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Abstract
We describe a functional programming approach to the design of
outlines of eighteenth-century string instruments. The approach is
based on the research described in François Denis’s book, Traité
de lutherie. The programming vernacular for Denis’s instructions,
which we call functional geometry, is meant to reiterate the histor-
ically justified language and techniques of this musical instrument
design. The programming metaphor is entirely Euclidean, involv-
ing straightedge and compass constructions, with few (if any) num-
bers, and no Cartesian equations or grid. As such, it is also an inter-
esting approach to teaching programming and mathematics without
numerical calculation or equational reasoning.

The advantage of this language-based, functional approach to
lutherie is founded in the abstract characterization of common pat-
terns in instrument design. These patterns include not only the ab-
straction of common straightedge and compass constructions, but
of higher-order conceptualization of the instrument design process.
We also discuss the role of arithmetic, geometric, harmonic, and
subharmonic proportions, and the use of their rational approxi-
mants.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Languages

Keywords Euclidean geometry, ruler and compass constructions,
vesica piscis, proportion and measurement, Pythagorean approxi-
mation, chisels, hand planes, animal glue, maple, spruce, ebony,
varnish.

1. Introduction
Programming languages don’t exist simply to tell machines what to
do. Well recognized as the engineering vernacular of software, they
are more importantly the collective mother tongue of algorithmic
ideas.

This point of view is a virtual credo among computer scientists.
That credo has only recently been reiterated in public emphases
on “computational thinking” as a way of understanding complex,
constructional processes. In other words, programming languages
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provide a way for us to describe to each other what we know how
to do.

We immediately assume, quite naturally, that modern technolo-
gies are the ones where this computational thinking is most appro-
priate and relevant. But people have been building things for a long
time. In what way can computational thinking be an intellectual or-
ganizing principle for understanding and describing the past, and
making sense of the kinds of expertise that flourished and came to
maturity?

To that end, we’ve designed a programming language (“lan-
guage” may be overblown—in any case, a set of graphics primi-
tives, and more significant, a programming idiom) for realizing out-
lines of string instruments. The goal of this approach is to mimic
accurately the accepted historical traditions for this design, while
automating and facilitating the design and the construction process.

1.1 Historical background
Modern luthiers (string instrument makers) inherit a tradition em-
bodied in the famous instruments of even more famous histori-
cal colleagues: renowned makers include, among others, Andrea
Amati—recognized as the father of the violin—and distinguished
members of his family, Andrea Guarneri and his family (especially
son Giuseppe, and Giuseppe “del Gesù”), Matteo Gofriller, Do-
minico Montagnana, and the ubiquitous primus inter pares, Anto-
nio Stradivari. It is typical for modern makers to copy and mod-
ify the canonical designs of these makers. But where did their de-
signs come from? Surely not from an infinite chain of copyists—a
non-well founded induction that violates the well-ordering princi-
ple. What are the underlying geometric, computational ideas from
which these designs originate?

It is misleading to think that these instruments evolved simply
from an amorphous, creative, artistic sense. The crude design of
string instruments is a fairly inevitable consequence of ergonomics:
a resonating box, with rounded corners to avoid bumping and
blocking, and a concave middle ’waist’ to allow bow access to the
strings. But the further refinement of this basic form came from
an interaction both musicians and their performance needs, and
with the scientific perspective that was emerging simultaneously.
Changing peformance requirements (for example, the evolution of
the violoncello from a continuo to a virtuoso, solo instrument)
caused changes in design. In addition, these string instruments took
form during an age of scientific revolution—the era of Copernicus,
Kepler, Galileo, Newton—where the experimental mindset, with
its associated scientific insights, likely had an impact on instrument
designers and makers (Schleske 2004).

In 2006, a French luthier named François Denis published Traité
de lutherie (Denis 2006), a comprehensive and seminal treatise
which attempted to lay out the manner in which string instrument
outlines were constructed. There are few, if any, written works
on construction technique written at the time these instruments



emerged on the historical, musical scene: Denis’ contribution was
a historically inspired and a priori reconstruction of what some of
those techniques likely were. The most striking thing about De-
nis’s book is that the construction methods are entirely Euclidean,
when we are used to thinking in a Cartesian way about most ev-
erything. The designs are realized without graph paper, without
Vernier calipers, protractors, or just about anything having to do
with measurement.1 Instead, virtually everything is done with an
(unmarked) ruler, and a compass, save one fixed dimension. That
dimension determines, via entirely proportional constructions, all
the other ones.

