be replaced by any fixed nonzero vector (as will
sometimes be convenient) via a change of basis. This vector is called the objective vector.

ZA cut in a connected graph is a set of edges whose removal from the graph results in a non-connected
graph.
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The class of functions with polynomial size span programs is equivalent to the class of
functions with polynomial size counting branching programs [37, 68]. Span program size is
a lower bound on the size of symmetric branching programs [68] (see Example 4.5). Lower
bounds for span programs also imply lower bounds for formula size. It is known that every
function with a polynomial size span program is in NCj this follows from the fact that linear
algebra is in NC (see [18, 37, 68, 83]).

Monotone span programs have only positive literals (non-negated variables) as labels of
the rows. They compute only monotone functions, even though the computation uses non-
monotone linear algebraic operations. In fact, Babai et. al. [4] showed a function whose
monotone circuit complexity is super-polynomial although it has a linear size monotone
span program. Thus, lower bounds on monotone circuit size do not imply lower bounds on
the size of monotone functions. However, the reduction in [68] from symmetric branching
programs to span programs, described in Example 4.5, preserves monotonicity, and thus
lower bounds for monotone span programs imply lower bounds for monotone symmetric
branching programs and for monotone formula size.

4.4 Equivalence of Span Programs and Linear Secret
Sharing Schemes

In this section we show that linear secret sharing schemes and monotone span programs
are equivalent. To make this statement formal we need some notations. Given a set GG €
{Py,....P,} let 6 € {0,1}" be its characteristic vector, that is the i-th coordinate equals 1
if and only if P; € G. Define the function f4 : {0,1}" — {0,1} as:

GeA if and only if falde)=1.

In the following two claims we quote the proofs that the size of a smallest monotone span
program computing f4 is equivalent to the size a smallest linear secret sharing scheme
realizing A. The first claim was proved by Brickell [34], Brickell and Davenport [35], and
Karchmer and Wigderson [68].

Claim 4.7: [34, 35, 68] Assume there exists a monotone span program, of size d, over a
finite field K computing the function fu. Then there is a linear secret sharing scheme over
K realizing the access structure A in which the total size of the pieces is d.

Proof: Let M be a monotone span program with ¢ columns. We construct a linear secret
sharing scheme in which the dealer chooses at random a vector ¥ = (rq,...,r;) from K* such
that the sum of its coordinates is equal to the secret, i.e. 1 -7 = S, ri = s. Consider the
vector M7, and label each of its coordinates according to the labeling of the corresponding
row in M. The piece of P; are all the coordinates of M7 that are labeled by x;. We will
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show that this scheme is a secret sharing scheme realizing A. That is, every set G € A can
reconstruct the secret, while every set B ¢ A has no information on the secret.

Let G be an authorized set in A. Since M computes the function f4, there exists a
combination of rows indexed by variables in G that equals to the all one vector. That is, in

M there exists rows, denoted Ml, . ,Md, whose labels are from &, and there exist constants
Bi,...,Bqsuch that 2%, B;M; = 1. Furthermore, by our construction the parties in (¢ hold
the values My - 7,..., My - 7. The “weighted sum” of these values equals to the secret:

d — d — —

That is, every authorized set can reconstruct the secret, by applying a linear function to the
coordinates of their pieces.

Now, let B be an unauthorized set (a set not in A). We have to prove that the parties
in B have no information about the secret. That is, the number of possible random strings
that are consistent with pieces of B given a secret sq is equal to the number of possible
random strings that are consistent with the pieces of B given a secret s;. This will be done
by showing a one to one mapping from the random strings that are consistent with the pieces
and the secret sg to the random strings that are consistent with the pieces and the secret
s1. Furthermore, this mapping has an inverse, so the cardinality of the two sets of random
inputs is equal.

To exhibit such a mapping, we need the following proposition from linear algebra. It is
a special case of the fact that a linear space V' is a subspace of a linear space N if and only
if the null space of V' contains the null space of N.

Proposition 4.8: A vector v is independent of a sel of vectors represented by a matriz N
if and only if there exists a vector W such that Nw = 0 while v - @ # 0.

Since 1 is independent of My, there exists a vector r’ such that MgBﬁ = 0 while T - ¢ # 0.
Now, let € be a possible vector of pieces of the set B, and 7 be a random vector that the dealer
used to generate the vector ¢. Finally, let sq its corresponding secret. That is, Ms,7 = ¢ and
1.7 = so. Define the following mapping from the random vectors consistent with s to the
random vectors consistent with s;:

&(F) & 7+ ar’
where o £ (s; — 50)/@ . 7:;) Since 7 generates the pieces ¢, the vector ¢() generates them
as well:

M, (F 4 ar’) = My, 7+ aMs, " =+ a0 = .

The secret corresponding with the random string 7+ ar’ is
f-(F—I—ozF’) —sot+al-r=s.
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Therefore, the mapping ¢ has the desired properties and the security with respect to unau-
thorized sets follows. []

We now quote the proof of the other direction. This claim was proved by Beimel and

Chor [6, 8] and by van Dijk [52].

Claim 4.9: [6, 8, 52] Assume there exists a linear scheme over a finite field K realizing the
access structure A in which the total size of the pieces is d. Then there is a monotone span
program over K computing the function f4 whose size is d.

Proof:  With out loss of generality, assume that {0,1} C S. We construct the following
span program; for every coordinate of the piece we shall have a row in the span program.
This row is labeled by z; where P; is the party that the coordinate belongs to. For every
pair (s,r) € {0,1} x R we shall have a column in the program. The definition of the span
program is the follows: Mi; jy sy = 1L;;(s,7). That is, the column labeled by (s,r) is the
vector of pieces generated when the dealer holds the secret s and the random input r. The
first | R| columns are indexed by the secret 0 (and the different random strings), and the last
|R| columns are indexed by the secret 1. This “vector of secrets” is the objective vector of
the program:

7=1(0,...,0,1,...,1).
——— ——
R R

We claim that this span program computes f4. That is, we will prove that G € A if and
only if 7 € span(Ms,,).

For the first direction, let G € A. Recall that there exists a linear combination of
coordinates of the pieces of the parties in ¢ which equals to the secret. That is, there exist
constants {a; ;} such that for every (s,r) € {0,1} x R it holds that

S = Z OéiJ‘HZ"]‘(S, T) = ZO&Z'7]‘M<Z'7]‘>7<57T> .

Now, let M(m’) be the (i,7) row of M. Hence, rewriting the previous equations we get
U= Zoq’j]\_j(z»J). In other words, v € span(Mj,) as required.

For the second direction, assume that there exists a combination of the vectors labeled by
variables from GG which equals to the objective vector . Therefore, applying this combination
to their pieces, the parties in G can distinguish when the secret is zero and when the secret
is one. Thus, the security requirement implies that G € A. L]
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Chapter 5

Lower bounds for Monotone Span
Programs

In this chapter we present a new technique for proving lower bounds for monotone span
programs, and prove a lower bound of Q(n??) for the 6-clique function. By the results of
the previous chapter, this implies the same lower bounds for the total size of the pieces in
every linear secret sharing scheme realizing the corresponding access structure.

The chapter is organized as follows. In Section 5.1 we describe our notations, give an
application of Neciporuk’s method [87] for lower bounds on the size of (non-monotone) span
programs, and a construction of a linear size monotone span program for accepting non-
bipartite graphs. In Section 5.2 we present the method for proving the lower bound, and in
Sections 5.3 and 5.4 we present applications of the method.

5.1 Preliminaries

A minterm of a monotone function is a minimal set of its variables with the property that
the value of the function is 1 on any input that assigns 1 to each variable in the set, no
matter what the values of the other variables. In this chapter we denote variables by lower
case letters, and minterms (sets of variables) by upper case letters, such as A. Script letters,
such as M, will be used for families (sets) of sets. We denote by h the number of vertices in
a graph, and K to be a field.

By our definition the size of a span program is the number of rows in the matrix. The
number of columns does not effect the size of the span program. However, we observe that
it is always possible to use no more columns than the size of the program (since we may
restrict the matrix to a set of linearly independent columns without changing the function
that is computed).

Observation 5.1:  For every span program M there is a span program M’ which computes
the same function has the same number of rows and the number of colums of M' is at most
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the number of the rows of M.

Following [68] and with Observation 5.1, we can apply Neciporuk’s method [87] to span
programs, and get a lower bound of Q(n*?/logn) for an explicit function with n variables.
This is the best lower bound known for the non-monotone span program complexity of an
explicit function. Let ED, be the “element distinctness” function which receives A numbers
in the range {1,---,2*} and decides whether all the numbers are distinct. The function ED,
has n = 2hlog h Boolean variables.

Theorem 5.2: SPar)(ED,) = Q(n®?/logn), where n = 2hlog h.

Furthermore, Observation 5.1 enables us to count the number of span programs. There

are at most s2"¢° span programs of size s over GF(¢). Therefore,

Theorem 5.3:  There exists a Boolean functions f such that SPar@)(f) = Q(2°°") and
there exists a monotone Boolean functions f such that mSPar@)(f) = Q(20-5=o),

Using Claim 4.9 we conclude that there exists an access structure for which every linear
secret sharing scheme over any field distributes shares of size 2%,

Next we present a monotone span program of linear size (exactly n) for a function on

n variables that is known to have Q(n*?/(logn)®) monotone circuit complexity [95, 3, 67].
We consider the function Non-Bipartite,, whose input is an undirected graph on h vertices,
represented by n = (g) variables, one for each possible edge. The value of the function is 1
if and only if the graph is not bipartite.
Theorem 5.4: mSPqp(y)(Non-Bipartite,) = n, where n = (g)
Proof: ~ We construct a monotone span program over GF(2) accepting exactly the non-
bipartite graphs as follows. There will be n rows, each labeled by a variable (possible edge).
There is a column for each possible complete bipartite graph on h vertices. The column for
a given complete bipartite graph contains the value 0 in each row that corresponds to an
edge of the given graph and contains 1 in every other row.

This program rejects every bipartite graph (. This is because i is contained in some
complete bipartite graph, and so there will be a column that contains only 0’s in the rows
labeled by the edges of GG. Therefore the vector 1 is not a linear combination of these rows.

Next we show that the program accepts every non-bipartite graph. Since the span pro-
gram is monotone, it is sufficient to show that it accepts every minimal non-bipartite graph,
i.e., every odd cycle. Let (' be an arbitrary odd cycle. The intersection of any cycle with
any complete bipartite graph has an even number of edges. So the odd cycle €' has an odd
number of edges which are not in any given complete bipartite graph. Hence the sum of the
row vectors corresponding to all the edges in €' is odd in each column, i.e., gives the vector
1 over GF(2), and so C' is accepted by the span program. L]
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We note that the lower bound by Razborov’s method (see [95, 3, 67]) for triangles also
applies to the function that accepts exactly the non-bipartite graphs, thus the monotone
circuit complexity of the function Non-Bipartite, is Q((h/log h)?) = Q(n*?/(logn)?). The
gap between monotone span program complexity and monotone circuit complexity was im-
proved by Babai et. al. [4]. They exhibit a function that is computable by monotone span
programs whose size is linear but requires monotone circuits of size n(°6™) and exponential
size monotone formulae.

5.2 The Method for Proving Lower Bounds

In this section we present a method for proving lower bounds for monotone span programs.
The idea of our method is to show that if the size of a span program (i.e., the number of
rows in the matrix) is too small, and the program accepts all the minterms of the function f
then it must also accept an input that does not contain a minterm of f, which means that
the program does not compute f. Our approach may be viewed as an application of the
“fusion method” [67, 96, 111].

We introduce the definition of a critical family of minterms of a monotone Boolean
function. We prove that the cardinality of a critical family for a function f is a lower bound
on the size of monotone span programs computing f.

Definition 5.5 [critical family]: Let f be a monotone Boolean function and M; be the
family of all of its minterms. Let H C My be a subfamily of the minterms of f. We say
that a subfamily H C My is a critical family for f, if every H € 'H contains a set Ty C H
such that |Ty| > 2 and the following two conditions are satisfied.

C1. The set Ty uniquely determines H in the family H. That is, no other set in the
famiy 'H contains Th.

C2. For any subset Y C Ty , the set Sy = Unep anyzo A\ Y does not contain any
member of M.

Note that Condition C2 requires that Sy contains no minterm from f, not just none from

H.

Theorem 5.6: Let f be a monotone Boolean function, and let H be a critical subfamily of
minterms for f. Then for every field K,

mSPx(f) = [H] .

Proof: Let M be the matrix of a monotone span program computing f, and let d be the
number of rows of M. Any minterm of H is accepted by the program. By definition, this
means that, for every H € H, there is some vector ¢y € K% such that ¢y - M = 1, and where
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¢y has nonzero coordinates only at rows labeled by variables from H. (For a given H there
may be several such vectors, we pick one of them and denote it by ¢p.)

Since &g is taken from K%, the number of linearly independent vectors among the vectors
éy for H € H is a lower bound for d, i.e., for the size of the monotone span program
computing f. We show that all the vectors ¢y for H € H must be linearly independent.

Suppose, that this is not the case, i.e., for some H € 'H

EH = Z OéAEA 5 (51)
AcA

where ay € K and A="H\ {H}.
Let us consider the set Ty € H from Definition 5.5.

Lemma 5.7:  If Equation (5.1) holds then for any nonempty subset Y C Ty the following

must hold.
Z ayp = 1.
A€ A ANY £D

Proof:  Suppose that for some Y C Ty, 3 scaanvzpoa =7 # 1.
Let us consider the vector

E: Z OéAEA — EH . (52)
AEA,ANY £0

We have ¢- M = (v — 1)f, thus 1/(y —1)¢- M = 1, and the program accepts the set of
variables that label the rows corresponding to nonzero coordinates of ¢.

Recall that each ¢4 has nonzero coordinates only at rows labeled by variables from A.
Thus for ANY = ) the coordinates of ¢4 are zero at rows labeled by variables from Y. By
Equation (5.1),

E: 6 — Z OéAEA .
A€AANY =0
Therefore, the vector ¢ has zero coordinates at all rows labeled by variables from Y.

On the other hand, by Equation (5.2) all the nonzero coordinates of ¢ are at rows labeled
by variables that appear in some sets A such that ANY # (. Therefore, the program accepts
Sy = Uner anyzs A\ Y, that (by Definition 5.5) does not contain any minterm of f. This
proves the lemma. L]

From Lemma 5.7, we get a system of linear equations in the unknowns a4. We prove
that this system of equations has no solution, contradicting (5.1). Suppose that [Ty| = e.
Let us consider the following (2° — 1) x (2° — 1) zero-one matrix N. The rows and columns

of N are indexed by the nonempty subsets of T, and N(Y,Z) =1 if and only if Y N Z £ 0.

(This matrix is the complement of the disjointness matrix).

Observation 5.8: The matriz N has full rank over any field K.
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(This can be shown by a simple transformation of N to a triangular matrix, or by simple
induction.)

We will show, that if Equation (5.1) holds then taking 87 = Y scaanry—z @4 as a
coefficient for the column Z # Ty, we get the column indexed by T as a linear combination
of the other columns of N. Notice that the column of N indexed by Ty consists of all 17s.
We show that for any Y, 0 # Y C Ty, we have Y y.zcq, BzN(Y,Z) = 1.

By Condition C1 of Definition 5.5, for A € A we have ANTy # Ty. It Y C Ty then
ANY =ANnTyNnY. By Lemma 5.7, if (5.1) holds then we have

= Y ae ¥ ( 3 ZaA)z Y BNV, 7).

AeA,ANY #0 0£ZCTy,ZNY #0 \A€AANTy= 0£ZCTy

and the column 7 is a linear combination of the other columns of N. Since N has full rank
this is not possible, and so (5.1) cannot hold, i.e., all the vectors ¢y for H € H are linearly
independent. This concludes the proof of the theorem. L]

5.3 Lower bounds for clique functions

We consider the function Clique, ), whose input is an undirected graph on h vertices, repre-
sented by n = (g) variables, one for each possible edge. The value of the function is 1 if and
only if the graph contains a clique of size d.

It is known ([3, 95]) that the monotone circuit complexity of Clique,, is 290D for d =
O((h/log h)?/?), and for fixed d it is Q((h/log h)?). However, the strongest known lower
bound for the monotone span program complexity of the Clique, ), function is our Q%) =
Q(n*®) lower bound that holds for d > 6 such that n —d = O(n). For d < 4, we obtain lower
bounds that are tight, up to a constant factor.

For a given d, we partition the set of h vertices into d classes Cy,Cy, ...,y of approxi-
mately equal size. We say that a d-clique is multicolored if each of its d vertices belong to a
different class. Thus a multicolored clique will never contain an edge between two vertices
in the same class.

Let M be an arbitrary family of multicolored d-cliques. Let Ty be some subset of the
edges of a clique ) € M. Denote the vertices of () by vy,...,v4, and consider for Y C T
the set Sy = Ugem,gry20G \ Y. Suppose Sy contains a d-clique Z with vertices zq,. .., zq.

First we present two simple but important observations that are helpful in finding critical
families for clique functions.

Claim 5.9:  The vertices of Z all belong to different classes, say z; € C;, fori=1,...,d.

Proof: Sy only contains edges that appear in d-cliques that belong to the family M, and
so contains only edges between vertices from different classes. ]

We always list the vertices of a multicolored clique in the order of the partition classes.
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Claim 5.10:  For each edge (v;,v;) € Y at least one of z; # v; or z; # v; must hold.

Proof: If Z contained both v; and v; for (v;,v;) € Y then Z could not be a d-clique
contained in Sy since Sy does not contain an edge between v; and v;. U]

We are ready to construct the critical families.

Lemma 5.11:  For any partition of the h vertices into three classes, the family M of
mullicolored 3-cliques is critical for Cliques ,.

Proof: Let @ be an arbitrary multicolored 3-clique (triangle), and let T be the set of
two of its edges, for example (vy,vq) and (vq,v3). There is only one triangle containing Tg,
thus Condition Cl1 is satisfied. To see that Condition C2 holds, let us consider for ¥ C T
the set Sy = Ugem,gry20G \ Y, and suppose that it contains a triangle Z with vertices
21, 22, Z3.

If Y =Tg, then z; = vy, must hold, since there are no edges in Sy incident to any other
vertex from Cy. By Claim 5.10 we have z; # vy and z3 # vs. Therefore, the edge (21, z3)
cannot be present in Sy, since all the edges of Sy are contributed by triangles that contain
at least one of vy or vs.

If Y # Tg, then it consists of a single edge, (v1,vs2) say. Then Sy does not contain any
edge between the classes (; and (5, and so, by Claim 5.9, cannot contain a triangle. L]

Lemma 5.12:  Given any partition of the h vertices into four classes, the family of multi-
colored J-cliques is critical for Clique, .

Proof: Let ) be an arbitrary multicolored 4-clique, and let Ty be the set of two of its
nonadjacent edges, for example (vy,vy) and (vs,v4). Condition C1 is satisfied, since two
nonadjacent edges uniquely determine a 4-clique. To see that Condition C2 holds, as in the
previous lemma, let us consider Sy for Y C T and suppose that it contains a 4-clique Z
with vertices z1, 23, 23, 24.

