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AbstractIn recent years the security of operations taking place over a computer network becomevery important. It is necessary to protect such actions against \bad" users who may try tomisuse the system (e.g. steal credit card numbers, execute actions without authorization,read personal mail, or impersonate other users). Many cryptographic protocols and schemeswere designed to solve problems of this type. This thesis deals with two fundamental cryp-tographic tools that are useful in such contexts: generalized secret sharing schemes, and keydistribution schemes.Both secret sharing schemes and key distribution schemes are used in multi-party sys-tems. Secret sharing schemes enable some predetermined sets of parties to reconstruct agiven secret. These schemes make it possible to store secret information in a network, suchthat only \good" (for example, large enough) subsets can reconstruct the information. Fur-thermore, by using these schemes we can enable only \good" subsets to perform actions in asystem (e.g. sign a check). The secret sharing schemes that have received most attention arethreshold secret sharing schemes. These are schemes in which the sets which can reconstructthe secret are those with of cardinality greater than a certain threshold. In this work weconsider these schemes, as well as generalized secret sharing schemes. In the generalizedschemes the subsets capable of reconstructing the secret constitute an arbitrary monotonecollection. The second type of schemes we consider are key distribution schemes which enableevery subset of parties to generate a secret key (di�erent subsets have di�erent keys). Thesekeys can be used, for example, in private key cryptosystems or for authentication.In this thesis we consider (bad) parties which have unlimited power, i.e. we considerthe information theoretic setting (in contrast to the setting in which parties are limited toprobabilistic polynomial time computations). For the two types of schemes we assume thatthere exists an o�-line dealer which distributes private pieces of information to the partieswhen the system is initialized. Since the security of the schemes is based on the secrecy ofthese pieces of information, the pieces should be kept on a secure (and expensive) storagemedium. Therefore, minimizing the amount of information distributed to the parties issigni�cant for practical usages. Most of our research is concerned with the (space) e�ciencyof the schemes, which is measured by the size of the of pieces (i.e. the length of theirbinary representation). Many of the existing schemes require long pieces, and their sizeis exponential in the number of parties in the system (e.g. the secret sharing schemes1



of [16, 105]). Our main goal in the thesis is to understand when these schemes are inherentlyexponential, and when they can be made more e�cient.In this work we consider four topics:Communication in Key Distribution Schemes: We study the relationships between com-munication and space e�ciency of key distribution schemes. We prove that communicationdoes not help in unrestricted schemes. On the other hand, we show that for restrictedschemes, which are secure only when used by a limited number of conferences, communica-tion can substantially improve the space e�ciency. Furthermore, we prove lower bounds onthe space e�ciency of restricted schemes.Linear Secret Sharing Schemes and Monotone Span Programs: In the best secret sharingschemes known to date for most access structures, the size of the pieces is exponential inthe number of parties in the system. No matching lower bounds are known. Therefore, werestricted our attention to the class of linear secret sharing schemes. This class of secretsharing schemes contains essentially all known secret sharing schemes. There is a closerelation between linear secret sharing schemes and a linear algebraic model of computationcalled span programs. The existence of an e�cient linear schemes for an access structure isequivalent to the existence of a small monotone span programs for the characteristic functionof the access structure. In this work we prove 
(n2:5) lower bound on the size of pieces inlinear secret sharing schemes (and monotone span programs) for an explicit access structure.Secret Sharing with Public Reconstruction: All known constructions of information theo-retic t-out-of-n secret sharing schemes require secure, private communication channels amongthe parties for the reconstruction of the secret. We investigate the cost of performing thereconstruction over public communication channels. A naive implementation of this task dis-tributes O(n) one time pads to each party. This results in pieces whose size is O(n) times thesecret size. We present several implementations of such schemes that are substantially moree�cient: (1) A scheme enabling multiple reconstructions of the secret by di�erent subsetsof parties, with factor O(n=t) increase in the pieces' size. (2) A one-time scheme, enablinga single reconstruction of the secret, with O(log(n=t)) increase in the pieces' size. We provethat the �rst implementation is optimal (up to constant factors) by showing a tight 
(n=t)lower bound for the increase in the pieces' size.Computing Functions of a Shared Secret: We introduce and study threshold (t-out-of-n)secret sharing schemes with respect to a family of functions F . Such schemes allow any setof at least t parties to reconstruct privately the value f(s) of a (previously distributed) secrets (for any f 2 F). Smaller sets of players \know nothing" about the secret. The goal is tomake the pieces as short as possible. 2



NotationPi { The i-th party in the system.n { The number of parties in the system.R { The domain of random strings.r { A random string.K { A �eld.GF(q) { The �nite �eld with q elements.G { A reconstructing (\Good") set.B { A \Bad" (curious) set.VIEWB { The knowledge that a coalition B has.I(X;Y ) { The mutual information between the random variables X and Y .H(X) { The entropy of a random variable X.span (V ) { The linear space spanned by the vectors in V .rank(V ) { The rank (dimension) of the linear space spanned by the vectors in V .� { Concatenation of strings.s { A secret in secret sharing schemes.� { A secret sharing scheme.�i(s; r) { The piece (share) of Pi generated with secret s and random string r in thesecret sharing scheme �.A { An access structure.S { The domain of secrets in secret sharing schemes.t { The size of a reconstructing set in threshold secret sharing schemes.` { The length of the binary string that represents the secret.U { A key distribution scheme.Ui(r) { The piece of Pi generated from r in the key distribution scheme U .K { The domain of keys in key distribution schemes.k { A key in key distribution schemes.b { Upper bound on the number of \bad" parties in key distribution schemes.CG { The communication exchanged when the set G reconstructed the key.g { The size of a reconstructing set in key distribution schemes.3



Notations - (Continuation) 4F { Family of functions.LIN ` { The family of linear functions on GF(2`).ei(x) { The function that returns the i-th bit of x.BIT ` { The family of bit functions fe1; : : : ; e`g.ALL` { The family of all functions with domain f0; 1g`.XOR { The 2-out-of-2 secret sharing scheme XOR(s; r) = hr; s+ ri.~1 { A vector in which every coordinate equals 1.SPK(f) { The size of the smallest span program over the �eld K computing f .mSPK(f) { The size of the smallest monotone span program over the �eld Kcomputing f .Mf { The family of all of the minterms of f .TH { The core of a minterm H (in De�nition 5.5).H { A critical family.



Chapter 1IntroductionIn recent years the security of operations taking place over a computer network become veryimportant. It is necessary to protect such actions against \bad" users who may try to misusethe system (e.g. steal credit card numbers, execute actions without authorization, readpersonal mail, or impersonate other users). Many cryptographic protocols and schemes weredesigned to solve problems of this type. This thesis deals with two fundamental cryptographictools that are useful in such context: generalized secret sharing schemes, and key distributionschemes.Both secret sharing schemes and key distribution schemes are used in a multi-party sys-tem. Secret sharing schemes enable only some predetermined sets of parties to reconstructa given secret. These schemes make it possible to store secret information in a network,such that only \good" (for example, large enough) subsets can reconstruct the information.Furthermore, by using these schemes we can enable only \good" subsets to perform actionsin a system (e.g. sign a check). The secret sharing schemes that have received most attentionin the literature are threshold secret sharing schemes. These are schemes in which the setswhich can reconstruct the secret are all the sets of cardinality greater than a certain thresh-old. In this work we consider these schemes, as well as generalized secret sharing schemes.In the generalized schemes the subsets capable of reconstructing the secret constitute anarbitrary monotone collection1. The second type of schemes we consider are key distributionschemes which enable every subset of parties to generate a secret key (di�erent subsets havedi�erent keys). These keys can be used, for example, in private key cryptosystems or forauthentication.In this thesis we consider (bad) parties which have unlimited power, i.e. we considerthe information theoretic setting (in contrast to the setting in which parties are limited toprobabilistic polynomial time computations). For the two types of schemes we assume thatthere exists an o�-line dealer which distributes private pieces of information to the partieswhen the system is initialized. Since the security of the schemes is based on the secrecy of1A collection of sets is monotone if for every sets A and B, such that A is in the collection and A � B,then B is also in the collection. 5



these pieces of information, the pieces should be kept on a secure (and expensive) storagemedium. Therefore, minimizing the amount of information distributed to the parties issigni�cant for practical usages. Most of our research is concerned with the (space) e�ciencyof the schemes, which is measured by the size of the of pieces (i.e. the length of theirbinary representation). Many of the existing schemes require long pieces, and their sizeis exponential in the number of parties in the system (e.g. the secret sharing schemesof [16, 105]). Our main goal in the thesis is to understand when these schemes are inherentlyexponential, and when they can be made more e�cient. In addition, we study whethercommunication and interaction reduce the space requirements. Furthermore, we investigatehow the communication model (secure private channels vs. public channels) e�ects the spacerequirements. While examining this questions, it is important to distinguish between one-time schemes in which the action takes place only one time (e.g. one set will reconstruct thesecret), and unrestricted schemes in which the number of times an action can take place isnot restricted (e.g. many sets will reconstruct the secret). For example, we show that thespace requirements of a scheme in which only one set will generate a key is substantiallysmaller than the space requirements of a scheme in which many sets will generate keys. Inthe remaining of this introduction we give informal de�nitions of key distribution schemesand of secret sharing schemes, and survey the results of this work.1.1 Key Distribution SchemesIn various multi-party systems, the need for generating a secret key, common to a subsetof the parties, occasionally arises. Such key can be used, for example, in establishing asecure private key cryptosystem among the members of the subset. A non-communicatingkey distribution scheme for conferences of size g which is secure against any disjoint coalitionof b parties is a scheme where an o�-line dealer initially distributes n pieces of information,one per party. Each party receives his piece discretely. After this initial distribution takesplace, the parties can reconstruct keys in a secure fashion. That is:1. Every conference (set) G of g parties has a common key which is called the key of theconference G. Every member of G can reconstruct the key from his piece (and theconference identity) without any communication with other parties or with the dealer.That is, the party applies some function to its piece and evaluates the key.2. Every \bad" coalition B of at most b parties does not gain any information on the keyof any disjoint conference G. That is, the pieces of B do not expose any additionalknowledge on the key of G.It might help the reader to remember that the size of conferences is denoted by g whichstands for \good" parties, and the size of coalitions is denoted by b which stands for \bad"parties. In these schemes, the size of the pieces is a function of the size of the keys, the6



number of parties n, the size of conferences g, and the size of coalitions b. Formal de�nitionof key distribution schemes is given in Chapter 3.The trivial key distribution scheme chooses an independent random key for every confer-ence G, and gives party Pi all the keys of the conferences that contain him. This scheme issecure against coalitions of size n� g. However, the scheme is not e�cient (the size of everypiece in this scheme is �n�1g�1� times size of the keys), and for smaller values of b there are moree�cient schemes. Blom [24] was the �rst to consider information theoretic key distributionschemes. He presented an e�cient non-communicating scheme, based on MDS codes, forconferences of size 2 and coalitions of size b. The size of the pieces in Blom's scheme is b+ 1times the size of the keys (compared with n�1 times the size of the keys in the trivial schemefor g = 2). Blundo et. al. [29] present key distribution schemes for larger conferences, basedon symmetric multinomials. Their multinomials have g variables and degree of at most b ineach variable. The size of the pieces in their scheme is �g+b�1b � times the size of the keys. Forlarge values of g and b, this expression is quite large (e.g. for g = b = n=2 the size of piecesis 2n�o(n) times the size of the keys). However, using entropy arguments, Blundo et. al. [29]prove a tight lower bound on the size of the pieces. Therefore, their scheme is space-optimal.In this work, we apply direct combinatorial arguments (no entropy) to prove the same lowerbound. Our proof has two advantages. First, in our opinion, it is more intuitive and lesstechnical. Second, it actually applies to a weaker notion of security, thereby providing astronger result. This stronger result is used in proving our lower bound on communicatingschemes, which is described in the next paragraph.The large lower bound (for big conferences and coalitions) raises the question whethercommunication among the reconstructing parties could be of help in reducing the size ofpieces. Just like the non-communicating schemes, we �rst require that even if an unrestrictednumber of conferences communicate in order to generate keys, these keys remain securewith respect to disjoint coalitions of size b. Since no secure channels among parties can beassumed, communication takes place via public channels. One problem which arises is thatthe communication of one conference could leak information on the keys of other conferences.Therefore, we require that even if a \bad" coalition overheard the communication of all theconferences, the coalition does not gain information on any key of a disjoint conferences. Weprove that, regrettably, such unrestricted communicating schemes require pieces as large asthe pieces in non-communicating schemes.This negative result motivates the introduction of restricted communicating schemes.These schemes can be used only for a restricted number of conferences, whose identity isnot known beforehand. We construct an e�cient one-time secure scheme, where the size ofthe pieces is O(b=g) times the size of the keys. This is a substantial improvement over theone-time communicating scheme of [29], where the size of the pieces is g + b� 1 times thesize of the keys. Following [29], our schemes are non-interactive; each party sends messageswhich depend only on his piece of information and not on messages received from otherparties. We prove a nearly tight lower bound on the size of the pieces in every one time key7



distribution scheme; the size of each piece is at least b=(g � 1) times the size of keys. Using� copies of the one-time scheme, we construct a scheme which is secure for � conferences.The size of pieces in this scheme is O( �(b�1)g ) times the size of the keys. We show that thedomain of pieces of every party in a communicating key distribution scheme, which is securefor � conferences, is at least maxn�; � (1�1=g)(b� 1)=go times the size of the keys. Hence, thedependence on � of the domain of pieces in our scheme cannot be completely avoided, and for� � �g+b�1b � every � -restricted scheme cannot be more e�cient then the non-communicating(unrestricted) scheme.1.2 Secret Sharing SchemesIn a generalized secret sharing scheme a dealer has a secret taken from some domain, whichhe wants to share among a collection A of subsets of the n parties. The collection A is calledthe access structure. The dealer discretely distributes private pieces of information (alsocalled shares) to the parties, such that any subset of parties in A can reconstruct the secretfrom its pieces, while any subset not in A cannot reveal any partial information about thesecret in the information theoretic sense (formal de�nition of secret sharing schemes appearsin Chapter 3). A secret sharing scheme can only exist for monotone access structures. Ifa subset B can reconstruct the secret (i.e. B 2 A), then every superset of B can alsoreconstruct the secret. If the subsets that can reconstruct the secret are all the sets whosecardinality is at least a certain threshold t, then the scheme is called t-out-of-n thresholdsecret sharing scheme.One of the most important issues when designing secret sharing schemes is the size of thepieces. Even with the best known schemes (e.g. [16, 105]), most general access structuresrequire pieces of size exponential in the number of parties even if the domain of the secretis binary (the length is at least 20:5n, where n is the number of participants). Therefore,the parties will not have enough memory to store their pieces even in fairly small networks(leaving aside the question of secure storage). The question if there exist more e�cientschemes, or if there exists an access structure that does not have (space) e�cient schemesremains open. We conjecture that the later is true:Conjecture 1.1: There exists an � > 0 such that for every positive integer n there is anaccess structure with n parties, for which every secret sharing scheme distributes pieces oflength exponential in the number of parties n, that is 2�n.Proving (or disproving) this conjecture is one of the most important open questions concern-ing secret sharing.The best lower bound that is known to date is due to Csirmaz [44, 43]. His proof gives,for every n, an explicit access structure with n parties for which the sum of the sizes of thepieces in every secret-sharing scheme is 
(n2= log n) times the size of the secrets (for every�nite set of possible secrets). 8



Proving Conjecture 1.1 was one of the main goals of this research. We did not succeed inthis task. Therefore, we limited our attention to the class of linear secret sharing schemes,which contains essentially all known secret sharing schemes. We proved lower bounds on thesize of pieces in linear secret sharing schemes. We discuss these schemes in Section 1.2.1. InSection 1.2.2 we discuss secret sharing schemes in which reconstruction takes place on publicchannels. In Section 1.2.3 we discuss secret sharing schemes in which not only the secret butfunctions of the secret can be reconstructed without revealing any other information on thesecret.1.2.1 Linear Secret Sharing Schemes and Monotone Span Pro-gramsIn most known secret sharing schemes every set in the access structure reconstructs thesecret using a linear function of its pieces. That is, every party gets a few elements fromsome �nite �eld as its piece, and every set in the access structure reconstructs the secretusing a linear combination of the elements held by its parties. We call such schemes linear.For example, the following schemes are linear: Blakley's threshold scheme [22], Shamir'sthreshold scheme [101], Kothari's linear threshold schemes [72], Ito, Saito and Nishizeki'sscheme based on decomposition of the access structure to threshold access structures [62],Benaloh and Leichter's schemes based on monotone formulas [16], Simmons, Jackson andMartin's schemes based on geometric con�gurations [103, 104, 105], Brickell and Davenport'sschemes based on matroid representation [34, 35] (see also Karchmer and Wigderson [68]and Bertilsson and Ingemarsson [19]), and the decomposition technique schemes proposedin [27, 30, 36, 107, 108]. The survey of Stinson [106] contains a description of most of thesescheme. Jackson and Martin [64] proved that linear schemes are equivalent to the geometricschemes of [103, 104, 105]. Counting arguments imply that for most access structures thesize of the pieces in every linear scheme is at least 2n=2. No such bound is known for anexplicit access structure.There is a close relation between linear secret sharing schemes and a linear algebraic modelof computation called span programswhich was introduced by Karchmer and Wigderson [68].The existence of an e�cient linear schemes for a speci�c access structure is equivalent to theexistence of a small monotone span programs for the characteristic function of the accessstructure. A span program for a Boolean function is presented as a matrix over some �eld.Every row of the matrix is labeled by a literal (a variable or a negated variable). Given anassignment � 2 f0; 1gn we consider the rows of the matrix whose labels are consistent withthe assignment (that is, either rows labeled by some xi such that �i = 1 or rows labeledby some �xi such that �i = 0). The span program accepts the assignment if and only ifthe all-ones row is a linear combination of these rows. The size of a span program is thenumber of rows in its matrix. (De�nitions are given in Chapter 4). The class of functionswith polynomial size span programs is equivalent to the class of functions with polynomial9



size counting branching programs [37, 68]. Span program size is a lower bound on the sizeof symmetric branching programs [68].2 Lower bounds for span programs also imply lowerbounds for formula size.Monotone span programs have only positive literals (non-negated variables) as labels ofthe rows. They compute only monotone functions, even though the computation uses non-monotone linear algebraic operations. Karchmer and Wigderson [68], following [35], provedthat if there is a monotone span program for some function then there exists a linear secretsharing scheme for the corresponding access structure in which the sum of the sizes of thepieces of all the parties is the number of rows in the span program, i.e. the size of the spanprogram. Therefore, every lower bound on the total size of pieces in a linear secret-sharingscheme is also a lower bound on the size of monotone span programs for the same function.On the other hand, lower bounds for monotone span programs imply the same lower boundsfor linear secret-sharing schemes [6, 8, 52]. We will prove these connections in Chapter 4.It is known that every function with a polynomial size span program is in NC (thisfollows from [18, 37, 68, 83]). The monotone analogue of this statement does not hold:Babai et. al. [4] exhibit a function that is computable by monotone span programs whosesize is linear but requires super-polynomial size monotone circuits. On the other hand, thereduction in [68] from symmetric branching programs to span programs preserves monotonic-ity, and thus lower bounds for monotone span programs imply lower bounds for monotonesymmetric branching programs and for monotone formula size. We note that if P 6� non-uniform-NC then there are functions with small monotone circuit complexity that cannotbe computed by polynomial size span programs. Consider the following language MVAL= f(C;w) : C is a monotone Boolean circuit that accepts w g. If MVAL has a polynomialsize span program then it has a polynomial size NC circuit. Since MVAL is P-complete, thiswould imply that P � non-uniform-NC. On the other hand, with the proper representationMVAL has a small (but not shallow) monotone circuit.The 
(n2= log n) lower bound for monotone span program size, implied by the lowerbound for any secret sharing scheme of [44], is the strongest previously known lower boundfor an explicit function on n variables. The method presented in [44] cannot give lower boundslarger than 
(n2). In Chapter 5 we present a new technique for proving lower bounds formonotone span programs. Using this technique, we present an 
(n2:5) lower bound for anexplicit function on n variables. We obtain this bound for the Boolean function that is 1if and only if an input graph contains a 6-clique. We present several other applications ofour technique to explicit functions. A recent result [4] demonstrates that our technique canyield super-polynomial lower bounds of n
(logn) for monotone span programs by consideringa problem in extremal set theory. It remains open whether our method could yield strictlyexponential lower bounds.2The model of symmetric branching programs is essentially the same as that of (undirected) contactschemes (for de�nitions, see Example 4.5 and [68]). 10



1.2.2 Secret Sharing Schemes with Public ReconstructionWhen reconstructing a secret, an authorized subset of the parties collects their pieces, anduses them to reconstruct the secret. It is required that after a reconstruction, only theparties which participated in the reconstruction will know the secret. All known schemesthat guarantee information theoretic secrecy require the use of secure, private communicationchannels between the parties that participate in the reconstruction. The question we raiseis whether reconstruction can be done without assuming that the channels are secure, whilemaintaining the security of the schemes. We consider the scenario in which the \bad" partiescan overhear any communication, so from their point of view the channels are public. Onthe other hand, \good" parties hear only messages sent to them. (In particular, from thepoint of view of the \good guys", the channels do not carry any of the potential advantagesof a broadcast channel.) For simplicity, we will consider only threshold (t-out-of-n) secretsharing schemes in this introduction.The simplest way to implement such public reconstruction securely is to hand to eachparty upon system initialization, in addition to his original piece, 2(n � 1) one time pads.These pads are used in order to simulate a private channel on a public one. In the pri-vate channel scenario, reconstruction is typically done by exchanging pieces among parties.To enable such exchange with every other participant, each party will need two pads perparticipant: one for receiving a piece, and one for sending the piece. Thus the simple imple-mentation results in an O(n) multiplicative factor increase in the size of each piece.We design substantially more e�cient schemes of three types. The �rst type is unre-stricted schemes. In these schemes, any number of authorized sets (each containing at least tparties) may reconstruct the secret, after communicating on the public channel. Any disjointcoalition of at most t� 1 parties does not gain any partial information on the secret, giventhe coalition's pieces and the communication of the sets that reconstructed the secret. Wedescribe unrestricted schemes in which the size of the pieces is O(n=t) times the size of theoriginal secret. We complement this result by proving a nearly tight n=t lower bound on theincrease in the pieces' size for any unrestricted scheme. Our construction (upper bound) hasthe property that in order to participate in more than one reconstruction, every party thathas already reconstructed the secret must store it. This is problematic in applications wherean adversary might break into the computer of the secret holder. (One of the advantagesof traditional secret sharing is that breaking into the computer of a \piece holder" does notcompromise the secret.) The unrestricted non-interactive schemes of Section 7.4 solve thisproblem, but the piece size there is n times the secret size.The second type of schemes we consider here are one time schemes, in which only asingle authorized set (containing at least t parties) will reconstruct the secret securely. It isnot known during system initialization which set will reconstruct the secret, and the dealerhas to accommodate any possible set. For example, these schemes can be used to enableone time activities like the �ring of a ballistic missile or the opening of a sealed safe. Wedescribe one-time schemes in which the size of the pieces in O(log(n=t)) times the original11



secret size. Next, we consider one time schemes where one authorized set of size exactly twill reconstruct the secret. Additional parties in supersets with more than t parties jointlyhave enough information to reconstruct the secret. However, they cannot reconstruct thesecret over the public channel, because communicating it from members of the authorizedset is not possible in a secure way. This means that the authorized sets that can securelyreconstruct the secret do not necessarily form a monotone access structure. We design suchschemes with just O(1) multiplicative increase in the piece size (for any threshold t).In light of our results, one may wonder if the initial distribution of pieces can also be doneover public channels. By the properties of \regular" schemes, each participant requires apiece whose conditional mutual information with the secret (given t�1 pieces) is at least theentropy of the secrets [69]. It is not possible to start with pieces of smaller conditional entropyand increase it by communicating over public channels, even if interaction is allowed [77, 2].Thus in our model, it is necessary to have secure initial distribution of pieces from the dealerto the participants. However, from practical point of view the distribution stage is an o�-lineprocess which is typically done upon system initialization (unlike the reconstruction stage).Thus, assuming private initial distribution is reasonable.1.2.3 Computing Functions of a Shared SecretSuppose that we are interested in sharing a secret �le among n parties in a way that willlater allow any t of the parties to test whether a particular string (not known in the sharingstage) appears in this �le. This test should be done without revealing the content of thewhole �le, or giving any other information about the �le. This problem is an extension of thetraditional problem of threshold (t-out-of-n) secret-sharing (over secure private channels).In this work we introduce a more general de�nition of t-out-of-n secret-sharing schemes withrespect to a family of functions F . These schemes, in addition to traditional requirementsof secret sharing schemes, allow authorized sets of parties to reconstruct some informationabout the secret without revealing the secret itself. More precisely, sets of size at least tcan evaluate f(s) for any function f 2 F in a way that after the evaluation of f(s) anycoalition of size less than t gets no information about the secret s which is not implied byf(s). In other words, the parties in the coalition might know the value f(s), but they knownothing more than that, even though they have heard all the communication during thereconstruction of f(s).Clearly, if we consider a family F that includes only the identity function f(s) = s, thenwe get the traditional notion of secret-sharing schemes. Simultaneous sharing of many secretsis also a special case of our setting: let s1; : : : ; s` be secrets we want to share simultaneously.Construct the secret s4= s1�s2� : : : �s`, and the functions which can be reconstructed are thefunctions fi(s) 4= si. The question of sharing many secrets simultaneously was considered(with some di�erences in the de�nitions) by several researchers [26, 31, 59, 65, 66, 69, 79].Threshold cryptography [46, 48, 49] is also a special case of secret sharing with respect12