It’s worth saying, without reverting to a commutative diagram,
that a great majority of our reasoning about a great deal of subjects
is Cartesian. We typically learn Euclidean geometry to introduce
the notion of proof, but by the time we want to calculate anything,
we’ve usually moved on to Cartesian, analytic geometry. In other
words, a circle isn’t a curve: it’s an equation. And the same goes
for physics, for economics. Even philosophy—think of the “word
problems” solved by translation into propositional logic—the ut-
terly Cartesian construction of analytic philosophy, which gave rise
as well to computer science.

The big Cartesian idea is this: to solve your problem, turn it
into equations. Then solve your equations instead (whence the com-
mutative diagram?), and when you’re done, translate your solution
back to your problem domain. Instead, the Euclidean solution—
and that of Denis for instrument design—is this: it’s a geometric
problem. So you solve it in the geometric world with geometric
constructs.

It deserves mentioning that all string instruments are not alike.
Of course, there are tonal variations, as a consequence of wood
quality, workmanship, and aspects of design. But it should be em-
phasized that every maker had a signature—not the label inside the
instrument as much as the shape of scrolls, pegboxes, necks, cor-
ners, purfling, ff-holes—and instrument outline. Professional ap-
praisers can identify the makers of famous instruments by these
virtual fingerprints, just as program committees of programming
language conferences could identify the authors of conference sub-
missions even under double-blind conditions.

Almost everything we know about how to do this—still con-
sidered as a refined, even mysterious, knowledge—was understood
virtually a half-millenium ago.2 But how, and in what way?

1.2 Some comments on Denis’s Traité
Learning how to carry out Denis’s constructions with pencil and pa-
per leads to two immediate conclusions. One is that the descriptions
of the constructions are, in effect, a kind of do-this-then-do-that
informal straight-line code. They would benefit by a restatement
as a functional program, where notions of hierarchy and abstrac-
tion have the potential to make greater sense out of many details.
A well-structured description can illuminate the big picture of the
forest, and the detail of the trees, with no loss of implementation
focus at either end.

1 This should be contrasted with the exegesis in Edward Heron-Allen’s
famous Violin Making, as it was and is (Heron-Allen 1885), which was
for many years virtually the only go-to book on instrument making, where
the design methods are founded on a rectilinearly-based treatise of Antonio
Bagatella, Regole per la costruzione de violini, viole, violoncelli e violoni
(Bagatella 1782).
2 Simone Sacconi titled his famous monograph The ‘Secrets’ of Stradivari
to emphasize that there were no secrets, but rather refined technique (Sac-
coni 1979). But the cause and effect reflected in that technique is not really
analytically understood—instead, luthiers work within a highly functional
and successful “envelope” and venture out, experimentally, in search of fur-
ther optimization.

A second conclusion is that the learning process itself is facil-
itated by such a development. Not only does this process require
the understanding of the big picture and the little details, the in-
evitable errors encountered in learning how to do this can be made
faster, and can be recovered from faster and easier. A mechani-
cal graphics engine attached to this functional description ensures
accuracy, rectilinearity, without the accumulated error of physical
drafting methods (though similar issues of numerical analysis may
arise and need careful treatment).3 That speed and accuracy is of
no small consequence if the analytic methods are to be used also as
an experimental, investigative mechanism.

Briefly, a programming characterization of these outlines would
serve the following additional goals. First, we can focus on the pu-
tative design process (program) itself, in an appropriate vernacu-
lar, rather than its output. Second, designs of famous instruments
could be made public, where they could be downloaded and mod-
ified by modern makers. (Their modifications, of proprietary inter-
est, would most likely not be public.) Third, the ease of producing
instrument outlines could be a construction prosthetic, aiding the
building of molds, around which rib assemblies are constructed.
Finally and most interestingly, these programs might be the foun-
dation of a kind of computational art history, where evolution of
instruments could be studied more carefully by the more informed
evolution of designs. If nothing else, a result would be an effec-
tively automated version of Denis’s book.