If Y = T4 then, by Claim 5.10, without loss of generality we have z; # v;. Any edges
incident to z; could only be contributed to Sy by cliques that contain (vs,vs). Thus, a clique
containing z; would also have to contain both v3 and vy, which is not possible by Claim 5.10.

As in the previous lemma, if Y # T then it consists of a single edge and Sy does not

contain a 4-clique. (]

We note that for d > 5 the family of multicolored d-cliques is not critical for
Clique, ;. For example, for & = 5, any choice of Ty for a multicolored 5-clique H
with vertices vy, vy, vs, v4,v5, must contain either the set Y7 = {(v1,v2), (v1,v3), (v, v5)}

or Yo = {(v1,v2), (v1,03), (v1,v4), (v1,v5)}, up to renaming of the vertices. Each of the sets
Sy, and Sy, contain the multicolored 5-clique on vertices vy, 29, 23, 24, 25, Where z; # v; for
1=2,...5.

The critical families we use for proving lower bounds for 5- and 6-cliques will be appro-
priately chosen subfamilies of multicolored cliques.
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Theorem 5.13: For every field K,
mSP(Cliqueg ;) = Qn*®) .

Proof: ~ We show that the family of minterms of the Cliqueg ), function contains a large
critical subfamily Q. Let us assume that h = 6¢, and partition the set of h vertices into six
classes of size ¢. @ will be a subfamily of the multicolored 6-cliques, under this partition.

For members of Q, we restrict the edges allowed between vertices in the classes 'y and
(5, and similarly between the classes Cy and Cgs. The legal pairs of vertices which we allow
to be connected by an edge will be specified by a ¢ x ¢ Boolean matrix D. Between all other
pairs of classes we allow arbitrary edges. The edge (a,b) with « € Cy and b € C5 (a € C4
and b € Cg, respectively) is allowed in a member of Q if and only if D(a,b) = 1. We choose
D such that it does not contain any complete (all ones) 2 x 2 submatrices. For example the
incidence matrix of a projective plane has this property, and its number of one is ©(¢*/?),
with ©(¢'/?) ones in each row and column. The constructions in [70, 88] can also be used.
(The construction of matrices with similar properties for arbitrary ¢ is described in [91].)

The family Q consists of all the multicolored 6-cliques that satisfy the restriction on the
edges between classes (; and (5, and between C4 and Cs. The number of such 6-cliques is
O(q®), thus we have |Q| = O(¢°) = O(n??).

Next we show that Q is critical for Cliquegy,. Consider any () € Q, and denote its
vertices by vy,...,ve. The set Ty we choose will consist of the four edges (vy,vs), (v2,v3),
(v4,05), (vs,v6). The critical family is illustrated in Figure 5.2. Obviously, Condition C1 is
satisfied.

We now prove that Condition C2 holds. For Y C Tp, suppose the set Sy = Ugeo,any20G\
Y contains a 6-clique Z with vertices zq,...,2¢. We analyze the different cases for Y. Case
1. Let Y = Tg. Notice that if both 2z, # vy and z5 # vs, then Sy does not contain an edge
between z, and zs5, thus we have z; = vy or z5 = vs. These possibilities are illustrated in

Figure 5.2.
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Suppose that only one of these equalities holds, for example z; = vy but z5 # vs. Then,
by Claim 5.10, z; # vy and z3 # vs must hold. The edge (z1,25) can only be contributed
to Sy by a clique that contains the edge (v3,vs), and similarly the edge (zs, z5) can only be
contributed to Sy by a clique that contains the edge (vz,v1). This means that the edges
(z1,v3), (v1, z3) as well as the edges (v1,v3) and (21, z3) appear in some member of the family
Q. However, this is not possible by our restriction on the legal edges between 'y and Cj.

Suppose now that both z; = v, and z5 = wvs holds. Then by Claim 5.10 we have
71 # 1, 23 # U3, 24 # vy and zg # ve. The edge (z1,24) can only be contributed by a
clique that contains (v2,vs) or (vs,ve). This means that at least one of the edges (z4,v¢) or
(z1,v3) is legal. Similarly, from the presence in Z of the edges (21, 26), (23,24) and (23, z6),
respectively, we know that at least one each of (v4,z6) or (z1,v3), (24,v6) or (v1,23), and
(v4,26) or (v1,23), respectively, are legal edges. This means that either both (z4,vs) and
(v4, z6) or both (z1,vs) and (vq, z3) are legal, and since (v;,v;) and (z;, z;) must be legal for
all 2, 5, we get a contradiction with our restriction on the possible edges of members from Q.

Case 2. Let Y # T. In this case the edges in Y cover ¢ vertices, 2 < ¢t < 5. We show
that Sy does not even contain a t-clique on the t classes involved. For ¢ < 4 this follows
directly from Lemma 5.11 and Lemma 5.12.

We still have to deal with the case when ¢ = 5, which can only happen if Y consists
of three edges. Suppose (without loss of generality) that the three edges of Y are (v, vs),
(v2,v3) and (v4,vs). If 23 # vg, then all the edges incident to z3 could only be contributed
to Sy by cliques that contain (v4,vs5). That would mean that the only vertices in Cy and C5
connected to z, in Sy are vy and vs. Thus we could not get a 6-clique in Sy that contains
z9. Therefore, z5 = v must hold. Then we have by Claim 5.10 that z; # vy, z3 # v3 and,
without loss of generality, z5 # vs. We get a contradiction with the restriction on the edges
between € and C3 as in Case 1.

We have proved that Condition C2 is also satisfied, and Q is a critical family for f. The
lower bound follows from Theorem 5.6. []

Theorem 5.14: For every field K,

for every 6 < d < h mSPx(Cliquey,) = Q((h—d)°) = Q(n° —d)*),
mSP(Cliques ) = QA*") = Q(n*%) |
mSP(Clique, ;) = O(ht) = O(n?),
mSPx(Cliquey ;) = O(h?) = O(n'?) .

The proof of this theorem is basically included in the proof of the lower bound for 6-cliques
and in Lemma 5.11 and Lemma 5.12.

5.4 A function with minterms of size 2

Access structure in which the size of every minimal reconstructing set is 2 have received
much attention (e.g. [27, 28, 30, 36, 52, 53, 107]). In [53] it is proved that there exists
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such an explicit access structure for which the total size of the pieces in every secret-sharing
scheme is Q(nlogn) times the length of the secret (for every finite set of possible secrets).
That is, the monotone span program complexity of the function that represents the access
structure is Q(nlogn). In this section we exhibit an explicit function whose minterms are
of size 2 and whose monotone span program complexity Q(n®?). le., the total size of
shares in every linear secret sharing scheme for the corresponding access structure is at least
Q(n®?). Let Ly,..., Ly be h subsets of {1,...,h} such that the size of the intersection of
every two subsets is at most 1. For example, the lines of a projective plane can be used.
Given the sets Lq,..., L, we define the function Lines, which has n = 2k variables denoted
{a1,...,ap,b1,..., by}, and whose minterms are {{a;,b;} : j € L;}.

Theorem 5.15: For every field K,

h
mSPx(Lines) > Z |L;] .
i=1
Proof: = We prove that the family of all minterms of the function Lines is a critical family
for Lines. The set Ty for every minterm H is simply H, and so Condition C1 is obviously
satisfied.

To prove Condition C2, we take an arbitrary minterm, say {aq, b;} without loss of gen-
erality, and consider the set X = Sg, 0,y = {b;:7 € Li} U {a;: 1 € Li} \ {a1,b,}. Suppose
that there is some minterm {a;, b;} contained in X. Now 1 € L; since a; € X, and j € [4
since b; € X. We also have 1 € Ly since {a1,b1} is a minterm, and j € L; since {a;,b;} is a
minterm. However j # 1, and this contradicts the fact that the size of the intersection of 14
and L; is at most 1. Obviously, the sets S¢,,3 and Sy,} do not contain any minterms either.

]
Using the lines of a projective plane or the constructions from [70, 88, 91] for the sets
Li,..., Ly wehave Y1 |L;| = h*/?4-O(h). There exists a monotone formula for this function

of size n®/? + O(n) (take the DNF formula with a term for every minterm and group the
terms that include each a;). Thus, we show an asymptotically matching upper bound for
this function.

Corollary 5.16: For some explicitly given sets Ly, ..., L, we have, for every field I,
mSPx(Lines) = R3/% 4 O(h) = @(n3/2) )

Since every monotone function with minterms of size 2 has a DNF representation of
size O(n?), such a function has a monotone span program of size O(n?). However, using
Theorem 5.6 one can prove only lower bounds of size at most (n'?) for function with
minterms of size 2 (since every critical family of minterms of size two is of size O(n'?)). It
is an open problem whether one can construct more efficient monotone span programs for
function with minterms of size 2. If this is not possible then this would prove that the lower
bounds proved using Theorem 5.6 are not tight.
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Chapter 6

Communication in Key Distribution
Schemes

In this chapter, we study the relationships between communication and space efficiency
of key distribution schemes. We prove that communication does not help in unrestricted
schemes. On the other hand, we show that for restricted schemes, which are secure only
when used by a limited number of conferences, communication can substantially improve the
space efficiency. Furthermore, we prove lower bounds on the space efficiency of restricted
schemes.

This chapter is organized as follows. In Section 6.1 we consider some properties of non-
communicating key distribution schemes. In Section 6.2 we present our proof of the lower
bound on the efficiency for the weak non-communicating schemes. In Section 6.3 we use this
result to prove a lower bound for unrestricted communicating schemes. In Section 6.4 we
prove lower bounds for restricted communicating schemes, and in Section 6.5 we describe
some efficient constructions of restricted schemes.

6.1 Properties of Non-Communicating Schemes

In Definition 3.7 we defined non communicating (g, b) key distribution schemes. We give
an equivalent condition for the security of these schemes. The equivalence of the conditions
follows directly from Bayes rule.

Lemma 6.1: A non communicating (g,b) key distribution scheme is secure if and only if
for every conference G of size g, every disjoint coalition B of size b, every vector of pieces
(Ug,...,u,) (that is dealt with positive probability), and every key k € K

Pr [ka(r)=k| N (U(r)=u;)]=Pr [ka(r)=k] 2 P(k) . (6.1)

PjeB
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The previous lemma states that the key of a conference G is a random variable which
is statistically independent of the pieces of a disjoint coalition of size b. However, it is not
guaranteed that the keys of different conferences are statistically independent of each other
given the pieces of a disjoint coalition of size b. In Claim 6.2 we give a condition in which the
independence of some keys are guaranteed. This claim is used in Section 6.5 for constructing
one-time key distribution schemes and in Section 7.3 for constructing one-time secret sharing
schemes with public reconstruction. We show that if we start with a non-communicating
(2,9 + b —2) key distribution scheme then that the collection of keys of all pairs of parties
in a set GG of ¢ parties is uniformly distributed and independent of the pieces of coalition B
of b parties.

Claim 6.2: LetU be a non-communicating (2, g+ b—2)-scheme with a-priori distribution P

on a key domain K. Let G and B be sets of g and b parties respectively, such that GNB =0,

Gyi,Ga,y ..., G(g) be all the subsets of G of cardinality two, ky,.. ., k(g) be any combination
2 2

of (g) keys from K, and (u1,...,u,) be a vector of pieces that is distributed with positive
probability. Then:

PI’[ /\ kGi(T) == k2| /\ Z/{]‘(T) == u]‘] == H ’P(kz) . (62)

1<i<(9) FjeB 1<i<(9)

Proof:  To simplify the notations, we denote ¢t = (g), and denote the key of the set G,
i.e. kg, (r), by ki(r). Notice that

PI’[ /\ kZ(T) = k2| /\ Uj(T) = u]‘] = H Pr[kh(r) = kh| /\ kZ(T) = ki/\ /\ Uj(T) = u]‘]

1<i<t P,;eB 1<h<t h+1<i<t P,;eB

Therefore, to prove Equation (6.2) (and therefore the claim) it is enough to prove that for
every h, where 1 < h <'t, it holds that:

Pr[kh(r) = kh | /\ kZ(T) = kZ A /\ Z/{]‘(T) = u]‘] = P(kh) . (63)

h+1<i<t P,eB

That is, the key k() is independent of the other keys and the pieces of the parties in B. To
prove Equation (6.3), we partition the conditional probability space into disjoint subspaces,
and prove this equality for every subspace. Thus, Equation (6.3) will hold for the original
conditional space. The partition of the conditional space is according to the pieces of the
g — 2 parties in G\ G),. These pieces determine the keys of all the G; except GG;,. Without
loss of generality G, = {P1, P2}, Let ¥ = (vs,...,v,4s), be any vector of pieces that is
distributed with positive probability, such that:

e Lor every P; € B it holds that u; = v,.

e For every ¢, such that h+1 < < ¢, it holds that the key of G; reconstructed according
to the pieces of ¥ is k;.
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Since the cardinality of BUG\ (i), is g + b— 2 then the security property of the (2,9 +b—2)
scheme guarantees that

Pr[kh(r) = kh| /\ Uj(T) = v]‘/\ /\ Uj(T) = v]‘] == P(kh) . U]

P,eG\G}, P;eB

We now consider a weakening of the security requirement of key distribution schemes.
Instead of requiring that the conditional probability (given any pieces of a bad set B) of every
key equals the a-priory probability, we will only require that this conditional probability is
positive. To simplify this discussion, we will only consider non-communicating weak schemes.

Definition 6.3 [Weak Key Distribution Schemes]: A weak non-communicating (g, b)
key distribution scheme is a non-communicating (g,b) scheme in which the security property
is relaxed:

Weak security property Let B be a coalition of b (bad) parties, and let G be a confer-
ence of g (good) parties, such that GO B = . Then the parties in B, having their pieces,
cannot rule out any key of G'. In other words, for every vector of pieces @ = (uy, ..., un)
which is dealt with positive probability, and every possible key k € K, there exists a vector
of pieces u' that agrees with U on the pieces of B, but the key of the set G according to the
vector u' is k. Formally,

Pr [kg(r) = k| /\ Ui(r) =u;] >0

PjeB
where the probability is taken over the random input of the dealer.

By Lemma 6.1, it follows that unrestricted non-communicating schemes are a special
case of weak non-communicating schemes. Therefore, every lower bound for weak schemes
implies the same lower bound for unrestricted non-communicating schemes. We claim that
the weak security requirement is not reasonable, since every “bad” coalition B could gain a
lot of information. The reason we do define weak schemes is because we show that the lower
bounds on the size of the pieces hold even for these weak schemes.

6.2 Lower Bounds for Non-Communicating Schemes

Blundo et. al. [29] prove a tight lower bound on the size of the pieces in every non-
communicating key distribution scheme. Their proof is based on the entropy function, and,
in our opinion, does not reveal the intuition behind this lower bound. We present a simpler
proof of this lower bound, which is not based on entropy. Furthermore, in our proof we only
use the weak security requirement. That is, even weak (g,b) schemes, where the entropy
of the keys may be very low, must have large domain of pieces. Thus, our proof yields a
stronger result than the lower bound of [29]. We use this stronger result in the sequel.
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Theorem 6.4 [29]: Let U be a weak non-communicating (g,b) scheme with n parties and
domain of keys K. Let U; be the domain of pieces of party P; in U. Then for every ¢ (1 <
i <n):

U > &5

That is, the size of the pieces is at least (gj;zl) times the size of the key.

Proof: Consider a (g,b) scheme with a domain of keys K. Without loss of generality,
we assume that there are exactly g + b parties, which we denote by {Py,..., Py}, We
prove the lower bound on the domain of pieces of party P;. Let Gy, ..., G, be all the sets of
cardinality ¢ that contain party P, where ( 2 (g;'le). Let k = (k1, k2, ..., ke) be any vector
in K*. We claim that there exists a vector of pieces @ = (uy,...,u ) (which is dealt with
positive probability), such that for every 1 < ¢ < { the key of the set (7; reconstructed from
the pieces in @ equals k;. Otherwise, let ¢ (¢ < {) be a maximal index such that there exist
keys kl,...,k; € K (where k! # k;) and there exists a vector of pieces u = (s ugy ),
which is dealt with positive probability, such that the keys in g (kvy oo ks KL k)
are reconstructed from the pieces in . Such index ¢ > 2 exists since for i = 1, there is some
vector of pieces from which G4 reconstructs the key k;. Consider the set B = {Py,..., Py }\
(i, which contains exactly b parties. Since the set B intersects G for every P; such that
J # 1, the parties in B can reconstruct the keys of the conferences Gy,...,Gi—1,Gitq, ..., Gy.
Therefore, the pieces from u’ of the parties in B determine that the reconstructed keys of the
conferences Gy, ..., Gy are ky, ..., ki_1, respectively. Suppose there is a positive probability
that G’s key equals k;, given the pieces u’. Then in particular there is a vector of pieces
giving rise with non-zero probability to the keys kq, ko, ..., ki1, k;. This contradicts the
choice of 7 as the maximal index. Therefore,

Pr[kgi(r) = kZ | /\ Uj(T) = u;] = 0
PjeB
But this violates the weak security property of the (g¢,b) scheme, a contradiction to our
assumption.
Hence for every k € K*, there is a vector of pieces @ for the parties, in which the vector of

reconstructed keys for the sets Gy,..., Gy 1s k. Since party P; computes the keys of the sets
G, ...,Gy from his piece, it follows that his piece must be different for every pair of different

vectors of keys for the sets G1,...,Gy. There are |K|* possible vectors of keys, therefore
+b-1

there are at least |K|* different pieces for party P,. That is, |U;| > |K|* = |K|(gg—1 ), as

claimed. []

We remark that if the keys of all sets were independent random variables then using the

same ideas of this proof, we can prove a lower bound of |K|(9ﬁ1). Another observation is
that we can consider a key distribution scheme in which only some pre-defined subsets of
size ¢ can reconstruct a key. Our proof actually supplies a lower bound for this setting as
well.
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Lemma 6.5: Let U be a (weak) non-communicating (g,b) scheme with exactly g+ b parties
and domain of keys K, in which party P; is a member of at least { sets that can reconstruct
a key. Let U; be the domain of pieces of P; in U then

Ui > | K"

Notice that ¢ can be at most (g;’il).

Using symmetric degree b multinomials with ¢ variables, Blundo et. al [29] have

constructed an unrestricted non-communicating (g¢,b) scheme with domains of pieces
b—

|U;| = |K|(gJ9r—11) with uniform a-priori distribution on the keys (provided that |K| > n

and |K| is a prime power). So, the lower bound is tight (except for small domains of keys).

6.3 Removing the Communication from Unrestricted
Schemes

In this section we show how to transform an unrestricted communicating scheme into a
weak non-communicating key distribution scheme, without enlarging the domain of pieces.
Therefore, the lower bound on the cardinality of the domain of pieces applies to unrestricted
communicating schemes as well.

Theorem 6.6: Let U be an unrestricted communicating (g, b) key distribution scheme with
n > g+ b parties and domain of keys K. Let Uy,..., U, be the domains of pieces of the
parties in U. Then for every party P;:

;] > K55

That is, the size of the pieces is at least (gj;zl) times the size of the key.