to a family of functions.3 A typical scenario of threshold cryptography is the following: Wewant to enable every t parties to sign a document such that any coalition of less than t partiescannot sign any other document (even if the coalition knows signatures of some documents).To achieve this goal the key is shared such that every t parties can generate a signature fromtheir pieces without revealing any information on the key except the signature. Speci�cly,assume we have a signature function SIGN :M�K ! O whereM is the domain of messages,K the domain of keys, and O the domain of signatures. For everym 2M de�ne fm : K ! Oas fm(k) = SIGN(m;k). The previous scenario is simply sharing the key with respect to thefamily ffm : m 2Mg. This shows that secret sharing with respect to a family of functionsis a natural primitive.Obviously, a possible solution to the problem of sharing a secret with respect to a familyF is by sharing separately each of the values f(s) (for any f 2 F) using known thresholdschemes. While this solution is valid, it is very ine�cient, in particular when jFj is large.Therefore, an important goal is to realize such schemes while using \small" pieces. Forexample, to share a single bit the average (over the parties) length of pieces is at leastlog(n � t + 2) (for 2 � t � n � 1) [71] and log n bits are su�cient [101] (where n isthe number of parties in the system). Therefore, the obvious solution for sharing ` bitssimultaneously will require ` log n bits. By [69], it can be shown that pieces of at least ` bitsare necessary. We show that `-bit pieces are also su�cient if interactive reconstruction onprivate channels is allowed, and O(`)-bit pieces are su�cient if non-interactive reconstruction(on public channels) is used4.We present an interactive scheme in which `-bit secrets are distributed using `-bit pieces;this scheme allows the reconstruction of the exclusive-or of every subset of the bits of thesecret (and not only the bits themselves). We use this scheme to construct schemes for otherfamilies of functions. The length of the pieces in these schemes can be much longer than thelength of the secret (this is the case for the strings and signatures examples). An interestingfamily of functions that we shall consider is the family of all functions of the secret. Forthis family, we construct a scheme in which the length of the pieces is � 2` log n (where `is the length of the secret and 2` is the length of the description of a function which is theinput for the reconstruction). That is, the length of the pieces is linear in the descriptionof a function in the family which is the input for the reconstruction stage. In this schemethe reconstruction requires no interaction and can be held on public channels. If we allowinteraction on private channels during the reconstruction, then the length of the pieces canbe reduced to 2`. We do not know whether for the family of all functions there is a schemein which the length of the piece (which is the amount of space required by the parties) ispolynomial in the length of the secret.While considering the question of computing functions of a secret, we deal mainly with3The functions considered in [49, 46] are however very limited and the scenario in [46] is restricted tocomputational security.4In fact, both results require ` to be \su�ciently large": ` � logn in the interactive case and ` �logn log logn in the public channels model. 13



two models: the private channels model in which the reconstruction might require a fewrounds of communication; and the public channels model in which the reconstruction isnon-interactive. On one hand, in the private channel model, a coalition that does notintersect the reconstructing set will know nothing on f(s). On the other hand, the publicchannels model does not require secure private channels and synchronization; hence, thereconstruction is more e�cient. Unlike Section 1.2.2, while reconstructing a function overthe public channels, every party in the system might learn the value of the function (but noadditional information).Interaction seems to be useful in the reconstruction stage. It enables us to reduce thelength of the pieces by a factor of log n. We also demonstrate this fact by studying idealthreshold schemes; these are schemes in which the size of the pieces equals the size of thesecrets5 (see, e.g., [8, 34, 35, 63, 100]). We deal with the characterization of the families offunctions F that can be evaluated in an ideal threshold scheme. For the interactive privatechannel model, we prove that these functions are \essentially" only the linear functions. Forthe public channels model, we prove that F cannot even contain any Boolean function (forevery family that contains the identity function).Relation to private computation. In our schemes we require that authorized sets ofparties can reconstruct a function of the secret without leaking any other information aboutthe secret. This resembles the requirement of (n; k)-private protocols [13, 39] in which theset of all n parties can evaluate a function of their inputs in a way that no set of less thank parties will gain any additional information. Indeed, in some of our schemes a set B ofsize t uses a (t; t)-private protocol. However, it is not necessary to use private protocols inthe reconstruction, since the parties are allowed to leak information about their inputs (thepieces) as long as they do not leak additional information about the secret. Moreover, usingprivate protocols does not solve the problem of e�ciently sharing a secret with respect toall functions, since not all functions can be computed (t; t) privately [13, 40]. Furthermore,the parties cannot use the (t; t=2)-private protocols of [13] or [39] since this means thatcoalitions of size greater than t=2 (but still smaller than t) gain information. However, if weonly require that coalitions of at most t=2 parties should not gain any partial informationon the secret then we can share the secret with any traditional scheme and reconstruct anyfunction of the secret using the private protocols of [13] or [39] (since we want to evaluate afunction of the secret which is a function of the pieces).1.3 OrganizationThe remainder of this thesis is organized as follows. In Chapter 2 we discuss previousworks on key distribution schemes and secret sharing schemes. In Chapter 3 we present theexact de�nitions of the models and the schemes we consider. In Chapter 4 we de�ne linearsecret sharing schemes and monotone span programs and we discuss the equivalence between5By [69], the size of each piece is at least the size of the secret.14



these two models. In Chapter 5 we present lower bounds for monotone span programs. InChapter 6 we discuss the roll of communication in key distribution schemes. In Chapter 7we deal with secret sharing with public reconstruction. In Chapter 8 we deal with sharinga family of function of a secret. Finally, in Chapter 9 we conclude this work and state someopen problems. Background on information theory and private computations is given in theappendices.
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Chapter 2HistoryIn this chapter we give a short description of works dealing with secret sharing schemes andkey distribution schemes.2.1 Secret Sharing SchemesThreshold secret sharing schemes were �rst introduced in 1979 by Shamir [101] and Blak-ley [22]. The size of the pieces in Shamir's scheme is equal to the size of the secrets.Other threshold schemes were described in [69, 72, 79]. Their properties were studiedin [15, 41, 50, 69, 72, 79, 109]). They were used in many applications, e.g., Byzantineagreement in [93], private computations (e.g. [13, 39, 59]), threshold cryptology (e.g. [49]),and zero knowledge (e.g [47]). Secret sharing in which the secret can be reconstructed by thehuman visual system was presented in [85]. Reducing the size of the pieces by compromisingon computational security was considered in [73].Ito, Saito, and Nishizeki [62] generalized the notion of secret sharing to general accessstructures. They show that every monotone access structure has a secret sharing schemethat realizes the access structure. Benaloh and Leichter [16] describe more e�cient schemeswhich are based on monotone formulas that describe the access structure. Many otherschemes were presented. Simmons [103, 104], and Simmons, Jackson and Martin [105] de-scribe schemes based on geometric con�gurations. Brickell and Davenport describe schemesbased on matroid representation [34, 35] (see also Karchmer and Wigderson [68] and Bertils-son and Ingemarsson [19]). These are the schemes we call linear since in these schemes thepieces are linear combinations of random strings. Jackson and Martin [64] proved that lin-ear schemes are equivalent to the geometric schemes. Schemes based on the decompositiontechnique were discussed in [16, 27, 30, 36, 107, 108]. The survey of Stinson [106] contains adescription of most of these scheme. Naor and Wool [86] suggest the use of these generalizedschemes to enable access to a secure database. Other applications in which secret sharingare used are described in the survey of Simmons [104].16



We brie
y describe some results concerning lower bounds on the size of the pieces. The�rst observation is that in every secret sharing scheme realizing any access structure thesize of the piece of every party is at least the size of the secret [69, 38] (actually, this resultfollows from Shanon's classical result [102] about perfect encryption systems). Benaloh andLeichter [16] describe an explicit access structure �, that cannot achieve this lower bound.The description of � appears in Fig. 2.1, where the edges represents the minimal authorizedsets. P1P2 P3P4Figure 2.1: Description of the access structure �.®� äùéâä äðáî ìù øåàú :2.1 øåéàBrickell [34] de�ned the notion of ideal secret sharing schemes. These are secret sharingschemes that achieve the lower bound, that is schemes in which the size of the piece of everyparty equals the size of the secret. Brickell and Davenport [35] \almost" characterized idealschemes in terms of matroids. Access structures, which have ideal schemes over any �nitedomain of secrets are called universally ideal. In my M.Sc. thesis [6, 8], we de�ned thisnotion and gave an exact characterization of these access structures. Ideal schemes were alsoconsidered in [36, 63, 75, 100].Capocelli, De Santis, Gargano, and Vaccaro [38], using the entropy function, prove betterlower bounds on the size of the pieces for the access structure � (see Fig. 2.1). They provethat in every secret sharing scheme realizing � there exists a party that receives pieces of sizeat least 1:5 times the size of the secret (for every domain of secrets). Better lower bounds(for other access structures) were presented in [27, 28, 53]. The best lower bound is due toCsirmaz [44, 43]. His proof gives, for every n, an access structure with n parties for whichthe sum of the sizes of the pieces in every secret sharing scheme is 
(n2= log n) times thesize of the secret (for every �nite set of possible secrets).An important lower bound is given by Kilian and Nisan [71] for threshold schemes. Theyprove that in every t-out-of-n threshold secret sharing scheme there exists a party with piecesof size at least log(n � t + 2) (for 2 � t � n � 1). Unlike the previous results, this lowerbound does not increase as the secrets become longer. This lower bound explains why inShamir's scheme [101] the cardinality of the domain of pieces has to be larger than n.17



A subject related to sharing a secret with respect to a family of functions is multi-secretsharing schemes. That is, there are many secrets that should be shared simultaneously.There are a few variations of this question. In [65, 66] each set of cardinality at least tshould be able to reconstruct some of the secrets (but not all). In non-perfect secret sharingschemes (considered in [23, 59, 69, 79]) coalitions of at most ` parties know nothing on thesecrets, sets of at least t party can reconstruct all secrets (where ` and t are parameters suchthat ` < t). Sets of size between ` and t know nothing about each secret, but are allowedto have some information on the dependence between the di�erent secrets. In [26, 31, 66]each set B in an access structure is able to reconstruct any of the distributed secrets. Thesecurity requirement considered in [31, 66, 26] is somewhat weak: after revealing one of thesecrets, limited information about other secrets may be leaked. Similar scenarios to sharingwith respect to a family of functions, in which sharing is viewed as a form of encryption andthe security is computationally bounded, have been considered in [1, 5, 98].Public channels have been used in secret sharing (in addition to private channels) indynamic sharing of secrets. These are schemes where the dealer enables parties to reconstructdi�erent secrets in di�erent time instants (e.g. [104, 21, 25]). A di�erent scenario in whicha public broadcast channel is used (in addition to private channels) is to protect againstByzantine parties [14]. Unlike our scenario, in that work the broadcast channel is heard byall parties.2.2 Key Generation and Key Distribution SchemesThe problem of key generation is one of the basic problems in cryptology. Therefore, itreceived a lot of attention. The idea of key exchange was introduced by Merkle [80] andin the pioneering work of Di�e and Hellman [51] on public key cryptography. Di�e andHellman [51] suggested a key generation protocol for conferences of size two. The Di�eHellman protocol is as follows: Let p be a prime number, and let � be a primitive element inthe �eld GF(p). Party Pi (respectivelyPj) chooses a random number ri 2 GF(p) (respectivelyrj) and sends the message mi = �ri (respectively mj = �rj). The joint key of Pi and Pj is�ri�rj , which Pi easily computes from mj and ri using the equality mrij = �ri�rj . A short listof papers that deal with this subject in the computational model are [78, 113, 12]. Practicalkey distribution systems are Kerboros [89] and KryptoKnight [82, 20]. A recent survey onkey distribution is [99].Blom [24] was the �rst to consider information theoretic key distribution schemes. Hepresented an e�cient non-communicating scheme, based on MDS codes, for conference ofsize 2 and coalitions of size b. Matsumoto and Imai [76] suggested the use of symmetriclinear functions for schemes for larger conferences. The most e�cient scheme for largerconferences was presented by Blundo et. al. [29]. They generalize Blom's construction andpresent schemes based on symmetric multinomials. Their multinomials have g variables anddegree b in each variable. The size of the pieces in their scheme is �g+b�1g�1 � times the size of18



the keys. For large values of g and b, this expression is quite large. However, using entropyarguments, Blundo et. al. [29] prove a tight �g+b�1g�1 � times size of keys lower bound on the sizeof pieces. Therefore, their scheme is space-optimal. The number of random bits required inthese schemes was analyzed in [32]. Other non-communicating schemes in this setting werepresented in [81, 90, 61, 92].Blundo et. al. [29] also presented one-time secure communicating scheme in which thesize of the pieces is g + b� 1 times the size of the keys. (The fact that this scheme is onlyone-time secure was not mentioned in [29]). One time secure communicating schemes basedon a random deal of cards are discussed in [55, 56, 57, 58].
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Chapter 3De�nitionsIn this chapter we de�ne our model, secret sharing schemes, and key distribution schemes.3.1 The ModelWe consider a system with n parties denoted by fP1; P2; : : : ; Png. In addition to the parties,there is a dealer in the system, who has an input x. A scheme is a probabilistic mapping,which the dealer applies to the input, and generates n pieces of information. For example,x is a secret whom the dealer wants to share. Formally,De�nition 3.1 [Scheme]: Let X be a set of inputs, R be a set of random inputs, and� : R! [0; 1] be a probability distribution on the random inputs R. A scheme � is a mapping� : X �R! S1 �S2 � : : :� Sn from the cross product of the inputs and the random inputsto a set of n-tuples, called the pieces (sometimes referred to as shares). The coordinate i ofthe n-tuple �(x; r) is called the piece of Pi, and is denoted by �i(x; r), and Si is the domainof pieces of Pi. We refer to � as the dealer, which has an input x and generates the pieces.Given an input x 2 X, the dealer chooses a random input r according to the distribution �,and generates the vector of pieces �(x; r). The dealer gives the i-th piece to Pi in a privateway, i.e. the other parties have no information on the piece of Pi other than the informationinferred from their pieces.In the scenario we consider, the dealer is only active during the initialization of thesystem. After the initialization stage, the parties can communicate. We next de�ne the twomodels of communication we consider.De�nition 3.2 [CommunicationModels]: The parties communicate via a complete syn-chronous network of point-to-point communication channels. We consider two models of thesecurity of the channels: 20



� The secure private channels model in which the parties communicate via secure com-munication channels with no eavesdropping.� The insecure channels model in which the \curious" parties can overhear all commu-nications exchanged between all parties in the system. So, from the point of view the\curious" parties the channels are public. On the other hand, \good" parties hear onlymessages sent to them. (In particular, from the point of view of the \good guys", thechannels do not carry any of the potential advantages of a broadcast channel.)In both cases the channels are reliable, that is, the messages are received as they are sent andno party can change these messages, or impersonate other parties.A subset of the parties can communicate in order to compute a function of their pieces(e.g. the shared secret, a common key). We now de�ne how they evaluate this function.De�nition 3.3 [Protocol]: A subset of the parties execute a protocol to evaluate a functionf . At the beginning of an execution, each Pi has an input xi and a random input ri. Theparties exchange messages, as prescribed by the protocol. In each round every party sends amessage to every other party. Each message sent by a party is determined by its input, itsrandom input, the messages it received so far, and the identity of the receiver. We say thata protocol computes the function f if each party that took part in the protocol can evaluatethe correct value of f from its input and the communication it heard. A protocol is non-interactive if the messages sent by each party depend only on his input and his random input(and not on messages received during the execution of the protocol). That is, the protocolhas only one-round of communication. If the protocol has more than one round then it iscalled interactive. In this case we require that the protocol terminates after a �nite numberof rounds (that is, we do not allow in�nite runs).In this work we consider only honest parties (no Byzantine parties). That is, the partiesfollow their protocols. However, they are curious and after the protocol has ended some ofthem can collude and try to gain some partial information (e.g. on the pieces of parties or onthe input of the dealer). We consider the information theoretic model in which the \curious"parties, which have unlimited power, are not allowed to gain any information, as de�ned inthe next de�nition:De�nition 3.4 [No Information]: Let B be a (curious) coalition (set of parties). Theview of B, denoted by VIEWB, after an execution of a protocol is all the information it has,i.e. the pieces of the parties in the coalition, their local random inputs, and the messagesthey heard. In the secure private channels these are the messages that are sent to parties inthe coalition. In the insecure channels model these are the messages exchanged by all partiesover the communication channels (here the insecurity of the communication is manifested).21



The coalition B has no information on a random variable X if for every two possible valuesx1; x2 of X, and every value of VIEWB:Pr[ VIEWB j X = x1 ] = Pr[ VIEWB j X = x2 ] ;where the probability is taken over the random inputs of the dealer, and the random inputsof the parties outside the coalition. Notice that we do not make any assumptions on thedistribution of X.We will be interested in e�cient schemes. More precisely we shall consider space e�ciencyof the schemes. That is, we consider the pieces of the parties as binary strings, and the (space)e�ciency of a scheme is the size of the strings that represent the pieces of the parties.3.2 Secret Sharing SchemesWe de�ne (generalized) secret sharing scheme. The de�nition does not specify the communi-cation model during the reconstruction of the secret. We require that after the reconstructionthe secret remains unknown to parties not participating in the reconstruction. Therefore,implicitly the de�nition assumes secure private channels between the parties. (In latterchapters we will de�ne other variations of this schemes.) We �rst de�ne the notion of anaccess structure. This is a collection of sets of parties which should be able to reconstructthe secret.De�nition 3.5 [Access Structure]: Let fP1; : : : ; Png be the set of parties. A collectionA � 2fP1;:::;Png is monotone if B 2 A and B � C implies C 2 A. An access structure is amonotone collection A of non-empty subsets of fP1; : : : ; Png (that is, A � 2fP1;:::;Png n f;g).The sets in A are called the authorized sets, and the sets not in A are called the unauthorizedsets.A secret sharing scheme realizing an access structure A is a scheme, in which the dealerhas a secret input s 2 S, and generates private pieces for the parties. Any authorized set ofparties can reconstruct the secret from its pieces, and any unauthorized set not in A cannotreveal any partial information about the secret. Formally,De�nition 3.6 [Secret Sharing]: Let S be a �nite domain of secrets. A secret-sharingscheme realizing an access structure A is a scheme in which the input of the dealer is a secrets 2 S such that the following two requirements hold:Reconstruction requirement The secret s can be reconstructed by any authorized set.That is, for any set G 2 A (G = ni1; : : : ; ijGjo), there exists a reconstruction functionhG : Si1 � : : :� SijGj ! S such that for every secret s, and every random input r,if �(s; r) = hs1; s2; : : : ; sni then hG(si1; : : : ; sijGj) = s.22



Security requirement Every unauthorized set of parties cannot reveal any partial in-formation about the secret as de�ned in De�nition 3.4. We state this condition explicitly:for any set B 62 A, for every two secrets a1; a2 2 S, and for every vector of possible piecesfsigi2B: Pr[ ^Pi2B �i(a1; r) = si ] = Pr[ ^Pi2B �i(a2; r) = si ] :Where the probabilities are taken over the random input of the dealer.A secret sharing scheme realizing the access structure fG : jGj � tg is called a t-out-of-nthreshold secret sharing scheme. These are the schemes which were de�ned by Blakley [22]and Shamir [101] and have received most attention.3.3 Key Distribution SchemesIn this section, we present formal de�nition of key distribution schemes. In these schemesevery set G of size g can generate a common key. This key should be known to each party ofG. On the other hand, every coalition of at most b parties should not have any informationabout this key. We consider two variants:� a non-communicating scheme in which, after the initial distribution of the pieces, thegeneration of the keys is done without any communication. That is, every party in theset reconstructs the key from his piece.� A communicating scheme in which the parties are allowed to communicate during thegeneration of the key.We start with non-communicating schemes:De�nition 3.7 [Non-Communicating Key Distribution Schemes]: Let g and b bepositive integers such that g + b � n, the set K be a set of keys, P be an a-priori probabilitydistribution on K, and Ui be the domain of pieces for party Pi. A non communicating (g; b)key distribution scheme is a scheme U : R! U1 � U2 � : : :� Un such that:Reconstruction requirement Every conference (set) G of cardinality g has a commonkey; this key is determined by the random input of the dealer and is denoted kG(r). It isrequired that this key is distributed according to the a-priori probability distribution P; thatis for every k 2 K Pr [ kG(r) = k ] = P(k) ;where the probability is taken over the random input of the dealer r. Each member of Gcan deterministically reconstruct G's key from his piece without any communication with thedealer or other parties. 23



Non-communicating security requirement Every (\curious") coalition B of cardi-nality b does not gain any information from its pieces about a key of a disjoint conference G(G\B = ;). That is, for every vector of pieces hu1; : : : ; uni, and every two keys k1; k2 2 K:Pr [ ^Pj2B(Uj(r) = uj) j kG(r) = k1 ] = Pr [ ^Pj2B(Uj(r) = uj) j kG(r) = k2 ] :The probability is taken over r { the random input of the dealer.It is not guaranteed that keys of di�erent conferences are independent random variables.The security requirement does imply some independence between the keys. For example, itis true that every b + 1 keys are independent. Otherwise, there are b parties knowing the�rst b keys, and therefore gain some information on the (b+ 1) key of a disjoint conference.Claim 6.2 gives another scenario in which this independence is guaranteed. In the rest ofthis work we assume that the a-priori probability of each key is positive. That is, for everykey k 2 K it holds that P(k) > 0.Next we consider communicating schemes. In this case the communication in the gen-eration of one key might leak information on keys of other conferences. Therefore, unlikenon-communicating schemes, we consider two security requirements:� Restricted schemes in which the secrecy of the generated keys is guaranteed only if arestricted number of sets generate a key.� Unrestricted schemes in which the secrecy of the generated keys is guaranteed evenif an unrestricted number of conferences (possibly all) generate a key (however, eachconference is allowed to generate only one key).Before going any further, we remark that the notion of key distribution schemes re-stricted to a limited number of conferences is meaningful only with respect to communicatingschemes. For non-communicating schemes, the generation of a conference key does not addany information to any party (either in the conference or not). Therefore a one-time securenon-communicating scheme would also be secure in the unrestricted sense, and no saving canbe expected. On the other hand, the communication in communicating schemes is heard byall parties (not only conference members), and could reduce the uncertainty of the remain-ing pieces. It is possible that after some communications took place, no uncertainty is left,and the pieces become useless for additional conferences. This implies that the amount ofinitial secrecy in restricted communicating schemes can be smaller than that of unrestrictedschemes. We �rst de�ne unrestricted communicating schemes:De�nition 3.8 [Unrestricted Communicating Key Distribution Schemes]: An un-restricted communicating (g; b) key distribution scheme with n parties and domain of keysK is a scheme U : R! U1 � U2 � : : :� Un in which every conference (set) G of cardinality24



g can generate a common key after communicating over insecure channels. We denote thecommunication which is exchange while G generates the key by CG(r; ~rG).1Reconstruction requirement At the end of the conversation, each member of G candeterministically reconstruct a key from the conversation and his piece. The key that everymember of G reconstructs is the same, and is denoted by kG(r; ~rG), where r is the randominput of the server, and ~rG is the vector of random inputs of the parties in G. It is requiredthat this key is distributed according to the a-priori probability distribution P; that is forevery k 2 K Pr [ kG(r; ~rG0) = k ] = P(k) ;where the probability is taken over r, the random input of the server, and ~rG the randominputs of the parties of G.Unrestricted security requirement Any (\curious") coalition B of cardinality b, hav-ing their pieces and random inputs, and knowing the conversations of all possible conferences,does not gain any information on the key of any disjoint subset G0 (i.e. G0 \B = ;). Thatis, the view of the coalition B isVIEWB = ~rB ^ ^Pj2B uj ^ ^jGj=gCG ;where hujiPj2B is any vector of pieces; ~rB is any set of random inputs of the coalition mem-bers; and C1; : : : ; C(ng) are any possible conversations of all sets of cardinality g. We requirethat for every two keys k1; k2 2 K:Pr [ V IEWB j kG0(r; ~rG0) = k1 ] = Pr [ V IEWB j kG0(r; ~rG0) = k2 ] :The probability is taken over r { the random input of the server, and over ~r { the randominputs of all the parties for all conferences; ~rB is the restriction of ~r to the coalition B.We continue with the de�nition of � -restricted key distribution scheme. These are com-municating key distribution scheme in which the secrecy of the key is guaranteed only if atmost � conferences generated a key.De�nition 3.9 [Restricted Communicating Key Distribution Schemes]: A � -restricted communicating (g; b) key distribution scheme is a communicating (g; b)-schemein which the security property is replaced by the following one:� -restricted security property Any (\curious") coalition B of cardinality b, hav-ing their pieces and random inputs, and knowing the conversations of any � conferences1It is a function of the g pieces and the local random inputs, but since the pieces are determine by therandom input of the dealer then we shall also consider it as a function of the dealer's random input and thelocal random inputs. 25



G0; : : : ; G��1, does not gain any information on the key of the disjoint subset G0 (i.e. G0 \B = ;). That is, the view of the coalition B isVIEWB = ~rB ^ ^Pj2B uj ^ ^0�j���1CGj ;where hujiPj2B is any vector of pieces; ~rB is any set of random inputs of the coalitionmembers; and C0; C1; : : : ; CC��1 are any possible conversations of any combination of � setsG0; : : : ; G��1 of cardinality g. We require that for every two keys k1; k2 2 K:Pr [ V IEWB j kG0(r; ~rG0) = k1 ] = Pr [ V IEWB j kG0(r; ~rG0) = k2 ] :The probability is taken over r { the random input of the server, and over ~r { the randominputs of all the parties for all conferences; ~rB is the restriction of ~r to the coalition B. Wedenote 1-restricted scheme by one-time scheme.
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Chapter 4Linear Secret Sharing Schemes andMonotone Span ProgramsIn this chapter we consider linear secret sharing schemes. These are schemes in which thereconstruction functions are linear. That is, every piece is a vector over some �nite �eld, andevery set in the access structure reconstructs the secret using a linear combination of thecoordinates of its pieces. Most secret sharing schemes that were proposed are linear, e.g. [16,19, 22, 27, 30, 35, 36, 52, 62, 68, 72, 101, 103, 104, 105, 107, 108]. The existence of an e�cientlinear schemes for a speci�c access structure is equivalent to the existence of a small monotonespan programs { a computation model presented in [68]. Span programs are a linear algebraicmodel of computation. Monotone span programs provide an easier model for proving lowerbounds for linear secret sharing schemes. Lower bounds for monotone span programs alsoimply lower bounds for monotone formulae, monotone symmetric branching programs, andfor monotone contact schemes. In this chapter we de�ne linear secret sharing schemes andmonotone span programs, and prove the equivalence between them. In Chapter 5 we provelower bounds on the size of span programs.4.1 Linear Secret Sharing SchemesWe �rst de�ne linear secret sharing schemes. These are a special class of secret sharingschemes in which the reconstruction functions are linear.De�nition 4.1 [Linear secret sharing schemes]: Let K be a �nite �eld, and � be asecret sharing scheme with domain of secrets S � K realizing an access structure A. We saythat � is a linear secret sharing scheme over K if:1. The piece of each party is a vector over K. That is, for every i there exists a constant disuch that the piece of Pi is taken from Kdi. We denote by �i;j(s; r) the j-th coordinatein the piece of Pi (where s 2 S is a secret and r 2 R is the dealer's random input).27