We are no longer building catapults or pillars or even film cam-
eras. But we are still making violins—a Renaissance technology
that was worked out a half-millenium ago. Making them is surely
an art, but in every artistic practice, there is method. Scrolls and
archings and outlines and all the details of lutherie are not simply a
consequence of artistic temperament. There is a method for every-
thing.

The point of this undertaking is to make some of that method
explicit in a contemporary vernacular, while showing the great-
est respect for the underlying method itself. In other words, don’t
change the method as much as find a better way of describing it. In
preserving this Euclidean perspective, the goal is to take all of the
Cartesian, equational calculation—inevitable in programming—
and push it all to the effectively invisible back end, so that the inter-
face used is just the Euclidean part. Building a WYSIWYG graph-
ics engine is a canonical entry point to learning about graphics pro-
gramming, but our real interest here is as much the language as the
output. All of a sudden, the seemingly static things you learned in
high-school geometry become a dynamic programming language.

A virtue of the language is its record of the construction—
the opaqueness of WYSIWYG, resolved by a markup language,
is that the latter allows you to see what you did to get what you
got. The challenge is to find appropriate abstraction primitives. Re-
cursion is noticably absent—it doesn’t seem particularly relevant.
But that doesn’t mean that programming is pointless. Recall the
principle underlined in (Abelson and Sussman 1996) that to under-
stand a programming language is to identify its primitive opera-
tions, means of combination, and means of abstraction. They are
all apparent here.

2. Geometric prelude:
point, line, circle, and the pentagon

Rather than describe all the bits and pieces of our primitive graphics
language, which is just some fairly straightforward graphics prim-

3 “Most of all I would like to advise the maker that the greatest care be
taken in using the compass to adapt and calculate the measurements because
the slightest movement of the position of the hand is capable of causing
an error.” (Antonio Bagatella, Regole per la costruzione dei violini-viole,
violoncelli e violoni, Padova, 1782.)



Figure 1. Constructing a pentagon

itives on top of Scheme4, we’ll just get on with it. Our demonstra-
tion toy problem is how to draw a pentagon with a straightedge and
compass.

(define (pentagon a s)
(let ((b (label "b" (xshift a s))))

(let ((c (label "c"
(intersect

(apply line
(intersect (circle a s)

(circle b s)))
(line a b)))))

(let ((d (label "d"
(top (intersect

(vertical c)
(circle c s))))))

(let ((f (label "f" (top
(intersect (line b d)

(circle d (distance a c)))))))
(let ((g (label "g"

(top (intersect
(vertical c)
(circle b (distance b f)))))))

(let ((p (left (intersect (circle g s)
(circle a s))))

(q (right (intersect (circle g s)
(circle b s)))))

(list (label "a" a) b c d f g p q
(makeseg b f)
(circle a s) (circle c s)
(circle d (distance d f))
(circle b (distance b f))
(segments (list g p a b q g)) ))))))))

Some brief comments on the construction:

(pentagon a s) Pentagon at point a with base length s.

(xshift p d) Point p shifted d in the x-direction.

(line a b) Line through points a, b.

(horizontal p), (vertical p) Horizontal, vertical lines through
point p.

(circle p r) Circle with center at p and radius r.

(intersect o1 o2) Intersection of circles, lines, with possible
multiple solutions.5

4 This situation is deliberately meant to evoke memory of Peter Henderson’s
functional geometry from the 1980s (Abelson and Sussman 1996; Hender-
son 2002).
5 To underline the Cartesian and its departure from the Euclidean: reflect on
the intersection of two circles, both with equations having x2 and y2 terms

(top S), (bottom S), (left S), (right S) Choosing among
multiple solutions to an intersection.

(north C), (south C), etc. Quadrants of a circle.

(label ` p) Mark point p on the plane with the label `, returning
value p.

The overall idea is to specify, then draw. Recall that given a unit
length, with a straightedge and compass, the constructable point-
to-point distances are those points closed over the unit length
and +,−,×,÷,√ —i.e., “over radicals”.6 (As a consequence, a
straightedge and compass serve as a primitive analog computer.)
A pentagon is constructible because with a unit edge, its diameter
(distance b-f in Figure 1) is the golden mean φ = 1

2
(1 +

√
5).