Proof: Theidea of the proof is to fix, for every set G of ¢ parties, a possible communication
Cq (i.e. one that is exchanged with positive probability when G communicates in order to
generate a conference key). The vector of all these communications is public knowledge. Now
the dealer deals only vectors of pieces that are consistent with all the communications Cg’s.
When a member of a set (¢ wishes to determine a conference key, he applies the reconstruction
function to his piece and the fixed communication C'¢. This way, no communication is
required. In the rest of proof, we show first how to choose communications for different
conferences such that they are consistent among themselves. This implies the existence of
vectors of pieces that are consistent with all the communications. Once this is done, it is
clear that the non-communicating scheme has the reconstruction property. We then prove
that the resulting non-communicating scheme has the weak security property. Therefore, it is
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a weak non-communicating (g, b) scheme.! By Theorem 6.4 the cardinality of the domain of

pieces of every party in the resulting weak non-communicating scheme is at least |K|(gﬁ;1).
But the domain of the pieces in the non-communicating scheme is not larger than that of
the communicating scheme. Therefore, the lower bound on the size of the pieces applies to
the original communicating scheme as well.

To complete the proof, we first show how to choose a set of communications C¢ (for all
(i’s) in a consistent way. To do this, we first fix an arbitrary vector of pieces ¢ which is dealt
by the dealer in the original scheme with positive probability. We also fix the local random
input of each party. Each communication Cg is the one determined when the parties of (¢
hold pieces from u, and have the fixed random inputs. It is clear that « is consistent with all
these conversations. The dealer in the new scheme chooses at random a vector of pieces that
is consistent with the communications. That is, the dealer chooses a vector of pieces from
the (non-empty) set of vectors of pieces ¥ for which there exists a vector of local random
inputs 7 for the parties, such that every conference GG of ¢ parties, holding the pieces of v,
and having the random inputs 7, communicate C; (where 7 is the restriction of #* to the
members of (7).

We now show that the resulting non-communicating scheme is weakly secure. Let &
be any conference of cardinality ¢, and B be a disjoint coalition of cardinality 6. By the
security property of the communicating scheme, it follows that for every vector of pieces that
is consistent with the fixed conversations, and every key k € K, there exists a vector of pieces
which is consistent with the given pieces of the parties in B, such that the reconstructed
key of conference (& equals k. That is, the non-communicating scheme has the weak security
property, as claimed. (]

We can define the notion of weak security for unrestricted communicating schemes in a
similar manner to Definition 6.3. The lower bound of Theorem 6.6 is also applicable to such
weak unrestricted communicating schemes.

6.4 Lower Bounds for Restricted Schemes

By Theorem 6.6, communication cannot decrease the size of the pieces of information given
to the parties in unrestricted key distribution schemes. In order to decrease the size of the
pieces of information, we consider restricted schemes in which the key distribution schemes
should be secure only for a restricted number of conferences. Which conference will generate
a key 1s not known a-priori, so the distributed pieces should accommodate any combination
of conferences (up to the limit on their number).

Tn this proof we do not define the probability distribution under which the dealer distributes the consis-
tent vectors of pieces. We only require that every consistent vector is distributed with positive probability. It
is possible to define a probability distribution on the consistent vectors, such that the induced (g,b) scheme
will have the unrestricted security property.
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The proof that unrestricted communicating schemes and unrestricted non-communicating
schemes have the same space efficiency (Theorem 6.6) is not applicable for restricted schemes.
It is possible, for example, to transform a one-time secure communicating scheme into a non-
communicating scheme, using the technique of Theorem 6.6. However, this would yield a
non-communicating scheme which is secure only with respect to a single fized conference,
depending on the one initiating the communication. Indeed, in Section 6.5 we show that
restricted schemes can be much more efficient than unrestricted schemes. In this section we
give lower bounds on their efficiency.

We first give a simple lower bound for every r-restricted (g, b) key distribution scheme.

We show that for 7 < (gizl) the cardinality of the domains of pieces in any 7-restricted

(g,b) key distribution scheme is at least |K|”. Therefore, for 7 > (gizl) the unrestricted

non-communicating scheme of [29] is space optimal even with respect to 7-restricted schemes.

In addition, this shows that for restricted schemes with smaller 7, some dependence on the

size of 7 is unavoidable. We improve this bound for the case 7 < (b/¢)¢. In particular, for

one time schemes we prove a |K['T1/(6=1] Jower bound (the upper bound is |K|*+2(=1/9),
We first present a simple lower bounds for 7-restricted schemes.

1
and domain of keys K, the cardinality of the domain of pieces of every party is at least |K|".

Lemma 6.7: Let 7 < (gi_l). In every T-restricted (g, b)-scheme with n > g + b parties

Proof:  Again, we limit the number of parties to g+ 5. Using the same ideas as in the proof
of Theorem 6.6, we transform a 7-restricted (g, b)-scheme into a weak non-communicating
(g,b)-scheme in which 7 pre-defined sets can reconstruct a key. That is, we fix consistent
conversations of the 7 sets. The dealer generates vectors of pieces consistent with these
conversations. The original scheme is secure for 7 conferences, therefore by fixing 7 con-
versations, we get a secure scheme in which these 7 sets can reconstruct a key without any
gj:;l), there are 7 sets that contain P;. Choosing 7 sets con-
taining P; as the pre-defined sets, we apply Lemma 6.5 to the transformed scheme. By this
lemma the cardinality of the domain of pieces of P; in the transformed scheme at least |K|".
By the transformation, the cardinality of the domain of pieces in the transformed scheme is

at most the cardinality of the domain of pieces in the 7-restricted scheme. Therefore, the

communication. Since 7 < (

cardinality of the domain of pieces of every party in the 7-restricted scheme is at least |K|.

O

We now improve the previous lower bound for schemes in which 7 < (6/¢)?. The proof of
this lower bound uses entropy and mutual information. For definitions of these information
theoretic terms, the reader can refer to [42, 45, 60] (see also Appendix A). In the proof we
use the following claim of Maurer [77] and Ahlswede and Csiszar [2]. Its context is a system
where two (coin flipping) parties, each with private piece of information, execute a protocol
by communicating over a public channel. After the execution of the protocol, the two
parties generate a common key, such that a third party overhearing all the communication
does not have any information on the key. First, the claim states that the conditional mutual
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information of the pieces (measuring the information known to the two parties but not to
the third party) held by the two parties cannot be increased after a conversation on a public
channel. Second, the claim states that the conditional mutual information of the initial
pieces is at least the entropy (uncertainty) of the generated key. In the claim ¢ is the
random variable which denotes the piece of P;, and K is a random variable which denotes
the key.

Claim 6.8 [2, 77]: Let Uy, Us,Us be random wvariables, held by parties Py, Py, Py re-
spectively. Parties Py and Py communicate on a public channel according to some proto-
col. Denote the communication by the random variable M. Then, I( Uy ; Uy | Us) >
I Uy 5 Uy | MUs). Furthermore, assume that after the execution of the protocol parties Py
and Py agree on a key K known to both of them, such that Ps has no information on the
key. That is, H K |[t,M) = H( K |Uz, M) = 0, while H K |Us,M) = H(K). Then,
(U 5 Uy | Us) > HIK).

We first consider (2,b)-schemes. Recall that in the non-communicating (2, b)-scheme of
Blom [24], the cardinality of the domain of pieces is |K|"*!. In Lemma 6.9 we prove that
|K|**1 is a lower bound even for one-time (2,b)-schemes. Thus, in this case communication
does not help even if we consider only one-time schemes.

Lemma 6.9: Let U be a one time (2,b) scheme with n > b+ 2 parties and domain of keys
K. Assume that the a-priory probability of each key in K is uniform. Then the cardinality
of the domain of pieces of every party in the scheme U is at least | K|**1,

Proof:  Without loss of generality, we prove that |U;| > |K|**!, where U; is the domain
of pieces of P; in the scheme Y. We start with a one-time (2, b) scheme U. For every ¢ > 2,
we construct a new scheme with 3 parties. In the new scheme P; receives U, the piece of
Py in U, party P, receives U; the piece of P; in U, and party P receives the pieces from U
of the parties Piiq,..., Pyio. In the new scheme parties P; and P, can generate the key of
the old parties { Py, P;}. Since party Ps receives at most b pieces of the old scheme, he has
no information on the generated key. Therefore, we are in the scenario of Claim 6.8. We
conclude that for every ¢ (2 <7 < b4 2):

I( Z/{l 3 Z/{Z | Z/{H_l .. .Z/{b_|_2 ) Z H([() .

On the other hand, by definition

b42 b42 b+2
ST U Us | Ungr o Ungn) = D H( U | Uigr oo Upi2) — D H( U | Uiz - . Unso)
=2 =2 =2

— H(Ul) — H( Z/{l | Z/{Q .. .Z/{b_|_2 )

< H) .
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Combing the last two arguments together, we deduce that

b+2

=2

It holds that H(¢;) < log |Uy|, and since we assume uniform distribution on K then H(K) =
log |K|. Thus,
log [Uh| = H(th) = (b+ DH(K) = (b+ 1) log | K],

which yields the claimed bound |U;| > |K|**!. U

The proof of Lemma 6.9 (with respect to the domain U;) does not require that every
pair of parties should be able to reconstruct a key. It only requires that P; and every other
party can generate a key. It is also interesting to notice that any scheme meeting this lower
bound satisfies H( Uy | Us ... Ups2 ) = 0, so every b+ 1 parties can reconstruct the pieces of
all the other parties. We now use Lemma 6.9 to prove a lower bound for every conference
size ¢ and various values of 7.

1
restricted (g,b)-scheme with n > g + b parties and domain of keys K, which are distributed

with the uniform a-priory probability distribution. The cardinality of the domain of pieces of
every party in the scheme is at least |K|°, where

e 2 maX{T, bt 171_1/(g_1)} .
g

Theorem 6.10:  Let 7,g9,b be positive integers such that 7 < (gi_l). Consider a 7-

That is, the size of the pieces is at least e times the size of the key. For 7 = 1, the lower
bound is |K|"t/0=D] " That is, the size of the pieces in one-time key distribution schemes
is at least 1 4+ |b/(g — 1)] times the size of the key.

Proof: If (b—1)/g < 7"/=Y then e = 7, and the lower bound follows from Lemma 6.7.
Otherwise, we convert the 7-restricted (g,b) scheme into a one time (2, ¢) scheme (where ¢
is a function of b, g and 7) such that the key in the new scheme is taken from a domain of
cardinality |K|". To complete the proof, we apply the lower bound of Lemma 6.9.

In this conversion, we start with a 7-restricted (g, b) key distribution scheme, denoted U,
with ¢ 4 b parties. Define a £ [(g — 1)7’1/(9_1&, and ¢ £ |(¢+b—1)/a] —1. We construct
a one time (2,c¢) scheme, called U’, with [(¢ +b—1)/a] + 1 = ¢+ 2 parties. The new
scheme is defined as follows: The piece of party P is U{(r) £ U;(r) and for every 2 < i <
(g + b)/a] the piece of party P; is Uj(r) = (Us(i—2)4+2(r), - .., Usi=1)41(r)). That is, in the
new scheme party P, holds the piece of party P, from the old scheme, and party P; gets the
pieces of a disjoint parties of the original scheme. The number of original pieces we use is
(a|(g4+b—1)/a] +1) < g+ b, so this construction is possible. This conversion is illustrated
in Figure 6.1. We consider the conference {F;, P;} in the new scheme where ¢ > j (it is
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party Pi

party party P party P.io
(a old parties) (a old parties) (a old parties)

Figure 6.1: An illustration of the new scheme of Theorem 6.10
6.10 VLAY NYTNN NNIDN IY NNN :6.1 IPN

possible that j = 1). Since P; holds a pieces of the original scheme and a > (g — 1)7'/(s=1)
there are
(, 1) = @Ho—1p =7

conferences of g original parties, such that P; holds g—1 of their pieces and P; holds one piece.
For every such conference, the parties P; and P; in the new scheme can generate the original
key of the conference. That is, the conference {F;, P;} in the new scheme can generate 7
original keys. We view these keys as one new key taken from a domain of cardinality |K|".

We claim that this new key is distributed uniformly in the conditional space where pieces
of ¢ new parties (coalition members) are given. Denote the 7 original conferences of size ¢
by Gy,Gy, ..., G,, and the generated keys by ky, ks, ..., k; respectively. Consider a coalition
C of ¢ new parties (not including P; or P;). If the coalition C' has gained information on
the concatenation of these keys then there exists an index ¢ such that the pieces of (', the 7
conversations, and the keys ky, ..., k;_; reveal some information on the key k; in the original
scheme. This in turn, implies that in the original scheme there are pieces to all the parties
except G; that, together with the communications, reveal some information on the key ;.
But this coalition contains b original parties, which contradicts the 7-restricted security of
U, the original scheme.

Therefore, the scheme U’ is a one time (2, [(b+ ¢ — 1)/a| — 1) scheme in which the key
is distributed uniformly over a domain of cardinality |K|". Applying the lower bound of
Lemma 6.9 to Py, we conclude that U; — the domain of pieces of P; (in the new and original
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scheme) — satisfies
U] > | K|7A+a=D/el) g 700 s

If 7 =1 then a = g — 1. Thus, |U;| > |K|C+te=D/=0] = | K|+1P/s=1], 1

We remark that the lower bound of Lemma 6.7 applies to weak 7-restricted schemes as
well. On the other hand, the lower bound of Theorem 6.10 holds only for uniform a-priori
distribution on the keys. For schemes where the keys are distributed with an arbitrary a-
priori probability distributions, the lower bound is 2#(8)-(+15/(s=1)]) It is an open problem
whether the lower bound of |K['Tl/(=D] holds for weak one time schemes as well. Since
Theorem 6.10 is proven by reduction to Lemma 6.9 then proving a |K |**! lower bound for
weak one time (2,b) schemes suffices for proving the lower bound for every g.

6.5 Upper Bounds for Restricted Schemes

Blundo et. al. [29] present a one-time (g, b)-scheme in which the domain of pieces of each
party is of cardinality |K]¢**~1. (In [29] it is not pointed out that this scheme is only one-
time secure). We improve their one-time scheme, and present a one-time key distribution
scheme in which the domain of pieces of each party is of cardinality |K[?*2(=D/9, This
scheme is much more efficient than the unrestricted scheme. For example, for ¢ = b = n/2,
the cardinality of the domain of pieces in our scheme is |K|* regardless of n. Recall that
for unrestricted schemes with these parameters, the cardinality of the domain of pieces is
|K |2 (Theorem 6.6).

We next describe our one-time scheme.

Lemma 6.11: Let K be a domain of keys of cardinality ¢?, such that ¢ is a prime-power
which is greater or equal to \/n. There exists a one-time (g,b) scheme with n parties and
domain of keys K (with uniform a-priori probability distribution) in which the cardinality of
the domain of pieces of every party is |K|*t>¢=1/s,

Proof: For clarity of the exposition, we first assume that n = ¢ + b. In this case let
|K| = ¢¢ for some positive number ¢ > 2 (not necessary a prime power). For every pair
of parties the dealer chooses two independent random strings from {0,...,¢ — 1} denoted

ki ;,k{;. The piece of each party is the 2(n — 1) random strings corresponding to the pairs
that contain the party. When the parties of a conference G want to generate a conference
key, every party P; € (i picks at random k; € {0,...,¢ — 1}. The conference key k of the set
( is the concatenation of these random k;’s, namely k £ kjokgo...ok,. Every party P, € G
should send k; to every P; € (G. Party P; can send messages only on a public channel, so,
he uses the common random string common to P; and P; as a one time pad. Since party P,
has to send the sub-secret k; to P; and P; has to send k; to P;, they have to use different
random strings. That is, P sends (k; + k! ;) mod ¢ if ¢ < j, and (k; 4 k;) mod ¢ if © > j.
Therefore, every random string is used only once. Hence, the messages that are sent are
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all uniformly distributed and independent of the conference key of G and the pieces of any
coalition B with b parties (provided G N B = (}). This implies that the scheme is secure.

We now describe our communicating one-time (g, b)-scheme for every n > ¢ + b. The
scheme is similar to the case n = ¢g + b, with one change. To guarantee that the scheme is
secure, we make sure that from the point of view of every coalition of size at most b the pads
used in the generation of a key are uniformly distributed and independent of each other.
On the other hand, we do not require that all 2(;) strings that are given to the parties
are totally independent. It suffices that the dealer deals vectors of pieces according to the
non-communicating (2,9 + b — 2) scheme of Blom [24] for n parties, with keys taken from
a domain of cardinality |K|*/Y = ¢%. The pads used in the generation of a key are the keys
of this scheme. Before we discuss the security of the scheme, we consider its efficiency. In
Blom’s scheme the cardinality of the domain of keys has to be at least n — the number of
parties. Hence, we require that ¢ > n. Furthermore, in Blom’s scheme the domain is a finite
field, so ¢ has to be a prime-power. We use the non-communicating (2, ¢ + b — 2)-scheme
with domain of keys of cardinality ¢*> = |K|*9. So the cardinality of the domain of pieces of
each party is

(|[{|2/g)g+b—1 — |[{|2+2~(b—1)/g )

The security of the scheme follows Claim 6.2 in which we proved that the collection of
keys of all pairs of parties in a set ¢ of g parties in a non-communicating (2,¢9 + b — 2)
scheme is uniformly distributed and independent of the pieces of a coalition B of b parties.
Since these keys are used as one-time pads, it follows that no information is leaked on the
generated key, and therefore the scheme is secure. The formal proof that Claim 6.2 implies
the security property of the one time scheme appears in Claim 6.13 in Section 6.5.1. []

Our scheme is non-interactive; that is, the messages of each member of G does not depend
on other messages. Another property of our scheme is that for a fixed b, the cardinality of
the domain of pieces of each party is a monotonically decreasing function of g. This feature
stands in contrast to unrestricted (g, b) schemes, where the cardinality of the domain of pieces
of each party is a monotonically increasing function of g. Recently [33], slightly improved our
schemes. For example, they show for b6 = 1 a one-time scheme in which the size of the pieces
is (14 2/g) times the size of the keys (compared to 2 times size of pieces in our scheme).

In the proof of Lemma 6.11, the conference key of & (i.e. k = kjokgo...ok;) is distributed
uniformly in K. It is possible to change this a-priori probability distribution on the keys. One
way to achieve this goal is to first generate a key £ as in the previous way. Then an arbitrary
party chooses the real key k' for the conference according to any desired distribution. The
party sends the message (k + k') mod ¢ to all the parties in G.

We remark that the one time scheme cannot be reused. For example, if parties { P, P}
are members of two conferences (i1, Gy then the part of the keys generated by them in the
two conferences will be known to all the parties in Gy U (G;. To extend our scheme to a
T-secure one, we use 7 independent copies of the one time scheme. The generation of a
key for each conference is done using a different copy of the one time scheme. Since the
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copies are independent, each conference does not add any information to other conferences.
Hence, the security of the one-time scheme implies the security of the 7-restricted scheme.
We summarize this construction in the next theorem.

Theorem 6.12: Let K be a domain of keys, such that |K| = ¢9 for some prime-power
q > \/n. There exists a T-restricted (g,b) key distribution scheme with n parties and domain
of keys K (with any a-priori probability distribution), in which the domain of pieces of each
party has cardinality |K|*"0+C=D19)  That is, the size of the pieces in the scheme is 27(1 +
(b—1)/g) times the size of the key.