2. For every authorized set, the reconstruction function of the secret from the pieces islinear. That is, for every G 2 A there exist constants f�i;j : Pi 2 G; 1 � j � dig,such that for every secret s 2 S and every choice of random inputs r 2 R,s = XPi2G X1�j�di �i;j ��i;j(s; r)where the constants and the arithmetic are over the �eld K.The total size of the pieces in the scheme is de�ned as d 4= Pni=1 di.To show that the de�nition of linear schemes is natural, we show that it is equivalent toa few alternative de�nitions. In Section 4.4 we show that it equivalent to the existence ofmonotone span programs. Jackson and Martin [64] proved that linear schemes are equivalentto geometric schemes introduced in [103, 104, 105]. Furthermore, we state an alternativede�nition, and show that this de�nition is equivalent to the original de�nition. While in theoriginal de�nition the reconstruction of the secret is linear, in the alternative de�nition thegeneration of the pieces by the dealer is linear. Formally,De�nition 4.2 [Alternative De�nition]: A secret sharing scheme is linear (linear gen-eration of pieces) if:1. The piece of each party is a vector over K.2. During the generation of the pieces, the dealer chooses independent random variables,denoted r1; : : : ; r`, each one distributed uniformly over K. Each coordinate of the pieceof every party is a linear combination of r1; : : : ; r` and the secret s.We show that the latter de�nition implies the original de�nition:Claim 4.3: Every scheme that is linear according to De�nition 4.2 is linear according toDe�nition 4.1.Proof: Consider an authorized set G 2 A. Each coordinate of the pieces of the parties inG is a linear combination of the random inputs of the dealer and the secret. We can writethese combinations as a system of linear equations in which the unknowns are the secret andthe random inputs of the dealer. Since G can reconstruct the secret there is only one secrets0 2 S that is consistent with this system (by consistent we mean that there exists a solutionto the system in which the secret equals s0). However, S � K and, presumably, there canbe an element s1 2 K n S that is consistent with this system. In this case, for every � 2 Kthe element �s0 + (1� �)s1 is consistent with the system. But �s0 + (1 � �)s1 ranges overall the �eld K and all secrets would have been consistent with the system. Therefore, s0 isthe only value in K for the secret that is consistent with the system. Thus, the equations = s0 is a linear combination of the equations in the linear system, and the secret is a linearcombination of the coordinates of the pieces in G.In Claim 4.9 and Claim 4.7 we prove the converse of this claim; that is if there existsa linear scheme according to De�nition 4.1 then there exists a linear scheme according toDe�nition 4.2 whose size is the same. 28



4.2 Examples of a Linear Secret Sharing SchemesIn this section we describe two known secret sharing scheme, and show that they are linear.Example 4.4 [Shamir t-out-of-n threshold scheme [101]]: Let q be the size of thedomain of secrets, where q is a prime-power that is bigger than n (the number of partiesin the access structure). Let s 2 GF(q) be the secret. The dealer chooses independentlywith uniform distribution t�1 random elements in GF(q), which are denoted by r1; : : : ; rt�1.These elements and the secret s de�ne a polynomialp(x)4= rt�1xt�1 + rt�2xt�2 + : : :+ r1x+ s :Observe that p(0) = s. The dealer gives the piece p(i) to party Pi. This piece is a linearcombination of the random inputs and the secret. Now each set of cardinality at least tcan reconstruct p(x) by interpolation. That is, the set fPi1 ; : : : ; Pitg holding the piecesfsi1; : : : ; sitg, can compute the polynomial p(x) sincep(x) = tXj=1 sij Yd6=j id � xid � ij :The secret is reconstructed by substituting 0 for x in this polynomial. That is, the secret isa linear combination of the pieces fsi1; : : : ; sitg, where the coe�cient of the piece sij of partyPij is Qd6=j idid�ij . Therefore, Shamir's scheme is linear (according to both de�nitions).Example 4.5 [Scheme for Monotone Symmetric Branching Programs [17]]: Wenext describe an interesting linear scheme which was originally presented by Benaloh andRudich [17] (see also [68]). We �rst describe a computation model called monotone symmetricbranching programs, also known as monotone undirected contact schemes and switchingnetworks (for more details on this subject the reader can refer to [68, 97]). Let H = (V;E)be an undirected graph, � : E ! fx1; : : : ; xng be a labeling of the edges by variables, and v0and v1 be two special vertices in the graph. A monotone symmetric branching programs isde�ned as hH; �; v0; v1i. This program computes the following Boolean function: Given anassignment � 2 f0; 1gn de�ne H� to be the subgraph whose vertices are the same vertices asH, and the edges are all the edges whose labels are variables xi such that the i-th bit of �equals 1. The program accepts � if in H� there exists a path from v0 to v1. Similarly, thisprogram de�nes the access structure whose parties are fP1; : : : ; Png and its authorized setsare all the sets whose characteristic vectors1 are accepted by the contact scheme.We show that every access structure de�ned by a monotone symmetric branching programwith d edges has a linear scheme in which the total of the pieces size is d. Let K be thedomain of secrets (where K is any �nite �eld), and nr2; : : : ; rjV j�1o 2 KjV j�1 be random1Given a set G 2 fP1; : : : ; Png its characteristic vector �G 2 f0; 1gn is the vector in which the i-thcoordinate equals 1 if and only if Pi 2 G. 29



inputs of the dealer. De�ne r0 4= 0 and r1 4= s. For every edge (vi; vj) 2 E assign the valueri � rj : The piece of Pi are all the values assigned to edges labeled by xi. We can representthis scheme by an jEj � jV j matrix in which each row is indexed by an edge and everycolumn is labeled by a vertex. The row indexed by the edge (vi; vj) (where i � j) is 1 in thevi coordinate, �1 in the vj coordinate and is 0 otherwise. Using the notation of the followingsection, this matrix is a monotone span program for the function.We claim that this scheme realizes the access structure de�ned by the monotone sym-metric branching program. For every simple path which starts at v0, and ends at v1 , it ispossible to assign �1 weights to the values assigned to edges along the path, such that theweighted sum is equal to the secret s. Therefore, every authorized set can reconstruct thesecret. On the other hand, since every unauthorized set does not contain at least one cut inthe graph2, the unauthorized set has no information on the secret.4.3 Span ProgramsWe state the de�nition of the model of span programs from [68]. A span program for aBoolean function is presented as a matrix over some �eld with rows labeled by literals of thevariables. The span program accepts an assignment if and only if the all-ones row is a linearcombination of the rows whose labels are consistent with the assignment.De�nition 4.6 [Span Programs]: Let K be a �eld, and fx1; : : : ; xng be a set of variables.A span program over K is a labeled matrix M̂(M;�) where M is a matrix over K, and � isa labeling of the rows of M by literals from fx1; : : : ; xn; �x1; : : : ; �xng (every row is labeled byone literal).A span program accepts or rejects an input by the following criterion. For every inputsequence � 2 f0; 1gn de�ne the submatrix M� of M consisting of those rows whose labels areset to 1 by the input �, i.e., either rows labeled by some xi such that �i = 1 or rows labeledby some �xi such that �i = 0. The span program M̂ accepts � if and only if ~1 2 span(M�),i.e., some linear combination of the rows of M� gives the all-one vector ~1. (The row vector~1 has the value 1 in each coordinate.) A span program computes a Boolean function f if itaccepts exactly those inputs � where f(�) = 1.A span program is called monotone if the labels of the rows are only the positive literalsfx1; : : : ; xng. Monotone span programs compute monotone functions.The size of M̂ is the number of rows in M . We denote by SPK(f) (respectively mSPK(f))the size of a smallest span program (respectively monotone span program) over K that com-putes f .The vector ~1 in the de�nition above can be replaced by any �xed nonzero vector (as willsometimes be convenient) via a change of basis. This vector is called the objective vector.2A cut in a connected graph is a set of edges whose removal from the graph results in a non-connectedgraph. 30



The class of functions with polynomial size span programs is equivalent to the class offunctions with polynomial size counting branching programs [37, 68]. Span program size isa lower bound on the size of symmetric branching programs [68] (see Example 4.5). Lowerbounds for span programs also imply lower bounds for formula size. It is known that everyfunction with a polynomial size span program is in NC; this follows from the fact that linearalgebra is in NC (see [18, 37, 68, 83]).Monotone span programs have only positive literals (non-negated variables) as labels ofthe rows. They compute only monotone functions, even though the computation uses non-monotone linear algebraic operations. In fact, Babai et. al. [4] showed a function whosemonotone circuit complexity is super-polynomial although it has a linear size monotonespan program. Thus, lower bounds on monotone circuit size do not imply lower bounds onthe size of monotone functions. However, the reduction in [68] from symmetric branchingprograms to span programs, described in Example 4.5, preserves monotonicity, and thuslower bounds for monotone span programs imply lower bounds for monotone symmetricbranching programs and for monotone formula size.4.4 Equivalence of Span Programs and Linear SecretSharing SchemesIn this section we show that linear secret sharing schemes and monotone span programsare equivalent. To make this statement formal we need some notations. Given a set G 2fP1; : : : ; Png let �G 2 f0; 1gn be its characteristic vector, that is the i-th coordinate equals 1if and only if Pi 2 G. De�ne the function fA : f0; 1gn ! f0; 1g as:G 2 A if and only if fA(�G) = 1 :In the following two claims we quote the proofs that the size of a smallest monotone spanprogram computing fA is equivalent to the size a smallest linear secret sharing schemerealizing A. The �rst claim was proved by Brickell [34], Brickell and Davenport [35], andKarchmer and Wigderson [68].Claim 4.7: [34, 35, 68] Assume there exists a monotone span program, of size d, over a�nite �eld K computing the function fA. Then there is a linear secret sharing scheme overK realizing the access structure A in which the total size of the pieces is d.Proof: Let M̂ be a monotone span program with ` columns. We construct a linear secretsharing scheme in which the dealer chooses at random a vector ~r = hr1; : : : ; r`i from K` suchthat the sum of its coordinates is equal to the secret, i.e. ~1 � ~r = Pì=1 ri = s. Consider thevector M~r, and label each of its coordinates according to the labeling of the correspondingrow in M̂ . The piece of Pi are all the coordinates of M~r that are labeled by xi. We will31



show that this scheme is a secret sharing scheme realizing A. That is, every set G 2 A canreconstruct the secret, while every set B 62 A has no information on the secret.Let G be an authorized set in A. Since M̂ computes the function fA, there exists acombination of rows indexed by variables in G that equals to the all one vector. That is, inM̂ there exists rows, denoted ~M1; : : : ; ~Md, whose labels are from G, and there exist constants�1; : : : ; �d such that Pdi=1 �i ~Mi = ~1. Furthermore, by our construction the parties in G holdthe values ~M1 � ~r; : : : ; ~Md � ~r. The \weighted sum" of these values equals to the secret:dXi=1 �i � ~Mi � ~r� =  dXi=1 �i ~Mi! � ~r = ~1 � ~r = s :That is, every authorized set can reconstruct the secret, by applying a linear function to thecoordinates of their pieces.Now, let B be an unauthorized set (a set not in A). We have to prove that the partiesin B have no information about the secret. That is, the number of possible random stringsthat are consistent with pieces of B given a secret s0 is equal to the number of possiblerandom strings that are consistent with the pieces of B given a secret s1. This will be doneby showing a one to one mapping from the random strings that are consistent with the piecesand the secret s0 to the random strings that are consistent with the pieces and the secrets1. Furthermore, this mapping has an inverse, so the cardinality of the two sets of randominputs is equal.To exhibit such a mapping, we need the following proposition from linear algebra. It isa special case of the fact that a linear space V is a subspace of a linear space N if and onlyif the null space of V contains the null space of N .Proposition 4.8: A vector ~v is independent of a set of vectors represented by a matrix Nif and only if there exists a vector ~w such that N ~w = ~0 while ~v � ~w 6= 0.Since ~1 is independent of M�B , there exists a vector ~r0 such that M�B~r0 = ~0 while ~1 � ~r0 6= 0.Now, let ~c be a possible vector of pieces of the set B, and ~r be a random vector that the dealerused to generate the vector ~c. Finally, let s0 its corresponding secret. That is,M�B~r = ~c and~1 � ~r = s0. De�ne the following mapping from the random vectors consistent with s0 to therandom vectors consistent with s1: �(~r) 4= ~r + �~r0 ;where � 4= (s1 � s0)=(~1 � ~r0). Since ~r generates the pieces ~c, the vector �(~r) generates themas well: M�B(~r + �~r0) =M�B~r + �M�B~r0 = ~c+ �0 = ~c :The secret corresponding with the random string ~r + �~r0 is~1 � (~r + �~r0) = s0 + �~1 � ~r0 = s1 :32



Therefore, the mapping � has the desired properties and the security with respect to unau-thorized sets follows.We now quote the proof of the other direction. This claim was proved by Beimel andChor [6, 8] and by van Dijk [52].Claim 4.9: [6, 8, 52] Assume there exists a linear scheme over a �nite �eld K realizing theaccess structure A in which the total size of the pieces is d. Then there is a monotone spanprogram over K computing the function fA whose size is d.Proof: With out loss of generality, assume that f0; 1g � S. We construct the followingspan program; for every coordinate of the piece we shall have a row in the span program.This row is labeled by xi where Pi is the party that the coordinate belongs to. For everypair hs; ri 2 f0; 1g � R we shall have a column in the program. The de�nition of the spanprogram is the follows: Mhi;ji;hs;ri = �i;j(s; r). That is, the column labeled by hs; ri is thevector of pieces generated when the dealer holds the secret s and the random input r. The�rst jRj columns are indexed by the secret 0 (and the di�erent random strings), and the lastjRj columns are indexed by the secret 1. This \vector of secrets" is the objective vector ofthe program: ~v = h 0; : : : ; 0| {z }jRj ; 1; : : : ; 1| {z }jRj i :We claim that this span program computes fA. That is, we will prove that G 2 A if andonly if ~v 2 span(M�G).For the �rst direction, let G 2 A. Recall that there exists a linear combination ofcoordinates of the pieces of the parties in G which equals to the secret. That is, there existconstants f�i;jg such that for every hs; ri 2 f0; 1g �R it holds thats =X�i;j�i;j(s; r) =X�i;jMhi;ji;hs;ri :Now, let ~Mhi;ji be the hi; ji row of M . Hence, rewriting the previous equations we get~v = P�i;j ~Mhi;ji. In other words, ~v 2 span(M�G) as required.For the second direction, assume that there exists a combination of the vectors labeled byvariables fromG which equals to the objective vector ~v. Therefore, applying this combinationto their pieces, the parties in G can distinguish when the secret is zero and when the secretis one. Thus, the security requirement implies that G 2 A.
33



Chapter 5Lower bounds for Monotone SpanProgramsIn this chapter we present a new technique for proving lower bounds for monotone spanprograms, and prove a lower bound of 
(n2:5) for the 6-clique function. By the results ofthe previous chapter, this implies the same lower bounds for the total size of the pieces inevery linear secret sharing scheme realizing the corresponding access structure.The chapter is organized as follows. In Section 5.1 we describe our notations, give anapplication of Ne�ciporuk's method [87] for lower bounds on the size of (non-monotone) spanprograms, and a construction of a linear size monotone span program for accepting non-bipartite graphs. In Section 5.2 we present the method for proving the lower bound, and inSections 5.3 and 5.4 we present applications of the method.5.1 PreliminariesA minterm of a monotone function is a minimal set of its variables with the property thatthe value of the function is 1 on any input that assigns 1 to each variable in the set, nomatter what the values of the other variables. In this chapter we denote variables by lowercase letters, and minterms (sets of variables) by upper case letters, such as A. Script letters,such asM, will be used for families (sets) of sets. We denote by h the number of vertices ina graph, and K to be a �eld.By our de�nition the size of a span program is the number of rows in the matrix. Thenumber of columns does not e�ect the size of the span program. However, we observe thatit is always possible to use no more columns than the size of the program (since we mayrestrict the matrix to a set of linearly independent columns without changing the functionthat is computed).Observation 5.1: For every span program M̂ there is a span program M̂ 0 which computesthe same function has the same number of rows and the number of colums of M̂ 0 is at most34



the number of the rows of M̂ 0.Following [68] and with Observation 5.1, we can apply Ne�ciporuk's method [87] to spanprograms, and get a lower bound of 
(n3=2= log n) for an explicit function with n variables.This is the best lower bound known for the non-monotone span program complexity of anexplicit function. Let EDn be the \element distinctness" function which receives h numbersin the range f1; � � � ; h2g and decides whether all the numbers are distinct. The function EDnhas n = 2h log h Boolean variables.Theorem 5.2: SPGF(2)(EDn) = 
(n3=2= log n) , where n = 2h log h.Furthermore, Observation 5.1 enables us to count the number of span programs. Thereare at most s2nqs2 span programs of size s over GF(q). Therefore,Theorem 5.3: There exists a Boolean functions f such that SPGF(2)(f) = 
(20:5n) andthere exists a monotone Boolean functions f such that mSPGF(2)(f) = 
(20:5n�o(n)).Using Claim 4.9 we conclude that there exists an access structure for which every linearsecret sharing scheme over any �eld distributes shares of size 2
(n).Next we present a monotone span program of linear size (exactly n) for a function onn variables that is known to have 
(n3=2=(log n)3) monotone circuit complexity [95, 3, 67].We consider the function Non-Bipartiten, whose input is an undirected graph on h vertices,represented by n = �h2� variables, one for each possible edge. The value of the function is 1if and only if the graph is not bipartite.Theorem 5.4: mSPGF(2)(Non-Bipartiten) = n, where n = �h2�.Proof: We construct a monotone span program over GF(2) accepting exactly the non-bipartite graphs as follows. There will be n rows, each labeled by a variable (possible edge).There is a column for each possible complete bipartite graph on h vertices. The column fora given complete bipartite graph contains the value 0 in each row that corresponds to anedge of the given graph and contains 1 in every other row.This program rejects every bipartite graph G. This is because G is contained in somecomplete bipartite graph, and so there will be a column that contains only 0's in the rowslabeled by the edges of G. Therefore the vector ~1 is not a linear combination of these rows.Next we show that the program accepts every non-bipartite graph. Since the span pro-gram is monotone, it is su�cient to show that it accepts every minimal non-bipartite graph,i.e., every odd cycle. Let C be an arbitrary odd cycle. The intersection of any cycle withany complete bipartite graph has an even number of edges. So the odd cycle C has an oddnumber of edges which are not in any given complete bipartite graph. Hence the sum of therow vectors corresponding to all the edges in C is odd in each column, i.e., gives the vector~1 over GF(2), and so C is accepted by the span program.35



We note that the lower bound by Razborov's method (see [95, 3, 67]) for triangles alsoapplies to the function that accepts exactly the non-bipartite graphs, thus the monotonecircuit complexity of the function Non-Bipartiten is 
((h= log h)3) = 
(n3=2=(log n)3). Thegap between monotone span program complexity and monotone circuit complexity was im-proved by Babai et. al. [4]. They exhibit a function that is computable by monotone spanprograms whose size is linear but requires monotone circuits of size n
(logn) and exponentialsize monotone formulae.5.2 The Method for Proving Lower BoundsIn this section we present a method for proving lower bounds for monotone span programs.The idea of our method is to show that if the size of a span program (i.e., the number ofrows in the matrix) is too small, and the program accepts all the minterms of the function fthen it must also accept an input that does not contain a minterm of f , which means thatthe program does not compute f . Our approach may be viewed as an application of the\fusion method" [67, 96, 111].We introduce the de�nition of a critical family of minterms of a monotone Booleanfunction. We prove that the cardinality of a critical family for a function f is a lower boundon the size of monotone span programs computing f .De�nition 5.5 [critical family]: Let f be a monotone Boolean function and Mf be thefamily of all of its minterms. Let H � Mf be a subfamily of the minterms of f . We saythat a subfamily H �Mf is a critical family for f , if every H 2 H contains a set TH � Hsuch that jTH j � 2 and the following two conditions are satis�ed.C1. The set TH uniquely determines H in the family H. That is, no other set in thefamily H contains TH.C2. For any subset Y � TH , the set SY = SA2H;A\Y 6=;A n Y does not contain anymember of Mf .Note that Condition C2 requires that SY contains no minterm from f , not just none fromH.Theorem 5.6: Let f be a monotone Boolean function, and let H be a critical subfamily ofminterms for f . Then for every �eld K,mSPK(f) � jHj :Proof: Let M be the matrix of a monotone span program computing f , and let d be thenumber of rows of M . Any minterm of H is accepted by the program. By de�nition, thismeans that, for every H 2 H, there is some vector ~cH 2 Kd such that ~cH �M = ~1, and where36



~cH has nonzero coordinates only at rows labeled by variables from H. (For a given H theremay be several such vectors, we pick one of them and denote it by ~cH .)Since ~cH is taken from Kd, the number of linearly independent vectors among the vectors~cH for H 2 H is a lower bound for d, i.e., for the size of the monotone span programcomputing f . We show that all the vectors ~cH for H 2 H must be linearly independent.Suppose, that this is not the case, i.e., for some H 2 H~cH = XA2A�A~cA ; (5.1)where �A 2 K and A = H n fHg.Let us consider the set TH � H from De�nition 5.5.Lemma 5.7: If Equation (5.1) holds then for any nonempty subset Y � TH the followingmust hold. XA2A;A\Y 6=;�A = 1 :Proof: Suppose that for some Y � TH, PA2A;A\Y 6=; �A = 
 6= 1 :Let us consider the vector ~c = XA2A;A\Y 6=;�A~cA � ~cH : (5.2)We have ~c �M = (
 � 1)~1, thus 1=(
 � 1)~c �M = ~1, and the program accepts the set ofvariables that label the rows corresponding to nonzero coordinates of ~c.Recall that each ~cA has nonzero coordinates only at rows labeled by variables from A.Thus for A \ Y = ; the coordinates of ~cA are zero at rows labeled by variables from Y . ByEquation (5.1), ~c = ~0 � XA2A;A\Y =;�A~cA :Therefore, the vector ~c has zero coordinates at all rows labeled by variables from Y .On the other hand, by Equation (5.2) all the nonzero coordinates of ~c are at rows labeledby variables that appear in some sets A such that A\Y 6= ;. Therefore, the program acceptsSY = SA2H;A\Y 6=;A n Y , that (by De�nition 5.5) does not contain any minterm of f . Thisproves the lemma.From Lemma 5.7, we get a system of linear equations in the unknowns �A. We provethat this system of equations has no solution, contradicting (5.1). Suppose that jTHj = e.Let us consider the following (2e � 1) � (2e � 1) zero-one matrix N . The rows and columnsof N are indexed by the nonempty subsets of TH, and N(Y;Z) = 1 if and only if Y \Z 6= ;.(This matrix is the complement of the disjointness matrix).Observation 5.8: The matrix N has full rank over any �eld K.37



(This can be shown by a simple transformation of N to a triangular matrix, or by simpleinduction.)We will show, that if Equation (5.1) holds then taking �Z = PA2A;A\TH=Z �A as acoe�cient for the column Z 6= TH , we get the column indexed by TH as a linear combinationof the other columns of N . Notice that the column of N indexed by TH consists of all 1's.We show that for any Y , ; 6= Y � TH, we have P;6=Z�TH �ZN(Y;Z) = 1.By Condition C1 of De�nition 5.5, for A 2 A we have A \ TH 6= TH. If Y � TH thenA \ Y = A \ TH \ Y . By Lemma 5.7, if (5.1) holds then we have1 = XA2A;A\Y 6=;�A = X;6=Z�TH ;Z\Y 6=;0@ XA2A;A\TH=Z �A1A = X;6=Z�TH �ZN(Y;Z) ;and the column TH is a linear combination of the other columns of N . Since N has full rankthis is not possible, and so (5.1) cannot hold, i.e., all the vectors ~cH for H 2 H are linearlyindependent. This concludes the proof of the theorem.5.3 Lower bounds for clique functionsWe consider the function Cliqued;h, whose input is an undirected graph on h vertices, repre-sented by n = �h2� variables, one for each possible edge. The value of the function is 1 if andonly if the graph contains a clique of size d.It is known ([3, 95]) that the monotone circuit complexity of Cliqued;h is 2
(pd) for d =O((h= log h)2=3), and for �xed d it is 
((h= log h)d). However, the strongest known lowerbound for the monotone span program complexity of the Cliqued;h function is our 
(h5) =
(n2:5) lower bound that holds for d � 6 such that n�d = O(n). For d � 4, we obtain lowerbounds that are tight, up to a constant factor.For a given d, we partition the set of h vertices into d classes C1; C2; : : : ; Cd of approxi-mately equal size. We say that a d-clique is multicolored if each of its d vertices belong to adi�erent class. Thus a multicolored clique will never contain an edge between two verticesin the same class.Let M be an arbitrary family of multicolored d-cliques. Let TQ be some subset of theedges of a clique Q 2 M. Denote the vertices of Q by v1; : : : ; vd, and consider for Y � TQthe set SY = [G2M;G\Y 6=;G n Y . Suppose SY contains a d-clique Z with vertices z1; : : : ; zd.First we present two simple but important observations that are helpful in �nding criticalfamilies for clique functions.Claim 5.9: The vertices of Z all belong to di�erent classes, say zi 2 Ci, for i = 1; : : : ; d.Proof: SY only contains edges that appear in d-cliques that belong to the familyM, andso contains only edges between vertices from di�erent classes.We always list the vertices of a multicolored clique in the order of the partition classes.38



Claim 5.10: For each edge (vi; vj) 2 Y at least one of zi 6= vi or zj 6= vj must hold.Proof: If Z contained both vi and vj for (vi; vj) 2 Y then Z could not be a d-cliquecontained in SY since SY does not contain an edge between vi and vj.We are ready to construct the critical families.Lemma 5.11: For any partition of the h vertices into three classes, the family M ofmulticolored 3-cliques is critical for Clique3;h.Proof: Let Q be an arbitrary multicolored 3-clique (triangle), and let TQ be the set oftwo of its edges, for example (v1; v2) and (v2; v3). There is only one triangle containing TQ,thus Condition C1 is satis�ed. To see that Condition C2 holds, let us consider for Y � TQthe set SY = [G2M;G\Y 6=;G n Y , and suppose that it contains a triangle Z with verticesz1; z2; z3.If Y = TQ, then z2 = v2 must hold, since there are no edges in SY incident to any othervertex from C2. By Claim 5.10 we have z1 6= v1 and z3 6= v3. Therefore, the edge (z1; z3)cannot be present in SY , since all the edges of SY are contributed by triangles that containat least one of v1 or v3.If Y 6= TQ, then it consists of a single edge, (v1; v2) say. Then SY does not contain anyedge between the classes C1 and C2, and so, by Claim 5.9, cannot contain a triangle.Lemma 5.12: Given any partition of the h vertices into four classes, the family of multi-colored 4-cliques is critical for Clique4;h.Proof: Let Q be an arbitrary multicolored 4-clique, and let TQ be the set of two of itsnonadjacent edges, for example (v1; v2) and (v3; v4). Condition C1 is satis�ed, since twononadjacent edges uniquely determine a 4-clique. To see that Condition C2 holds, as in theprevious lemma, let us consider SY for Y � TQ and suppose that it contains a 4-clique Zwith vertices z1; z2; z3; z4.If Y = TQ then, by Claim 5.10, without loss of generality we have z1 6= v1. Any edgesincident to z1 could only be contributed to SY by cliques that contain (v3; v4). Thus, a cliquecontaining z1 would also have to contain both v3 and v4, which is not possible by Claim 5.10.As in the previous lemma, if Y 6= TQ then it consists of a single edge and SY does notcontain a 4-clique.We note that for d � 5 the family of multicolored d-cliques is not critical forCliqued;h. For example, for k = 5, any choice of TH for a multicolored 5-clique Hwith vertices v1; v2; v3; v4; v5; must contain either the set Y1 = f(v1; v2); (v1; v3); (v4; v5)gor Y2 = f(v1; v2); (v1; v3); (v1; v4); (v1; v5)g, up to renaming of the vertices. Each of the setsSY1 and SY2 contain the multicolored 5-clique on vertices v1; z2; z3; z4; z5; where zi 6= vi fori = 2; : : : 5.The critical families we use for proving lower bounds for 5- and 6-cliques will be appro-priately chosen subfamilies of multicolored cliques.39



v6v1 v2v5 v4v3Figure 5.1: Illustrations of the set THTH äöåá÷ä ìù øåàú :5.1 øåéàTheorem 5.13: For every �eld K,mSPK(Clique6;h) = 
(n2:5) :Proof: We show that the family of minterms of the Clique6;h function contains a largecritical subfamily Q. Let us assume that h = 6q, and partition the set of h vertices into sixclasses of size q. Q will be a subfamily of the multicolored 6-cliques, under this partition.For members of Q, we restrict the edges allowed between vertices in the classes C1 andC3, and similarly between the classes C4 and C6. The legal pairs of vertices which we allowto be connected by an edge will be speci�ed by a q� q Boolean matrix D. Between all otherpairs of classes we allow arbitrary edges. The edge (a; b) with a 2 C1 and b 2 C3 (a 2 C4and b 2 C6, respectively) is allowed in a member of Q if and only if D(a; b) = 1. We chooseD such that it does not contain any complete (all ones) 2� 2 submatrices. For example theincidence matrix of a projective plane has this property, and its number of one is �(q3=2),with �(q1=2) ones in each row and column. The constructions in [70, 88] can also be used.(The construction of matrices with similar properties for arbitrary q is described in [91].)The family Q consists of all the multicolored 6-cliques that satisfy the restriction on theedges between classes C1 and C3, and between C4 and C6. The number of such 6-cliques is�(q5), thus we have jQj = �(q5) = �(n2:5).Next we show that Q is critical for Clique6;h. Consider any Q 2 Q, and denote itsvertices by v1; : : : ; v6. The set TQ we choose will consist of the four edges (v1; v2), (v2; v3),(v4; v5), (v5; v6). The critical family is illustrated in Figure 5.2. Obviously, Condition C1 issatis�ed.We now prove that Condition C2 holds. For Y � TQ, suppose the set SY = [G2Q;G\Y 6=;GnY contains a 6-clique Z with vertices z1; : : : ; z6. We analyze the di�erent cases for Y . Case1. Let Y = TQ. Notice that if both z2 6= v2 and z5 6= v5, then SY does not contain an edgebetween z2 and z5, thus we have z2 = v2 or z5 = v5. These possibilities are illustrated inFigure 5.2. 40