With this example in mind, there’s an overwhelming temptation
to start programming up every geometric construction you can
find—and there are lots of them, of considerable subtlety (Sutton
2009). We mention, for example, Malfatti’s problem (Martin 1998):
given a triangle, inscribe three circles that are tangent to each
other and to the sides of the circle. This problem wasn’t solved
until the late nineteenth century (see Steiner’s synthetic, geometric
construction (Steiner)), though draftsman may well have known the
solution long before (Denis, personal communication).

3. Musical prelude:
the lute of Arnault of Zwolle

Roughly comparable in detail of the pentagon is the lute design
of Henri Arnault of Zwolle, from a manuscript dating from 1440
(Harwood 1960; Zwolle 1440). Arnault was a cleric in the court of
French king Louis IX, a polymath prototype of Leonardo da Vinci,
only who designed musical instruments instead of instruments of
war. His manuscript of 1440 describes the construction of a lute.
This lute is the “toy problem” of string instrument metrology: what
goes for the lute, goes for the violin and violoncello, only more so.

(define (lute rad)
(let ((c (circle origin rad))

(d (* 2 rad)))
(let ((p (label "p" (west c)))

(q (label "q" (north c)))
(qprime (label "q’" (south c))))

(let ((r (label "r"
(left (intersect (circle (mirror p) d)

(line (mirror p) q))))))
(let ((s (label "s" (yshift q (distance q r)))))

(let ((rose (circle (point 0 (/ rad 2))
(* (/ 3 10) rad))))

(list
(map (lambda (t)

(list (label "" (pointfrom origin q t))
(label "" (pointfrom origin

(transpose q) t))))
(list 0 .2 .4 .6 .8 1.0))

(circle origin rad) (circle q (distance q r))
;draw the rose:
(makearc (center rose) (north rose) (west rose))
(makearc (center rose) (west rose) (south rose))
(makearc origin p qprime)
(makearc (mirror p) p r)
(makearc q r s))))))))

Note that (mirror p) produces a point reflected around the y-
axis, so arc drawing is only (explicitly) on the left-hand side of the

with coefficient 1. When you subtract one equation from the other, you’re
left with a linear term—of what? The line that is the bisector of the vesica
piscis, the “fish bladder” marking their intersection—see, e.g. (Wikipedia).
6 See (Stewart 1973), pp. 57-67.



Figure 2. Lute by Arnault of Zwolle (from a manuscript from
1440), with an approximate soundhole placement

plane, and mirrored on the right. It’s an obvious symmetry that we
should take advantage of.

4. Rational approximations
We can make a virtually indistinguishable pentagon by dispensing
with the compass almost entirely (or at least, use a “rusty compass”
that cannot change dimension), as long as we can draw perpindicu-
lar lines. Then, common carpenter’s tricks let us code the pentagon
with rational, Pythagorean approximants. We use 14

9
to approxi-

mate the height
√
φ2 − 1

4
, 3
10

for the additional width (beyond the

base) φ−1
2

, and 20
21

for the height
√

1−
(
φ−1
2

)2
of the leftmost and

rightmost corners:

(define (approximate-pentagon a s)
(let ((b (label "b" (xshift a s))))

(let ((t (yshift (midpoint a b) (* s (/ 14 9)))))
(let ((d (yshift (xshift b (* s (/ 3 10)))

(* s (/ 20 21))))
(c (yshift (xshift a (* s (/ -3 10)))

(* s (/ 20 21)))))
(segments (list a b d t c a))))))

What works for pentagons works, by extension, for Arnault’s
lute construction, and describes in greater detail the underlying ge-
ometric symmetries of its design. Figure 4 shows a refined analysis
of Arnault’s lute construction, which is (as Denis points out) not so
much the definition of a real lute as much as it is a prototype, an
examplar, of a generic recipe for synthesizing lute designs.

This construction method makes the length of the instrument—
a critical dimension for tuning and structural stability—a conse-
quence of the design process, rather than a parameter of it. To de-
sign the instrument ab initio from its length, we need to think a bit

Figure 3. Harmonic, subharmonic, and geometric sections

more carefully about the geometry of the underlying construction,
in particular its use of harmonic and subharmonic sections.