This 7-restricted communicating schemes requires that the parties hold a counter, which
is incremented each time a conference key is generated. Given such a reliable counter, active
attack by parties sending messages deviating from the protocol, do not reveal information on
different conferences. Such attack could only prevent the generation of the present conference
key. Our scheme does not work in the absence of a reliable counter. It is an open question
to construct an efficient 7-restricted scheme (for 7 > 1) in which the keys and messages do
not depend on a counter or any other history of previous conferences.

6.5.1 Formal Proof of Security of the One-time Scheme

In this section, we prove that Claim 6.2 implies the security requirement of our one-time key
distribution scheme.

Claim 6.13:  The one-time (g,b) scheme presented in the proof of Lemma 6.11 has the
1-restricted security property.

Proof:  Since in our scheme the generated key is (rq,7q,...,r,) which is only a function
of the local random inputs of the parties (and not their pieces), we denote this key by
ko (7). We fix vector of pieces (uy,...,u,) which is dealt with positive probability, and a
conference (¢ of g parties. Furthermore, we denote by EV the event that A,cp(U(r) = ue).
By Bayes rule, it is enough to prove that for every coalition B of b parties, such that
GN B =0, every possible key k = kjokgo. ..ok, € K, and every possible consistent messages
{m;; : P;, P; € G} (where m;; is the message sent by party P; to help party P;)

Pr[kg(Fg) = klo .. .okg |EV A /\ r; + kz/',j = My A /\ Ty + k;:] = mm] =

<J >7

1
— 6.4

where the probability is taken over r — the random input of the dealer and 7o = (r; : P; € &)

~ the random inputs of the parties of the conference GG. Let K’ be a domain of keys of
cardinality |K|*¢ (the domain of keys of the non-communicating scheme). We first claim
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that for every fixed key kg = (ry,r2,...,7,) € K it holds that

Pr[EVA Ari+ b, =mig AN+ kL =mj]

i< >7
= PI’[ /\ ki,j = (mm‘ — Ti)o(m]ﬂ' — T]‘) | EV] . PI’[EV]
P\ PieG
Pr[EV]

Equation (6.5) follows from Claim 6.2, and the fact that the keys of the non-communicating
scheme are distributed uniformly (recall that ¢ = (g)) We return to prove Equation (6.4).

Prlka(re) = k| EV A /\ r; + k;] =m;; A /\ r; + k;’] =m;,]
i< >7
Prlka(re) = EANEV A Nicjmi + kl’] =mj A Nisjri+ k" =m;,]
Pr[EV AN ki + K =map AN Nisj By + K =myi ]
Pr[EV AN+ Kk =mij ANs;ri + R =my,]
Yreex PULEV AN i+ kL = maj AN Nisyry + K = my i
L/|K'|f 1

|K|-1/|K'|! |K|

6.6 Comparison with the Computational Model

We contrast the results about key distribution schemes in the information theoretic model
with those in the computational model, where parties are restricted to probabilistic poly-
nomial time computations. Diffie and Hellman [51], in their pioneering work on public key
cryptography, introduced a communicating scheme of key generation for conferences of size
two. Their communicating scheme requires no dealer and no pieces. In this scheme a given
communication uniquely determines the key, but it is (presumably) intractable for a third
party to compute the key from the communication (of course, in our setting this information
enables other parties to find the conference key). On the other hand, even in the computa-
tional model, a non-communicating scheme requires pieces taken from a domain which is at
least as large as the domain of keys. So in the computational model, communication does
reduce the size of pieces, up to complete elimination. As we said, in our setting communica-
tion does not reduce the size of pieces distributed to the parties by the server in unrestricted
schemes. Fiat and Naor [54] present a non-communicating (n, 1)-scheme in the computa-
tional model. In their scheme, which is based on the assumed intractability of extracting
root modulo composites (RSA), the domain of pieces has the same cardinality as the domain
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of keys, |K|. Recall that in the computationally unbounded model a non communicating
(n,1)-scheme requires domain of pieces of size at least |K|" (i.e. a piece has the length of n
keys).
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Chapter 7

Secret Sharing with Public
Reconstruction

All known constructions of information theoretic t-out-of-n secret sharing schemes require
secure, private communication channels among the parties for the reconstruction of the
secret. In this chapter we investigate the cost of performing the reconstruction over public
communication channels. A naive implementation of this task distributes O(n) one times
pads to each party. This results in pieces whose size is O(n) times the secret size. We present
three implementations of such schemes that are substantially more efficient:

o A scheme enabling multiple reconstructions of the secret by different subsets of parties,
with factor O(n/t) increase in the pieces’ size.

e A one-time scheme, enabling a single reconstruction of the secret, with O(log(n/t))
increase in the pieces’ size.

o A one-time scheme, enabling a single reconstruction by a set of size exactly ¢, with
factor O(1) increase in the pieces’ size.

We prove that the first implementation is optimal (up to constant factors) by showing a
tight Q(n/t) lower bound for the increase in the pieces’ size.

The rest of this chapter is organized as follows: In Section 7.1 we define secret sharing
schemes with public reconstruction. In Section 7.2 we describe the unrestricted schemes, and
in Section 7.3 the one time schemes. In Section 7.4 we introduce non-interactive, unrestricted
schemes. In Section 7.5 we provide the lower bound for unrestricted schemes. Finally, in
Section 7.6 we summarize our results and give two numerical examples of the sizes of pieces
in our various schemes.
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7.1 Definitions

In this section we define secret sharing scheme with public reconstruction (in contrast to
traditional schemes with private channels as defined in Definition 3.6). In the following
definition we consider only threshold schemes.

Definition 7.1 [Secret Sharing Schemes with Public Reconstruction]: A t-out-of-n
secret sharing scheme with public reconstruction is a secret sharing scheme satisfying the
following two conditions:

Reconstruction requirement Any set of parties whose size is at least t can recon-
struct the value of the secret after communicating via public channels. Fvery party in the
reconstructing set gets the value of the secret with certainty (that is, the probability of errors
is zero).

Security requirement Every disjoint coalition B of size alt most t—1 has no information
on the secret as defined in Definition 3.4. There are two variants we consider:

1. Unrestricted schemes in which a disjoint coalition B can overhear all communications
taking place. The security is guaranteed even if several sets (maybe even all) reconstruct
the secret using the public channel. In this case the view of a disjoint coalition s its
pieces and all the communications that took place.

2. One-time schemes in which the security is guaranteed only if one set will reconstruct
the secret. It is not known during system initialization which set will reconstruct the
secret, and the dealer has to accommodate any possible set. In this case the view of a
disjoint coalition is its pieces and the communication of one reconstructing set.

The security should hold for any coalition of at most t — 1 parties. A special case is B =,
namely a listener who overhears all communications but has no pieces should gain no partial
information about the secret.

In traditional secret sharing schemes, while one set reconstructs the secret, no information
is leaked to disjoint coalitions (due to the security of the channels). Hence, secure traditional
schemes are always unrestricted. Furthermore, in traditional schemes, if a set can reconstruct
the secret, then every superset of the set can reconstruct the secret. However, one-time secret
sharing schemes with public reconstruction do not necessarily have this monotone property.
To satisfy monotonicity, it is required that every party of the superset should know the
reconstructed secret. However, it is not necessarily possible to “distribute” the secret to
members of a superset without leaking information to other parties.

7.2 Unrestricted Schemes

In this section we construct unrestricted secret sharing schemes with public reconstruction,
in which the size of the piece of every party is O(n/t) times the size of the secret. We first
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describe a simple scheme in which the size of the pieces is O(n) times the size of the secret.
Our O(n/t) construction can be viewed as an optimization of this simple scheme. In this
scheme, the dealer shares the secret using Shamir’s secret sharing scheme [101]. The dealer
also deals to every pair of parties two random strings whose size is the same as the size of
the secret. These two random strings, which we call keys, are given to the two parties of the
pair, and will be used as one-time pads. Overall, every party receives 2(n — 1) keys, each
one with the same size as the secret. When the parties in a set of size at least ¢ wish to
reconstruct the secret, all the parties “send” their pieces to the “leader” of the set, say the
party with minimal index in the set. The leader gets at least ¢ pieces (including his own),
which enable him to reconstruct the secret. Then, the leader “sends” the secret to the other
parties. The parties use their keys as one time pads to simulate private channels. Specificly,
let P, be the party with smallest identity in the set. Every party F;, holding the piece s;
from Shamir’s scheme, adds s; and the first key of the pair (F,,, P;) and sends this sum over
the public channel (this is an addition in the appropriate finite field). The party P, can
reconstruct all the pieces from these messages, and therefore reconstruct the secret. Now,
P;, sends messages, one message to every party in the reconstruction set. For every party
P;, he adds the secret and the second key of the pair (P, P;) and sends this sum over the
public channel. Since the one-time pads are independent, coalitions of parties disjoint to
the reconstructing set do not gain any information on the pieces or the secret. Furthermore,
even if many reconstructions take place, this does not leak any information to a disjoint set.

Suppose P, is the leader in a set of size at least t. In the previous scheme, during the
reconstruction for this set, only the keys that were given to P;, were used. To improve the
space efficiency we will use all the keys of the parties in the reconstructing set. Like the
one-time key distribution scheme of Lemma 6.11, there would be ¢ leaders. We partition the
secret into ¢ sub-secrets, and share each sub-secret using Shamir’s scheme. Now we choose
t parties of the reconstructing set, and each one will be responsible for reconstructing one
sub-secret. Each party will act as the leader in the previous scheme. That is, every leader
receives pieces of his sub-secret from the other ¢ — 1 leaders (this is enough), but sends his
sub-secret (after reconstruction) to every member of the reconstructing set. l.e., the size of
the one time pads is only the size of the sub-secret. This way we can handle ¢ sub-secrets
“at the price of one”. The domain of the secrets in the scheme is GF(q)’, where ¢ is a prime-
power such that ¢ > n. (We require that ¢ > n since this is the requirement in Shamir’s
scheme.) In the scheme we view the secret as t sub-secrets from GF(¢). The scheme is
presented in Fig. 7.1.

As described, the scheme has two technical points which should be clarified. The first is
the fact that in one reconstruction two parties P; and P; might need to exchange 4 different
messages: Assume that F; is responsible for reconstructing the sub-secret sy, and P; is
responsible for reconstructing the sub-secret s;;. The party P; has to receive from P; the
piece corresponding to the sub-secret s;, and then will send the sub-secret s;. Similarly, P;
has to receive from P; the piece corresponding to the sub-secret s;, and then will send the
sub-secret s;/. This is the reason for giving them 4 common keys. The second difficulty is
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Unrestricted Secret Sharing Scheme

Distribution stage:

Input: ¢ sub-secrets s1,s2,...,5 € GF(q)

Pieces: Share each sub-secret s; using Shamir’s scheme for every i, where 1 <7 < t.
Denote the n pieces of sub-secret s; by s;1,8;2,..., 8.
For every pair of parties generate 4 independent keys from GF(q).
Denote the keys of (P;, P;) by k}7j,k%7j,kij,kij.

The piece of party P; is s1,...,5;; and keys k}7j,k%7j,kij,kij for 1 <j<n.

Reconstruction stage:
A set G ={PF;,,..., P} that wants to reconstruct the secret (m > t).
Every party in G announces whether he has previously reconstructed the secret.
Let P, for 1 < j <t be the leaders of G.
Each leader P, (1 <j <t) sends (at most) ¢ — 1 messages to all other leaders
that have not previously reconstructed the secret:
851 + klljvi]/ to Pi]/ for 1< j/ <
851 + kiﬂ»]/ to Pi]/ for j < j/ <t
Each leader P;, (1 <j <) computes s; from s;;,,...,5;,.
Each leader P;; sends a message to every PZ'J, € (G that has not previously
reconstructed the secret:
55+ k%vij' to P, for 1 < ji<ij
55 —I—kfml to P, for j < j'<m

Each party of G concatenates the sub-secrets s1,3,...,5; to obtain the secret s.

Figure 7.1: Unrestricted t-out-of-n secret sharing scheme with public reconstruction
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that in different reconstructions the same party can be responsible for different sub-secrets.
This means that P; will have to send to P; two different messages, using the same key as a
one time pad. This might leak information to disjoint coalitions. To overcome the problem,
every party that participates in one reconstruction will remember the secret, and in latter
reconstructions will inform other parties (in the clear) that he knows the secret. In such
case, other parties will not send him any messages. He will continue to send the messages
that he has to send according to the scheme (to “new” parties). Thus, every key is used as
a one-time pad at most once (in the first reconstruction that the pair participates together).
Therefore, the scheme satisfies the unrestricted security requirement.

Let us calculate the size of the piece of every party in this unrestricted scheme. Each
party is given ¢ pieces generated by Shamir’s scheme for secrets taken from GF(¢). The dealer
also distributes to each party 4(n — 1) keys taken from GF(q). Hence, each piece contains
(4n + t — 4) elements from GF(q), compared to t elements from GF(q¢) for the secret. We
summarize these results in the next theorem.

Theorem 7.2:  Let q be a prime-power such that ¢ > n. The scheme of Fig. 7.1 s
an unrestricted t-out-of-n secret sharing scheme with public reconstruction for secrets taken
Jrom GF(q)". The piece of each party is an element of GF(q)* 1. So the size of each piece
is 1 +4(n — 1)/t times the size of the secrets.

7.3 One-Time Schemes

In the unrestricted scheme, we need totally independent keys in order to guarantee the
security of the scheme during repeated reconstructions. In this section we deal with the
scenario where the secret is going to be reconstructed only once. For example, to enable the
firing of a ballistic missile or opening of a sealed safe. In this case, total independence among
the keys is not needed, and weaker independence requirements suffice. Pieces can therefore
be taken from a smaller sample space, which translates into smaller size pieces. Specifically,
we use Blom’s key distribution scheme [24] for this purpose.

The first scheme we present enables one-time reconstruction of the secret by sets of size
exactly t. The size of the pieces is a constant (less than 10) times the size of the secret,
namely only O(1) increase in pieces’ size. We employ this “exactly t” scheme as a building
block for “at least t” schemes. We use 1+log(n/t) independent instances of “exact schemes”

for thresholds t,2¢,4¢,... up to n, and an additional instance of size t. Now, given any set
G with m parties (m > t), we represent it as a union of subsets (not necessary disjoint)
with cardinalities ¢, 2t,4¢,... — at most two subsets of cardinality £ and at most one subset

of cardinality 2t for each ¢ > 1. The secret is now separately reconstructed by each subset.
Any member of (& takes part in at least one of these reconstructions, and thus learns the
secret. On the other hand, any disjoint coalition containing at most £ — 1 parties gets no
partial information on the secret from any single instance. Due to the independence of the
instances, this remains valid with respect to the joint reconstructions. We get a one-time
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scheme for set of size at least ¢, with just O(log(n/t)) increase in piece size. We now describe
in detail the “exactly ¢” scheme. The distribution phase is depicted in Fig. 7.2.

Distribution in Exactly t-out-of-n one-time scheme
Input: secret s € GF(q)".

Consider the secret as t secrets sq,...,s € GF(q).

Share each secret s; using Shamir’s t-out-of-n secret sharing scheme.

Let b = min {2t — 3, n — 2}.

Generate pieces using (2, b)-key distribution scheme with key domain GF(q)*
(which we consider as 4 keys from GF(g)).

Piece of P;: the j-th piece of each s;, and the piece of the key distribution scheme.

Figure 7.2: One-time exactly t-out-of-n secret sharing scheme with public reconstruction
n I ¢ PYTA NIY 2D IMNY DY TID NPIZNI TPHRYH TH NNID :7.2 IPN

The reconstruction is done exactly as in the unrestricted scheme. The security of one
reconstruction of a set of exactly ¢ parties follows from the property of (2,2t — 3) key dis-
tribution schemes proved in Claim 6.2: Given the pieces of any disjoint coalition of at most
t — 1 parties, the keys held by any pair of parties in a set of size t are distributed uniformly
and independently. Thus, when used as one-time pads, the reconstruction is secure (using
the same arguments as in the unrestricted case). This scheme uses ¢ pieces of Shamir’s
t-out-of-n secret sharing scheme with secrets taken from GF(¢). In addition, each party gets
a piece of a (2,2t — 3) key distribution scheme with keys taken from GF(¢)* — these pieces
are taken from GF(q)**=2). Overall, the total piece contains (9% — 8) elements from GF(q)
(if 2¢ > n+ 1, then the pieces are even shorter). Recall that the secret is taken from GF(¢)’,
and therefore the size of the piece is less than 9 times the size of the secrets.

In this scheme, the domain of secrets has to be GF(q)" (for some prime-power ¢). Re-
stricting the domain of the secrets to such cardinality can cause problems when we employ
simultaneously many schemes with the same secret but with different thresholds. To over-
come this, given any domain of secrets, we consider a slightly bigger domain whose size
(which can depend on the threshold) is of the desired form. That is, given a secret of size (
which is at least ¢ log n, we choose a prime power ¢ such that ¢ < tlog ¢, and use the previous
scheme with secrets of size ¢/ = tlog q. Choosing ¢ = 2[/*1, we have (' =t [(/t] < (+t. If
we assume that ¢ > 9¢ then the size of the piece is 9¢' < 9(( 4+ t) < 10/.
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Theorem 7.3:  Let { be a natural number such that { > max{tlogn,9t}. There exists
a one-time exactly t-out-of-n secret sharing scheme with public reconstruction in which the
size of the secret equals {, and the size of the piece of each party is less than 10 times the
size of the secrets.

One-time schemes are a special case of traditional secret sharing schemes even if only
sets of exactly ¢ can securely reconstruct the secret, since every set of at least ¢ parties has
enough information to reconstruct the secret on secure private channels. Thus, the size of
each piece has to be at least the size of the secret [69]. Therefore, our scheme is tight up
to a constant factor. We can slightly improve this lower bound, by observing that every
one-time exactly t-out-of-n secret sharing scheme with public reconstruction can be used as
a one-time communicating (¢,1— 1) key distribution scheme (for t < n/2). By Theorem 6.10,
the size of the piece in every one-time (¢, — 1) key distribution scheme is at least twice the
size of the key. Therefore, the size of the piece in every one-time secret sharing scheme with
public reconstruction is at least twice the size of the secret.

In Fig. 7.3 we describe the one time scheme in which every set of at least ¢t parties can
securely reconstruct the secret.

One-time Secret Sharing Scheme

Distribution stage:
Input: secret s of size [
Share the secret s using two independent copies of a
one time exactly t-out-of-n secret sharing schemes.
For every ¢, 1 < < log(n/t):
Share s with an exactly 2't-out-of-n one time secret sharing scheme.

Reconstruction stage:
A set G ={PF;,,..., P} that wants to reconstruct the secret (m > t).
Cover the set @ by (possibly intersecting) sets of size 2t

(at most one set for every ¢ > 1, and at most 2 sets of size ¢).
Each set of size 2t independently reconstructs the secret using

the pieces of the exactly 2't-out-of-n secret sharing scheme.