Suppose that only one of these equalities holds, for example z2 = v2 but z5 6= v5. Then,by Claim 5.10, z1 6= v1 and z3 6= v3 must hold. The edge (z1; z5) can only be contributedto SY by a clique that contains the edge (v2; v3), and similarly the edge (z3; z5) can only becontributed to SY by a clique that contains the edge (v2; v1). This means that the edges(z1; v3); (v1; z3) as well as the edges (v1; v3) and (z1; z3) appear in some member of the familyQ. However, this is not possible by our restriction on the legal edges between C1 and C3.Suppose now that both z2 = v2 and z5 = v5 holds. Then by Claim 5.10 we havez1 6= v1, z3 6= v3, z4 6= v4 and z6 6= v6. The edge (z1; z4) can only be contributed by aclique that contains (v2; v3) or (v5; v6). This means that at least one of the edges (z4; v6) or(z1; v3) is legal. Similarly, from the presence in Z of the edges (z1; z6), (z3; z4) and (z3; z6),respectively, we know that at least one each of (v4; z6) or (z1; v3), (z4; v6) or (v1; z3), and(v4; z6) or (v1; z3), respectively, are legal edges. This means that either both (z4; v6) and(v4; z6) or both (z1; v3) and (v1; z3) are legal, and since (vi; vj) and (zi; zj) must be legal forall i; j, we get a contradiction with our restriction on the possible edges of members from Q.Case 2. Let Y 6= TQ. In this case the edges in Y cover t vertices, 2 � t � 5. We showthat SY does not even contain a t-clique on the t classes involved. For t � 4 this followsdirectly from Lemma 5.11 and Lemma 5.12.We still have to deal with the case when t = 5, which can only happen if Y consistsof three edges. Suppose (without loss of generality) that the three edges of Y are (v1; v2),(v2; v3) and (v4; v5). If z2 6= v2, then all the edges incident to z2 could only be contributedto SY by cliques that contain (v4; v5). That would mean that the only vertices in C4 and C5connected to z2 in SY are v4 and v5. Thus we could not get a 6-clique in SY that containsz2. Therefore, z2 = v2 must hold. Then we have by Claim 5.10 that z1 6= v1, z3 6= v3 and,without loss of generality, z5 6= v5. We get a contradiction with the restriction on the edgesbetween C1 and C3 as in Case 1.We have proved that Condition C2 is also satis�ed, and Q is a critical family for f . Thelower bound follows from Theorem 5.6.Theorem 5.14: For every �eld K,for every 6 � d � h mSPK(Cliqued;h) = 
((h� d)5) = 
((n0:5 � d)5) ;mSPK(Clique5;h) = 
(h4:5) = 
(n2:25) ;mSPK(Clique4;h) = �(h4) = �(n2) ;mSPK(Clique3;h) = �(h3) = �(n1:5) :The proof of this theorem is basically included in the proof of the lower bound for 6-cliquesand in Lemma 5.11 and Lemma 5.12.5.4 A function with minterms of size 2Access structure in which the size of every minimal reconstructing set is 2 have receivedmuch attention (e.g. [27, 28, 30, 36, 52, 53, 107]). In [53] it is proved that there exists41



such an explicit access structure for which the total size of the pieces in every secret-sharingscheme is 
(n log n) times the length of the secret (for every �nite set of possible secrets).That is, the monotone span program complexity of the function that represents the accessstructure is 
(n log n). In this section we exhibit an explicit function whose minterms areof size 2 and whose monotone span program complexity 
(n3=2). I.e., the total size ofshares in every linear secret sharing scheme for the corresponding access structure is at least
(n3=2). Let L1; : : : ; Lh be h subsets of f1; : : : ; hg such that the size of the intersection ofevery two subsets is at most 1. For example, the lines of a projective plane can be used.Given the sets L1; : : : ; Lh, we de�ne the function Lines, which has n = 2h variables denotedfa1; : : : ; ah; b1; : : : ; bhg, and whose minterms are ffai; bjg : j 2 Lig.Theorem 5.15: For every �eld K,mSPK(Lines) � hXi=1 jLij :Proof: We prove that the family of all minterms of the function Lines is a critical familyfor Lines. The set TH for every minterm H is simply H, and so Condition C1 is obviouslysatis�ed.To prove Condition C2, we take an arbitrary minterm, say fa1; b1g without loss of gen-erality, and consider the set X = Sfa1;b1g = fbj : j 2 L1g [ fai : 1 2 Lig n fa1; b1g. Supposethat there is some minterm fai; bjg contained in X. Now 1 2 Li since ai 2 X, and j 2 L1since bj 2 X. We also have 1 2 L1 since fa1; b1g is a minterm, and j 2 Li since fai; bjg is aminterm. However j 6= 1, and this contradicts the fact that the size of the intersection of L1and Li is at most 1. Obviously, the sets Sfa1g and Sfb1g do not contain any minterms either.Using the lines of a projective plane or the constructions from [70, 88, 91] for the setsL1; : : : ; Lh we havePhi=1 jLij = h3=2+O(h). There exists a monotone formula for this functionof size n3=2 + O(n) (take the DNF formula with a term for every minterm and group theterms that include each ai). Thus, we show an asymptotically matching upper bound forthis function.Corollary 5.16: For some explicitly given sets L1; : : : ; Lh we have, for every �eld K,mSPK(Lines) = h3=2 +O(h) = �(n3=2) :Since every monotone function with minterms of size 2 has a DNF representation ofsize O(n2), such a function has a monotone span program of size O(n2). However, usingTheorem 5.6 one can prove only lower bounds of size at most 
(n1:5) for function withminterms of size 2 (since every critical family of minterms of size two is of size O(n1:5)). Itis an open problem whether one can construct more e�cient monotone span programs forfunction with minterms of size 2. If this is not possible then this would prove that the lowerbounds proved using Theorem 5.6 are not tight.42
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Chapter 6Communication in Key DistributionSchemesIn this chapter, we study the relationships between communication and space e�ciencyof key distribution schemes. We prove that communication does not help in unrestrictedschemes. On the other hand, we show that for restricted schemes, which are secure onlywhen used by a limited number of conferences, communication can substantially improve thespace e�ciency. Furthermore, we prove lower bounds on the space e�ciency of restrictedschemes.This chapter is organized as follows. In Section 6.1 we consider some properties of non-communicating key distribution schemes. In Section 6.2 we present our proof of the lowerbound on the e�ciency for the weak non-communicating schemes. In Section 6.3 we use thisresult to prove a lower bound for unrestricted communicating schemes. In Section 6.4 weprove lower bounds for restricted communicating schemes, and in Section 6.5 we describesome e�cient constructions of restricted schemes.6.1 Properties of Non-Communicating SchemesIn De�nition 3.7 we de�ned non communicating (g; b) key distribution schemes. We givean equivalent condition for the security of these schemes. The equivalence of the conditionsfollows directly from Bayes rule.Lemma 6.1: A non communicating (g; b) key distribution scheme is secure if and only iffor every conference G of size g, every disjoint coalition B of size b, every vector of pieceshu1; : : : ; uni (that is dealt with positive probability), and every key k 2 KPr [ kG(r) = k j ^Pj2B(Uj(r) = uj) ] = Pr [ kG(r) = k ] 4= P(k) : (6.1)44



The previous lemma states that the key of a conference G is a random variable whichis statistically independent of the pieces of a disjoint coalition of size b. However, it is notguaranteed that the keys of di�erent conferences are statistically independent of each othergiven the pieces of a disjoint coalition of size b. In Claim 6.2 we give a condition in which theindependence of some keys are guaranteed. This claim is used in Section 6.5 for constructingone-time key distribution schemes and in Section 7.3 for constructing one-time secret sharingschemes with public reconstruction. We show that if we start with a non-communicating(2; g + b� 2) key distribution scheme then that the collection of keys of all pairs of partiesin a set G of g parties is uniformly distributed and independent of the pieces of coalition Bof b parties.Claim 6.2: Let U be a non-communicating (2; g+b�2)-scheme with a-priori distribution Pon a key domain K. Let G and B be sets of g and b parties respectively, such that G\B = ;,G1; G2; : : : ; G(g2) be all the subsets of G of cardinality two, k1; : : : ; k(g2) be any combinationof �g2� keys from K, and hu1; : : : ; uni be a vector of pieces that is distributed with positiveprobability. Then:Pr[ ^1�i�(g2) kGi(r) = ki j ^Pj2BUj(r) = uj ] = Y1�i�(g2)P(ki) : (6.2)Proof: To simplify the notations, we denote t = �g2�, and denote the key of the set Gi,i.e. kGi(r), by ki(r). Notice thatPr[ ^1�i�t ki(r) = kij ^Pj2BUj(r) = uj] = Y1�h�tPr[kh(r) = khj ^h+1�i�t ki(r) = ki^ ^Pj2BUj(r) = uj]Therefore, to prove Equation (6.2) (and therefore the claim) it is enough to prove that forevery h, where 1 � h � t, it holds that:Pr[ kh(r) = kh j ^h+1�i�t ki(r) = ki ^ ^Pj2BUj(r) = uj ] = P(kh) : (6.3)That is, the key kh(r) is independent of the other keys and the pieces of the parties in B. Toprove Equation (6.3), we partition the conditional probability space into disjoint subspaces,and prove this equality for every subspace. Thus, Equation (6.3) will hold for the originalconditional space. The partition of the conditional space is according to the pieces of theg � 2 parties in G n Gh. These pieces determine the keys of all the Gi except Gh. Withoutloss of generality Gh = fP1; P2g. Let ~v = hv3; : : : ; vg+bi, be any vector of pieces that isdistributed with positive probability, such that:� For every Pj 2 B it holds that uj = vj.� For every i, such that h+1 � i � t, it holds that the key of Gi reconstructed accordingto the pieces of ~v is ki. 45



Since the cardinality of B [GnGh is g+ b�2 then the security property of the (2; g+ b�2)scheme guarantees thatPr[ kh(r) = kh j ^Pj2GnGh Uj(r) = vj^ ^Pj2BUj(r) = vj ] = P(kh) :We now consider a weakening of the security requirement of key distribution schemes.Instead of requiring that the conditional probability (given any pieces of a bad set B) of everykey equals the a-priory probability, we will only require that this conditional probability ispositive. To simplify this discussion, we will only consider non-communicating weak schemes.De�nition 6.3 [Weak Key Distribution Schemes]: A weak non-communicating (g; b)key distribution scheme is a non-communicating (g; b) scheme in which the security propertyis relaxed:Weak security property Let B be a coalition of b (bad) parties, and let G be a confer-ence of g (good) parties, such that G \ B = ;. Then the parties in B, having their pieces,cannot rule out any key of G. In other words, for every vector of pieces ~u = hu1; : : : ; uniwhich is dealt with positive probability, and every possible key k 2 K, there exists a vectorof pieces ~u0 that agrees with ~u on the pieces of B, but the key of the set G according to thevector ~u0 is k. Formally, Pr [ kG(r) = k j ^Pj2BUj(r) = uj ] > 0where the probability is taken over the random input of the dealer.By Lemma 6.1, it follows that unrestricted non-communicating schemes are a specialcase of weak non-communicating schemes. Therefore, every lower bound for weak schemesimplies the same lower bound for unrestricted non-communicating schemes. We claim thatthe weak security requirement is not reasonable, since every \bad" coalition B could gain alot of information. The reason we do de�ne weak schemes is because we show that the lowerbounds on the size of the pieces hold even for these weak schemes.6.2 Lower Bounds for Non-Communicating SchemesBlundo et. al. [29] prove a tight lower bound on the size of the pieces in every non-communicating key distribution scheme. Their proof is based on the entropy function, and,in our opinion, does not reveal the intuition behind this lower bound. We present a simplerproof of this lower bound, which is not based on entropy. Furthermore, in our proof we onlyuse the weak security requirement. That is, even weak (g; b) schemes, where the entropyof the keys may be very low, must have large domain of pieces. Thus, our proof yields astronger result than the lower bound of [29]. We use this stronger result in the sequel.46



Theorem 6.4 [29]: Let U be a weak non-communicating (g; b) scheme with n parties anddomain of keys K. Let Ui be the domain of pieces of party Pi in U . Then for every i (1 �i � n): jUij � jKj(g+b�1g�1 ) :That is, the size of the pieces is at least �g+b�1g�1 � times the size of the key.Proof: Consider a (g; b) scheme with a domain of keys K. Without loss of generality,we assume that there are exactly g + b parties, which we denote by fP1; : : : ; Pg+bg. Weprove the lower bound on the domain of pieces of party P1. Let G1; : : : ; G` be all the sets ofcardinality g that contain party P1, where ` 4= �g+b�1g�1 �. Let ~k = hk1; k2; : : : ; k`i be any vectorin K`. We claim that there exists a vector of pieces ~u = hu1; : : : ; ug+bi (which is dealt withpositive probability), such that for every 1 � i � ` the key of the set Gi reconstructed fromthe pieces in ~u equals ki. Otherwise, let i (i � `) be a maximal index such that there existkeys k0i; : : : ; k 0̀ 2 K (where k0i 6= ki) and there exists a vector of pieces ~u0 = hu01; : : : ; u0g+bi,which is dealt with positive probability, such that the keys in ~k0 4= hk1; : : : ; ki�1; k0i; : : : ; k 0̀iare reconstructed from the pieces in ~u0. Such index i � 2 exists since for i = 1, there is somevector of pieces from which G1 reconstructs the key k1. Consider the set B = fP1; : : : ; Pg+bgnGi, which contains exactly b parties. Since the set B intersects Gj for every Pj such thatj 6= i, the parties in B can reconstruct the keys of the conferences G1; : : : ; Gi�1; Gi+1; : : : ; G`.Therefore, the pieces from ~u0 of the parties in B determine that the reconstructed keys of theconferencesG1; : : : ; Gi�1 are k1; : : : ; ki�1, respectively. Suppose there is a positive probabilitythat Gi's key equals ki, given the pieces u0i. Then in particular there is a vector of piecesgiving rise with non-zero probability to the keys k1; k2; : : : ; ki�1; ki. This contradicts thechoice of i as the maximal index. Therefore,Pr[ kGi(r) = ki j ^Pj2BUj(r) = u0j ] = 0But this violates the weak security property of the (g; b) scheme, a contradiction to ourassumption.Hence for every ~k 2 K`, there is a vector of pieces ~u for the parties, in which the vector ofreconstructed keys for the sets G1; : : : ; G` is ~k. Since party P1 computes the keys of the setsG1; : : : ; G` from his piece, it follows that his piece must be di�erent for every pair of di�erentvectors of keys for the sets G1; : : : ; G`. There are jKj` possible vectors of keys, thereforethere are at least jKj` di�erent pieces for party P1. That is, jU1j � jKj` = jKj(g+b�1g�1 ), asclaimed.We remark that if the keys of all sets were independent random variables then using thesame ideas of this proof, we can prove a lower bound of jKj( ng�1). Another observation isthat we can consider a key distribution scheme in which only some pre-de�ned subsets ofsize g can reconstruct a key. Our proof actually supplies a lower bound for this setting aswell. 47



Lemma 6.5: Let U be a (weak) non-communicating (g; b) scheme with exactly g+ b partiesand domain of keys K, in which party Pi is a member of at least ` sets that can reconstructa key. Let Ui be the domain of pieces of Pi in U thenjUij � jKj` :Notice that ` can be at most �g+b�1g�1 �.Using symmetric degree b multinomials with g variables, Blundo et. al [29] haveconstructed an unrestricted non-communicating (g; b) scheme with domains of piecesjUij = jKj(g+b�1g�1 ) with uniform a-priori distribution on the keys (provided that jKj � nand jKj is a prime power). So, the lower bound is tight (except for small domains of keys).6.3 Removing the Communication from UnrestrictedSchemesIn this section we show how to transform an unrestricted communicating scheme into aweak non-communicating key distribution scheme, without enlarging the domain of pieces.Therefore, the lower bound on the cardinality of the domain of pieces applies to unrestrictedcommunicating schemes as well.Theorem 6.6: Let U be an unrestricted communicating (g; b) key distribution scheme withn � g + b parties and domain of keys K. Let U1; : : : ; Un be the domains of pieces of theparties in U . Then for every party Pi:jUij � jKj(g+b�1g�1 ) :That is, the size of the pieces is at least �g+b�1g�1 � times the size of the key.Proof: The idea of the proof is to �x, for every setG of g parties, a possible communicationCG (i.e. one that is exchanged with positive probability when G communicates in order togenerate a conference key). The vector of all these communications is public knowledge. Nowthe dealer deals only vectors of pieces that are consistent with all the communications CG's.When a member of a setG wishes to determine a conference key, he applies the reconstructionfunction to his piece and the �xed communication CG. This way, no communication isrequired. In the rest of proof, we show �rst how to choose communications for di�erentconferences such that they are consistent among themselves. This implies the existence ofvectors of pieces that are consistent with all the communications. Once this is done, it isclear that the non-communicating scheme has the reconstruction property. We then provethat the resulting non-communicating scheme has the weak security property. Therefore, it is48



a weak non-communicating (g; b) scheme.1 By Theorem 6.4 the cardinality of the domain ofpieces of every party in the resulting weak non-communicating scheme is at least jKj(g+b�1g�1 ).But the domain of the pieces in the non-communicating scheme is not larger than that ofthe communicating scheme. Therefore, the lower bound on the size of the pieces applies tothe original communicating scheme as well.To complete the proof, we �rst show how to choose a set of communications CG (for allG's) in a consistent way. To do this, we �rst �x an arbitrary vector of pieces ~u which is dealtby the dealer in the original scheme with positive probability. We also �x the local randominput of each party. Each communication CG is the one determined when the parties of Ghold pieces from ~u, and have the �xed random inputs. It is clear that ~u is consistent with allthese conversations. The dealer in the new scheme chooses at random a vector of pieces thatis consistent with the communications. That is, the dealer chooses a vector of pieces fromthe (non-empty) set of vectors of pieces ~v for which there exists a vector of local randominputs ~r for the parties, such that every conference G of g parties, holding the pieces of ~v,and having the random inputs ~rG, communicate CG (where ~rG is the restriction of ~r to themembers of G).We now show that the resulting non-communicating scheme is weakly secure. Let Gbe any conference of cardinality g, and B be a disjoint coalition of cardinality b. By thesecurity property of the communicating scheme, it follows that for every vector of pieces thatis consistent with the �xed conversations, and every key k 2 K, there exists a vector of pieceswhich is consistent with the given pieces of the parties in B, such that the reconstructedkey of conference G equals k. That is, the non-communicating scheme has the weak securityproperty, as claimed.We can de�ne the notion of weak security for unrestricted communicating schemes in asimilar manner to De�nition 6.3. The lower bound of Theorem 6.6 is also applicable to suchweak unrestricted communicating schemes.6.4 Lower Bounds for Restricted SchemesBy Theorem 6.6, communication cannot decrease the size of the pieces of information givento the parties in unrestricted key distribution schemes. In order to decrease the size of thepieces of information, we consider restricted schemes in which the key distribution schemesshould be secure only for a restricted number of conferences. Which conference will generatea key is not known a-priori, so the distributed pieces should accommodate any combinationof conferences (up to the limit on their number).1In this proof we do not de�ne the probability distribution under which the dealer distributes the consis-tent vectors of pieces. We only require that every consistent vector is distributed with positive probability. Itis possible to de�ne a probability distribution on the consistent vectors, such that the induced (g; b) schemewill have the unrestricted security property. 49



The proof that unrestricted communicating schemes and unrestricted non-communicatingschemes have the same space e�ciency (Theorem 6.6) is not applicable for restricted schemes.It is possible, for example, to transform a one-time secure communicating scheme into a non-communicating scheme, using the technique of Theorem 6.6. However, this would yield anon-communicating scheme which is secure only with respect to a single �xed conference,depending on the one initiating the communication. Indeed, in Section 6.5 we show thatrestricted schemes can be much more e�cient than unrestricted schemes. In this section wegive lower bounds on their e�ciency.We �rst give a simple lower bound for every � -restricted (g; b) key distribution scheme.We show that for � � �g+b�1g�1 � the cardinality of the domains of pieces in any � -restricted(g; b) key distribution scheme is at least jKj� . Therefore, for � � �g+b�1g�1 � the unrestrictednon-communicating scheme of [29] is space optimal even with respect to � -restricted schemes.In addition, this shows that for restricted schemes with smaller � , some dependence on thesize of � is unavoidable. We improve this bound for the case � � (b=g)g. In particular, forone time schemes we prove a jKj1+bb=(g�1)c lower bound (the upper bound is jKj2+2(b�1)=g).We �rst present a simple lower bounds for � -restricted schemes.Lemma 6.7: Let � � �g+b�1g�1 �. In every � -restricted (g; b)-scheme with n � g + b partiesand domain of keys K, the cardinality of the domain of pieces of every party is at least jKj� .Proof: Again, we limit the number of parties to g+b. Using the same ideas as in the proofof Theorem 6.6, we transform a � -restricted (g; b)-scheme into a weak non-communicating(g; b)-scheme in which � pre-de�ned sets can reconstruct a key. That is, we �x consistentconversations of the � sets. The dealer generates vectors of pieces consistent with theseconversations. The original scheme is secure for � conferences, therefore by �xing � con-versations, we get a secure scheme in which these � sets can reconstruct a key without anycommunication. Since � � �g+b�1g�1 �, there are � sets that contain Pi. Choosing � sets con-taining Pi as the pre-de�ned sets, we apply Lemma 6.5 to the transformed scheme. By thislemma the cardinality of the domain of pieces of Pi in the transformed scheme at least jKj� .By the transformation, the cardinality of the domain of pieces in the transformed scheme isat most the cardinality of the domain of pieces in the � -restricted scheme. Therefore, thecardinality of the domain of pieces of every party in the � -restricted scheme is at least jKj� .We now improve the previous lower bound for schemes in which � � (b=g)g. The proof ofthis lower bound uses entropy and mutual information. For de�nitions of these informationtheoretic terms, the reader can refer to [42, 45, 60] (see also Appendix A). In the proof weuse the following claim of Maurer [77] and Ahlswede and Csiszar [2]. Its context is a systemwhere two (coin 
ipping) parties, each with private piece of information, execute a protocolby communicating over a public channel. After the execution of the protocol, the twoparties generate a common key, such that a third party overhearing all the communicationdoes not have any information on the key. First, the claim states that the conditional mutual50



information of the pieces (measuring the information known to the two parties but not tothe third party) held by the two parties cannot be increased after a conversation on a publicchannel. Second, the claim states that the conditional mutual information of the initialpieces is at least the entropy (uncertainty) of the generated key. In the claim Ui is therandom variable which denotes the piece of Pi, and K is a random variable which denotesthe key.Claim 6.8 [2, 77]: Let U1;U2;U3 be random variables, held by parties P1; P2; P3 re-spectively. Parties P1 and P2 communicate on a public channel according to some proto-col. Denote the communication by the random variable M . Then, I( U1 ; U2 j U3) �I( U1 ; U2 j MU3). Furthermore, assume that after the execution of the protocol parties P1and P2 agree on a key K known to both of them, such that P3 has no information on thekey. That is, H( K jU1;M) = H( K jU2;M) = 0, while H( K jU3;M) = H(K). Then,I( U1 ; U2 j U3) � H(K).We �rst consider (2; b)-schemes. Recall that in the non-communicating (2; b)-scheme ofBlom [24], the cardinality of the domain of pieces is jKjb+1. In Lemma 6.9 we prove thatjKjb+1 is a lower bound even for one-time (2; b)-schemes. Thus, in this case communicationdoes not help even if we consider only one-time schemes.Lemma 6.9: Let U be a one time (2; b) scheme with n � b+ 2 parties and domain of keysK. Assume that the a-priory probability of each key in K is uniform. Then the cardinalityof the domain of pieces of every party in the scheme U is at least jKjb+1.Proof: Without loss of generality, we prove that jU1j � jKjb+1, where U1 is the domainof pieces of P1 in the scheme U . We start with a one-time (2; b) scheme U . For every i > 2,we construct a new scheme with 3 parties. In the new scheme P1 receives U1, the piece ofP1 in U , party P2 receives Ui the piece of Pi in U , and party P3 receives the pieces from Uof the parties Pi+1; : : : ; Pb+2. In the new scheme parties P1 and P2 can generate the key ofthe old parties fP1; Pig. Since party P3 receives at most b pieces of the old scheme, he hasno information on the generated key. Therefore, we are in the scenario of Claim 6.8. Weconclude that for every i (2 � i � b+ 2):I( U1 ; Ui j Ui+1 : : :Ub+2 ) � H(K) :On the other hand, by de�nitionb+2Xi=2 I( U1 ; Ui j Ui+1 : : :Ub+2) = b+2Xi=2H( U1 j Ui+1 : : :Ub+2)� b+2Xi=2H( U1 j UiUi+1 : : :Ub+2)= H(U1)�H( U1 j U2 : : :Ub+2 )� H(U1) : 51