Notice that the length of the lute is 3m+2s, wherem and s are
the radii of circles derived from carefully constructed geometric
sections. The geometric constructions of these sections are shown
in Figures 3 and 4. The highlighted box to the left of the vertical
axis of the lute contains a harmonic section, and that to the right,
a subharmonic section. Notice the geometric demonstration that
the larger part of a harmonic section equals the smaller part of a
subharmonic section that is twice as big.

Now consider the rational approximation of the subharmonic
section. Let s+m = 1 where s andm are an approximation of this
section: then a better approximation is s′ = m and m′ = s+ 2m.
Solving s

m
= s′

m′ gives s = 1− 1√
2

, the smaller part of the section.
Beginning with s = m = 1, we get the series of approximants

1
3
, 3
7
, 7
17

; luthiers would use initial terms from this series (and those
like it) as approximations of its limit. Such constants are mentioned
in Arnault’s manuscript.7

(define (approximate-lute s m L)
(let ((N (+ (* 2 s) (* 3 m))))

(let ((r (* L (/ (+ m s) N))))
(let ((q (label "q" (yshift origin (minus r)))))

(let ((p (label "p" (yshift q L))))
(let ((cmain (circle (yshift q r) r)))

(let ((ctop
(circle (north cmain)

(distance (north cmain) p)))
(cright (circle (east cmain) (* r 2))))

(list
(apply makeseg ; bridge

(intersect cmain
(horizontal (yshift q (* L (/ s N))))))

; sound hole
(let ((s (yshift p (* (minus L) (/ (+ s (* 3 m)) (* 2 N))))))

(let ((rs (/ (distance s
(left (intersect (horizontal s) cright)))

3)))
(let ((sh (circle s rs)))

(list sh
(make-curve q p

(list cmain cright ctop)) ))))))))))))

(Note that make-curve above specifies a curve from q to p,
following the arcs given by circles cmain, cright, and ctop.)

We redraw the lute using this revised code, above, with param-
eters s = 3 and m = 4—note 3/7 = .4285 . . . is a respectable
approximation of

√
2 − 1 = .4142 . . .. The length of the lute is

now divided into 3m+2s = 18 parts, and Arnault’s written direc-

7 Recurrences, familiar to students of discrete mathematics, provide the
foundation of these proportional sections. Recall f(x) = x+1

x
as defining

the geometric section (with initial value x0 = 1
1

), g(x) = x+2
x+1

as defining
the harmonic section (also with initial value x0), etc.



Figure 4. Geometry of Arnault’s lute. The subharmonic section is highlighted on the right, the harmonic section on the left.

tions that the bridge placement is one-sixth of the instrument length
makes rational sense.

Even without this rational approximation, note with s =
√
2−1

and m = 2 −
√
2, we have s

2m+3s
= 1

14
(3
√
2 − 2) ≈ 0.1602,

realizing Arnault’s one-sixth measurement.
Further, the location and size of the soundhole is rationalized

through the following argument, a rather striking prestidigitation
(see Denis, p. 54 ff.). Its location is said in the manuscript to be
halfway from the bridge to the top of the instrument. The length of
3m + 2s can be rearranged as S = m + s and M = 2m + s.
Given the ratio s

m
=
√
2−1

2−
√
2

from the harmonic section, we have
M−S
S
≈ .5858 and S

M
≈ .6306, while the ratio of the geometric

section is 2−φ
φ−1

= φ− 1 ≈ .6180, right between the two.
As a consequence, we can consider the length of the instru-

ment, to sufficient accuracy, as a geometric sequence of over-
all length s′ + m′, where the ratio s′/m′ can be approximated
by Fibonacci numbers of moderate size. Take s′ = 5,m′ = 8
(m′/s′ = 1.625 ≈ φ). If the bridge is distance s from the bot-
tom of the instrument, then the center of the soundhole is distance
1
2
(3m+s) from the top of the lute. An exact calculation, following

Arnault’s specification that the soundhole diameter be one-third of
the width, gives a diameter of (

√
15−2)/3 ≈ .6243. Using the ap-

proximate geometric section (m′, s′) above gives s′/m′ = .625.

The point of this rational reconstruction is that layout with carefully
chosen approximations comes remarkably close to the analytic cal-
culations.