Figure 7.3: One-time t-out-of-n secret sharing scheme with public reconstruction
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Theorem 7.4: The scheme of Fig. 7.3 is a one-time t-out-of-n secret sharing scheme with
public reconstruction in which every set of parties of size at least t can securely reconstruct
the secret. If the size of the secrets { is larger than max {nlogn,9n}, then the size of the
pieces of every party is less than 10(log(n/t) + 2) times the size of the secrets.

Remark If we require that the size of the secret £ is greater than n?logn, then we can
construct a scheme in which the size of the pieces is only 2log(n/t) + O(1) times the size
of the secret, i.e. a smaller leading constant. To achieve this goal we use a slightly weaker
building block (instead of the exactly t-out-of-n scheme). This building block is a scheme in
which exactly 2t parties can reconstruct the secret, while any coalition of size ¢t — 1 does not
gain any information on the reconstructed secret. Schemes which satisfy this requirement on
secure, private channels were presented by Blakley and Meadows [23] (see also [39, 69, 79]),
and are called ramp schemes. We use ramp schemes instead of regular secret sharing schemes
to design our building boxes. Assume that sets of m parties should be able to reconstruct
the secret, while sets of fewer than ¢ parties should get no information about the secret.
The size of the piece in such ramp scheme is 1/(m — ¢ + 1) times the size of the secret, i.e.
substantially smaller than traditional secret sharing schemes.

For the scheme with public reconstruction, assume that the domain of secrets is
GF(q)™("=t+1)_ That is, the dealer has m secrets, each one taken from GF(¢)”~**'. The
piece of each party is one piece of the ramp scheme for m sub-secrets, each piece taken from
GF(g). In the reconstruction of the secret by a subset containing exactly m parties, each
party will be responsible for one sub-secret. Each pair of parties in this set first exchanges
two pieces of the ramp scheme. Now each party reconstructs his sub-secret, and every pair
of parties exchange two sub-secrets. Therefore, every pair of parties needs two keys of a
(2,m + t — 3)-key distribution scheme with keys from GF(¢) (the domain of pieces of the
ramp scheme), as well as two keys from a (2, m+1t—3)-key distribution scheme with keys from
GF(g)™'*! (the domain of sub-secrets). Overall, the piece of each party is an element taken
from GI(g)>mF2i=420m+t=2)(m=t41) That is, the size of the piece is 2+ 2t/m + O(1/(m —t))
times the size of the secrets. In the t-out-of-n scheme for every set, we use these schemes
with m = 1,2t,4t, ... — therefore the size of the piece is only 2log(n/t) 4+ O(1) times the size
of the secret. In this construction we required that the size of the secret m is greater than
n?log n, this requirement can be weakened to m > nlog®n.

7.4 Unrestricted Non-Interactive Schemes

A secret sharing scheme with public reconstruction is called non-interactive if the messages
sent by each party depend only on his piece (and not on messages received during the
reconstruction). Non-interactive schemes are simpler to implement, as they require less
synchronization. Therefore, they are desirable from practical point of view. In this section
we present non-interactive, unrestricted f-out-of-n schemes. The size of the pieces in these
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schemes is n times the size of the secret. This represents a slight improvements (by a factor
of 2) over the interactive scheme of Section 7.2 for t = 2, but is strictly less efficient (in
terms of piece size) for t > 5. We extend these schemes to general access structures. The
size of the piece in our public reconstruction schemes is n times the size of the piece in the
original scheme. For general access structure it is typically not a significant increase, as the
best schemes for most access structures to date require pieces whose size is exponential in n.

We first present a simple, non-interactive, 2-out-of-n secret sharing scheme. Let s € Z,,
be the secret which the dealer wants to share. The dealer chooses n independent random
elements from Z,,, denoted ry,...,r,. The piece of P is ri,..., 71,7 4+ S, 741, -5 T
Each piece is uniformly distributed in Z, regardless of the secret. Hence, prior to any
reconstruction every party has no information on the secret (as defined in Definition 3.4).
To reconstruct the secret, P; sends the message r;, and P; sends the message r;. Now, P,
who holds r; + s, hears the message r;, so he can reconstruct the secret. FEvery third party
hears messages that he already knows, and gains no information on the secret. That is,
the reconstruction is secure. The size of the pieces in this scheme is n times the size of the
secret. During the reconstruction in this scheme every party is deterministic and sends only
one message that depends only on its piece.

The notion of secret sharing scheme with public reconstruction is naturally extended to
every monotone access structure. The unrestricted, non-interactive, 2-out-of-n scheme can
be generalized to an unrestricted, non-interactive scheme realizing an access structure A.
Assume there is a traditional secret sharing scheme realizing A with domain of secrets S
and domain of pieces U. In our scheme we use the following observation: Denote by A;
the access structure A; = {B : BU{F;} € A}. There exists a traditional secret sharing
scheme realizing A; in which the domain of pieces is U (fix some possible piece u for P;,
which would be public knowledge, and share the secret using the scheme for A conditioned
on the fact that the piece of P; is u).

We now describe an unrestricted, non-interactive scheme realizing A with domain of
pieces S x U™, To share a secret s, the dealer chooses n random independent elements
from S, the domain of secrets, denoted rq,...,r,. For every ¢, the dealer distributes the piece
r; + s to P, and shares r; among {P,..., P_1, Py1,..., P,} using the scheme realizing A;
with domain of pieces UU. That is, the piece of F; is r; + s together with the pieces of
the n — 1 schemes realizing Ay, ..., A1, Ait1, ..., A, with secrets ri,... 7 1,711,...,7n
respectively. The total piece is an element taken from S x U""!. Now, when a subset B
wishes to reconstruct the secret, every P; € B sends (in the open) the piece of the secret r;
to every P; € B. Thus, P, holds r; + s and hears the pieces of B \ {F;} from the scheme
realizing A; with the secret r;. Since B\ {P;} € A;, the party P; can reconstruct r;, and
with r; + s reconstructs the secret.

We next claim that the reconstructions are secure. That is, every coalition C' € A hearing
communications during the reconstruction of the secret by all sets in A that are disjoint to C'
does not gain information on the secret. The information that such coalition gains from the
communication is at most the r;’s for P; ¢ C'. On the other hand, C' ¢ A; for any P; € C.
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Therefore, the coalition C' gets no information on such r;, so even though he knows r; 4 s,
this gives no information on s. Since the ry,...,r, are random independent elements, C'
does not gain any information on the secret. That is, the reconstruction is secure. Thus,

Theorem 7.5:  Assume there exists a (traditional) secret sharing scheme realizing A
with domain of secrets S and domain of pieces U. Then there exists an unrestricted, non-
interactive secret sharing scheme realizing A with public reconstruction for secrets taken from
S. The piece of each party is an element of S x UL, So the size of each picce is at most n
times the size of the pieces in the original scheme.

We can apply the previous construction for threshold schemes using Shamir’s scheme.

Corollary 7.6:  Let ¢ be a prime-power such that ¢ > n. There exvists an unrestricted,
non-interactive t-out-of-n secret sharing scheme with public reconstruction for secrets taken
from GF(q). The piece of each party is an element of GF(q)". So the size of each piece isn
times the size of the secret.

7.5 Lower Bounds for Unrestricted Schemes

In this section we prove an Q(n/t) lower bound on the increase in the pieces’ size for unre-
stricted t-out-of-n schemes. The specific lower bound that we prove is tight for t = 2 (by the
non-interactive scheme of Section 7.4). For ¢t > 2 our lower bound is tight up to a constant
factor (by the interactive scheme of Section 7.2). We first prove an (n) lower bound on
the increase in size of pieces for 2-out-of-n schemes. Then, we show that this lower bounds
translates into an Q(n/t) increase for t-out-of-n schemes.

We start with the lower bound for ¢ = 2. The proof uses entropy and mutual informa-
tion. For definitions of these information theoretic terms, the reader can refer to [42] and
Appendix A. We assume an arbitrary probability distribution on the secrets, and we denote
the secret by the random variable S.

The intuition behind the proof is that P; has to expose H(.S) “new” bits of his piece in each
reconstruction, and F; can participate in n—1 reconstructions. After all n—1 reconstructions,
the uncertainty of the piece of P; has to remain at least H(.S), as an outsider who listened
to all reconstructions still has H(.S) uncertainty on the secret. Thus, the original entropy of
the piece has to be at least n - H(.S).

Without loss of generality, we prove the claim for P. To prove the lower bound on P;’s
piece, we only use the requirement that P, can reconstruct the secret together with every
other P; (we do not care if other pairs can or cannot reconstruct the secret). We start with
some notation. Denote by S; the piece given to F; in the initial distribution phase, and
by C;; the messages exchanged between P, and P; while they reconstruct the secret (all
these are random variables). We denote C'= (' 5...C,, the concatenation of all messages
exchanged between Py and Ps, ..., FP,. Recall that the communication (' 5, together with
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Py’s piece Sy, enable P, to reconstruct the secret S. On the other hand, the communication
C and 5, give no information (to P») about the secret. These facts will imply the next claim.

Claim 7.7: H(Cl72|5’20) Z H(S) .

Proof: Since P, can reconstruct the secret S, given his piece S; and the messages Cf 5
exchanged between P, and P,, the conditional entropy H(S|C252) equals 0. On the other
hand, P, gets no information about the secret S from his own piece Sy and all messages
C' exchanged between P; and the other n — 2 parties. Therefore the conditional entropy
H(S|52C") equals H(.S). Now, consider the conditional mutual information I(Cy 2; 5]52C') of
the message ('} ; and the secret S, given the piece S; and €. We have

H(Cl72|520)—H(0172|5520) = I(CLQ,S|SQC)
= H(8]S,C) — H(S|C}.25,0)
= H(S).

Since the entropy is non-negative, H(Cy 2|S2C') > H(5). U]

The next claim is the heart of the proof of the lower bound. It states that the mutual
information between S; and (5 given the “other” communication C' is at least H(.S). In-
tuitively, since P, does not know the secret prior to the reconstruction, and knows it after
the reconstruction, P, has to receive H(.S) bits of information which could only originate
in 57 and passed through the communication Cy 2. Hence, C' 5 must contain H(S) bits of
information originating from the piece S;. Claim 7.8 is stated for deterministic parties —
the outgoing messages are determined by the given piece and previous incoming messages.
An analogous statement is proved in Section 7.5.1 for randomized parties, whose outgoing
messages could in addition depend on random local inputs.

Claim 7.8: For deterministic reconstruction protocols we have
[(0172; 51|C) = H(51|C) — H(51|CLQC) > H(S) .

Proof: Since P, and P, are deterministic, and their domain of pieces is finite, there is
a bound k on the maximum number of communication rounds which can take place during
the reconstruction of the secret. Denote by A; the i-th message sent by P; to P, and
similarly, let B; be the :-th message sent by P to P;. Then, without loss of generality,
Ci2=A1By ... AyBy. The message A; is determined by the piece 57 and previous messages,
that is, H(A;|S1A1B1 ... Ai1Bi—1) = 0. The following inequality holds for any deterministic
communication protocol:

H(Cl72|5’10) — H(AlBl . e AkBk|Slc)
k k
- Z H(AZ|510A1B1 . e Ai—lBi—l) —|— Z H(BZ|510A1B1 . e Ai—lBi—lAi)
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k

- Z H B|510A1B1 . e Ai—lBi—lAi)
=1
k

< STH(B|CAB; ... A1 Bia Ay) .

=1

Similarly, H(Cy 2|52C) < Sk H(A;|CA1B; ... Ai1Bi—1) . Combing the two inequalities

k
H(Ch o] $1C) + H(C12]5:0) < ST (H(BI|CAB; ... Biy A) + H(AJC A B, ... A1 Bi_y))
=1

= H(ABy ... ABiC)
= H(C, 2|0)

This inequality, together with Claim 7.7, implies
I(CLQ; 51|C) = H(Cl72|0) - H(Cl72|5’10)

H(Cy 2]8:C)

>
= H(9)

[

We are now ready to prove our lower bound for ¢ = 2.

Claim 7.9: In any unrestricted 2-out-of-n secret sharing scheme with public reconstruction,
the piece of each participant, S;, satisfies

H(S) > n- H(S) .

Proof: = We first note that by Definition 7.1 a listener, who overhears all communication
involving Py, gets no information on the secret. Therefore,

H(S|C12C15...Ch,) = H(S) .

On the other hand, given P;’s piece, this communication determines the secret, so
H(S|51C12C15...C1,) =0

Therefore,

H(S) — H(S|Cl720173 e Cl,n) - H(S|5101720173 e Cl,n)
I(S, Sl|01720173 Ce Cl,n)
H(Sl|01720173 ce Cl,n) — H(Sl|501720173 ce Cl,n) 5

and in particular

H(51|C12C15...C1n) > H(S) .
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Claim 7.8 (or Claim 7.13 for the case of randomized protocols) states that
H(Sl|0173 e Cl,n) — H(Sl|01720173 Ce Cl,n) Z H(S) .
Similarly it holds that

H(Sl|0174 Ce Cl,n) — H(51|CL3CL4 Ce Cl,n) Z H(S) .

H(S)) — H(S:|Ch.) > H(S).
Summing these n inequalities, we conclude that
H(S;) > n-H(S) .
O

We next show that this lower bounds on increase in size of pieces for 2-out-of-n schemes
translates into (n/t) increase for t-out-of-n schemes.

Theorem 7.10: In every unrestricted t-out-of-n secret sharing scheme with public recon-
struction the size of the pieces of every party is at least |1 4+ (n —1)/(t — 1)]| times the size
of the secrets.

Proof: Consider any t-out-of-n scheme. Denote the party whose piece is shortest by
P1. We construct an unrestricted 2-out-of-(|1 + (n — 1)/(t — 1)]) scheme in which the en-
tropy of S; — the piece of P; — is the same. Hence, by Claim 7.9 its entropy is at least
(|14+(n—=1)/(t—1)])H(S). Since the scheme is secure whatever the distribution on the
secrets is, we can assume uniform distribution on the secrets. In this case H(S) = log|S5],
which is the size of the secret. Since H(S1) < log|S], the size of the piece of P; is at least
|14+ (n—1)/(t —1)] times the size of the secrets.

The construction is simple: the dealer gives P; the piece of P; in the original scheme,
and every other party gets pieces of t — 1 disjoint parties. Since every party has at most £ —1
pieces, he does not gain any information on the secret even after hearing communications.
On the other hand, every 2 parties have at least ¢ pieces, therefore they can communicate
on a public channel, and securely reconstruct the secret. (]

7.5.1 Lower Bound for Probabilistic Parties

In the proof of Claim 7.8 we assumed that the parties are deterministic during the recon-
struction of the secret. In this section we prove the same claim without this assumption.
Recall that 57 is the piece of Py, (15 is the communication generated in the reconstruction
of the secret by P, and P,, and C is the communication in previous reconstructions. We
prove that the mutual information between 57 and Cj; given C is at least the entropy of
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the secret, even if the parties may toss coins during the reconstruction. That is, party P
has an independent local random string, denoted R;, and the messages he generates are a
deterministic function of his piece, his random input, and previous messages. As the claim
concerns the piece of P, we can assume that other parties in the system are deterministic
(the dealer can supply a random string to the other parties as part of their pieces). Since
Ry is independent of the pieces and the secret, the mutual information between R; and the
pieces and the secret is zero, i.e. I(Ry;55152...5,) = 0 . We next prove that the mutual
information between R; and the pieces of other parties, given 57 and a communication M
is zero (where M is any prefix of C'C'y3). The claim can be proven directly by induction on
the number of messages sent in M. We avoid this induction as we show that our claim can
be formulated as a special case of Claim 6.8 (actually, Claim 6.8 is proven by induction).

Claim 7.11: Let M be a prefix of the communication exchanged between the parties in the
system. Then, H(Ry|SS351M) = H(Ry|S1M).

Proof: Consider a scenario in which one party holds R;, and a second party holds the
secret S and all the pieces — 51, 59,...,5,. They communicate via a public channel and the
first message is sent by the second party and equals S;. From now on, the first player can
generate the messages of P, and the second player can generate all other messages. Thus,
the two parties can continue to communicate and generate M. By Claim 6.8 (proved in [77]
and [2, Lemma 2.2]), communicating S; and M can only decrease the mutual information,
that is,
[(Ry;55152...9, 99 M) <I(Ry;55152...5,)=0.

Recall that, I(Rq; 551551 M) < I(Ry; 55152 ...5,]51M). Since the mutual information is

non-negative,
[]

We restrict our discussion to protocols with an absolute bound & on the number of rounds
in each communication C; j. (The case where the protocol terminates after a finite number of
rounds with probability 1 can be handled similarly). Denote by A; the i-th message sent by
Py to Py, and similarly, B; to be the ¢-th message sent by P, to Py. Le, C1 3 = A1 By ... Ay By.
We next prove that the dependence of A; on 57 and the previous messages is greater than
the dependence of A; on Sy, the secret S, and the previous messages. Formally,

Claim 7.12: H(AZ|SSQCA1B1 e Ai—lBi—l) Z H(AZ|510A1B1 e Ai—lBi—l)'
Proof:  On one hand, since the entropy is non-negative

I(Ag; Ry|SS, S,C A By ... Aoy Biy)

H(A;|SS18,C A By ... A1 Bioy) — H(A:| R1SS19,C Ay By ... Ai_y Bi_y)
H(A;|SS18.C A By ... A1 Bisy)

H(A;|SS2CALBy ... A1 Bioa)

<
<
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On the other hand, using Claim 7.11 we can write

(Ag; Ry|SS1S,C AL By ... Ai_y Biy)
H(R1|SS18:C A1 By ... A1 Bioy) — H(Ry|AiSS1S,C A1 By ... Ai_y Bi_y)
= H(Ri|$CAB; ... A1 Bioy) — H(Ry|A:S1C AL By ... Ai_y Bi_y)
= H(A|SiCAB; ... Aio1Biy) — H(A| Ry S1CABy ... Aiy Bioy)

Thus,

H(A;|SS,C AL By ... Ai_y Bioy)
Z H(AZ|510A1B1 ce Ai—lBi—l) - H(AZ|R1510A1B1 ce Ai—lBi—l) (71)

Since A; is completely determined by the random input R;, the piece S; and the previous
messages C, Ay, By,..., Ai—1, Bi_1, it holds that H(A;|R1S1CA1By ... Ai-1B;—1) = 0. Com-
bining this inequality and Inequality (7.1), we get

H(A;|SSyC ALy ... Ao Bioy) > H(A|S1C A By ... Ay Biy)

O

We now prove the analogue of Claim 7.8, without the restriction to deterministic recon-
struction.

Claim 7.13: [(0172; 51|C) Z H(S) .

Proof:  Expressing 1(Cy2;51|C) as a sum and using the fact that mutual information is
non-negative, we get

k k
I(CLQ; Sl |C> = Z I(AZ, Sl |CA1B1 Ce Ai—lBi—l) + Z I(BZ, Sl |CA1B1 Ce Ai—lBi—lAi)
=1 =1
k
Z Z I(AZ, Sl |CA1B1 ce Ai—lBi—l)
=1
k
- Z H(AZ|CA1B1 . e Ai—lBi—l) - H(AZ|510A1B1 . e Ai—lBi—l)
=1
k
> STH(AS:C0ABy . A1 Bioy) — H(ASiC A By ... Ai 1 Bi_y) .