Combing the last two arguments together, we deduce thatH(U1) � b+2Xi=2 I( U1 ; Ui j Ui+1 : : :Ub+2 ) � (b+ 1)H(K) :It holds that H(U1) � log jU1j, and since we assume uniform distribution on K then H(K) =log jKj. Thus, log jU1j � H(U1) � (b+ 1)H(K) = (b+ 1) log jKj ;which yields the claimed bound jU1j � jKjb+1.The proof of Lemma 6.9 (with respect to the domain U1) does not require that everypair of parties should be able to reconstruct a key. It only requires that P1 and every otherparty can generate a key. It is also interesting to notice that any scheme meeting this lowerbound satis�es H( U1 j U2 : : :Ub+2 ) = 0, so every b+ 1 parties can reconstruct the pieces ofall the other parties. We now use Lemma 6.9 to prove a lower bound for every conferencesize g and various values of � .Theorem 6.10: Let �; g; b be positive integers such that � � �g+b�1g�1 �. Consider a � -restricted (g; b)-scheme with n � g + b parties and domain of keys K, which are distributedwith the uniform a-priory probability distribution. The cardinality of the domain of pieces ofevery party in the scheme is at least jKje, wheree 4= max(�; b� 1g � 1�1=(g�1)) :That is, the size of the pieces is at least e times the size of the key. For � = 1, the lowerbound is jKj1+bb=(g�1)c. That is, the size of the pieces in one-time key distribution schemesis at least 1 + bb=(g � 1)c times the size of the key.Proof: If (b� 1)=g < � 1=(g�1) then e = � , and the lower bound follows from Lemma 6.7.Otherwise, we convert the � -restricted (g; b) scheme into a one time (2; c) scheme (where cis a function of b; g and � ) such that the key in the new scheme is taken from a domain ofcardinality jKj� . To complete the proof, we apply the lower bound of Lemma 6.9.In this conversion, we start with a � -restricted (g; b) key distribution scheme, denoted U ,with g + b parties. De�ne a 4= l(g � 1)� 1=(g�1)m, and c 4= b(g + b� 1)=ac � 1. We constructa one time (2; c) scheme, called U 0, with b(g + b� 1)=ac + 1 = c + 2 parties. The newscheme is de�ned as follows: The piece of party P1 is U 01(r) 4= U1(r) and for every 2 � i �b(g + b)=ac the piece of party Pi is U 0i(r) = hUa(i�2)+2(r); : : : ;Ua(i�1)+1(r)i. That is, in thenew scheme party P1 holds the piece of party P1 from the old scheme, and party Pi gets thepieces of a disjoint parties of the original scheme. The number of original pieces we use is(a b(g + b� 1)=ac+1) � g+ b, so this construction is possible. This conversion is illustratedin Figure 6.1. We consider the conference fPi; Pjg in the new scheme where i > j (it is52



party P3 party Pc+2(a old parties) (a old parties)
party P1: : : : : :party P2 (a old parties)Figure 6.1: An illustration of the new scheme of Theorem 6.106.10 èôùîî äùãçä äîëñä ìù øåàú :6.1 øåéàpossible that j = 1). Since Pi holds a pieces of the original scheme and a � (g � 1)� 1=(g�1)there are  ag � 1! � (a=(g � 1))g�1 � �conferences of g original parties, such that Pi holds g�1 of their pieces and Pj holds one piece.For every such conference, the parties Pi and Pj in the new scheme can generate the originalkey of the conference. That is, the conference fPi; Pjg in the new scheme can generate �original keys. We view these keys as one new key taken from a domain of cardinality jKj� .We claim that this new key is distributed uniformly in the conditional space where piecesof c new parties (coalition members) are given. Denote the � original conferences of size gby G1; G2; : : : ; G� , and the generated keys by k1; k2; : : : ; k� respectively. Consider a coalitionC of c new parties (not including Pi or Pj). If the coalition C has gained information onthe concatenation of these keys then there exists an index i such that the pieces of C, the �conversations, and the keys k1; : : : ; ki�1 reveal some information on the key ki in the originalscheme. This in turn, implies that in the original scheme there are pieces to all the partiesexcept Gi that, together with the communications, reveal some information on the key ki.But this coalition contains b original parties, which contradicts the � -restricted security ofU , the original scheme.Therefore, the scheme U 0 is a one time (2; b(b+ g � 1)=ac � 1) scheme in which the keyis distributed uniformly over a domain of cardinality jKj� . Applying the lower bound ofLemma 6.9 to P1, we conclude that U1 { the domain of pieces of P1 (in the new and original53



scheme) { satis�es jU1j � jKj�(b(b+g�1)=ac) > jKj�1�1=(g�1)(b�1)=g :If � = 1 then a = g � 1. Thus, jU1j � jKjb(b+g�1)=(g�1)c = jKj1+bb=(g�1)c.We remark that the lower bound of Lemma 6.7 applies to weak � -restricted schemes aswell. On the other hand, the lower bound of Theorem 6.10 holds only for uniform a-prioridistribution on the keys. For schemes where the keys are distributed with an arbitrary a-priori probability distributions, the lower bound is 2H(K)�(1+bb=(g�1)c) : It is an open problemwhether the lower bound of jKj1+bb=(g�1)c holds for weak one time schemes as well. SinceTheorem 6.10 is proven by reduction to Lemma 6.9 then proving a jKjb+1 lower bound forweak one time (2; b) schemes su�ces for proving the lower bound for every g.6.5 Upper Bounds for Restricted SchemesBlundo et. al. [29] present a one-time (g; b)-scheme in which the domain of pieces of eachparty is of cardinality jKjg+b�1. (In [29] it is not pointed out that this scheme is only one-time secure). We improve their one-time scheme, and present a one-time key distributionscheme in which the domain of pieces of each party is of cardinality jKj2+2(b�1)=g. Thisscheme is much more e�cient than the unrestricted scheme. For example, for g = b = n=2,the cardinality of the domain of pieces in our scheme is jKj4, regardless of n. Recall thatfor unrestricted schemes with these parameters, the cardinality of the domain of pieces isjKj2
(n) (Theorem 6.6).We next describe our one-time scheme.Lemma 6.11: Let K be a domain of keys of cardinality qg, such that q is a prime-powerwhich is greater or equal to pn. There exists a one-time (g; b) scheme with n parties anddomain of keys K (with uniform a-priori probability distribution) in which the cardinality ofthe domain of pieces of every party is jKj2+2�(b�1)=g.Proof: For clarity of the exposition, we �rst assume that n = g + b. In this case letjKj = qg for some positive number q � 2 (not necessary a prime power). For every pairof parties the dealer chooses two independent random strings from f0; : : : ; q � 1g denotedk0i;j; k00i;j . The piece of each party is the 2(n � 1) random strings corresponding to the pairsthat contain the party. When the parties of a conference G want to generate a conferencekey, every party Pi 2 G picks at random ki 2 f0; : : : ; q � 1g. The conference key k of the setG is the concatenation of these random ki's, namely k 4= k1�k2� : : : �kg. Every party Pi 2 Gshould send ki to every Pj 2 G. Party Pi can send messages only on a public channel, so,he uses the common random string common to Pi and Pj as a one time pad. Since party Pihas to send the sub-secret ki to Pj and Pj has to send kj to Pi, they have to use di�erentrandom strings. That is, Pi sends (ki + k0i;j) mod q if i < j, and (ki + k00i;j) mod q if i > j.Therefore, every random string is used only once. Hence, the messages that are sent are54



all uniformly distributed and independent of the conference key of G and the pieces of anycoalition B with b parties (provided G \B = ;). This implies that the scheme is secure.We now describe our communicating one-time (g; b)-scheme for every n � g + b. Thescheme is similar to the case n = g + b, with one change. To guarantee that the scheme issecure, we make sure that from the point of view of every coalition of size at most b the padsused in the generation of a key are uniformly distributed and independent of each other.On the other hand, we do not require that all 2�n2� strings that are given to the partiesare totally independent. It su�ces that the dealer deals vectors of pieces according to thenon-communicating (2; g + b � 2) scheme of Blom [24] for n parties, with keys taken froma domain of cardinality jKj2=g = q2. The pads used in the generation of a key are the keysof this scheme. Before we discuss the security of the scheme, we consider its e�ciency. InBlom's scheme the cardinality of the domain of keys has to be at least n { the number ofparties. Hence, we require that q2 � n. Furthermore, in Blom's scheme the domain is a �nite�eld, so q has to be a prime-power. We use the non-communicating (2; g + b � 2)-schemewith domain of keys of cardinality q2 = jKj2=g. So the cardinality of the domain of pieces ofeach party is (jKj2=g)g+b�1 = jKj2+2�(b�1)=g :The security of the scheme follows Claim 6.2 in which we proved that the collection ofkeys of all pairs of parties in a set G of g parties in a non-communicating (2; g + b � 2)scheme is uniformly distributed and independent of the pieces of a coalition B of b parties.Since these keys are used as one-time pads, it follows that no information is leaked on thegenerated key, and therefore the scheme is secure. The formal proof that Claim 6.2 impliesthe security property of the one time scheme appears in Claim 6.13 in Section 6.5.1.Our scheme is non-interactive; that is, the messages of each member of G does not dependon other messages. Another property of our scheme is that for a �xed b, the cardinality ofthe domain of pieces of each party is a monotonically decreasing function of g. This featurestands in contrast to unrestricted (g; b) schemes, where the cardinality of the domain of piecesof each party is a monotonically increasing function of g. Recently [33], slightly improved ourschemes. For example, they show for b = 1 a one-time scheme in which the size of the piecesis (1 + 2=g) times the size of the keys (compared to 2 times size of pieces in our scheme).In the proof of Lemma 6.11, the conference key of G (i.e. k = k1�k2� : : : �kj) is distributeduniformly inK. It is possible to change this a-priori probability distribution on the keys. Oneway to achieve this goal is to �rst generate a key k as in the previous way. Then an arbitraryparty chooses the real key k0 for the conference according to any desired distribution. Theparty sends the message (k + k0) mod q to all the parties in G.We remark that the one time scheme cannot be reused. For example, if parties fP1; P2gare members of two conferences G1; G2 then the part of the keys generated by them in thetwo conferences will be known to all the parties in G1 [ G2. To extend our scheme to a� -secure one, we use � independent copies of the one time scheme. The generation of akey for each conference is done using a di�erent copy of the one time scheme. Since the55



copies are independent, each conference does not add any information to other conferences.Hence, the security of the one-time scheme implies the security of the � -restricted scheme.We summarize this construction in the next theorem.Theorem 6.12: Let K be a domain of keys, such that jKj = qg for some prime-powerq � pn. There exists a � -restricted (g; b) key distribution scheme with n parties and domainof keys K (with any a-priori probability distribution), in which the domain of pieces of eachparty has cardinality jKj2�(1+(b�1)=g) . That is, the size of the pieces in the scheme is 2� (1 +(b� 1)=g) times the size of the key.This � -restricted communicating schemes requires that the parties hold a counter, whichis incremented each time a conference key is generated. Given such a reliable counter, activeattack by parties sending messages deviating from the protocol, do not reveal information ondi�erent conferences. Such attack could only prevent the generation of the present conferencekey. Our scheme does not work in the absence of a reliable counter. It is an open questionto construct an e�cient � -restricted scheme (for � > 1) in which the keys and messages donot depend on a counter or any other history of previous conferences.6.5.1 Formal Proof of Security of the One-time SchemeIn this section, we prove that Claim 6.2 implies the security requirement of our one-time keydistribution scheme.Claim 6.13: The one-time (g; b) scheme presented in the proof of Lemma 6.11 has the1-restricted security property.Proof: Since in our scheme the generated key is hr1; r2; : : : ; rgi which is only a functionof the local random inputs of the parties (and not their pieces), we denote this key bykG(~rG). We �x vector of pieces hu1; : : : ; uni which is dealt with positive probability, and aconference G of g parties. Furthermore, we denote by EV the event that V`2B(U`(r) = u`).By Bayes rule, it is enough to prove that for every coalition B of b parties, such thatG\B = ;, every possible key k = k1�k2� : : : �kg 2 K, and every possible consistent messagesfmi;j : Pi; Pj 2 Gg (where mi;j is the message sent by party Pi to help party Pj)Pr[ kG(~rG) = k1� : : : �kg jEV ^ î<j ri + k0i;j = mi;j ^ î>j rj + k00i;j = mj;i ] = 1jKj ; (6.4)where the probability is taken over r { the random input of the dealer and ~rG = hri : Pi 2 Gi{ the random inputs of the parties of the conference G. Let K 0 be a domain of keys ofcardinality jKj2=g (the domain of keys of the non-communicating scheme). We �rst claim56



that for every �xed key kG = hr1; r2; : : : ; rgi 2 K it holds thatPr[ EV ^ î<j ri + k0i;j = mi;j ^ î>j rj + k00i;j = mj;i ]= Pr[ ^Pi;Pj2G ki;j = (mi;j � ri)�(mj;i � rj) jEV ] � Pr[ EV ]= Pr[ EV ]jK 0jt : (6.5)Equation (6.5) follows from Claim 6.2, and the fact that the keys of the non-communicatingscheme are distributed uniformly (recall that t = �g2�). We return to prove Equation (6.4).Pr[ kG(~rG) = k jEV ^ î<j ri + k0i;j = mi;j ^ î>j rj + k00i;j = mj;i ]= Pr[ kG(~rG) = k ^ EV ^ Vi<j ri + k0i;j = mi;j ^ Vi>j rj + k00i;j = mj;i ]Pr[ EV ^ Vi<j ki + k0i;j = mi;j ^ Vi>j kj + k00i;j = mj;i ]= Pr[ EV ^ Vi<j ri + k0i;j = mi;j ^ Vi>j rj + k00i;j = mj;i ]P~rG2K Pr[ EV ^ Vi<j ri + k0i;j = mi;j ^ Vi>j rj + k00i;j = mj;i ]= 1=jK 0jtjKj � 1=jK 0jt = 1jKj :6.6 Comparison with the Computational ModelWe contrast the results about key distribution schemes in the information theoretic modelwith those in the computational model, where parties are restricted to probabilistic poly-nomial time computations. Di�e and Hellman [51], in their pioneering work on public keycryptography, introduced a communicating scheme of key generation for conferences of sizetwo. Their communicating scheme requires no dealer and no pieces. In this scheme a givencommunication uniquely determines the key, but it is (presumably) intractable for a thirdparty to compute the key from the communication (of course, in our setting this informationenables other parties to �nd the conference key). On the other hand, even in the computa-tional model, a non-communicating scheme requires pieces taken from a domain which is atleast as large as the domain of keys. So in the computational model, communication doesreduce the size of pieces, up to complete elimination. As we said, in our setting communica-tion does not reduce the size of pieces distributed to the parties by the server in unrestrictedschemes. Fiat and Naor [54] present a non-communicating (n; 1)-scheme in the computa-tional model. In their scheme, which is based on the assumed intractability of extractingroot modulo composites (RSA), the domain of pieces has the same cardinality as the domain57



of keys, jKj. Recall that in the computationally unbounded model a non communicating(n; 1)-scheme requires domain of pieces of size at least jKjn (i.e. a piece has the length of nkeys).
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Chapter 7Secret Sharing with PublicReconstructionAll known constructions of information theoretic t-out-of-n secret sharing schemes requiresecure, private communication channels among the parties for the reconstruction of thesecret. In this chapter we investigate the cost of performing the reconstruction over publiccommunication channels. A naive implementation of this task distributes O(n) one timespads to each party. This results in pieces whose size is O(n) times the secret size. We presentthree implementations of such schemes that are substantially more e�cient:� A scheme enabling multiple reconstructions of the secret by di�erent subsets of parties,with factor O(n=t) increase in the pieces' size.� A one-time scheme, enabling a single reconstruction of the secret, with O(log(n=t))increase in the pieces' size.� A one-time scheme, enabling a single reconstruction by a set of size exactly t, withfactor O(1) increase in the pieces' size.We prove that the �rst implementation is optimal (up to constant factors) by showing atight 
(n=t) lower bound for the increase in the pieces' size.The rest of this chapter is organized as follows: In Section 7.1 we de�ne secret sharingschemes with public reconstruction. In Section 7.2 we describe the unrestricted schemes, andin Section 7.3 the one time schemes. In Section 7.4 we introduce non-interactive, unrestrictedschemes. In Section 7.5 we provide the lower bound for unrestricted schemes. Finally, inSection 7.6 we summarize our results and give two numerical examples of the sizes of piecesin our various schemes. 59



7.1 De�nitionsIn this section we de�ne secret sharing scheme with public reconstruction (in contrast totraditional schemes with private channels as de�ned in De�nition 3.6). In the followingde�nition we consider only threshold schemes.De�nition 7.1 [Secret Sharing Schemes with Public Reconstruction]: A t-out-of-nsecret sharing scheme with public reconstruction is a secret sharing scheme satisfying thefollowing two conditions:Reconstruction requirement Any set of parties whose size is at least t can recon-struct the value of the secret after communicating via public channels. Every party in thereconstructing set gets the value of the secret with certainty (that is, the probability of errorsis zero).Security requirement Every disjoint coalition B of size at most t�1 has no informationon the secret as de�ned in De�nition 3.4. There are two variants we consider:1. Unrestricted schemes in which a disjoint coalition B can overhear all communicationstaking place. The security is guaranteed even if several sets (maybe even all) reconstructthe secret using the public channel. In this case the view of a disjoint coalition is itspieces and all the communications that took place.2. One-time schemes in which the security is guaranteed only if one set will reconstructthe secret. It is not known during system initialization which set will reconstruct thesecret, and the dealer has to accommodate any possible set. In this case the view of adisjoint coalition is its pieces and the communication of one reconstructing set.The security should hold for any coalition of at most t� 1 parties. A special case is B = ;,namely a listener who overhears all communications but has no pieces should gain no partialinformation about the secret.In traditional secret sharing schemes, while one set reconstructs the secret, no informationis leaked to disjoint coalitions (due to the security of the channels). Hence, secure traditionalschemes are always unrestricted. Furthermore, in traditional schemes, if a set can reconstructthe secret, then every superset of the set can reconstruct the secret. However, one-time secretsharing schemes with public reconstruction do not necessarily have this monotone property.To satisfy monotonicity, it is required that every party of the superset should know thereconstructed secret. However, it is not necessarily possible to \distribute" the secret tomembers of a superset without leaking information to other parties.7.2 Unrestricted SchemesIn this section we construct unrestricted secret sharing schemes with public reconstruction,in which the size of the piece of every party is O(n=t) times the size of the secret. We �rst60



describe a simple scheme in which the size of the pieces is O(n) times the size of the secret.Our O(n=t) construction can be viewed as an optimization of this simple scheme. In thisscheme, the dealer shares the secret using Shamir's secret sharing scheme [101]. The dealeralso deals to every pair of parties two random strings whose size is the same as the size ofthe secret. These two random strings, which we call keys, are given to the two parties of thepair, and will be used as one-time pads. Overall, every party receives 2(n � 1) keys, eachone with the same size as the secret. When the parties in a set of size at least t wish toreconstruct the secret, all the parties \send" their pieces to the \leader" of the set, say theparty with minimal index in the set. The leader gets at least t pieces (including his own),which enable him to reconstruct the secret. Then, the leader \sends" the secret to the otherparties. The parties use their keys as one time pads to simulate private channels. Speci�cly,let Pi0 be the party with smallest identity in the set. Every party Pi, holding the piece sifrom Shamir's scheme, adds si and the �rst key of the pair hPi0 ; Pii and sends this sum overthe public channel (this is an addition in the appropriate �nite �eld). The party Pi0 canreconstruct all the pieces from these messages, and therefore reconstruct the secret. Now,Pi0 sends messages, one message to every party in the reconstruction set. For every partyPi, he adds the secret and the second key of the pair hPi0 ; Pii and sends this sum over thepublic channel. Since the one-time pads are independent, coalitions of parties disjoint tothe reconstructing set do not gain any information on the pieces or the secret. Furthermore,even if many reconstructions take place, this does not leak any information to a disjoint set.Suppose Pi0 is the leader in a set of size at least t. In the previous scheme, during thereconstruction for this set, only the keys that were given to Pi0 were used. To improve thespace e�ciency we will use all the keys of the parties in the reconstructing set. Like theone-time key distribution scheme of Lemma 6.11, there would be t leaders. We partition thesecret into t sub-secrets, and share each sub-secret using Shamir's scheme. Now we chooset parties of the reconstructing set, and each one will be responsible for reconstructing onesub-secret. Each party will act as the leader in the previous scheme. That is, every leaderreceives pieces of his sub-secret from the other t � 1 leaders (this is enough), but sends hissub-secret (after reconstruction) to every member of the reconstructing set. I.e., the size ofthe one time pads is only the size of the sub-secret. This way we can handle t sub-secrets\at the price of one". The domain of the secrets in the scheme is GF(q)t, where q is a prime-power such that q > n. (We require that q > n since this is the requirement in Shamir'sscheme.) In the scheme we view the secret as t sub-secrets from GF(q). The scheme ispresented in Fig. 7.1.As described, the scheme has two technical points which should be clari�ed. The �rst isthe fact that in one reconstruction two parties Pi and Pj might need to exchange 4 di�erentmessages: Assume that Pi is responsible for reconstructing the sub-secret si0, and Pj isresponsible for reconstructing the sub-secret sj0. The party Pi has to receive from Pj thepiece corresponding to the sub-secret si0 , and then will send the sub-secret si0. Similarly, Pjhas to receive from Pi the piece corresponding to the sub-secret sj0 , and then will send thesub-secret sj0 . This is the reason for giving them 4 common keys. The second di�culty is61



Unrestricted Secret Sharing SchemeDistribution stage:Input: t sub-secrets s1; s2; : : : ; st 2 GF(q)Pieces: Share each sub-secret si using Shamir's scheme for every i, where 1 � i � t.Denote the n pieces of sub-secret si by si;1; si;2; : : : ; si;n.For every pair of parties generate 4 independent keys from GF(q).Denote the keys of hPi; Pji by k1i;j ; k2i;j; k3i;j; k4i;j.The piece of party Pi is s1;i; : : : ; st;i and keys k1i;j; k2i;j; k3i;j; k4i;j for 1 � j � n.Reconstruction stage:A set G = fPi1 ; : : : ; Pimg that wants to reconstruct the secret (m � t).Every party in G announces whether he has previously reconstructed the secret.Let Pij for 1 � j � t be the leaders of G.Each leader Pij (1 � j � t) sends (at most) t� 1 messages to all other leadersthat have not previously reconstructed the secret:sj0;ij + k1ij;ij0 to Pij0 for 1 � j0 < jsj0;ij + k2ij;ij0 to Pij0 for j < j0 � tEach leader Pij (1 � j � t) computes sj from sj;i1 ; : : : ; sj;it.Each leader Pij sends a message to every Pij0 2 G that has not previouslyreconstructed the secret:sj + k3ij;ij0 to Pij0 for 1 � j0 < jsj + k4ij;ij0 to Pij0 for j < j0 � mEach party of G concatenates the sub-secrets s1; s2; : : : ; st to obtain the secret s.Figure 7.1: Unrestricted t-out-of-n secret sharing scheme with public reconstructionn êåúî t óñ øåáò éáîåô øåæçù íò ãåñ ú÷åìçì úìáâåî àì äîëñ :7.1 øåéà
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that in di�erent reconstructions the same party can be responsible for di�erent sub-secrets.This means that Pi will have to send to Pj two di�erent messages, using the same key as aone time pad. This might leak information to disjoint coalitions. To overcome the problem,every party that participates in one reconstruction will remember the secret, and in latterreconstructions will inform other parties (in the clear) that he knows the secret. In suchcase, other parties will not send him any messages. He will continue to send the messagesthat he has to send according to the scheme (to \new" parties). Thus, every key is used asa one-time pad at most once (in the �rst reconstruction that the pair participates together).Therefore, the scheme satis�es the unrestricted security requirement.Let us calculate the size of the piece of every party in this unrestricted scheme. Eachparty is given t pieces generated by Shamir's scheme for secrets taken from GF(q). The dealeralso distributes to each party 4(n � 1) keys taken from GF(q). Hence, each piece contains(4n + t � 4) elements from GF(q), compared to t elements from GF(q) for the secret. Wesummarize these results in the next theorem.Theorem 7.2: Let q be a prime-power such that q > n. The scheme of Fig. 7.1 isan unrestricted t-out-of-n secret sharing scheme with public reconstruction for secrets takenfrom GF(q)t. The piece of each party is an element of GF(q)4n+t�4. So the size of each pieceis 1 + 4(n� 1)=t times the size of the secrets.7.3 One-Time SchemesIn the unrestricted scheme, we need totally independent keys in order to guarantee thesecurity of the scheme during repeated reconstructions. In this section we deal with thescenario where the secret is going to be reconstructed only once. For example, to enable the�ring of a ballistic missile or opening of a sealed safe. In this case, total independence amongthe keys is not needed, and weaker independence requirements su�ce. Pieces can thereforebe taken from a smaller sample space, which translates into smaller size pieces. Speci�cally,we use Blom's key distribution scheme [24] for this purpose.The �rst scheme we present enables one-time reconstruction of the secret by sets of sizeexactly t. The size of the pieces is a constant (less than 10) times the size of the secret,namely only O(1) increase in pieces' size. We employ this \exactly t" scheme as a buildingblock for \at least t" schemes. We use 1+log(n=t) independent instances of \exact schemes"for thresholds t; 2t; 4t; : : : up to n, and an additional instance of size t. Now, given any setG with m parties (m � t), we represent it as a union of subsets (not necessary disjoint)with cardinalities t; 2t; 4t; : : : { at most two subsets of cardinality t and at most one subsetof cardinality 2it for each i � 1. The secret is now separately reconstructed by each subset.Any member of G takes part in at least one of these reconstructions, and thus learns thesecret. On the other hand, any disjoint coalition containing at most t � 1 parties gets nopartial information on the secret from any single instance. Due to the independence of theinstances, this remains valid with respect to the joint reconstructions. We get a one-time63



scheme for set of size at least t, with just O(log(n=t)) increase in piece size. We now describein detail the \exactly t" scheme. The distribution phase is depicted in Fig. 7.2.Distribution in Exactly t-out-of-n one-time schemeInput: secret s 2 GF(q)t.Consider the secret as t secrets s1; : : : ; st 2 GF(q).Share each secret si using Shamir's t-out-of-n secret sharing scheme.Let b = min f2t� 3; n� 2g.Generate pieces using (2; b)-key distribution scheme with key domain GF(q)4(which we consider as 4 keys from GF(q)).Piece of Pj: the j-th piece of each si, and the piece of the key distribution scheme.Figure 7.2: One-time exactly t-out-of-n secret sharing scheme with public reconstructionn êåúî t ÷åéãá øåáò éáîåô øåæçù íò ãåñ ú÷åìçì úéîòô ãç äîëñ :7.2 øåéàThe reconstruction is done exactly as in the unrestricted scheme. The security of onereconstruction of a set of exactly t parties follows from the property of (2; 2t � 3) key dis-tribution schemes proved in Claim 6.2: Given the pieces of any disjoint coalition of at mostt� 1 parties, the keys held by any pair of parties in a set of size t are distributed uniformlyand independently. Thus, when used as one-time pads, the reconstruction is secure (usingthe same arguments as in the unrestricted case). This scheme uses t pieces of Shamir'st-out-of-n secret sharing scheme with secrets taken from GF(q). In addition, each party getsa piece of a (2; 2t � 3) key distribution scheme with keys taken from GF(q)4 { these piecesare taken from GF(q)4(2t�2). Overall, the total piece contains (9t� 8) elements from GF(q)(if 2t > n+1, then the pieces are even shorter). Recall that the secret is taken from GF(q)t,and therefore the size of the piece is less than 9 times the size of the secrets.In this scheme, the domain of secrets has to be GF(q)t (for some prime-power q). Re-stricting the domain of the secrets to such cardinality can cause problems when we employsimultaneously many schemes with the same secret but with di�erent thresholds. To over-come this, given any domain of secrets, we consider a slightly bigger domain whose size(which can depend on the threshold) is of the desired form. That is, given a secret of size `which is at least t log n, we choose a prime power q such that ` � t log q, and use the previousscheme with secrets of size `0 = t log q. Choosing q = 2d`=te, we have `0 = t d`=te � ` + t. Ifwe assume that ` > 9t then the size of the piece is 9`0 � 9(` + t) � 10`.64