=1

This inequality together with Claim 7.12 imply

k
I(CLQ; 51|C) Z Z H(AZ|SQCA1B1 Ce Ai—lBi—l) — H(AZ|SSQCA1B1 Ce Ai—lBi—l)

=1
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== Z I(AZ, S|SQCA1B1 ce Ai—lBi—l)

=1

k
H(S|S3CABy ... A1 Bioy) — H(S|SoC AL By ... Aisi Bioy Ay

1

K3

Since the message B; is determined by S, and previous messages,
H(S|S3C AL By ... Aioy Biy A;) = H(S|S2C AL By . .. Aiy Biy AiB;).
Therefore the “internal” summands in the last sum cancel each other, and we are left with
1(Cy; S1|C) > H(S|S,C) — H(S]S,CCh ) (7.2)

Recall that the communication C' and the piece Sy give no information (to P) about the
secret, i.e. H(S[5;C) = H(S). On the other hand, P> holding S, and knowing C 2, can
reconstruct the secret, i.e. H(S|5,CC1 5) = 0. Therefore, H(S|5,C) —H(S5|52CCy 2) = H(S).
Together with Inequality (7.2), we get 1(Cy 2;.51|C) > H(5), as claimed. L]

Claim 7.13 implies that Theorem 7.10 holds also in the scenario in which the parties can
toss coins during the reconstructions.

7.6 Conclusions

In this chapter we investigated the cost of performing the reconstruction over public commu-
nication channels. In Fig. 7.4 we summarize our results for the various schemes. We denote
by ( the size of the secret, and the sizes of the pieces are multiples of ¢ (e.g. 10¢). We also
give the minimum size of secrets for which this piece size applies.

‘ t-out-of-n scheme ‘ piece size ‘ min. secret size ‘
Naive 2nl log n
Non-interactive nl log n
Unrestricted (1 +4(n—1)/9)¢ tlogn
One-time 10(log(n/t) + 2)¢ | max {nlogn,9n}
One-time, exactly ¢ 10¢ max {¢log n, 9t}

Figure 7.4: Summary of the complexity of our schemes

IV MNI0N DY NPINON DY DD 7.4 IPN

In Fig. 7.5 we give two examples of the sizes of pieces in the various schemes. In both
examples we consider a system with 1024 parties.
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n=1024; t =128 n=1024; t=38
pieces’ size ‘ min. secret size | pieces’ size ‘ min. secret size
Naive scheme 2047¢ 10 bits 2047¢ 10 bits
Unrestricted scheme 330 160 bytes 513¢ 10 bytes
One-time at least ¢ scheme 400 1280 bytes 80¢ 1280 bytes
One-time exactly ¢ scheme 10¢ 160 bytes 10¢ 90 bytes

Figure 7.5: Numerical Examples.

VIO MNDINT :7.5 IPN
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Chapter 8

Computing Functions of a Shared
Secret

In this chapter we introduce and study threshold (t-out-of-n) secret sharing schemes with
respect to a family of functions F. Such schemes allow any set of at least ¢ parties to
privately reconstruct the value f(s) of a (previously distributed) secret s (for any f € F).
Smaller sets of players “know nothing” about the secret. The goal is to make the pieces as
short as possible.

The rest of this chapter is organized as follows: In Section 8.1 we provide the definitions
of threshold schemes with respect to a family of functions. Section 8.2 contains schemes
for the family of linear functions. Section 8.3 uses these schemes to construct schemes for
other families. Section 8.4 contains non-interactive schemes for the family of bit functions.
Section 8.5 contains the characterization of ideal schemes in various models.

8.1 Definitions

We define t-out-of-n secret-sharing schemes for a family of functions F. This is an extension
of the traditional secret sharing definition (Definition 3.6), which enables private reconstruc-
tion of functions of the secret. That is, any set (¢ of cardinality at least ¢ can reconstruct
the value f(s) of a (previously distributed) secret s (for any f € F), while any smaller set
B “knows nothing”. We distinguish between three types of schemes depending on the way
that the value f(s) is reconstructed:

1. interactive secure private channels schemes — where the parties in G engage in a pro-
tocol which computes the value f(s) via private channels.

2. non-interactive private channels schemes — where during the reconstruction of f(s)
each party in (¢ sends via a secure private channel a single message (depending only
on his piece) to each of the other parties in G.
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3. non-interactive public channels schemes — where each party in ¢ sends a single message
to each of the other parties in G on a public channel. Again each message depends
only on the piece of the party.!

In all cases, the reconstruction is private. Namely, any set B of less than ¢ parties, does not
get any additional information about s. The notion of getting no information on s that is
not implied by f is a generalization of Definition 3.4:

Definition 8.1 [No Information that is Not Implied by f]: A coalition B has no
information that is not implied by a function f on a random variable X if for every two

possible values xq1, 22 of X such that f(x1) = f(a2), and every value of VIEWg:
P VIEWg | X = 21] = Pr[ VIEWg | X = 2,],

where the probability is taken over the random inputs of the dealer, and the random inputs
of the parties outside the coalition.

We first consider one-time schemes with respect to a family of functions. In these scheme,
in addition to the usual security requirement, it is required that, after the reconstruction of
f(s) by a set & (of size at least 1), any coalition B of size less than ¢, which has heard the
communication, does not have any information (from its view of the system) on s that is not
implied by f(s) . Recall that the term “communication heard by the coalition” depends on
the communication model: in the private channels model it only contains the messages sent
to parties in G N B and in the public channel model it contains all the messages exchanged
between the parties in (G. In the private channel model a disjoint coalition does not gain
any information on the secret. However, in the public channel model a disjoint coalition is
allowed to gain information on f(s) although not participating in the reconstruction.

Definition 8.2 [One Time Secret Sharing Schemes for Families]: A t-out-of-n secret
sharing scheme with respect to a family of functions F is a secret sharing scheme Il (according
to Definition 3.6), that in addition satisfies the following two conditions:

Function reconstruction requirement For any set G of size at least t, and any
function f € F the parties in G can evaluate the value f(s) (G and f are the common input
for the reconstruction). The scheme is an interactive private channel scheme if this is done
using an interactive protocol via private channels. The scheme is a non-interactive private
channel scheme if the reconstruction is done using a non-interactive protocol via private
channels. The scheme is a non-interactive public channel scheme if the reconstruction is
done using a non-interactive protocol via public channels.

One-time function security requirement [or any sel of size less than t, the recon-
struction is secure. That is, for any f € F, for any set G (|G| > t) that reconstructed
f(s), and any coalition B of size |B| <t — 1, the members of the coalition B do not have

'We do not consider interactive public channels schemes in this work.
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any information that is not implied by f on the secret s from VIEWg, where the view of B
contains their pieces, their local random inputs, and the communication heard by the parties
in B during the reconstruction of f(s).

Obviously, any public scheme can be transformed into a scheme in which each message
is sent on private channels. On the other hand, if we take a non-interactive private channels
scheme and send the messages on public channels then the security of the reconstruction is
not guaranteed.

We next define unrestricted schemes in which an unrestricted number of functions can
be securely reconstructed by possibly different sets.

Definition 8.3 [Unrestricted Secret Sharing Schemes for Families]: An unrestricted
t-out-of-n secret sharing scheme with respect to a family of functions F is a secret sharing
scheme with respect to a family F with a stronger security requirement:

Unrestricted function security requirement Let fi, fo,...,f; be any sequence
of functions from F (a function can appear more than once in the sequence), and
Gh,Gay. .. Gg C { P, ..., P} be sequence of sets of cardinality at least t (a set can ap-
pear more than once in the sequence). Assume that for every i the set G; reconstructed fi(s).
Then, any coalition B of cardinality at most t —1 should not gain any additional information
on the secret in the following manner:

o [n the private channel model the coalition B hears communications during the recon-
struction of f; only if BN Gy # 0. That is, let Gy, Gy, ..., Gi, be the sets that
intersect with G. The view of the members of the coalition B is their pieces and the
communication received by the parties in BN Gy, ..., BNG;, during the reconstruc-
tion of f3,(s), fi,(s),..., fi,(s) respectively. We require that the coalition does have any
information about the secret that is not implied by the function fi ofi,o.... f; (s) (the
concatenation of the d' functions).

o [n the public channel model the coalition B hears all the communications during the
reconstruction of all of the functions. That is, the view of the members of the coalition
B is their pieces and all the communication that takes place. We require that the
coalition does not have any information about the secret that is not implied by all the
function frofso..., fa(s) (the concatenation of the d functions).

A function f"is a renaming of f if there exists a one-to-one function g such that f'(z) =
g(f(x)). Note that a secret sharing scheme enables the reconstruction of a renaming of a
function f if and only if the scheme enables the reconstruction of f. Therefore, we shall
ignore renamings of functions.
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8.1.1 Families of Functions — Basic Examples

In this section we define certain families of functions over GF(2%) which are of interest.
Recall the definition of the operations in GF(2"). Each element a € GF(2") is an (-bit string
ao_1 ... a1ao which is represented by the polynomial ap_12*~' + ...+ a12' + ao. Addition and
multiplication are as for polynomials, using the structure of GF(2) for the coefficients and
reducing products modulo a polynomial p(x) of degree ¢, which is irreducible over GF(2).
A function f : GF(2Y) — GF(2%) is linear over GF(2) if f(z +y) = f(z) + f(y) for every
z,y € GF(2%). Tt follows that f is linear if and only if f is the exclusive-or of a sub-set of the
bits of its input. Clearly f(ax) = af(x) for a € GF(2). (Notice that we do not require that
flaz) = af(z) for a € GF(2).) We define the family LIN; to be the family of all linear
functions of GF(2"). Let ¢; : GF(2Y) — GF(2) be the function that returns the i-th bit of
x. Notice that e;(x +y) = e;(x) + ei(y), hence ¢; is linear. We call the family {e1,..., e/}
the bit functions and denote it by BZT,. We also consider the family ALL, of all possible
functions of the secret. Without loss of generality we assume that the range of the functions
in the family have the same size as the domain of the secrets.

8.2 Schemes for the Linear Functions

8.2.1 An Interactive Scheme

In this section we show that Shamir’s scheme over GF(2°) [101] (described in Example 4.4) is
also a secret sharing scheme with respect to the family LZN, — the family of linear functions.

Theorem 8.4 [Basic interactive scheme]: For every ( > 1, there exists an unrestricted
t-out-of-n secret sharing scheme with respect to the family LIN ; in which the secrets are of
length { and the pieces are of length max {(, [log(n + 1)]}. Fort = n this is a non-interactive
public channels scheme; for t = 2 this is a non-interactive private channels scheme; for
3<t<n—1i1tisan interactive private channels scheme.

Proof: The dealer uses Shamir’s t-out-of-n secret sharing scheme over GF(2"), where
(" = max {{, [log(n + 1)] }, to distribute the pieces. We show how to reconstruct every linear
function f securely. Consider a reconstructing set (G of ¢ parties that wishes to reconstruct
f(s). By the properties of Shamir’s scheme, there exists a linear combination of the pieces
held by the parties in G which equals to the secret. That is, there exist constants fy,..., 3 €
GF(2") such that for every secret s € GF(2°) C GF(2") and any pieces {sy,...,s;} in
GF(ZW) dealt to the parties in ' it holds that s = Z§:1 Bjs;. Since [ is linear we have
f(s) = f(zzzl Bis;) = Z;Zl f(B;s;). For a party P; € G let x; £ f(B;s;). Therefore, f(s) is
simply the sum of the z;’s. Computing the sum privately can be done using the interactive
protocol of Benaloh [15] (for formal definition of privacy and description of Benaloh’s protocol
the reader is referred to Appendix B).
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For the function security requirement, consider a coalition B of size smaller than ¢. Since
each x; is computed locally, and f(s) is computed using the private protocol of [15], the
parties in B gain no information about the z;’s (and hence the pieces) of other parties in
(' except for their sum which is f(s). Hence, they gain no information about s other than
what follows from the value f(s). Furthermore, this scheme has the unrestricted security
requirement. Since the reconstruction is done using a private protocol, the members of B
cannot distinguish between two vectors of pieces with the same values f;(s). Hence, even
if one knows some functions of the secret, then another reconstruction of a function cannot
reveal extra information.

In the special cases where t = 2 or ¢t = n, the parties can reconstruct the secret without
interaction by simply sending the message z;. If { = 2 these messages have to be sent via
private channels, and in the case ¢ = n the messages can be sent via public channels. In these
cases every coalition B of size t —1 which heard the communication on the private channels is
contained in the reconstructing set (7, so there exists j such that G = BU{F;}. The parties
in the coalition know f(s) which equals 3 p ¢ %, and of course know 2_pec\({p,} vi- Hence,
the coalition can reconstruct x; from f(s) and its pieces. Therefore, the coalition does not
gain any extra information from the message =;. Any subset B’ of size smaller than ¢ — 1
has less information on the secret than B, hence such a set also gains no extra information
about the secret. ]

For 3 <t < n — 1, the parties reconstruct f(s) using an interactive private channels
scheme. It can be shown that, for this particular scheme, interactive reconstruction is es-
sential. Otherwise, some coalitions B that intersect the reconstructing set ¢, but are not
contained in ¢, can get some additional information about s if they hear the values z;’s.

8.2.2 A Non-interactive Public Channels Scheme

Next, we present a public channel t-out-of-n scheme with respect to the linear functions, in
which the length of the pieces is {logn + (.

Theorem 8.5 [Basic non-interactive public channels scheme]: For every { > 1, there
exists an unrestricted t-out-of-n non-interactive public channel secret sharing scheme with
respect to the family LIN; in which the secrets are of length € and the pieces are of length
llogn + (.

Proof:  The scheme is as follows: The dealer shares each bit independently using Shamir’s
scheme. Since sharing each bit requires [log(n + 1)] bits, the total length of the piece of
each party is ([log(n 4+ 1)] < llogn + (. Clearly, every bit of the secret can be securely
reconstructed. To reconstruct other linear functions of the secret, we use the homomorphic
property of Shamir’s scheme defined by Benaloh [15]. Consider the scenario in which the
parties have pieces of two secrets. Now, every party sums his two pieces and the parties of (¢
reconstruct a secret according to Shamir’s scheme from the new pieces. The reconstructed
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secret in this case is the sum of the two original secrets. Furthermore, every coalition of size
at most ¢t — 1 seeing the new pieces gains no information on the secrets other than what is
implied by the sum of the secrets. Similarly, the parties can securely reconstruct every linear
combination of the bits by applying this combination to each of the pieces, and sending the
new pieces on the public channel. As every linear function is a linear combination of the
bits, the theorem follows. (]

Remark 8.6: Observe that in the public channels scheme there is no need for the set G
to be given as input for the reconstruction: each party P; which is available just outputs
an appropriate linear combination of its pieces, and its identity F;. This scenario addresses
reliability issues.

8.3 Schemes for Other Families of Functions

We now show how to use the basic scheme (for linear functions) to construct schemes for
any family of functions. Given a family of functions, we shall construct a family of linear
functions (of a bigger domain) which will enable the reconstruction of the original functions.
However, the length of pieces in the new scheme may be much larger than the length of
secrets. Observe that any Boolean function f : GF(2‘) — GF(2) can be represented as a
binary vector over GF(2) of length 2 whose i-th coordinate is f(7). Similarly, any function
f: GF(2") — GF(2") can be represented as an array of {' binary vectors in which the j-th
vector corresponds to the j-th bit function of f(x). The rank of a family of functions F is
the smallest ¢ for which there exist Boolean functions fi,..., f. such that for every function
f € F there exists a renaming of it, f’, such that each of the ¢/ vectors representing f’ is a
linear combination of fi,..., f.. The rank of a family does not change if we add renamings
of functions. So, we can assume that F contains all renamings of its functions.

Theorem 8.7: Let F be any family of functions.

o There exists an unrestricted t-out-of-n interactive public channels secret sharing scheme
with respect to F with pieces of length max {rank(F),logn + 1}.

o There exists an unrestricted t-out-of-n non-interactive public channels secret sharing
scheme with respect to F with pieces of length rank(F)(logn + 1).

Proof:  Let fi,..., f. be a basis for the vector space spanned by the functions in F. To
share a secret s, the dealer generates a new secret E(s) = fi(s)ofa(s)o...ofe(s) of length ¢
(where o denotes concatenation of strings). The dealer now shares the secret E(s) using the
basic scheme. For every i = 1,2,..., ¢ it holds that f;(s) = ¢;(E(s)). Let f be a function in
F that should be reconstructed, and f’ its renaming such that the vectors representing f’ are
spanned by fi,..., f.. Every bit of f’(s) is a linear combination of fi,..., f., and therefore
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of the bits of E(s) (i.e. of ¢;(E(s))). Since addition in GF(2°) is bitwise, concatenation of
linear functions is a linear function too. Thus, f'(s) can be computed by evaluating a linear

function of E(s) (hence, f can be computed as well). By Theorems 8.4 and 8.5, the claim
follows. ]

We demonstrate the above construction by considering the family ALL of all possible
functions of the secret.

Corollary 8.8:

o There exists an unrestricted t-out-of-n interactive private channels secret sharing
scheme with respect to ALL, with pieces of length max {2£ —1,logn + 1}.

o There exists an unrestricted t-out-of-n non-interactive public channels secret sharing
scheme with respect to ALL, with pieces of length (2° — 1)(logn + 1).

Proof: By Theorem 8.7, we have to show that the rank of ALL, is 2° —1. Let ¢ = 2° — 1.
Consider the ¢ functions fi,..., f., where fi(x) = 1 & a = 7. To reconstruct a Boolean
function f, we notice that the functions f(x) and f(x)+ 1 are renamings of each other, so
we can assume that f(0) = 0. Hence f(s) = > << fi(s)f(¢), and therefore fi,..., f. form
a basis for ALL,. In this case the secret s is encoded as the vector E(s) of length ¢ in which
the s-th coordinate is 1 and all the other coordinates are zero (with the exception E(0) = 0).

[

Notice that the length of the secret is £, while the length of the pieces is (2°—1). However,
there are 2271 different Boolean functions with domain of cardinality 2° (such that every
function is not a renaming of another function). Therefore, our scheme is significantly better
than the naive scheme in which we share every function (up to renaming) separately. Also
the length of E'(s) for ALL, must be at least log 22! = 2/ — 1, so the representation for
F'(s) that we use is the best possible for the family ALL, in this particular scheme. It
remains an interesting open question whether there exists a better scheme for this family, or
whether one can prove that this scheme is optimal.

So far, we considered only threshold secret sharing schemes. Our definition of secret
sharing with respect to a family F of functions can be naturally generalized for an arbitrary
access structure. To construct such schemes, observe that most known schemes (e.g. [16,
62, 68, 105]) are linear: the piece of each party is a vector of elements over some field, and
every set in A reconstructs the secret using a linear combination of elements in their pieces.
Thus, if we share every bit of the secret independently, then we can reconstruct every linear
function of the secret without any interaction (the details are as in Theorem 8.5). This
implies that, for every access structure, there exists a scheme with respect to the family
ALL, in which the length of the pieces is O(2°2"). However, if the access structure has a
more efficient scheme for sharing a single bit then the length of the pieces can be shorter
(but at least 2°).
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8.4 Non-interactive Public Channels Scheme for the
Bit Family

In this section we present a one-time non-interactive public channels scheme for the family
of bit functions, whose pieces are of length O(¢) (compared to O({log n) of the unrestricted
non-interactive scheme from Theorem 8.5).

Theorem 8.9: Let { > lognloglogn. There exvists a one-time non-interactive public
channels t-out-of-n secret sharing scheme with respect to the family BI7T ,; in which the length
of the secrets is { and the length of the pieces is 3(.

We first present a meta-scheme (Section 8.4.1). Then, we show a possible implementation
of the meta-scheme that satisfies the conditions of the theorem.

8.4.1 Meta Scheme

Let ¢ and h be parameters (to be fixed later), where h is a prime power such that h > logn,
and the secret s is of length ¢ = ch. We view the secret as a binary matrix with ¢ rows and
h columns. We construct, in a way that is described below, a new binary matrix H with
3¢ rows and h columns. Then we share every row of the matrix using Shamir’s {-out-of-n
scheme [101]. Since the length of every row is h > logn, then Shamir’s scheme is ideal and
every party gets 3¢ pieces of length h. When a set G of cardinality ¢ wants to reconstruct
the bit s;; of the secret, the parties in (¢ reconstruct a subset T ; of rows (which depends
only on 7,5 and not on (). We will guarantee that these rows do not give any additional
information on the secret.

A N Shamir

Secret s

O

Y
W
O

® FEach party

Figure 8.1: An illustration of the meta scheme for the family BZ7T,.
BIT, DNOYKN MNAY NNID-NLKN DY DVWIN 8.1 IPN

More specifically, for every 1 < ¢ < cand 1 < j < h, we fix a set T;; C {1,...,3¢}
(independently of the secret). The j-th column of H is constructed independently, and it
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depends only on the j-th column of the secret. It is chosen uniformly at random among the
column vectors such that:

\Vllsisc Z Ha,j = 82'7]‘ . (81)

a€Ty ;

To reconstruct s;; it is enough to reconstruct the 7} ;-rows of H, and compute the sum
(modulo 2) of the j-th bit of the reconstructed rows*. That is, the message of a party in
a reconstructing set is the pieces corresponding to the T; ;-rows of H. The existence of a
matrix H satisfying Equation (8.1), and the one-time function security requirement depend
on the choice of the sets T; ;. On the other hand, independently of the choice of the sets 7 ;.
any coalition of size t — 1 prior to any reconstruction does not have any information on the
rows of H (by the properties of Shamir’s scheme), and hence does not have any information
on the secret. That is, this scheme is a secret sharing scheme according to Definition 3.6
(this is one of the requirements for a scheme with respect to a family).

8.4.2 Implementing the Meta-Scheme

We show how to construct sets T} ; such that the security requirement after reconstruction
will hold. Let Ry, Ry,..., Ry C {c+1,...,3¢c} be a collection of different sets of size c.
In particular, this implies that no set is contained in another set. The number of sets of
cardinality ¢ which are contained in {c¢+1,...,3c} is (2;) > 22¢0(9) > 2¢ Hence, we fix
c2 logh (that is hlogh = (). Fori =1,...,¢, let T; ;2 R; U {i}. The following claims are
useful for proving the security:

Claim 8.10: For every secret s, the number of matrices H that satisfy Equation (8.1) for
every j (1 <3 <h)is at least 1, and is independent of s.

Proof: Set H;; = s;; for 1 <1 < ¢, and 0 otherwise. This matrix H satisfies Equa-
tion (8.1). To show that the number of matrices satisfying these equations is independent
of s, notice that H is a solution to a non-homogeneous system of linear equations. Since the
system has at least one solution, the number of such matrices is the number of solutions to
the homogeneous linear system of equations (where every s; ; = 0). L]

To show that no coalition gains any additional information, we first consider the case in
which the coalition knows only the T; ;-rows of H. In this case the coalition can reconstruct

s;;. We prove that the coalition does not gain any information on other bits of the secret
(i.e., bits sy i, for o/ # ¢ or j' # j).

Claim 8.11:  Let s be a secret. Consider a setting of the T; j-rows of H such that
Yaer,, Haj = si;. The number of matrices H in which the T; j-rows are sel and satisfy
Fquation (8.1) for every j (1 < j < h) is at least 1, and is independent of s.

?Actually every party can sum the pieces of the 7} ;-rows of H, and then the parties reconstruct only the
secret from these pieces. The j-th bit of the reconstructed secret equals to s; ;.
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Proof: We first prove that there exists a matrix H satisfying the requirements. Since
the columns of H are constructed independently, it is enough to prove the existence of every
column j’. Only the j’-th column of the T} j-rows of H, and the j’-th column of s influence
the j’-th column of H, hence while considering the j’-th column we can ignore the rest of
the columns.

We first consider the j-th column of H (i.e., 3’ = j). Since Ty ; = R; U{¢'}, we can assign
H;s ; a value as follows: for every ¢’ such that e+ 1 < ¢ <3cand ¢ ¢ R; set Hy; = 0 (this is
arbitrary); for every ¢ such that 1 < <¢, set Hy; = Yaer, Ha,j + sijr. The case j' # j is
similar except that we have to be careful about s; ;;. Since R;y € R;, there exists an element
p €T,y \T;;. we can assign H; ;» a value as follows: for every i’ such that ¢+ 1 <" < 3¢,
i ¢ Rjand ' #pset Hyp =0; Hy, ;i = ZaETw/\{p} H, o+ s; . Foreveryd (1 < <e¢and
i/ 7£ Z) set Hi’,j’ = ZaER]/ Ha,j’ + Sgt 1.

We have shown that there exists a matrix as required. By the same arguments as in the
proof of Claim 8.10, the number of possible matrices given a secret s, is independent of s.

[

We are now ready to prove the security requirement.
Lemma 8.12: The above scheme is secure.

Proof: Let GG be any set that reconstructed a bit s; ; of the secret, and B be any coalition.
The fact that this scheme is a secret sharing scheme according to Definition 3.6 is immediate
(discussed at the end of Section 8.4.1). Suppose that B heard the messages sent by the
parties in (. That is, the parties in B know the pieces of the parties of (G corresponding to
the T} j-rows of H. Therefore, the only information that they gained is the T} ;-rows of H.
That is, given the pieces of the coalition and all the messages that were sent, every matrix
H that agrees with these rows is possible. We need to prove that given two secrets in which
the (7, j)-th bit is the same, and a matrix H in which only the T} ;-rows are fixed, then the
probability that H was constructed from the secrets is equally likely. But by Claim 8.10 and
Claim 8.11, this probability only depends on s; ;. (]

Note that the scheme is secure only for one reconstruction. If two bits are reconstructed
then the rows that a coalition knows can contain the rows of a third bit. Therefore, the
coalition learns this third bit as well.

8.5 Characterization of Families with Ideal Schemes

In this section we consider ideal secret sharing schemes with respect to a family F. We say
that a family F can distinguish between two secrets s, s’ if there exists some function f € F
such that f(s) # f(s'). A scheme with respect to F is ideal if the cardinality of the domain

of pieces equals the cardinality of the domain of distinguishable secrets®. Consider a family

3These are the shortest pieces possible by [69].
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F of functions that contains all the bit functions e;(s). The following theorem gives several
impossibility results with respect to such family F for which an ideal secret sharing exists.
If interaction is allowed then every Boolean function in F is a linear functions (item (1)
below). If the scheme is non-interactive the situation is even worse: for 3 <t <n — 1 such
a scheme does not exist (item (3) below), for ¢t = 2 and ¢ = n the family F contains only
linear functions (item (2) below). Furthermore, for ¢t = 2, reconstruction cannot be done on
public channels (item (4) below). All these results hold even for one-time scheme (thus, for
unrestricted schemes as well). This is formalized by the following theorem.

Theorem 8.13 [Characterization Theorem]:

1. Let 2 <t < n. Suppose that there is an ideal, interactive, t-out-of-n secret sharing
scheme with respect to a family of functions F such that BIT, C F. Let f : GF(2") —

GF(2) be a Boolean function such that f € F. Then, f is a linear function.

2. Lett = 2,n. Suppose that there is an ideal, non-interactive, t-out-of-n secret sharing

scheme with respect to a family of functions F such that BIT, C F. Then, F C LIN ,.

3. Let 3 <t <n—1. In every t-out-of-n ideal secret sharing with respect to BIT,, the
reconstruction of every Boolean function requires interaction on private channel.

4. Let t = 2. In every 2-out-of-n tdeal secret sharing with respect to BIT,, the recon-
struction of every Boolean function requires private channels.

We remark that by Theorem 8.4 all these results are “tight” (for sufficiently long secrets).
In Section 8.5.1 we prove (1) and (2), and in Section 8.5.2 we prove (3) and (4).

8.5.1 Proofs of (1) and (2) of the Characterization Theorem

The proofs of (1) and (2) are similar, and are composed of two stages. We consider the
following two-party scheme over GF(2°), denoted XOR: Given a secret s, the dealer chooses
uniformly at random = € GF(2*). The piece of the first party is x, and the piece of the second
party is y = s+ x. In the first stage we characterize the functions that can be reconstructed
from the pieces in XOR. In the second stage, we show that if there exists a t-out-of-n, ideal
secret sharing scheme for F then XOR is a secret sharing scheme with respect to F. The
combination of the two stages implies items (1) and (2).

Characterizing the Functions Reconstructible in XOR

We next characterize the functions that can be reconstructed in XOR without interaction.
We prove that these functions are exactly the linear functions. Then, we characterize the
Boolean functions that can be reconstructed in XOR with interaction, and show that these
functions are exactly the Boolean linear functions.
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Lemma 8.14: Let f be any function that can be reconstructed without interaction in the

scheme XOR. Then f € LIN,.

Proof: Assume, without loss of generality, that f : GF(2°) — GF(2). (Otherwise
consider the function of x defined as min{y : f(y) = f(x)}, which is a renaming of f.) To
prove that f is a renaming of a linear function we first prove (Claim 8.15) that f(x +y) can
be computed from f(x) and f(y). Then, we prove (Claim 8.16) that every function with this
property is a renaming of a linear function.

Claim 8.15: There exists a function g such that f(x +y) = g(f(x), f(y)).

Proof: = We use the following fact about the scheme XOR: Given that P, holds a piece
z € GF(2"), the party P, can hold every piece y € GF(2*). Consider the message m sent
by P, to P; while holding a piece y (if there are several possible messages choose, say, the
lexicographically first). We claim that m is a renaming of f(y). That is, f(y1) = f(y2) if
and only if the message m; sent by P, while holding y; is equal to the message my sent by P,
while holding y,. If P, holds the piece 0 and P; holds the piece y then s = y and obviously
f(s) = f(y). While holding two pieces y; and y, such that f(y1) # f(y2), party P, does not
know whether P; holds the piece 0, and must send different messages. On the other hand, if
for two pieces y; and ys such that f(y1) = f(y2) the party P, sends different messages then
Py, while holding the piece 0, receives additional information on s besides f(s). Therefore,
the message is a renaming of f(y); without loss of generality, assume that this message is
f(y). Similarly, assume that the message sent by P; while holding a piece x is f(x).

Hence, Py can reconstruct f(s) = f(x + y) from = and f(y). Moreover, for every two
pieces x1 and x5 held by Py such that f(z1) = f(x2) and every piece y, held by Ps, the party
Py has to reconstruct the same value. This is true, since P, receives the same message in
both cases and therefore reconstructs the same value for f(s). Hence, P; can reconstruct
flz+y) from f(x) and f(y), and this reconstruction function is the desired function g. [

Claim 8.16:  [If there exists a function g such that f(x +y) = g(f(x), f(y)), for every
z,y € GF(2Y), then f is a renaming of a linear function.

Proof:  Let X2 {z: f(x) = 0}. Assume, without loss of generality, that f(0) = 0, i.e.
0 € X, (otherwise consider the function f(x) 4 f(0)). We first prove that

flz1) = f(aq) if and only if f(axy + 22) = 0. (8.2)

For the “only if” direction: f(ay + x2) = g(f(x1), f(22)) = g(f(21), f(x1)) = flar + 1) =

f(0) =0. Similarly, the “if” direction follows from the next simple equations:

f(@1) = fle1+0) = g(f(21), £(0)) = g(f(z1), f(21 + 22)) = flwr + 71 + 22) = [(22).
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Equation (8.2) implies that if #q, 22 € X, then 21415 € Xo. That is, the set Xy is a linear
space over the field GF(2). Now, consider a linear transformation f’' : GF(2f) — GF(2")
such that the null space of f’is Xy (that is, f/(2) = 0 if and only if 2 € Xj). Since Xy is a
linear space, such a linear transformation exists. We claim that f is a renaming of f/'. We
have to prove that f(x) = f(y) if and only if f'(x) = f'(y). By Equation (8.2), f(x) = f(y)
if and only if « +y € Xo. By the definition, « +y € X, if and only if f'(x +y) = 0. Since f’
is linear, f'(x) 4+ f'(y) = f'(¢ + y). Hence, f(z) = f(y) if and only if f'(x) = f'(y). (Note
that the fact that f can be reconstructed in XOR is not used in the proof of this claim.) []
To conclude, if f(s) can be reconstructed from the pieces in XOR, then by Claim 8.15 there
exists a function ¢ such that f(x +y) = g(f(z), f(y)). By Claim 8.16, this implies that f is
a renaming of a linear function. This completes the proof of Lemma 8.14. []

We now prove a similar lemma for interactive reconstruction. However, this lemma
applies only to Boolean functions.

Lemma 8.17: Let f : GF(2Y) — GF(2) be a Boolean function that can be reconstructed
with interaction in the scheme XOR. Then f is a renaming of a linear function.

Proof: Since XOR is an ideal scheme, any information that a party gets on the piece
of the other party is translated to information on the secret. That is, the parties compute
f(s) = f(x+y) in a way that each party receives no information except of f(z+y). In other
words, they compute the Boolean function f privately. (For formal definition of privacy the
reader is referred to Appendix B.) Bivariate Boolean private functions were characterized

by Chor and Kushilevitz [40]:

Claim 8.18 [40]: Let Ay, Ay be nonempty sets and [ : Ay x Ay — {0,1} be an arbitrary
Boolean function. Then f can be computed privately if and only if there exist Boolean func-
tions f1 : Ay — {0,1}, fo: Ay — {0,1} such that for every x1 € Ay, 23 € Ay it holds that
flar,22) = filz1) + falxa).

Hence, there exists Boolean functions f1, f2 such that f(x+y) = fi(a)+ fa(y) . In particular,
flz) = fle+0) = fi(x) + f2(0). Similarly, f(y) = fi1(0) + f2(y). Therefore, there exists
o € GF(2) such that f(z +vy) = f(z) + f(y) + o. Thus, the function f'(z)2 f(z) 4+ o is a
linear function which is a renaming of f. ]

The exact family of functions that can be reconstructed in XOR with interaction is the

two-argument functions such that f(s) = f(x 4 y) can be computed privately from = and y
(as characterized in [74]).

Reduction to XOR

We prove that if there exists an ideal t-out-of-n secret sharing scheme with respect to a
family F, then there exists a 2-out-of-2 ideal secret sharing scheme with respect to F. Then,
in turn, we prove that this implies that XOR is a secret sharing with respect to F.

88



Claim 8.19: Let F be a family of functions, and 2 <t < n. If there exists an interac-
tive (respectively non-interactive), ideal, t-out-of-n secret sharing scheme with respect to F,
then there exists an interactive (respectively non-interactive), ideal, 2-out-of-2 secret sharing
scheme with respect to F.

Proof: Let G = {P1,..., P} be a set of parties. We ignore the pieces distributed to
parties not in G. Therefore, we have an ideal t-out-of-¢ secret sharing scheme with respect
to F. Let (ss,...,s;:) be any (fixed) vector of pieces that is dealt with positive probability
in this scheme. The dealer now generates a vector of pieces (according to the scheme) that
agree with ss, ..., s; respectively, and gives the first two elements of the vector to P, and P,
(respectively). Parties P; and P, know the pieces of the other parties (as they are fixed) and
therefore, one of the parties, say P;, can simulate the parties Ps,..., P, in the protocol for
reconstructing a function f € F. Hence, P; and P, can reconstruct f(s) from their pieces
and the messages they exchange. On the other hand, P, has no more information than
the information known to the coalition { Py, P, ..., P} of cardinality ¢ — 1 in the t-out-of-¢
scheme. That is, P, does not gain additional information about s. Similar arguments hold
for P,. This implies that the scheme is a 2-out-of-2 secret sharing scheme with respect to F.

O

Lemma 8.20: Let F be a family of functions such that BIT, C F. If there exists an
interactive (respectively non-interactive), ideal, t-out-of-n secret sharing scheme with respect
to F, then XOR is an interactive (respectively non-interactive) secret sharing scheme with
respect to F.

Proof: By Claim 8.19, we can assume that there exists an ideal, 2-out-of-2 secret sharing
scheme with respect to F, denoted II. We transform II into XOR in a way that every
function that can be reconstructed in Il can also be reconstructed in XOR.

Since the scheme is ideal, then given the piece = of P there is a one-to-one and onto func-
tion from y, the piece of P, to s, the secret.* Therefore, each party must not gain any infor-
mation on the piece of the other party beside the information he gets from the value f(s). Le.
the computation of f(s) has to be private. By Claim 8.18 [40], for every ¢ there exist Boolean
functions fi, fi such that e;(s) = fi(x) + fi(y). We define T, () as the vector of the values
of these functions, that is Wy (z) 2 fl(x)ofE(2)e...off(x), and My(y) 2 fH(y)of2(y)o...ofs(y).
For every secret s and random input r of the dealer s = my (Il1(s,r)) + mz(Ily(s,7)). There-
fore, the scheme II', defined as II'(s,r) = (M (11(s,r)), M2(Ils(s,7))), is a scheme equivalent
to XOR. We still have to show that in II’ the two parties can securely reconstruct every
function in F.

*The parties P; and P, can reconstruct the secret. Thus, for every piece x there exists a mapping h,,
that given a piece y of P, returns the reconstructed secret. Since P does not have any information on the
secret given his piece, the mapping is onto the domain of secrets. Since the scheme is ideal, then the domain
and range of h, have the same cardinality. That is, h; is one to one.
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We now prove that mj is a one to one transformation. Clearly, the two parties can
reconstruct the secret in I, while every single party knows nothing on the secret. Therefore,
II" is a 1-out-of-2 secret sharing scheme, and by [69], the cardinality of the domain of pieces
is at least the cardinality of the domain of secrets. Therefore, the cardinality of the range
of ™ is at least 2°. The domain of Ty, which is the set of pieces of P;, has cardinality 2°.
Therefore, m; is a one to one transformation and hence it has an inverse. Therefore, P,
can reconstruct the piece @ from my(x). Similarly, P> can reconstruct the piece y holding
my(y). This implies that parties P4 and Py, while holding T, (2) and my(y) respectively, can
securely reconstruct every function f € F. We have proved that every function f € F can
be reconstructed in II” which is equivalent to XOR. Furthermore, if in the original scheme
the reconstruction required no interaction, then also in XOR the reconstruction requires no
interaction. []

Lemma 8.14, Lemma 8.17 and Lemma 8.20 complete the proof of items (1) and (2) of
Theorem 8.13.