Theorem 7.3: Let ` be a natural number such that ` > maxft log n; 9tg. There existsa one-time exactly t-out-of-n secret sharing scheme with public reconstruction in which thesize of the secret equals `, and the size of the piece of each party is less than 10 times thesize of the secrets.One-time schemes are a special case of traditional secret sharing schemes even if onlysets of exactly t can securely reconstruct the secret, since every set of at least t parties hasenough information to reconstruct the secret on secure private channels. Thus, the size ofeach piece has to be at least the size of the secret [69]. Therefore, our scheme is tight upto a constant factor. We can slightly improve this lower bound, by observing that everyone-time exactly t-out-of-n secret sharing scheme with public reconstruction can be used asa one-time communicating (t; t�1) key distribution scheme (for t � n=2). By Theorem 6.10,the size of the piece in every one-time (t; t� 1) key distribution scheme is at least twice thesize of the key. Therefore, the size of the piece in every one-time secret sharing scheme withpublic reconstruction is at least twice the size of the secret.In Fig. 7.3 we describe the one time scheme in which every set of at least t parties cansecurely reconstruct the secret.One-time Secret Sharing SchemeDistribution stage:Input: secret s of size `Share the secret s using two independent copies of aone time exactly t-out-of-n secret sharing schemes.For every i, 1 � i < log(n=t):Share s with an exactly 2it-out-of-n one time secret sharing scheme.Reconstruction stage:A set G = fPi1 ; : : : ; Pimg that wants to reconstruct the secret (m � t).Cover the set G by (possibly intersecting) sets of size 2it(at most one set for every i > 1, and at most 2 sets of size t).Each set of size 2it independently reconstructs the secret usingthe pieces of the exactly 2it-out-of-n secret sharing scheme.Figure 7.3: One-time t-out-of-n secret sharing scheme with public reconstructionn êåúî t óñ øåáò éáîåô øåæçù íò ãåñ ú÷åìçì úéîòô ãç äîëñ :7.3 øåéà65



Theorem 7.4: The scheme of Fig. 7.3 is a one-time t-out-of-n secret sharing scheme withpublic reconstruction in which every set of parties of size at least t can securely reconstructthe secret. If the size of the secrets ` is larger than maxfn log n; 9ng, then the size of thepieces of every party is less than 10(log(n=t) + 2) times the size of the secrets.Remark If we require that the size of the secret ` is greater than n2 log n, then we canconstruct a scheme in which the size of the pieces is only 2 log(n=t) + O(1) times the sizeof the secret, i.e. a smaller leading constant. To achieve this goal we use a slightly weakerbuilding block (instead of the exactly t-out-of-n scheme). This building block is a scheme inwhich exactly 2it parties can reconstruct the secret, while any coalition of size t�1 does notgain any information on the reconstructed secret. Schemes which satisfy this requirement onsecure, private channels were presented by Blakley and Meadows [23] (see also [59, 69, 79]),and are called ramp schemes. We use ramp schemes instead of regular secret sharing schemesto design our building boxes. Assume that sets of m parties should be able to reconstructthe secret, while sets of fewer than t parties should get no information about the secret.The size of the piece in such ramp scheme is 1=(m � t+ 1) times the size of the secret, i.e.substantially smaller than traditional secret sharing schemes.For the scheme with public reconstruction, assume that the domain of secrets isGF(q)m(m�t+1). That is, the dealer has m secrets, each one taken from GF(q)m�t+1. Thepiece of each party is one piece of the ramp scheme for m sub-secrets, each piece taken fromGF(q). In the reconstruction of the secret by a subset containing exactly m parties, eachparty will be responsible for one sub-secret. Each pair of parties in this set �rst exchangestwo pieces of the ramp scheme. Now each party reconstructs his sub-secret, and every pairof parties exchange two sub-secrets. Therefore, every pair of parties needs two keys of a(2;m + t � 3)-key distribution scheme with keys from GF(q) (the domain of pieces of theramp scheme), as well as two keys from a (2;m+t�3)-key distribution schemewith keys fromGF(q)m�t+1 (the domain of sub-secrets). Overall, the piece of each party is an element takenfrom GF(q)3m+2t�4+2(m+t�2)(m�t+1). That is, the size of the piece is 2 +2t=m+O(1=(m� t))times the size of the secrets. In the t-out-of-n scheme for every set, we use these schemeswith m = t; 2t; 4t; : : : { therefore the size of the piece is only 2 log(n=t)+O(1) times the sizeof the secret. In this construction we required that the size of the secret m is greater thann2 log n, this requirement can be weakened to m � n log3 n.7.4 Unrestricted Non-Interactive SchemesA secret sharing scheme with public reconstruction is called non-interactive if the messagessent by each party depend only on his piece (and not on messages received during thereconstruction). Non-interactive schemes are simpler to implement, as they require lesssynchronization. Therefore, they are desirable from practical point of view. In this sectionwe present non-interactive, unrestricted t-out-of-n schemes. The size of the pieces in these66



schemes is n times the size of the secret. This represents a slight improvements (by a factorof 2) over the interactive scheme of Section 7.2 for t = 2, but is strictly less e�cient (interms of piece size) for t � 5. We extend these schemes to general access structures. Thesize of the piece in our public reconstruction schemes is n times the size of the piece in theoriginal scheme. For general access structure it is typically not a signi�cant increase, as thebest schemes for most access structures to date require pieces whose size is exponential in n.We �rst present a simple, non-interactive, 2-out-of-n secret sharing scheme. Let s 2 Zmbe the secret which the dealer wants to share. The dealer chooses n independent randomelements from Zm, denoted r1; : : : ; rn. The piece of Pi is r1; : : : ; ri�1; ri + s; ri+1; : : : ; rn.Each piece is uniformly distributed in Znm, regardless of the secret. Hence, prior to anyreconstruction every party has no information on the secret (as de�ned in De�nition 3.4).To reconstruct the secret, Pi sends the message rj, and Pj sends the message ri. Now, Pi,who holds ri + s, hears the message ri, so he can reconstruct the secret. Every third partyhears messages that he already knows, and gains no information on the secret. That is,the reconstruction is secure. The size of the pieces in this scheme is n times the size of thesecret. During the reconstruction in this scheme every party is deterministic and sends onlyone message that depends only on its piece.The notion of secret sharing scheme with public reconstruction is naturally extended toevery monotone access structure. The unrestricted, non-interactive, 2-out-of-n scheme canbe generalized to an unrestricted, non-interactive scheme realizing an access structure A.Assume there is a traditional secret sharing scheme realizing A with domain of secrets Sand domain of pieces U . In our scheme we use the following observation: Denote by Aithe access structure Ai = fB : B [ fPig 2 Ag. There exists a traditional secret sharingscheme realizing Ai in which the domain of pieces is U (�x some possible piece u for Pi,which would be public knowledge, and share the secret using the scheme for A conditionedon the fact that the piece of Pi is u).We now describe an unrestricted, non-interactive scheme realizing A with domain ofpieces S � Un�1. To share a secret s, the dealer chooses n random independent elementsfrom S, the domain of secrets, denoted r1; : : : ; rn. For every i, the dealer distributes the pieceri + s to Pi, and shares ri among fP1; : : : ; Pi�1; Pi+1; : : : ; Png using the scheme realizing Aiwith domain of pieces U . That is, the piece of Pi is ri + s together with the pieces ofthe n � 1 schemes realizing A1; : : : ;Ai�1;Ai+1; : : : ;An with secrets r1; : : : ; ri�1; ri+1; : : : ; rnrespectively. The total piece is an element taken from S � Un�1. Now, when a subset Bwishes to reconstruct the secret, every Pi 2 B sends (in the open) the piece of the secret rjto every Pj 2 B. Thus, Pi holds ri + s and hears the pieces of B n fPig from the schemerealizing Ai with the secret ri. Since B n fPig 2 Ai, the party Pi can reconstruct ri, andwith ri + s reconstructs the secret.We next claim that the reconstructions are secure. That is, every coalition C 62 A hearingcommunications during the reconstruction of the secret by all sets in A that are disjoint to Cdoes not gain information on the secret. The information that such coalition gains from thecommunication is at most the ri's for Pi 62 C. On the other hand, C 62 Ai for any Pi 2 C.67



Therefore, the coalition C gets no information on such ri, so even though he knows ri + s,this gives no information on s. Since the r1; : : : ; rn are random independent elements, Cdoes not gain any information on the secret. That is, the reconstruction is secure. Thus,Theorem 7.5 : Assume there exists a (traditional) secret sharing scheme realizing Awith domain of secrets S and domain of pieces U . Then there exists an unrestricted, non-interactive secret sharing scheme realizing A with public reconstruction for secrets taken fromS. The piece of each party is an element of S �Un�1. So the size of each piece is at most ntimes the size of the pieces in the original scheme.We can apply the previous construction for threshold schemes using Shamir's scheme.Corollary 7.6: Let q be a prime-power such that q > n. There exists an unrestricted,non-interactive t-out-of-n secret sharing scheme with public reconstruction for secrets takenfrom GF(q). The piece of each party is an element of GF(q)n. So the size of each piece is ntimes the size of the secret.7.5 Lower Bounds for Unrestricted SchemesIn this section we prove an 
(n=t) lower bound on the increase in the pieces' size for unre-stricted t-out-of-n schemes. The speci�c lower bound that we prove is tight for t = 2 (by thenon-interactive scheme of Section 7.4). For t > 2 our lower bound is tight up to a constantfactor (by the interactive scheme of Section 7.2). We �rst prove an 
(n) lower bound onthe increase in size of pieces for 2-out-of-n schemes. Then, we show that this lower boundstranslates into an 
(n=t) increase for t-out-of-n schemes.We start with the lower bound for t = 2. The proof uses entropy and mutual informa-tion. For de�nitions of these information theoretic terms, the reader can refer to [42] andAppendix A. We assume an arbitrary probability distribution on the secrets, and we denotethe secret by the random variable S.The intuition behind the proof is that Pi has to expose H(S) \new" bits of his piece in eachreconstruction, and Pi can participate in n�1 reconstructions. After all n�1 reconstructions,the uncertainty of the piece of Pi has to remain at least H(S), as an outsider who listenedto all reconstructions still has H(S) uncertainty on the secret. Thus, the original entropy ofthe piece has to be at least n �H(S).Without loss of generality, we prove the claim for P1. To prove the lower bound on P1'spiece, we only use the requirement that P1 can reconstruct the secret together with everyother Pj (we do not care if other pairs can or cannot reconstruct the secret). We start withsome notation. Denote by Si the piece given to Pi in the initial distribution phase, andby Ci;j the messages exchanged between Pi and Pj while they reconstruct the secret (allthese are random variables). We denote C = C1;3 : : : C1;n, the concatenation of all messagesexchanged between P1 and P3; : : : ; Pn. Recall that the communication C1;2, together with68



P2's piece S2, enable P2 to reconstruct the secret S. On the other hand, the communicationC and S2 give no information (to P2) about the secret. These facts will imply the next claim.Claim 7.7: H(C1;2jS2C) � H(S) :Proof: Since P2 can reconstruct the secret S, given his piece S2 and the messages C1;2exchanged between P1 and P2, the conditional entropy H(SjC1;2S2) equals 0. On the otherhand, P2 gets no information about the secret S from his own piece S2 and all messagesC exchanged between P1 and the other n � 2 parties. Therefore the conditional entropyH(SjS2C) equals H(S). Now, consider the conditional mutual information I(C1;2;SjS2C) ofthe message C1;2 and the secret S, given the piece S2 and C. We haveH(C1;2jS2C)�H(C1;2jSS2C) = I(C1;2;SjS2C)= H(SjS2C)�H(SjC1;2S2C)= H(S) :Since the entropy is non-negative, H(C1;2jS2C) � H(S).The next claim is the heart of the proof of the lower bound. It states that the mutualinformation between S1 and C1;2 given the \other" communication C is at least H(S). In-tuitively, since P2 does not know the secret prior to the reconstruction, and knows it afterthe reconstruction, P2 has to receive H(S) bits of information which could only originatein S1 and passed through the communication C1;2. Hence, C1;2 must contain H(S) bits ofinformation originating from the piece S1. Claim 7.8 is stated for deterministic parties {the outgoing messages are determined by the given piece and previous incoming messages.An analogous statement is proved in Section 7.5.1 for randomized parties, whose outgoingmessages could in addition depend on random local inputs.Claim 7.8: For deterministic reconstruction protocols we haveI(C1;2;S1jC) = H(S1jC)�H(S1jC1;2C) � H(S) :Proof: Since P1 and P2 are deterministic, and their domain of pieces is �nite, there isa bound k on the maximum number of communication rounds which can take place duringthe reconstruction of the secret. Denote by Ai the i-th message sent by P1 to P2, andsimilarly, let Bi be the i-th message sent by P2 to P1. Then, without loss of generality,C1;2 = A1B1 : : : AkBk. The message Ai is determined by the piece S1 and previous messages,that is, H(AijS1A1B1 : : : Ai�1Bi�1) = 0. The following inequality holds for any deterministiccommunication protocol:H(C1;2jS1C) = H(A1B1 : : : AkBkjS1C)= kXi=1H(AijS1CA1B1 : : : Ai�1Bi�1) + kXi=1H(BijS1CA1B1 : : : Ai�1Bi�1Ai)69



= kXi=1H(BijS1CA1B1 : : :Ai�1Bi�1Ai)� kXi=1H(BijCA1B1 : : :Ai�1Bi�1Ai) :Similarly, H(C1;2jS2C) � Pki=1H(AijCA1B1 : : :Ai�1Bi�1) : Combing the two inequalitiesH(C1;2jS1C) + H(C1;2jS2C) � kXi=1 (H(BijCA1B1 : : :Bi�1Ai) + H(AijCA1B1 : : : Ai�1Bi�1))= H(A1B1 : : : AkBkjC)= H(C1;2jC) :This inequality, together with Claim 7.7, impliesI(C1;2;S1jC) = H(C1;2jC)�H(C1;2jS1C)� H(C1;2jS2C)� H(S)We are now ready to prove our lower bound for t = 2.Claim 7.9: In any unrestricted 2-out-of-n secret sharing scheme with public reconstruction,the piece of each participant, Si, satis�esH(Si) � n � H(S) :Proof: We �rst note that by De�nition 7.1 a listener, who overhears all communicationinvolving P1, gets no information on the secret. Therefore,H(SjC1;2C1;3 : : :C1;n) = H(S) :On the other hand, given P1's piece, this communication determines the secret, soH(SjS1C1;2C1;3 : : : C1;n) = 0 :Therefore, H(S) = H(SjC1;2C1;3 : : : C1;n)�H(SjS1C1;2C1;3 : : :C1;n)= I(S;S1jC1;2C1;3 : : :C1;n)= H(S1jC1;2C1;3 : : : C1;n)�H(S1jSC1;2C1;3 : : :C1;n) ;and in particular H(S1jC1;2C1;3 : : :C1;n) � H(S) :70



Claim 7.8 (or Claim 7.13 for the case of randomized protocols) states thatH(S1jC1;3 : : : C1;n)�H(S1jC1;2C1;3 : : : C1;n) � H(S) :Similarly it holds thatH(S1jC1;4 : : :C1;n)�H(S1jC1;3C1;4 : : : C1;n) � H(S) :...H(S1)�H(S1jC1;n) � H(S) :Summing these n inequalities, we conclude thatH(S1) � n �H(S) :We next show that this lower bounds on increase in size of pieces for 2-out-of-n schemestranslates into 
(n=t) increase for t-out-of-n schemes.Theorem 7.10: In every unrestricted t-out-of-n secret sharing scheme with public recon-struction the size of the pieces of every party is at least b1 + (n� 1)=(t� 1)c times the sizeof the secrets.Proof: Consider any t-out-of-n scheme. Denote the party whose piece is shortest byP1. We construct an unrestricted 2-out-of-(b1 + (n� 1)=(t� 1)c) scheme in which the en-tropy of S1 { the piece of P1 { is the same. Hence, by Claim 7.9 its entropy is at least(b1 + (n� 1)=(t� 1)c)H(S). Since the scheme is secure whatever the distribution on thesecrets is, we can assume uniform distribution on the secrets. In this case H(S) = log jSj,which is the size of the secret. Since H(S1) � log jS1j, the size of the piece of P1 is at leastb1 + (n� 1)=(t� 1)c times the size of the secrets.The construction is simple: the dealer gives P1 the piece of P1 in the original scheme,and every other party gets pieces of t�1 disjoint parties. Since every party has at most t�1pieces, he does not gain any information on the secret even after hearing communications.On the other hand, every 2 parties have at least t pieces, therefore they can communicateon a public channel, and securely reconstruct the secret.7.5.1 Lower Bound for Probabilistic PartiesIn the proof of Claim 7.8 we assumed that the parties are deterministic during the recon-struction of the secret. In this section we prove the same claim without this assumption.Recall that S1 is the piece of P1, C1;2 is the communication generated in the reconstructionof the secret by P1 and P2, and C is the communication in previous reconstructions. Weprove that the mutual information between S1 and C1;2 given C is at least the entropy of71



the secret, even if the parties may toss coins during the reconstruction. That is, party P1has an independent local random string, denoted R1, and the messages he generates are adeterministic function of his piece, his random input, and previous messages. As the claimconcerns the piece of P1, we can assume that other parties in the system are deterministic(the dealer can supply a random string to the other parties as part of their pieces). SinceR1 is independent of the pieces and the secret, the mutual information between R1 and thepieces and the secret is zero, i.e. I(R1;SS1S2 : : : Sn) = 0 : We next prove that the mutualinformation between R1 and the pieces of other parties, given S1 and a communication Mis zero (where M is any pre�x of CC1;2). The claim can be proven directly by induction onthe number of messages sent in M . We avoid this induction as we show that our claim canbe formulated as a special case of Claim 6.8 (actually, Claim 6.8 is proven by induction).Claim 7.11: Let M be a pre�x of the communication exchanged between the parties in thesystem. Then, H(R1 jSS2S1M) = H(R1 jS1M) .Proof: Consider a scenario in which one party holds R1, and a second party holds thesecret S and all the pieces { S1; S2; : : : ; Sn. They communicate via a public channel and the�rst message is sent by the second party and equals S1. From now on, the �rst player cangenerate the messages of P1 and the second player can generate all other messages. Thus,the two parties can continue to communicate and generate M . By Claim 6.8 (proved in [77]and [2, Lemma 2.2]), communicating S1 and M can only decrease the mutual information,that is, I(R1;SS1S2 : : : SnjS1M) � I(R1;SS1S2 : : : Sn) = 0 :Recall that, I(R1;SS1S2jS1M) � I(R1;SS1S2 : : : SnjS1M). Since the mutual information isnon-negative, H(R1jS1M)�H(R1jSS1S2M) = I(R1;SS1S2jS1M) = 0 :We restrict our discussion to protocols with an absolute bound k on the number of roundsin each communication Ci;j. (The case where the protocol terminates after a �nite number ofrounds with probability 1 can be handled similarly). Denote by Ai the i-th message sent byP1 to P2, and similarly,Bi to be the i-th message sent by P2 to P1. I.e, C1;2 = A1B1 : : :AkBk.We next prove that the dependence of Ai on S1 and the previous messages is greater thanthe dependence of Ai on S2, the secret S, and the previous messages. Formally,Claim 7.12: H(AijSS2CA1B1 : : :Ai�1Bi�1) � H(AijS1CA1B1 : : : Ai�1Bi�1).Proof: On one hand, since the entropy is non-negativeI(Ai;R1jSS1S2CA1B1 : : : Ai�1Bi�1)= H(AijSS1S2CA1B1 : : :Ai�1Bi�1)�H(AijR1SS1S2CA1B1 : : :Ai�1Bi�1)� H(AijSS1S2CA1B1 : : :Ai�1Bi�1)� H(AijSS2CA1B1 : : :Ai�1Bi�1) :72



On the other hand, using Claim 7.11 we can writeI(Ai;R1jSS1S2CA1B1 : : :Ai�1Bi�1)= H(R1jSS1S2CA1B1 : : : Ai�1Bi�1)�H(R1jAiSS1S2CA1B1 : : :Ai�1Bi�1)= H(R1jS1CA1B1 : : :Ai�1Bi�1)�H(R1jAiS1CA1B1 : : : Ai�1Bi�1)= H(AijS1CA1B1 : : : Ai�1Bi�1)�H(AijR1S1CA1B1 : : : Ai�1Bi�1) :Thus, H(AijSS2CA1B1 : : :Ai�1Bi�1)� H(AijS1CA1B1 : : :Ai�1Bi�1)�H(AijR1S1CA1B1 : : : Ai�1Bi�1) (7.1)Since Ai is completely determined by the random input R1, the piece S1 and the previousmessages C;A1; B1; : : : ; Ai�1; Bi�1, it holds that H(AijR1S1CA1B1 : : :Ai�1Bi�1) = 0. Com-bining this inequality and Inequality (7.1), we getH(AijSS2CA1B1 : : :Ai�1Bi�1) � H(AijS1CA1B1 : : : Ai�1Bi�1) :We now prove the analogue of Claim 7.8, without the restriction to deterministic recon-struction.Claim 7.13: I(C1;2;S1jC) � H(S) :Proof: Expressing I(C1;2;S1jC) as a sum and using the fact that mutual information isnon-negative, we getI(C1;2;S1jC) = kXi=1 I(Ai;S1jCA1B1 : : :Ai�1Bi�1) + kXi=1 I(Bi;S1jCA1B1 : : : Ai�1Bi�1Ai)� kXi=1 I(Ai;S1jCA1B1 : : :Ai�1Bi�1)= kXi=1H(AijCA1B1 : : :Ai�1Bi�1)�H(AijS1CA1B1 : : :Ai�1Bi�1)� kXi=1H(AijS2CA1B1 : : :Ai�1Bi�1)�H(AijS1CA1B1 : : :Ai�1Bi�1) :This inequality together with Claim 7.12 implyI(C1;2;S1jC) � kXi=1H(AijS2CA1B1 : : : Ai�1Bi�1)�H(AijSS2CA1B1 : : : Ai�1Bi�1)73



= kXi=1 I(Ai;SjS2CA1B1 : : : Ai�1Bi�1)= kXi=1H(SjS2CA1B1 : : :Ai�1Bi�1)�H(SjS2CA1B1 : : :Ai�1Bi�1Ai) :Since the message Bi is determined by S2 and previous messages,H(SjS2CA1B1 : : :Ai�1Bi�1Ai) = H(SjS2CA1B1 : : : Ai�1Bi�1AiBi) :Therefore the \internal" summands in the last sum cancel each other, and we are left withI(C1;2;S1jC) � H(SjS2C)�H(SjS2CC1;2) : (7.2)Recall that the communication C and the piece S2 give no information (to P2) about thesecret, i.e. H(SjS2C) = H(S). On the other hand, P2 holding S2 and knowing C1;2, canreconstruct the secret, i.e. H(SjS2CC1;2) = 0. Therefore, H(SjS2C)�H(SjS2CC1;2) = H(S).Together with Inequality (7.2), we get I(C1;2;S1jC) � H(S), as claimed.Claim 7.13 implies that Theorem 7.10 holds also in the scenario in which the parties cantoss coins during the reconstructions.7.6 ConclusionsIn this chapter we investigated the cost of performing the reconstruction over public commu-nication channels. In Fig. 7.4 we summarize our results for the various schemes. We denoteby ` the size of the secret, and the sizes of the pieces are multiples of ` (e.g. 10`). We alsogive the minimum size of secrets for which this piece size applies.t-out-of-n scheme piece size min. secret sizeNaive 2n` log nNon-interactive n` log nUnrestricted (1 + 4(n� 1)=9)` t log nOne-time 10(log(n=t) + 2)` maxfn log n; 9ngOne-time, exactly t 10` maxft log n; 9tgFigure 7.4: Summary of the complexity of our schemes®åðìù úåîëñä ìù úåéëåáéñä ìù íåëéñ :7.4 øåéàIn Fig. 7.5 we give two examples of the sizes of pieces in the various schemes. In bothexamples we consider a system with 1024 parties.74



n = 1024 ; t = 128 n = 1024 ; t = 8pieces' size min. secret size pieces' size min. secret sizeNaive scheme 2047` 10 bits 2047` 10 bitsUnrestricted scheme 33` 160 bytes 513` 10 bytesOne-time at least t scheme 40` 1280 bytes 80` 1280 bytesOne-time exactly t scheme 10` 160 bytes 10` 90 bytesFigure 7.5: Numerical Examples.®úåéøôñî úåàîâåã :7.5 øåéà
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Chapter 8Computing Functions of a SharedSecretIn this chapter we introduce and study threshold (t-out-of-n) secret sharing schemes withrespect to a family of functions F . Such schemes allow any set of at least t parties toprivately reconstruct the value f(s) of a (previously distributed) secret s (for any f 2 F).Smaller sets of players \know nothing" about the secret. The goal is to make the pieces asshort as possible.The rest of this chapter is organized as follows: In Section 8.1 we provide the de�nitionsof threshold schemes with respect to a family of functions. Section 8.2 contains schemesfor the family of linear functions. Section 8.3 uses these schemes to construct schemes forother families. Section 8.4 contains non-interactive schemes for the family of bit functions.Section 8.5 contains the characterization of ideal schemes in various models.8.1 De�nitionsWe de�ne t-out-of-n secret-sharing schemes for a family of functions F . This is an extensionof the traditional secret sharing de�nition (De�nition 3.6), which enables private reconstruc-tion of functions of the secret. That is, any set G of cardinality at least t can reconstructthe value f(s) of a (previously distributed) secret s (for any f 2 F), while any smaller setB \knows nothing". We distinguish between three types of schemes depending on the waythat the value f(s) is reconstructed:1. interactive secure private channels schemes { where the parties in G engage in a pro-tocol which computes the value f(s) via private channels.2. non-interactive private channels schemes { where during the reconstruction of f(s)each party in G sends via a secure private channel a single message (depending onlyon his piece) to each of the other parties in G.76



3. non-interactive public channels schemes { where each party in G sends a single messageto each of the other parties in G on a public channel. Again each message dependsonly on the piece of the party.1In all cases, the reconstruction is private. Namely, any set B of less than t parties, does notget any additional information about s. The notion of getting no information on s that isnot implied by f is a generalization of De�nition 3.4:De�nition 8.1 [No Information that is Not Implied by f ]: A coalition B has noinformation that is not implied by a function f on a random variable X if for every twopossible values x1; x2 of X such that f(x1) = f(x2), and every value of VIEWB:Pr[VIEWB jX = x1 ] = Pr[VIEWB jX = x2 ] ;where the probability is taken over the random inputs of the dealer, and the random inputsof the parties outside the coalition.We �rst consider one-time schemes with respect to a family of functions. In these scheme,in addition to the usual security requirement, it is required that, after the reconstruction off(s) by a set G (of size at least t), any coalition B of size less than t, which has heard thecommunication, does not have any information (from its view of the system) on s that is notimplied by f(s) . Recall that the term \communication heard by the coalition" depends onthe communication model: in the private channels model it only contains the messages sentto parties in G \ B and in the public channel model it contains all the messages exchangedbetween the parties in G. In the private channel model a disjoint coalition does not gainany information on the secret. However, in the public channel model a disjoint coalition isallowed to gain information on f(s) although not participating in the reconstruction.De�nition 8.2 [One Time Secret Sharing Schemes for Families]: A t-out-of-n secretsharing schemewith respect to a family of functionsF is a secret sharing scheme � (accordingto De�nition 3.6), that in addition satis�es the following two conditions:Function reconstruction requirement For any set G of size at least t, and anyfunction f 2 F the parties in G can evaluate the value f(s) (G and f are the common inputfor the reconstruction). The scheme is an interactive private channel scheme if this is doneusing an interactive protocol via private channels. The scheme is a non-interactive privatechannel scheme if the reconstruction is done using a non-interactive protocol via privatechannels. The scheme is a non-interactive public channel scheme if the reconstruction isdone using a non-interactive protocol via public channels.One-time function security requirement For any set of size less than t, the recon-struction is secure. That is, for any f 2 F , for any set G (jGj � t) that reconstructedf(s), and any coalition B of size jBj � t � 1, the members of the coalition B do not have1We do not consider interactive public channels schemes in this work.77



any information that is not implied by f on the secret s from VIEWB, where the view of Bcontains their pieces, their local random inputs, and the communication heard by the partiesin B during the reconstruction of f(s).Obviously, any public scheme can be transformed into a scheme in which each messageis sent on private channels. On the other hand, if we take a non-interactive private channelsscheme and send the messages on public channels then the security of the reconstruction isnot guaranteed.We next de�ne unrestricted schemes in which an unrestricted number of functions canbe securely reconstructed by possibly di�erent sets.De�nition 8.3 [Unrestricted Secret Sharing Schemes for Families]: An unrestrictedt-out-of-n secret sharing scheme with respect to a family of functions F is a secret sharingscheme with respect to a family F with a stronger security requirement:Unrestricted function security requirement Let f1; f2; : : : ; fd be any sequenceof functions from F (a function can appear more than once in the sequence), andG1; G2; : : : ; Gd � fP1; : : : ; Png be sequence of sets of cardinality at least t (a set can ap-pear more than once in the sequence). Assume that for every i the set Gi reconstructed fi(s).Then, any coalition B of cardinality at most t�1 should not gain any additional informationon the secret in the following manner:� In the private channel model the coalition B hears communications during the recon-struction of fi only if B \ Gi1 6= ;. That is, let Gi1; Gi2 ; : : : ; Gid0 be the sets thatintersect with G. The view of the members of the coalition B is their pieces and thecommunication received by the parties in B \ Gi1 ; : : : ; B \Gid0 during the reconstruc-tion of fi1(s); fi2(s); : : : ; fid0 (s) respectively. We require that the coalition does have anyinformation about the secret that is not implied by the function fi1�fi2� : : : ; fid0 (s) (theconcatenation of the d0 functions).� In the public channel model the coalition B hears all the communications during thereconstruction of all of the functions. That is, the view of the members of the coalitionB is their pieces and all the communication that takes place. We require that thecoalition does not have any information about the secret that is not implied by all thefunction f1�f2� : : : ; fd(s) (the concatenation of the d functions).A function f 0 is a renaming of f if there exists a one-to-one function g such that f 0(x) =g(f(x)). Note that a secret sharing scheme enables the reconstruction of a renaming of afunction f if and only if the scheme enables the reconstruction of f . Therefore, we shallignore renamings of functions. 78



8.1.1 Families of Functions { Basic ExamplesIn this section we de�ne certain families of functions over GF(2`) which are of interest.Recall the de�nition of the operations in GF(2`). Each element a 2 GF(2`) is an `-bit stringa`�1 : : : a1a0 which is represented by the polynomial a`�1x`�1+ : : :+a1x1+a0. Addition andmultiplication are as for polynomials, using the structure of GF(2) for the coe�cients andreducing products modulo a polynomial p(x) of degree `, which is irreducible over GF(2).A function f : GF(2`) ! GF(2`) is linear over GF(2) if f(x + y) = f(x) + f(y) for everyx; y 2 GF(2`). It follows that f is linear if and only if f is the exclusive-or of a sub-set of thebits of its input. Clearly f(ax) = af(x) for a 2 GF(2). (Notice that we do not require thatf(ax) = af(x) for a 2 GF(2`).) We de�ne the family LIN ` to be the family of all linearfunctions of GF(2`). Let ei : GF(2`) ! GF(2) be the function that returns the i-th bit ofx. Notice that ei(x + y) = ei(x) + ei(y), hence ei is linear. We call the family fe1; : : : ; e`gthe bit functions and denote it by BIT `. We also consider the family ALL` of all possiblefunctions of the secret. Without loss of generality we assume that the range of the functionsin the family have the same size as the domain of the secrets.8.2 Schemes for the Linear Functions8.2.1 An Interactive SchemeIn this section we show that Shamir's scheme over GF(2`) [101] (described in Example 4.4) isalso a secret sharing scheme with respect to the family LIN ` { the family of linear functions.Theorem 8.4 [Basic interactive scheme]: For every ` � 1, there exists an unrestrictedt-out-of-n secret sharing scheme with respect to the family LIN ` in which the secrets are oflength ` and the pieces are of length max f`; dlog(n+ 1)eg. For t = n this is a non-interactivepublic channels scheme; for t = 2 this is a non-interactive private channels scheme; for3 � t � n� 1 it is an interactive private channels scheme.Proof: The dealer uses Shamir's t-out-of-n secret sharing scheme over GF(2`0), where`0 = maxf`; dlog(n+ 1)eg, to distribute the pieces. We show how to reconstruct every linearfunction f securely. Consider a reconstructing set G of t parties that wishes to reconstructf(s). By the properties of Shamir's scheme, there exists a linear combination of the piecesheld by the parties in G which equals to the secret. That is, there exist constants �1; : : : ; �t 2GF(2`0) such that for every secret s 2 GF(2`) � GF(2`0) and any pieces fs1; : : : ; stg inGF(2`0) dealt to the parties in G it holds that s = Ptj=1 �jsj. Since f is linear we havef(s) = f(Ptj=1 �jsj) = Ptj=1 f(�jsj) : For a party Pj 2 G let xj 4= f(�jsj). Therefore, f(s) issimply the sum of the xj's. Computing the sum privately can be done using the interactiveprotocol of Benaloh [15] (for formal de�nition of privacy and description of Benaloh's protocolthe reader is referred to Appendix B). 79



For the function security requirement, consider a coalition B of size smaller than t. Sinceeach xj is computed locally, and f(s) is computed using the private protocol of [15], theparties in B gain no information about the xj's (and hence the pieces) of other parties inG except for their sum which is f(s). Hence, they gain no information about s other thanwhat follows from the value f(s). Furthermore, this scheme has the unrestricted securityrequirement. Since the reconstruction is done using a private protocol, the members of Bcannot distinguish between two vectors of pieces with the same values fi(s). Hence, evenif one knows some functions of the secret, then another reconstruction of a function cannotreveal extra information.In the special cases where t = 2 or t = n, the parties can reconstruct the secret withoutinteraction by simply sending the message xj. If t = 2 these messages have to be sent viaprivate channels, and in the case t = n the messages can be sent via public channels. In thesecases every coalition B of size t�1 which heard the communication on the private channels iscontained in the reconstructing set G, so there exists j such that G = B [fPjg. The partiesin the coalition know f(s) which equals PPi2G xi, and of course know PPi2GnfPjg xi. Hence,the coalition can reconstruct xj from f(s) and its pieces. Therefore, the coalition does notgain any extra information from the message xj. Any subset B0 of size smaller than t � 1has less information on the secret than B, hence such a set also gains no extra informationabout the secret.For 3 � t � n � 1, the parties reconstruct f(s) using an interactive private channelsscheme. It can be shown that, for this particular scheme, interactive reconstruction is es-sential. Otherwise, some coalitions B that intersect the reconstructing set G, but are notcontained in G, can get some additional information about s if they hear the values xj's.8.2.2 A Non-interactive Public Channels SchemeNext, we present a public channel t-out-of-n scheme with respect to the linear functions, inwhich the length of the pieces is ` log n + `.Theorem 8.5 [Basic non-interactive public channels scheme]: For every ` � 1, thereexists an unrestricted t-out-of-n non-interactive public channel secret sharing scheme withrespect to the family LIN ` in which the secrets are of length ` and the pieces are of length` log n+ `.Proof: The scheme is as follows: The dealer shares each bit independently using Shamir'sscheme. Since sharing each bit requires dlog(n+ 1)e bits, the total length of the piece ofeach party is ` dlog(n+ 1)e � ` log n + `. Clearly, every bit of the secret can be securelyreconstructed. To reconstruct other linear functions of the secret, we use the homomorphicproperty of Shamir's scheme de�ned by Benaloh [15]. Consider the scenario in which theparties have pieces of two secrets. Now, every party sums his two pieces and the parties of Greconstruct a secret according to Shamir's scheme from the new pieces. The reconstructed80



secret in this case is the sum of the two original secrets. Furthermore, every coalition of sizeat most t � 1 seeing the new pieces gains no information on the secrets other than what isimplied by the sum of the secrets. Similarly, the parties can securely reconstruct every linearcombination of the bits by applying this combination to each of the pieces, and sending thenew pieces on the public channel. As every linear function is a linear combination of thebits, the theorem follows.Remark 8.6: Observe that in the public channels scheme there is no need for the set Gto be given as input for the reconstruction: each party Pi which is available just outputsan appropriate linear combination of its pieces, and its identity Pi. This scenario addressesreliability issues.8.3 Schemes for Other Families of FunctionsWe now show how to use the basic scheme (for linear functions) to construct schemes forany family of functions. Given a family of functions, we shall construct a family of linearfunctions (of a bigger domain) which will enable the reconstruction of the original functions.However, the length of pieces in the new scheme may be much larger than the length ofsecrets. Observe that any Boolean function f : GF(2`) ! GF(2) can be represented as abinary vector over GF(2) of length 2` whose i-th coordinate is f(i). Similarly, any functionf : GF(2`)! GF(2`0) can be represented as an array of `0 binary vectors in which the j-thvector corresponds to the j-th bit function of f(x). The rank of a family of functions F isthe smallest c for which there exist Boolean functions f1; : : : ; fc such that for every functionf 2 F there exists a renaming of it, f 0, such that each of the `0 vectors representing f 0 is alinear combination of f1; : : : ; fc. The rank of a family does not change if we add renamingsof functions. So, we can assume that F contains all renamings of its functions.Theorem 8.7: Let F be any family of functions.� There exists an unrestricted t-out-of-n interactive public channels secret sharing schemewith respect to F with pieces of length maxfrank(F); log n+ 1g.� There exists an unrestricted t-out-of-n non-interactive public channels secret sharingscheme with respect to F with pieces of length rank(F)(log n+ 1).Proof: Let f1; : : : ; fc be a basis for the vector space spanned by the functions in F . Toshare a secret s, the dealer generates a new secret E(s) = f1(s)�f2(s)� : : : �fc(s) of length c(where � denotes concatenation of strings). The dealer now shares the secret E(s) using thebasic scheme. For every i = 1; 2; : : : ; c it holds that fi(s) = ei(E(s)). Let f be a function inF that should be reconstructed, and f 0 its renaming such that the vectors representing f 0 arespanned by f1; : : : ; fc. Every bit of f 0(s) is a linear combination of f1; : : : ; fc, and therefore81



of the bits of E(s) (i.e. of ei(E(s))). Since addition in GF(2c) is bitwise, concatenation oflinear functions is a linear function too. Thus, f 0(s) can be computed by evaluating a linearfunction of E(s) (hence, f can be computed as well). By Theorems 8.4 and 8.5, the claimfollows.We demonstrate the above construction by considering the family ALL of all possiblefunctions of the secret.Corollary 8.8:� There exists an unrestricted t-out-of-n interactive private channels secret sharingscheme with respect to ALL` with pieces of length maxn2` � 1; log n+ 1o.� There exists an unrestricted t-out-of-n non-interactive public channels secret sharingscheme with respect to ALL` with pieces of length (2` � 1)(log n+ 1).Proof: By Theorem 8.7, we have to show that the rank of ALL` is 2`� 1. Let c = 2`� 1.Consider the c functions f1; : : : ; fc, where fi(x) = 1 , x = i : To reconstruct a Booleanfunction f , we notice that the functions f(x) and f(x) + 1 are renamings of each other, sowe can assume that f(0) = 0. Hence f(s) = P1�i�c fi(s)f(i), and therefore f1; : : : ; fc forma basis for ALL`. In this case the secret s is encoded as the vector E(s) of length c in whichthe s-th coordinate is 1 and all the other coordinates are zero (with the exception E(0) = 0).Notice that the length of the secret is `, while the length of the pieces is (2`�1). However,there are 22`�1 di�erent Boolean functions with domain of cardinality 2` (such that everyfunction is not a renaming of another function). Therefore, our scheme is signi�cantly betterthan the naive scheme in which we share every function (up to renaming) separately. Alsothe length of E0(s) for ALL` must be at least log 22`�1 = 2` � 1, so the representation forE0(s) that we use is the best possible for the family ALL` in this particular scheme. Itremains an interesting open question whether there exists a better scheme for this family, orwhether one can prove that this scheme is optimal.So far, we considered only threshold secret sharing schemes. Our de�nition of secretsharing with respect to a family F of functions can be naturally generalized for an arbitraryaccess structure. To construct such schemes, observe that most known schemes (e.g. [16,62, 68, 105]) are linear: the piece of each party is a vector of elements over some �eld, andevery set in A reconstructs the secret using a linear combination of elements in their pieces.Thus, if we share every bit of the secret independently, then we can reconstruct every linearfunction of the secret without any interaction (the details are as in Theorem 8.5). Thisimplies that, for every access structure, there exists a scheme with respect to the familyALL` in which the length of the pieces is O(2`2n). However, if the access structure has amore e�cient scheme for sharing a single bit then the length of the pieces can be shorter(but at least 2`). 82



8.4 Non-interactive Public Channels Scheme for theBit FamilyIn this section we present a one-time non-interactive public channels scheme for the familyof bit functions, whose pieces are of length O(`) (compared to O(` log n) of the unrestrictednon-interactive scheme from Theorem 8.5).Theorem 8.9: Let ` > log n log log n. There exists a one-time non-interactive publicchannels t-out-of-n secret sharing scheme with respect to the family BIT ` in which the lengthof the secrets is ` and the length of the pieces is 3`.We �rst present a meta-scheme (Section 8.4.1). Then, we show a possible implementationof the meta-scheme that satis�es the conditions of the theorem.8.4.1 Meta SchemeLet c and h be parameters (to be �xed later), where h is a prime power such that h > log n,and the secret s is of length ` = ch. We view the secret as a binary matrix with c rows andh columns. We construct, in a way that is described below, a new binary matrix H with3c rows and h columns. Then we share every row of the matrix using Shamir's t-out-of-nscheme [101]. Since the length of every row is h > log n, then Shamir's scheme is ideal andevery party gets 3c pieces of length h. When a set G of cardinality t wants to reconstructthe bit si;j of the secret, the parties in G reconstruct a subset Ti;j of rows (which dependsonly on i; j and not on G). We will guarantee that these rows do not give any additionalinformation on the secret.Secret sc 3c ...Shamir Each partyHhhFigure 8.1: An illustration of the meta scheme for the family BIT `.®BIT ` äçôùîä øåáò äîëñ­äèîä ìù íéùøú :8.1 øåéàMore speci�cally, for every 1 � i � c and 1 � j � h, we �x a set Ti;j � f1; : : : ; 3cg(independently of the secret). The j-th column of H is constructed independently, and it83



depends only on the j-th column of the secret. It is chosen uniformly at random among thecolumn vectors such that: 81�i�c Xa2Ti;jHa;j = si;j : (8.1)To reconstruct si;j it is enough to reconstruct the Ti;j-rows of H, and compute the sum(modulo 2) of the j-th bit of the reconstructed rows2. That is, the message of a party ina reconstructing set is the pieces corresponding to the Ti;j-rows of H. The existence of amatrix H satisfying Equation (8.1), and the one-time function security requirement dependon the choice of the sets Ti;j. On the other hand, independently of the choice of the sets Ti;j,any coalition of size t� 1 prior to any reconstruction does not have any information on therows of H (by the properties of Shamir's scheme), and hence does not have any informationon the secret. That is, this scheme is a secret sharing scheme according to De�nition 3.6(this is one of the requirements for a scheme with respect to a family).8.4.2 Implementing the Meta-SchemeWe show how to construct sets Ti;j such that the security requirement after reconstructionwill hold. Let R1; R2; : : : ; Rh � fc+ 1; : : : ; 3cg be a collection of di�erent sets of size c.In particular, this implies that no set is contained in another set. The number of sets ofcardinality c which are contained in fc+ 1; : : : ; 3cg is �2cc � � 22c�o(c) � 2c: Hence, we �xc4= log h (that is h log h = `). For i = 1; : : : ; c, let Ti;j 4=Rj [ fig. The following claims areuseful for proving the security:Claim 8.10: For every secret s, the number of matrices H that satisfy Equation (8.1) forevery j (1 � j � h) is at least 1, and is independent of s.Proof: Set Hi;j = si;j for 1 � i � c, and 0 otherwise. This matrix H satis�es Equa-tion (8.1). To show that the number of matrices satisfying these equations is independentof s, notice that H is a solution to a non-homogeneous system of linear equations. Since thesystem has at least one solution, the number of such matrices is the number of solutions tothe homogeneous linear system of equations (where every si;j = 0).To show that no coalition gains any additional information, we �rst consider the case inwhich the coalition knows only the Ti;j-rows of H. In this case the coalition can reconstructsi;j. We prove that the coalition does not gain any information on other bits of the secret(i.e., bits si0;j0 , for i0 6= i or j0 6= j).Claim 8.11 : Let s be a secret. Consider a setting of the Ti;j-rows of H such thatPa2Ti;j Ha;j = si;j : The number of matrices H in which the Ti;j-rows are set and satisfyEquation (8.1) for every j (1 � j � h) is at least 1, and is independent of s.2Actually every party can sum the pieces of the Ti;j-rows of H, and then the parties reconstruct only thesecret from these pieces. The j-th bit of the reconstructed secret equals to si;j .84



Proof: We �rst prove that there exists a matrix H satisfying the requirements. Sincethe columns of H are constructed independently, it is enough to prove the existence of everycolumn j0. Only the j0-th column of the Ti;j-rows of H, and the j0-th column of s in
uencethe j0-th column of H, hence while considering the j0-th column we can ignore the rest ofthe columns.We �rst consider the j-th column of H (i.e., j0 = j). Since Ti0;j = Rj [fi0g, we can assignHi0;j a value as follows: for every i0 such that c+1 � i0 � 3c and i0 62 Rj set Hi0;j = 0 (this isarbitrary); for every i0 such that 1 � i0 � c, set Hi0;j = Pa2Rj Ha;j + si0;j0. The case j0 6= j issimilar except that we have to be careful about si;j0 . Since Rj0 6� Rj, there exists an elementp 2 Ti;j0 n Ti;j. we can assign Hi0;j0 a value as follows: for every i0 such that c + 1 � i0 � 3c,i0 62 Rj and i0 6= p set Hi0;j0 = 0; Hp;j0 = Pa2Ti;j0nfpgHa;j0 + si;j0. For every i0 (1 � i0 � c andi0 6= i) set Hi0;j0 =Pa2Rj0 Ha;j0 + si0;j0 .We have shown that there exists a matrix as required. By the same arguments as in theproof of Claim 8.10, the number of possible matrices given a secret s, is independent of s.We are now ready to prove the security requirement.Lemma 8.12: The above scheme is secure.Proof: Let G be any set that reconstructed a bit si;j of the secret, and B be any coalition.The fact that this scheme is a secret sharing scheme according to De�nition 3.6 is immediate(discussed at the end of Section 8.4.1). Suppose that B heard the messages sent by theparties in G. That is, the parties in B know the pieces of the parties of G corresponding tothe Ti;j-rows of H. Therefore, the only information that they gained is the Ti;j-rows of H.That is, given the pieces of the coalition and all the messages that were sent, every matrixH that agrees with these rows is possible. We need to prove that given two secrets in whichthe (i; j)-th bit is the same, and a matrix H in which only the Ti;j-rows are �xed, then theprobability that H was constructed from the secrets is equally likely. But by Claim 8.10 andClaim 8.11, this probability only depends on si;j.Note that the scheme is secure only for one reconstruction. If two bits are reconstructedthen the rows that a coalition knows can contain the rows of a third bit. Therefore, thecoalition learns this third bit as well.8.5 Characterization of Families with Ideal SchemesIn this section we consider ideal secret sharing schemes with respect to a family F . We saythat a family F can distinguish between two secrets s; s0 if there exists some function f 2 Fsuch that f(s) 6= f(s0). A scheme with respect to F is ideal if the cardinality of the domainof pieces equals the cardinality of the domain of distinguishable secrets3. Consider a family3These are the shortest pieces possible by [69]. 85



F of functions that contains all the bit functions ei(s). The following theorem gives severalimpossibility results with respect to such family F for which an ideal secret sharing exists.If interaction is allowed then every Boolean function in F is a linear functions (item (1)below). If the scheme is non-interactive the situation is even worse: for 3 � t � n � 1 sucha scheme does not exist (item (3) below), for t = 2 and t = n the family F contains onlylinear functions (item (2) below). Furthermore, for t = 2, reconstruction cannot be done onpublic channels (item (4) below). All these results hold even for one-time scheme (thus, forunrestricted schemes as well). This is formalized by the following theorem.Theorem 8.13 [Characterization Theorem]:1. Let 2 � t � n. Suppose that there is an ideal, interactive, t-out-of-n secret sharingscheme with respect to a family of functions F such that BIT ` � F . Let f : GF(2`)!GF(2) be a Boolean function such that f 2 F . Then, f is a linear function.2. Let t = 2; n. Suppose that there is an ideal, non-interactive, t-out-of-n secret sharingscheme with respect to a family of functions F such that BIT ` � F . Then, F � LIN `.3. Let 3 � t � n � 1. In every t-out-of-n ideal secret sharing with respect to BIT `, thereconstruction of every Boolean function requires interaction on private channel.4. Let t = 2. In every 2-out-of-n ideal secret sharing with respect to BIT `, the recon-struction of every Boolean function requires private channels.We remark that by Theorem 8.4 all these results are \tight" (for su�ciently long secrets).In Section 8.5.1 we prove (1) and (2), and in Section 8.5.2 we prove (3) and (4).8.5.1 Proofs of (1) and (2) of the Characterization TheoremThe proofs of (1) and (2) are similar, and are composed of two stages. We consider thefollowing two-party scheme over GF(2`), denoted XOR: Given a secret s, the dealer choosesuniformly at random x 2 GF(2`). The piece of the �rst party is x, and the piece of the secondparty is y = s+ x. In the �rst stage we characterize the functions that can be reconstructedfrom the pieces in XOR. In the second stage, we show that if there exists a t-out-of-n, idealsecret sharing scheme for F then XOR is a secret sharing scheme with respect to F . Thecombination of the two stages implies items (1) and (2).Characterizing the Functions Reconstructible in XORWe next characterize the functions that can be reconstructed in XOR without interaction.We prove that these functions are exactly the linear functions. Then, we characterize theBoolean functions that can be reconstructed in XOR with interaction, and show that thesefunctions are exactly the Boolean linear functions.86



Lemma 8.14: Let f be any function that can be reconstructed without interaction in thescheme XOR. Then f 2 LIN `.Proof: Assume, without loss of generality, that f : GF(2`) ! GF(2`). (Otherwiseconsider the function of x de�ned as minfy : f(y) = f(x)g, which is a renaming of f .) Toprove that f is a renaming of a linear function we �rst prove (Claim 8.15) that f(x+ y) canbe computed from f(x) and f(y). Then, we prove (Claim 8.16) that every function with thisproperty is a renaming of a linear function.Claim 8.15: There exists a function g such that f(x+ y) = g(f(x); f(y)).Proof: We use the following fact about the scheme XOR: Given that P1 holds a piecex 2 GF(2`), the party P2 can hold every piece y 2 GF(2`). Consider the message m sentby P2 to P1 while holding a piece y (if there are several possible messages choose, say, thelexicographically �rst). We claim that m is a renaming of f(y). That is, f(y1) = f(y2) ifand only if the message m1 sent by P2 while holding y1 is equal to the messagem2 sent by P2while holding y2. If P1 holds the piece 0 and P2 holds the piece y then s = y and obviouslyf(s) = f(y). While holding two pieces y1 and y2 such that f(y1) 6= f(y2), party P2 does notknow whether P1 holds the piece 0, and must send di�erent messages. On the other hand, iffor two pieces y1 and y2 such that f(y1) = f(y2) the party P2 sends di�erent messages thenP1, while holding the piece 0, receives additional information on s besides f(s). Therefore,the message is a renaming of f(y); without loss of generality, assume that this message isf(y). Similarly, assume that the message sent by P1 while holding a piece x is f(x).Hence, P1 can reconstruct f(s) = f(x + y) from x and f(y). Moreover, for every twopieces x1 and x2 held by P1 such that f(x1) = f(x2) and every piece y, held by P2, the partyP1 has to reconstruct the same value. This is true, since P2 receives the same message inboth cases and therefore reconstructs the same value for f(s). Hence, P1 can reconstructf(x+ y) from f(x) and f(y), and this reconstruction function is the desired function g.Claim 8.16: If there exists a function g such that f(x + y) = g(f(x); f(y)), for everyx; y 2 GF(2`), then f is a renaming of a linear function.Proof: Let X0 4= fx : f(x) = 0g. Assume, without loss of generality, that f(0) = 0, i.e.0 2 X0 (otherwise consider the function f(x) + f(0)). We �rst prove thatf(x1) = f(x2) if and only if f(x1 + x2) = 0 : (8.2)For the \only if" direction: f(x1 + x2) = g(f(x1); f(x2)) = g(f(x1); f(x1)) = f(x1 + x1) =f(0) = 0 : Similarly, the \if" direction follows from the next simple equations:f(x1) = f(x1 + 0) = g(f(x1); f(0)) = g(f(x1); f(x1 + x2)) = f(x1 + x1 + x2) = f(x2) :87