8.5.2 Proofs of (3) and (4) of the Characterization Theorem

Next we prove that in any ideal t-out-of-n secret sharing scheme (2 <t < n—1) with respect
to BZT, the reconstruction requires private channels. Furthermore, for 3 <t <n — 1, the
reconstruction requires interaction. For the proof, assume towards a contradiction that there
exists an ideal t-out-of-n scheme in which the reconstruction can be held on public channels.
As in the proof of Claim 8.19, this implies that there exists an ideal 2-out-of-3 scheme with
the same property (since t < n). Our first claim is that, without loss of generality, in the
reconstruction of f(s) every party sends a one bit message, such that the sum of the messages
is the reconstructed value f(s).

Claim 8.21:  Assume there exists an ideal 2-out-of-3 secret sharing scheme in which a
Boolean function f can be securely reconstructed without interaction via public channels.
Then, Py and Py can securely reconstruct f(s) by sending one bit messages mq and mz, such

that my + mz = f(s).

Proof:  Since the parties P;, P, can reconstruct the secret, there exists a function A(-,-)
that reconstructs the secret from the pieces sq,s9 of parties Py, Py (respectively). Consider
a possible message of P; when the set {Py, P>} reconstructs the value f(s) while P, holds
the piece s = 0. This message depends only on the piece of P; (P might toss coins).
Since the scheme is ideal, every piece must be possible for P; while s; = 0 (otherwise P,
will know that some secret is not possible). When P; holds two pieces s; and s} such that
f(h(s1,0)) # f(h(s},0)), the possible messages have to be different or otherwise P may
reconstruct an incorrect value in one of the cases. On the other hand, for two pieces s;
and s} such that f(h(s1,0)) = f(h(s],0)) the possible messages of P; have to be the same

or otherwise P, can distinguish between the secrets s = h(sy,0) and s’ = h(s},0) although

90



f(s) = f(s"). Thus, without loss of generality, the message m; of P; while holding the
piece sq is the bit f(h(s1,0)). Similarly, the messages my of P, while holding the piece s, is
f(h(0,s2)). Furthermore, the value of f(s) is determine by these two messages (if P, would
reconstruct two different values for f(s) depending on his piece, P; will not know about it
and will reconstruct the same value). There are two values for f(s), and two values for each
message. Since every party knows nothing about f(s), every change of any message must
change the value of f(s). The only Boolean functions with two binary variables satisfying
this requirement are addition modulo 2; i.e., my + my + o with either ¢ = 0 or ¢ = 1. So,
without loss of generality, assume that P; sends the message my + o, and the lemma follows.

[

Lemma 8.22:  Let f be any Boolean function, and consider an ideal 2-out-of-3 secret
sharing scheme with respect to a family F which contains f. Then f cannot be reconstructed
on public channels without interaction.

Proof: Consider the case where the piece s3 of P5 is 0. In this case, the piece s; is a
permutation of the secret. Hence, when we refer to the message that P; sends while the
secret is s, we mean the messages that is sent for the piece that corresponds to the secret
s (of course P; does not know that s3 = 0 and does not know the secret). For every two
secrets s,s’ such that f(s) = f(s), the messages of Py, while P, and P, reconstruct the
secret, should be the same (otherwise P will differ between the two secrets). That is, for
some value ¢, the value of f(s) is 0 if and only if P, sends the message ¢, and f(s) = 1 if
and only if P; sends the message ¢+ 1. By Claim 8.21 f(s) = my + ma, so the message of
P> has to be ¢ for both values of f(s). That is, while s3 = 0 either f(s) is constant and Ps
will know it prior to any reconstruction, or f(s) is not constant and P will not be able to
reconstruct it from its piece and the message of P,. Both cases lead to contradiction, hence
f(s) cannot be reconstructed without interaction on public channels. (]

Lemma 8.23: Assume there exists an ideal 3-out-of-4 secret sharing scheme in which f
can be reconstructed via private channels without interaction. Then there exists an ideal
2-out-of-3 secret sharing scheme in which [ can be reconstructed via public channels without
interaction.

Proof: By the same arguments as in Claim 8.21, we can assume that the messages sent by
each party in the reconstruction to the other two parties are identical (that is, the message
is f(h(s1,0,0)) where h is a function that reconstructs the secret from the three pieces).
Therefore, if we publish the piece of P, and send the messages on public channels, then
every set of size 2 can reconstruct f(s). Every party P, will have the same information as
the coalition {P;, Py} had in the original scheme. Hence P; does not gain extra information.
That is, we got a 2-out-of-3 secret sharing scheme with respect to F. ]
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Chapter 9

Conclusions and Open Problems

This thesis dealt with two fundamental cryptographic tools: secret sharing schemes and key
distribution schemes. Secret sharing schemes enable only some predefined sets of parties
to reconstruct a given secret. These schemes make it possible to store secret information
in a network, such that only “good” (for example, large enough) subsets can reconstruct
the information. Furthermore, by using these schemes we can allow only “good” subsets to
perform actions in a system (e.g. sign a check). The scheme is called a t-out-of-n secret
sharing scheme if any set of size ¢ can reconstruct the secret, while every smaller set knows
nothing about the secret. Key distribution schemes enable every subset of parties to generate
a secret key (different subsets have different keys). For example, these keys can be used in
private key cryptosystems or for authentication.

Both schemes are used in a multiuser system. In this thesis we considered (bad) parties
which have unlimited power, i.e. we considered the information theoretic setting (in contrast
to the setting in which parties are limited to probabilistic polynomial time computations). In
the two cases we assumed that there exists an off-line dealer which distributes private pieces
of information to the parties, when the system is initialized. The question we addressed is
how long these pieces should be. This question is important since in some cases the size of
the pieces is “big” (e.g. exponential in the number of parties in the system), and the schemes
are not practical. The (space) efficiency of a scheme was defined to be the size of the pieces
in the scheme.

We considered key distribution schemes of three types. The first type is non-
communicating schemes in which each party reconstructs the keys from its piece without

communicating with other parties. Blundo et. al. [29] presented a scheme in which the

g+b—1
g—1

reconstruct a key and b is the size of bad coalitions. Furthermore, in [29] it was proved that
this size is also a lower bound. Therefore, the space efficiency of these schemes is completely
understood, and for big values of b and ¢ these schemes are not practical. We have given
a new proof of this lower bound. The second type is unrestricted communicating schemes
in which the parties can communicate during the reconstruction. However, it is required

size of the pieces is ( ) times the size of the key, where ¢ is the size of sets that can
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that any coalition that heard the communication during many reconstructions does not gain
any information on a key of a disjoint set. We have proved that the space efficiency of un-
restricted communicating schemes is the same as non-communicating schemes, and for big
values of b and ¢ they are not practical as well. The third type is one-time communicating
schemes in which the security is guaranteed only if one set (whose identity is not known
during the distribution stage) generates a key. We presented one-time schemes in which the
size of the pieces is only 2(1 + (b — 1)/g) times the size of the key. We complemented this
result by proving that the size of the pieces in one-time key distribution schemes is at least
b/(g — 1) times the size of the key. Therefore, the size of the pieces in our scheme is optimal
up to a factor of two. Our schemes was generalized in [33], and for when b < g — 3 they
gave slightly more efficient schemes. Specificly, for 6 = 1 the efficiency of their scheme is
~ 14 2/,/g times the size of the keys (compared to 2 times the size of keys in our scheme).

We also considered t-out-of-n secret sharing scheme with public reconstruction. In these
schemes we assumed that reconstruction of the secret by sets of at least ¢ parties takes
place over public channels. It was required that a disjoint coalition of less than ¢ parties
will not gain any information on the secret although it heard the communication exchanged
in the system. A naive implementation of this task distributes O(n) one times pads to
each party. This results in pieces whose size is O(n) times the secret size. We presented
three implementations of such schemes that are substantially more efficient: (1) A scheme
enabling multiple reconstructions of the secret by different subsets of parties, with factor
O(n/t) increase in the pieces’ size. (2) A one-time scheme, enabling a single reconstruction
of the secret, with O(log(n/t)) increase in the pieces’ size. (3) A one-time scheme, enabling
a single reconstruction by a set of size exactly t, with factor O(1) increase in the pieces’ size.
We proved that the first implementation is optimal (up to constant factors) by showing a
tight Q(n/t) lower bound for the increase in the pieces’ size. The third implementation is
also optimal (up to constant factors) by the lower bound of [69].

There are still some open problems concerning secret sharing with public reconstruction.
It is an open question whether the second implementation is optimal, and if the O(log(n/t))
increase in the pieces’ size is essential. Another open question concerns non-interactive
schemes, in which the messages sent by each party depend only on his piece (and not on
messages received during the reconstruction). We presented a non-interactive, unrestricted ¢-
out-of-n schemes, in which the size of the pieces is n times the size of the secret. However, the
only lower bound we know is 2(n/t) times the size of the secret, which applies to interactive
schemes as well. The open question is to find better non-interactive schemes or improve the
lower bound.

We considered t-out-of-n secret sharing schemes with respect to a family of functions F.
Such schemes allow any set of at least ¢ parties to privately reconstruct the value f(s) of a
(previously distributed) secret s (for any f € F). Smaller sets of players “know nothing”
about the secret. Such schemes contain as special cases multi-secret sharing schemes in which
many secrets are shared simultaneously and threshold cryptology. We defined the notion of
secret sharing with respect to a family of functions, and showed examples in which these
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schemes are useful. We have showed an interactive scheme for the family of linear functions
in which the size of the pieces is the same as the size of the secret. We have used this schemes
to construct a scheme for every family of functions. For the most general family — ALL, -
of all functions, the pieces in our scheme were 2° bit long.

This work is only the first step in understanding the efficiency of secret sharing schemes
with respect to a family of functions. If one can construct an efficient scheme for the family
ALL then the question of the efficiency of these schemes will be resolved. So, the immediate
open question is to construct an efficient scheme for the family ALL, or prove that such
scheme cannot exist (as we suspect). There are other families of functions for which it would
be interesting to design efficient schemes (which might exist even if ALL does not have an
efficient schemes). For example, an interesting family is the family of the sub-string functions
— is a given string a sub-string of the secret (the family contains a function for every given
string).

Finally, we considered generalized secret sharing schemes in which there is some monotone
collection A of subsets of the parties, called the access structure. It is required that every
set in A can reconstruct the secret, while every set not in A has no information on the
secret. For most access structures the size of the pieces in the known schemes is exponential
in the number of parties. Therefore, these schemes are not practical. Understanding if
exponential pieces are essential or there are more efficient schemes is an important question.
We conjectured that there exist access structures for which in every secret sharing scheme
realizing the access structure the size of the pieces is exponential (Conjecture 1.1). However,
no proof of the existence of such access structure is known to date even for a non-explicit
access structure. Unlike other complexity measures, e.g. circuit complexity, we do not know
that the number of efficient schemes is small compared to the number of monotone access
structures (which is double exponential). So, proving Conjecture 1.1 even for a non-explicit
access structure is an important open problem.

Since we were not able to prove this conjecture, we focused on linear secret sharing
schemes. This class of schemes contains most known schemes to date. Lower bounds for
linear schemes are a first step for proving lower bounds for general schemes. Furthermore,
they explain the limitations of existing schemes. We presented a new technique for proving
lower bounds for monotone span programs, and used it to prove an ©(n??) lower bound for an
explicit access structure with n parties. A recent result [4] uses our technique (Theorem 5.6),
and proves a super-polynomial lower bounds for the size of linear secret sharing scheme for
an access structure that is related to a problem in extremal set theory. It remains open
whether our method could yield exponential lower bounds. Thus, it is still an open problem
to prove exponential lower bounds for linear secret sharing schemes realizing an explicit access
structure. These can be done either by constructing an exponential size critical family and
applying Theorem 5.6, or by developing a new technique.

A natural question is whether one can prove super-polynomial lower bounds for
other classes of secret sharing schemes. Specificly, say that a secret sharing scheme is
communication-ideal if for every G € A each party of G can compute from his piece a
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message whose size is the same as the size of the secret, and the secret can be reconstructed
from these messages (without knowing any other information on the pieces). For different
sets the same party is allowed to compute different messages. Although the pieces might be
big, the reconstruction algorithm might only require each party to send short messages. For
example, in a linear scheme over GF(¢), it is enough that each party in the reconstructing set
will send one element from GF(¢) and the secret would be the sum of these elements. Hence,
in linear schemes the size of each message can be the same as the size of the secret although
the pieces can be exponential. The open question we suggest is how to generalize the proofs
of the lower bounds for linear schemes such that they would apply for ideal-communication
schemes as well. This question is interesting since the proof of the lower bounds for linear
schemes relies on linear algebra arguments, and proving the lower bound for communication-
ideal schemes would, presumably, contain different arguments. We remark that by the results
of [8] every communication-ideal scheme with domain of secrets of size two or three is linear
and the lower bounds apply to them as well.

We already claimed that based on some complexity assumptions we can prove that there
exists an explicit monotone function in P that has no efficient linear scheme. Another open
problem is to prove this property without any assumptions. That is, prove super-polynomial
lower bound for linear schemes for an explicit function in P. We can make this question
even harder: we know that every function that has an efficient linear scheme is in NC. Can
we prove that the converse does not hold? That is, prove super-polynomial lower bound
for linear schemes for an explicit monotone function in NC. An interesting candidate is the
perfect matching function (or even perfect matching in a bipartite graph). This function has
NC-circuits [84]. However, it does not have monotone circuits [94, 110].

It is known that efficient linear schemes exist for every function that has small undirected
branching program [17, 68] (see Example 4.5). It is an open question if such schemes exist
for directed branching programs as well. This question can be described as follows. Consider
an access structure whose parties are the edges of a directed complete graph with two special
vertices s and t. A set of parties (edges) is an authorized set if the sub-graph that contain
these edges has a directed path from s to ¢. Again, this problem is known to be in NC? so
we do not have evidence that this access structure does not have efficient linear schemes.
Furthermore, Wigderson [112] proved that this function has small span programs. However,
this span program is not monotone and its construction uses this non-monotonicity in a
strong way. We do not know of an efficient linear scheme for the directed connectivity
problem, and it is not clear if it exists.

The lower bounds we proved for linear secret sharing schemes raise the question if there
are efficient non-linear schemes. It is not hard to construct non-linear schemes, e.g. [109, 35].
The open question is to find a non linear scheme realizing an access structure which does
not have an efficient linear scheme. For example, find an efficient scheme for a function that
(under reasonable assumptions) is not in NC.
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Computational Secret Sharing In the secret sharing schemes that we considered
the security is guaranteed even if the “bad” parties have unlimited power. These schemes
are called perfect schemes. It is reasonable to assume that the parties are computationally
limited, i.e. they run in (probabilistic) polynomial time. (This is the usual assumption in
modern cryptography.) It is possible that there are access structures that have efficient com-
putational secret sharing schemes, but do not have efficient perfect secret sharing schemes.
Some results is this direction were shown by Yao [114]. Yao showed efficient computational
schemes for access structures whose characteristic function can by computed by polynomial
monotone circuits (as opposed to polynomial monotone formulae in the perfect schemes
of [16]). Specificly, there are access structures that have efficient computational secret shar-
ing schemes but are not known to have efficient perfect schemes. The open question is which
access structures have efficient computational schemes, and what is the exact cryptographic
assumption that are needed for them.
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Appendix A

Information Theory Definitions

We describe here the information-theoretic definitions and results used in Section 6.4 and
in Section 7.5. For further details the reader may refer to [42, 45, 60]. Let X be a random
variable distributed according to some probability distribution p. The entropy of X is defined
as:

. 1
HXOE 3 sloos o

where the logarithm (here and elsewhere) is taken to the base two. Informally, the entropy
measures the uncertainty of the random variable. The conditional entropy of X given Y is

defined as: |

HXIY)2 DY ply) > plxly)log —

e p(al9)>0 plely)

The other two quantities defined in this appendix can be defined in terms of the above. The
mutual information between X and Y is defined as:

I[(X;Y)2H(X) - H(X|Y) .
The mutual information between X and Y given 7 is defined as:
I(X;Y|Z)2H(X|Z) - H(X|YZ) .
The following can be easily verified.
1. H(X) > 0 for all X with equality if and only if X is deterministic.

2. If X obtains n possible values then H(X) < logn with equality if and only if X is
uniformly distributed over these n values.

3. 0 <H(X|Y) < H(X) for all X and Y. Therefore, 0 < I(X;Y) < H(X).
4. H(XY) = H(X) + H(Y|X).
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5. I(X;Y) =1(Y; X) for all X and Y.
6. I(X;Y|Z) can be larger, smaller, or the same as I(X;Y).
7. The random variables X and Y are independent if and only if H(X|Y") = H(X).
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Appendix B

Definition of Private Computations

We define private protocols, which are used in Chapter 8 for reconstructing functions of the
secrets securely. The protocol is carried out in a system with secure private channels as
defined in Definition 3.2 and Definition 3.3. We denote by M7 the communication received
by a coalition T' during the execution of the protocol (M7 is a random variable). We say
that a coalition T' does not gain any additional information (other than what follows from
its input and the function value) from the execution of a randomized protocol F', which
computes f, if the following holds: For every two inputs Z,§ that agree in their T entries
(i.e. Vi € T : a; = y;) and satisfy f(Z) = f(¥), and for every choice of random inputs {r;}:er,
the messages passed between 1" and T are identically distributed. That is:

< Mr ({zi}ier, {ritier. \zitier) > = < My ({yi}ier, {ritier, (¥ tier) >

where the probability space is over all random inputs in T', namely {r;},c. A protocol F
for computing f is private if any coalition T' of size at most n does not gain any additional
information from the execution of the protocol. A function f is private if there exists a private
protocol that computes it. It follows that if a reconstructing set uses a private protocol to
reconstruct the secret, then the reconstruction is secure.

In our interactive secret sharing scheme with respect to the linear functions we use the
private protocol of Benaloh [15] to compute the sum over GF(¢) of the pieces. For the sake
of completeness we describe this protocol in Fig. B.1.

The fact that the protocol described in Fig. B.1 computes the correct value is shown in
the following equation.

n n n n n n
Sum = yi =3 > ri; =3 D vij=) i
j=1 j=1:=1 =1 j=1 =1
——

T

It is not to hard to show that every coalition of at most n — 1 parties does not gain any
information that is not implied by the sum. We omit the details.
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Private addition over GF(q)

Each P; has an input z; € GF(q).

Each P; chooses n — 1 random inputs from input GF(g) denoted r;1,7; 9,
Each P; computes 7; Sa;— Z?:l i

Each P; sends r; ; to P; (for every j).

Each P; computes y; = >, r; ; and sends it to P;.

Party Py computes sum = >, y; and sends it to the other parties.

-y Tin—1-

Figure B.1: Private addition over GF(q)
GF(g) NTWA DIID H¥ X079 AN :B.1 PN
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