Equation (8.2) implies that if x1; x2 2 X0, then x1+x2 2 X0. That is, the setX0 is a linearspace over the �eld GF(2). Now, consider a linear transformation f 0 : GF(2`) ! GF(2`)such that the null space of f 0 is X0 (that is, f 0(x) = 0 if and only if x 2 X0). Since X0 is alinear space, such a linear transformation exists. We claim that f is a renaming of f 0. Wehave to prove that f(x) = f(y) if and only if f 0(x) = f 0(y). By Equation (8.2), f(x) = f(y)if and only if x+ y 2 X0. By the de�nition, x+ y 2 X0 if and only if f 0(x+ y) = 0. Since f 0is linear, f 0(x) + f 0(y) = f 0(x + y). Hence, f(x) = f(y) if and only if f 0(x) = f 0(y). (Notethat the fact that f can be reconstructed in XOR is not used in the proof of this claim.)To conclude, if f(s) can be reconstructed from the pieces in XOR, then by Claim 8.15 thereexists a function g such that f(x+ y) = g(f(x); f(y)). By Claim 8.16, this implies that f isa renaming of a linear function. This completes the proof of Lemma 8.14.We now prove a similar lemma for interactive reconstruction. However, this lemmaapplies only to Boolean functions.Lemma 8.17: Let f : GF(2`) ! GF(2) be a Boolean function that can be reconstructedwith interaction in the scheme XOR. Then f is a renaming of a linear function.Proof: Since XOR is an ideal scheme, any information that a party gets on the pieceof the other party is translated to information on the secret. That is, the parties computef(s) = f(x+y) in a way that each party receives no information except of f(x+y). In otherwords, they compute the Boolean function f privately. (For formal de�nition of privacy thereader is referred to Appendix B.) Bivariate Boolean private functions were characterizedby Chor and Kushilevitz [40]:Claim 8.18 [40]: Let A1; A2 be nonempty sets and f : A1 � A2 ! f0; 1g be an arbitraryBoolean function. Then f can be computed privately if and only if there exist Boolean func-tions f1 : A1 ! f0; 1g ; f2 : A2 ! f0; 1g such that for every x1 2 A1; x2 2 A2 it holds thatf(x1; x2) = f1(x1) + f2(x2).Hence, there exists Boolean functions f1; f2 such that f(x+y) = f1(x)+f2(y) : In particular,f(x) = f(x + 0) = f1(x) + f2(0) : Similarly, f(y) = f1(0) + f2(y) : Therefore, there exists� 2 GF(2) such that f(x + y) = f(x) + f(y) + � . Thus, the function f 0(x)4= f(x) + � is alinear function which is a renaming of f .The exact family of functions that can be reconstructed in XOR with interaction is thetwo-argument functions such that f(s) = f(x+ y) can be computed privately from x and y(as characterized in [74]).Reduction to XORWe prove that if there exists an ideal t-out-of-n secret sharing scheme with respect to afamily F , then there exists a 2-out-of-2 ideal secret sharing scheme with respect to F . Then,in turn, we prove that this implies that XOR is a secret sharing with respect to F .88



Claim 8.19: Let F be a family of functions, and 2 � t � n. If there exists an interac-tive (respectively non-interactive), ideal, t-out-of-n secret sharing scheme with respect to F ,then there exists an interactive (respectively non-interactive), ideal, 2-out-of-2 secret sharingscheme with respect to F .Proof: Let G = fP1; : : : ; Ptg be a set of parties. We ignore the pieces distributed toparties not in G. Therefore, we have an ideal t-out-of-t secret sharing scheme with respectto F . Let hs3; : : : ; sti be any (�xed) vector of pieces that is dealt with positive probabilityin this scheme. The dealer now generates a vector of pieces (according to the scheme) thatagree with s3; : : : ; st respectively, and gives the �rst two elements of the vector to P1 and P2(respectively). Parties P1 and P2 know the pieces of the other parties (as they are �xed) andtherefore, one of the parties, say P1, can simulate the parties P3; : : : ; Pt in the protocol forreconstructing a function f 2 F . Hence, P1 and P2 can reconstruct f(s) from their piecesand the messages they exchange. On the other hand, P1 has no more information thanthe information known to the coalition fP1; P3; : : : ; Ptg of cardinality t� 1 in the t-out-of-tscheme. That is, P1 does not gain additional information about s. Similar arguments holdfor P2. This implies that the scheme is a 2-out-of-2 secret sharing scheme with respect to F .Lemma 8.20: Let F be a family of functions such that BIT ` � F . If there exists aninteractive (respectively non-interactive), ideal, t-out-of-n secret sharing scheme with respectto F , then XOR is an interactive (respectively non-interactive) secret sharing scheme withrespect to F .Proof: By Claim 8.19, we can assume that there exists an ideal, 2-out-of-2 secret sharingscheme with respect to F , denoted �. We transform � into XOR in a way that everyfunction that can be reconstructed in � can also be reconstructed in XOR.Since the scheme is ideal, then given the piece x of P1 there is a one-to-one and onto func-tion from y, the piece of P2, to s, the secret.4 Therefore, each party must not gain any infor-mation on the piece of the other party beside the information he gets from the value f(s). I.e.the computation of f(s) has to be private. By Claim 8.18 [40], for every i there exist Booleanfunctions f i1; f i2 such that ei(s) = f i1(x) + f i2(y). We de�ne m1(x) as the vector of the valuesof these functions, that is m1(x)4= f11 (x)�f21 (x)� : : : �f1̀(x), and m2(y)4= f12 (y)�f22 (y)� : : : �f2̀(y).For every secret s and random input r of the dealer s = m1(�1(s; r)) +m2(�2(s; r)) : There-fore, the scheme �0, de�ned as �0(s; r) = hm1(�1(s; r));m2(�2(s; r))i, is a scheme equivalentto XOR. We still have to show that in �0 the two parties can securely reconstruct everyfunction in F .4The parties P1 and P2 can reconstruct the secret. Thus, for every piece x there exists a mapping hx,that given a piece y of P2 returns the reconstructed secret. Since P1 does not have any information on thesecret given his piece, the mapping is onto the domain of secrets. Since the scheme is ideal, then the domainand range of hx have the same cardinality. That is, hx is one to one.89



We now prove that m1 is a one to one transformation. Clearly, the two parties canreconstruct the secret in �0, while every single party knows nothing on the secret. Therefore,�0 is a 1-out-of-2 secret sharing scheme, and by [69], the cardinality of the domain of piecesis at least the cardinality of the domain of secrets. Therefore, the cardinality of the rangeof m1 is at least 2`. The domain of m1, which is the set of pieces of P1, has cardinality 2`.Therefore, m1 is a one to one transformation and hence it has an inverse. Therefore, P1can reconstruct the piece x from m1(x). Similarly, P2 can reconstruct the piece y holdingm2(y). This implies that parties P1 and P2, while holding m1(x) and m2(y) respectively, cansecurely reconstruct every function f 2 F . We have proved that every function f 2 F canbe reconstructed in �0 which is equivalent to XOR. Furthermore, if in the original schemethe reconstruction required no interaction, then also in XOR the reconstruction requires nointeraction.Lemma 8.14, Lemma 8.17 and Lemma 8.20 complete the proof of items (1) and (2) ofTheorem 8.13.8.5.2 Proofs of (3) and (4) of the Characterization TheoremNext we prove that in any ideal t-out-of-n secret sharing scheme (2 � t � n�1) with respectto BIT ` the reconstruction requires private channels. Furthermore, for 3 � t � n � 1, thereconstruction requires interaction. For the proof, assume towards a contradiction that thereexists an ideal t-out-of-n scheme in which the reconstruction can be held on public channels.As in the proof of Claim 8.19, this implies that there exists an ideal 2-out-of-3 scheme withthe same property (since t < n). Our �rst claim is that, without loss of generality, in thereconstruction of f(s) every party sends a one bit message, such that the sum of the messagesis the reconstructed value f(s).Claim 8.21: Assume there exists an ideal 2-out-of-3 secret sharing scheme in which aBoolean function f can be securely reconstructed without interaction via public channels.Then, P1 and P2 can securely reconstruct f(s) by sending one bit messages m1 and m2, suchthat m1 +m2 = f(s).Proof: Since the parties P1; P2 can reconstruct the secret, there exists a function h(�; �)that reconstructs the secret from the pieces s1; s2 of parties P1; P2 (respectively). Considera possible message of P1 when the set fP1; P2g reconstructs the value f(s) while P2 holdsthe piece s2 = 0. This message depends only on the piece of P1 (P1 might toss coins).Since the scheme is ideal, every piece must be possible for P1 while s2 = 0 (otherwise P2will know that some secret is not possible). When P1 holds two pieces s1 and s01 such thatf(h(s1; 0)) 6= f(h(s01; 0)), the possible messages have to be di�erent or otherwise P2 mayreconstruct an incorrect value in one of the cases. On the other hand, for two pieces s1and s01 such that f(h(s1; 0)) = f(h(s01; 0)) the possible messages of P1 have to be the sameor otherwise P2 can distinguish between the secrets s = h(s1; 0) and s0 = h(s01; 0) although90



f(s) = f(s0). Thus, without loss of generality, the message m1 of P1 while holding thepiece s1 is the bit f(h(s1; 0)). Similarly, the messages m2 of P2 while holding the piece s2 isf(h(0; s2)). Furthermore, the value of f(s) is determine by these two messages (if P2 wouldreconstruct two di�erent values for f(s) depending on his piece, P1 will not know about itand will reconstruct the same value). There are two values for f(s), and two values for eachmessage. Since every party knows nothing about f(s), every change of any message mustchange the value of f(s). The only Boolean functions with two binary variables satisfyingthis requirement are addition modulo 2; i.e., m1 +m2 + � with either � = 0 or � = 1. So,without loss of generality, assume that P1 sends the message m1+�, and the lemma follows.Lemma 8.22: Let f be any Boolean function, and consider an ideal 2-out-of-3 secretsharing scheme with respect to a family F which contains f . Then f cannot be reconstructedon public channels without interaction.Proof: Consider the case where the piece s3 of P3 is 0. In this case, the piece s1 is apermutation of the secret. Hence, when we refer to the message that P1 sends while thesecret is s, we mean the messages that is sent for the piece that corresponds to the secrets (of course P1 does not know that s3 = 0 and does not know the secret). For every twosecrets s; s0 such that f(s) = f(s0), the messages of P1, while P1 and P2 reconstruct thesecret, should be the same (otherwise P3 will di�er between the two secrets). That is, forsome value c, the value of f(s) is 0 if and only if P1 sends the message c, and f(s) = 1 ifand only if P1 sends the message c + 1. By Claim 8.21 f(s) = m1 +m2, so the message ofP2 has to be c for both values of f(s). That is, while s3 = 0 either f(s) is constant and P3will know it prior to any reconstruction, or f(s) is not constant and P1 will not be able toreconstruct it from its piece and the message of P2. Both cases lead to contradiction, hencef(s) cannot be reconstructed without interaction on public channels.Lemma 8.23: Assume there exists an ideal 3-out-of-4 secret sharing scheme in which fcan be reconstructed via private channels without interaction. Then there exists an ideal2-out-of-3 secret sharing scheme in which f can be reconstructed via public channels withoutinteraction.Proof: By the same arguments as in Claim 8.21, we can assume that the messages sent byeach party in the reconstruction to the other two parties are identical (that is, the messageis f(h(s1; 0; 0)) where h is a function that reconstructs the secret from the three pieces).Therefore, if we publish the piece of P4 and send the messages on public channels, thenevery set of size 2 can reconstruct f(s). Every party Pi will have the same information asthe coalition fPi; P4g had in the original scheme. Hence Pi does not gain extra information.That is, we got a 2-out-of-3 secret sharing scheme with respect to F .91



Chapter 9Conclusions and Open ProblemsThis thesis dealt with two fundamental cryptographic tools: secret sharing schemes and keydistribution schemes. Secret sharing schemes enable only some prede�ned sets of partiesto reconstruct a given secret. These schemes make it possible to store secret informationin a network, such that only \good" (for example, large enough) subsets can reconstructthe information. Furthermore, by using these schemes we can allow only \good" subsets toperform actions in a system (e.g. sign a check). The scheme is called a t-out-of-n secretsharing scheme if any set of size t can reconstruct the secret, while every smaller set knowsnothing about the secret. Key distribution schemes enable every subset of parties to generatea secret key (di�erent subsets have di�erent keys). For example, these keys can be used inprivate key cryptosystems or for authentication.Both schemes are used in a multiuser system. In this thesis we considered (bad) partieswhich have unlimited power, i.e. we considered the information theoretic setting (in contrastto the setting in which parties are limited to probabilistic polynomial time computations). Inthe two cases we assumed that there exists an o�-line dealer which distributes private piecesof information to the parties, when the system is initialized. The question we addressed ishow long these pieces should be. This question is important since in some cases the size ofthe pieces is \big" (e.g. exponential in the number of parties in the system), and the schemesare not practical. The (space) e�ciency of a scheme was de�ned to be the size of the piecesin the scheme.We considered key distribution schemes of three types. The �rst type is non-communicating schemes in which each party reconstructs the keys from its piece withoutcommunicating with other parties. Blundo et. al. [29] presented a scheme in which thesize of the pieces is �g+b�1g�1 � times the size of the key, where g is the size of sets that canreconstruct a key and b is the size of bad coalitions. Furthermore, in [29] it was proved thatthis size is also a lower bound. Therefore, the space e�ciency of these schemes is completelyunderstood, and for big values of b and g these schemes are not practical. We have givena new proof of this lower bound. The second type is unrestricted communicating schemesin which the parties can communicate during the reconstruction. However, it is required92



that any coalition that heard the communication during many reconstructions does not gainany information on a key of a disjoint set. We have proved that the space e�ciency of un-restricted communicating schemes is the same as non-communicating schemes, and for bigvalues of b and g they are not practical as well. The third type is one-time communicatingschemes in which the security is guaranteed only if one set (whose identity is not knownduring the distribution stage) generates a key. We presented one-time schemes in which thesize of the pieces is only 2(1 + (b� 1)=g) times the size of the key. We complemented thisresult by proving that the size of the pieces in one-time key distribution schemes is at leastb=(g� 1) times the size of the key. Therefore, the size of the pieces in our scheme is optimalup to a factor of two. Our schemes was generalized in [33], and for when b � g � 3 theygave slightly more e�cient schemes. Speci�cly, for b = 1 the e�ciency of their scheme is� 1 + 2=pg times the size of the keys (compared to 2 times the size of keys in our scheme).We also considered t-out-of-n secret sharing scheme with public reconstruction. In theseschemes we assumed that reconstruction of the secret by sets of at least t parties takesplace over public channels. It was required that a disjoint coalition of less than t partieswill not gain any information on the secret although it heard the communication exchangedin the system. A naive implementation of this task distributes O(n) one times pads toeach party. This results in pieces whose size is O(n) times the secret size. We presentedthree implementations of such schemes that are substantially more e�cient: (1) A schemeenabling multiple reconstructions of the secret by di�erent subsets of parties, with factorO(n=t) increase in the pieces' size. (2) A one-time scheme, enabling a single reconstructionof the secret, with O(log(n=t)) increase in the pieces' size. (3) A one-time scheme, enablinga single reconstruction by a set of size exactly t, with factor O(1) increase in the pieces' size.We proved that the �rst implementation is optimal (up to constant factors) by showing atight 
(n=t) lower bound for the increase in the pieces' size. The third implementation isalso optimal (up to constant factors) by the lower bound of [69].There are still some open problems concerning secret sharing with public reconstruction.It is an open question whether the second implementation is optimal, and if the O(log(n=t))increase in the pieces' size is essential. Another open question concerns non-interactiveschemes, in which the messages sent by each party depend only on his piece (and not onmessages received during the reconstruction). We presented a non-interactive, unrestricted t-out-of-n schemes, in which the size of the pieces is n times the size of the secret. However, theonly lower bound we know is 
(n=t) times the size of the secret, which applies to interactiveschemes as well. The open question is to �nd better non-interactive schemes or improve thelower bound.We considered t-out-of-n secret sharing schemes with respect to a family of functions F .Such schemes allow any set of at least t parties to privately reconstruct the value f(s) of a(previously distributed) secret s (for any f 2 F). Smaller sets of players \know nothing"about the secret. Such schemes contain as special cases multi-secret sharing schemes in whichmany secrets are shared simultaneously and threshold cryptology. We de�ned the notion ofsecret sharing with respect to a family of functions, and showed examples in which these93



schemes are useful. We have showed an interactive scheme for the family of linear functionsin which the size of the pieces is the same as the size of the secret. We have used this schemesto construct a scheme for every family of functions. For the most general family { ALL` {of all functions, the pieces in our scheme were 2` bit long.This work is only the �rst step in understanding the e�ciency of secret sharing schemeswith respect to a family of functions. If one can construct an e�cient scheme for the familyALL then the question of the e�ciency of these schemes will be resolved. So, the immediateopen question is to construct an e�cient scheme for the family ALL, or prove that suchscheme cannot exist (as we suspect). There are other families of functions for which it wouldbe interesting to design e�cient schemes (which might exist even if ALL does not have ane�cient schemes). For example, an interesting family is the family of the sub-string functions{ is a given string a sub-string of the secret (the family contains a function for every givenstring).Finally, we considered generalized secret sharing schemes in which there is somemonotonecollection A of subsets of the parties, called the access structure. It is required that everyset in A can reconstruct the secret, while every set not in A has no information on thesecret. For most access structures the size of the pieces in the known schemes is exponentialin the number of parties. Therefore, these schemes are not practical. Understanding ifexponential pieces are essential or there are more e�cient schemes is an important question.We conjectured that there exist access structures for which in every secret sharing schemerealizing the access structure the size of the pieces is exponential (Conjecture 1.1). However,no proof of the existence of such access structure is known to date even for a non-explicitaccess structure. Unlike other complexity measures, e.g. circuit complexity, we do not knowthat the number of e�cient schemes is small compared to the number of monotone accessstructures (which is double exponential). So, proving Conjecture 1.1 even for a non-explicitaccess structure is an important open problem.Since we were not able to prove this conjecture, we focused on linear secret sharingschemes. This class of schemes contains most known schemes to date. Lower bounds forlinear schemes are a �rst step for proving lower bounds for general schemes. Furthermore,they explain the limitations of existing schemes. We presented a new technique for provinglower bounds for monotone span programs, and used it to prove an 
(n2:5) lower bound for anexplicit access structure with n parties. A recent result [4] uses our technique (Theorem 5.6),and proves a super-polynomial lower bounds for the size of linear secret sharing scheme foran access structure that is related to a problem in extremal set theory. It remains openwhether our method could yield exponential lower bounds. Thus, it is still an open problemto prove exponential lower bounds for linear secret sharing schemes realizing an explicit accessstructure. These can be done either by constructing an exponential size critical family andapplying Theorem 5.6, or by developing a new technique.A natural question is whether one can prove super-polynomial lower bounds forother classes of secret sharing schemes. Speci�cly, say that a secret sharing scheme iscommunication-ideal if for every G 2 A each party of G can compute from his piece a94



message whose size is the same as the size of the secret, and the secret can be reconstructedfrom these messages (without knowing any other information on the pieces). For di�erentsets the same party is allowed to compute di�erent messages. Although the pieces might bebig, the reconstruction algorithm might only require each party to send short messages. Forexample, in a linear scheme over GF(q), it is enough that each party in the reconstructing setwill send one element from GF(q) and the secret would be the sum of these elements. Hence,in linear schemes the size of each message can be the same as the size of the secret althoughthe pieces can be exponential. The open question we suggest is how to generalize the proofsof the lower bounds for linear schemes such that they would apply for ideal-communicationschemes as well. This question is interesting since the proof of the lower bounds for linearschemes relies on linear algebra arguments, and proving the lower bound for communication-ideal schemes would, presumably, contain di�erent arguments. We remark that by the resultsof [8] every communication-ideal scheme with domain of secrets of size two or three is linearand the lower bounds apply to them as well.We already claimed that based on some complexity assumptions we can prove that thereexists an explicit monotone function in P that has no e�cient linear scheme. Another openproblem is to prove this property without any assumptions. That is, prove super-polynomiallower bound for linear schemes for an explicit function in P. We can make this questioneven harder: we know that every function that has an e�cient linear scheme is in NC. Canwe prove that the converse does not hold? That is, prove super-polynomial lower boundfor linear schemes for an explicit monotone function in NC. An interesting candidate is theperfect matching function (or even perfect matching in a bipartite graph). This function hasNC-circuits [84]. However, it does not have monotone circuits [94, 110].It is known that e�cient linear schemes exist for every function that has small undirectedbranching program [17, 68] (see Example 4.5). It is an open question if such schemes existfor directed branching programs as well. This question can be described as follows. Consideran access structure whose parties are the edges of a directed complete graph with two specialvertices s and t. A set of parties (edges) is an authorized set if the sub-graph that containthese edges has a directed path from s to t. Again, this problem is known to be in NC 2 sowe do not have evidence that this access structure does not have e�cient linear schemes.Furthermore, Wigderson [112] proved that this function has small span programs. However,this span program is not monotone and its construction uses this non-monotonicity in astrong way. We do not know of an e�cient linear scheme for the directed connectivityproblem, and it is not clear if it exists.The lower bounds we proved for linear secret sharing schemes raise the question if thereare e�cient non-linear schemes. It is not hard to construct non-linear schemes, e.g. [109, 35].The open question is to �nd a non linear scheme realizing an access structure which doesnot have an e�cient linear scheme. For example, �nd an e�cient scheme for a function that(under reasonable assumptions) is not in NC.95



Computational Secret Sharing In the secret sharing schemes that we consideredthe security is guaranteed even if the \bad" parties have unlimited power. These schemesare called perfect schemes. It is reasonable to assume that the parties are computationallylimited, i.e. they run in (probabilistic) polynomial time. (This is the usual assumption inmodern cryptography.) It is possible that there are access structures that have e�cient com-putational secret sharing schemes, but do not have e�cient perfect secret sharing schemes.Some results is this direction were shown by Yao [114]. Yao showed e�cient computationalschemes for access structures whose characteristic function can by computed by polynomialmonotone circuits (as opposed to polynomial monotone formulae in the perfect schemesof [16]). Speci�cly, there are access structures that have e�cient computational secret shar-ing schemes but are not known to have e�cient perfect schemes. The open question is whichaccess structures have e�cient computational schemes, and what is the exact cryptographicassumption that are needed for them.
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Appendix AInformation Theory De�nitionsWe describe here the information-theoretic de�nitions and results used in Section 6.4 andin Section 7.5. For further details the reader may refer to [42, 45, 60]. Let X be a randomvariable distributed according to some probability distribution p. The entropy ofX is de�nedas: H(X) 4= Xx;p(x)>0p(x) log 1p(x) :where the logarithm (here and elsewhere) is taken to the base two. Informally, the entropymeasures the uncertainty of the random variable. The conditional entropy of X given Y isde�ned as: H(XjY )4= Xy p(y) Xx;p(xjy)>0p(xjy) log 1p(xjy) :The other two quantities de�ned in this appendix can be de�ned in terms of the above. Themutual information between X and Y is de�ned as:I(X;Y )4=H(X) �H(XjY ) :The mutual information between X and Y given Z is de�ned as:I(X;Y jZ) 4=H(XjZ)�H(XjY Z) :The following can be easily veri�ed.1. H(X) � 0 for all X with equality if and only if X is deterministic.2. If X obtains n possible values then H(X) � log n with equality if and only if X isuniformly distributed over these n values.3. 0 � H(XjY ) � H(X) for all X and Y . Therefore, 0 � I(X;Y ) � H(X).4. H(XY ) = H(X) + H(Y jX). 106



5. I(X;Y ) = I(Y ;X) for all X and Y .6. I(X;Y jZ) can be larger, smaller, or the same as I(X;Y ).7. The random variables X and Y are independent if and only if H(XjY ) = H(X).
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Appendix BDe�nition of Private ComputationsWe de�ne private protocols, which are used in Chapter 8 for reconstructing functions of thesecrets securely. The protocol is carried out in a system with secure private channels asde�ned in De�nition 3.2 and De�nition 3.3. We denote by MT the communication receivedby a coalition T during the execution of the protocol (MT is a random variable). We saythat a coalition T does not gain any additional information (other than what follows fromits input and the function value) from the execution of a randomized protocol F , whichcomputes f , if the following holds: For every two inputs ~x; ~y that agree in their T entries(i.e. 8i 2 T : xi = yi) and satisfy f(~x) = f(~y), and for every choice of random inputs frigi2T ,the messages passed between T and �T are identically distributed. That is:< MT (fxigi2T ; frigi2T ; fxigi2 �T ) > = < MT (fyigi2T ; frigi2T ; fyigi2 �T ) >where the probability space is over all random inputs in �T , namely frigi2 �T . A protocol Ffor computing f is private if any coalition T of size at most n does not gain any additionalinformation from the execution of the protocol. A function f is private if there exists a privateprotocol that computes it. It follows that if a reconstructing set uses a private protocol toreconstruct the secret, then the reconstruction is secure.In our interactive secret sharing scheme with respect to the linear functions we use theprivate protocol of Benaloh [15] to compute the sum over GF(q) of the pieces. For the sakeof completeness we describe this protocol in Fig. B.1.The fact that the protocol described in Fig. B.1 computes the correct value is shown inthe following equation.sum = nXj=1 yi = nXj=1 nXi=1 ri;j = nXi=1 nXj=1 ri;j| {z }xi = nXi=1 xi :It is not to hard to show that every coalition of at most n � 1 parties does not gain anyinformation that is not implied by the sum. We omit the details.108



Private addition over GF(q)Each Pi has an input xi 2 GF(q).Each Pi chooses n� 1 random inputs from input GF(q) denoted ri;1; ri;2; : : : ; ri;n�1.Each Pi computes ri;n 4= xi �Pnj=1 ri;j.Each Pi sends ri;j to Pj (for every j).Each Pj computes yj =Pni=1 ri;j and sends it to P1.Party P1 computes sum =Pnj=1 yj and sends it to the other parties.Figure B.1: Private addition over GF(q)GF(q) äãùá íåëñ ìù éèøô áåùéç :B.1 øåéà
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