5. Anatomy of an outline: the Amati violin.
Geometric problems and their solutions.

With the preamble of the Arnault lute in mind, we can go on
to look at the first outline of a violin in the book by Denis: a
canonical violin by Andrea Amati. The outline has four essential
parts: the framework, which blocks out the regions, and the upper,
lower, and middle bouts. A key feature of the outline is that it is
parameterized by only one fixed dimension: the distance XQ from
the top of the outline to the top of the lower bout. All the other
dimensions are proportional. The code appears in the Appendix. It
needs emphasis that the code is almost a verbatim translation of
Denis’s construction description.

The do-this-then-do-that of straight line code is not very in-
teresting. But a significant number of low-level details can be
abstracted. The curves of all the outlines are made by follow-
ing sequentially a series of arcs defined by circles, with end-
points, via (make-curve p q (list C1 C2 · · ·Ck)). There
are distances that are partitioned by a series of straightedge and



compass sections constructing, for example, a geometric section
(geometric-section p q).

Then there are more interesting constructions associated with
curious geometric puzzles. For example, given two circles C1 and
C2 on the plane, and a radius r, find the circle C of radius r that
is tangent to both C1 and C2. An example of this construction is
in the lower bouts of the Amati violin, where the curve is made up
of three principal arcs: the middle one is from a circle tangent to
others as described here. Solving the equations is a middle-school
headache, but the geometric construction is fun.

Similarly, there is a geometric problem in computing reverse
curves at the corners of the upper and lower bouts. Given a large
circle C that defines the curve at the upper bout, a radius r, and a
point p, where is the circle of radius r located that is tangent to the
outer side of C, and also tangent to p? Luthiers solved these kinds
of problems by construction and without math. With appropriate
software, we do the same thing.

(define (reverse-curve inner-circle outer pt)
(let ((outer-radius (- outer (radius inner-circle))))

(let ((pts (intersect (circle pt (abs outer-radius))
(circle (center inner-circle)

(+ outer-radius
(radius inner-circle))))))

(map (lambda (p) (circle p (abs outer-radius))) pts))))

(define (inscribe c1 c2 r)
; circles tangent to insides of c1, c2 of radius r
(let ((c1p (circle (center c1) (- (radius c1) r)))

(c2p (circle (center c2) (- (radius c2) r))))
(map (lambda (pt) (circle pt r)) (intersect c1p c2p))))

Another example comes from the design of a Montagnana vi-
oloncello, where a signature characteristic of that maker is found:
the principal curve of the upper bout and the reverse curve are not
tangent, or mediated by another curve, but instead connected by a
straight line. This construction is easy enough by eye, but what is
the exact construction? Again, these straightedge and compass con-
structions have detail, but we can abstract away from them with no
loss of detail.

(define (tangent small big)
; finds the two lines tangent to (nonintersecting) small,
; big, where the lines are intersecting between them

(let ((d (line (center small) (center big))))
(let ((p1 (perpendicular d (center small)))

(p2 (perpendicular d (center big))))
(let ((a (top (intersect small p1)))

(b (bottom (intersect big p2))))
(let ((i (intersect d (line a b))))

(let ((j (midpoint i (center big))))
(let ((pts

(intersect big
(circle j (distance i j)))))

(map (lambda (pt) (line i pt)) pts))))))))

6. Abstraction of construction, and of design.
Towards a computational art history.

One of the most important tasks which the new science of art could set for
itself would be a through analysis of the history of art; to determine the

elements, construction and composition in various periods. . . [the
analysis] borders on the problems of the “positive” sciences, the second

part... touches the problems of philosophy.
Wassily Kandinsky, Point and Line to Plane (Kandinsky 1926)8

8 It’s worth noting that this book was written in 1928, clearly affected
by the logical positivists of the Vienna circle and the analytic philosophy
movement before it (see, for example, (Galison 1990) for the working out
of this striking but somewhat obvious connection). Analytic philosophy is

Figure 5. Detail of Montagnana violoncello, giving upper bout
construction using a tangent line between two circles

The code for the Amati violin describes various computational
dependencies. Changing some of the integer ratios in the code
changes the design, while maintaining the coherence of the form.
At some point, the implied constraints may become unsatisfiable
(say, a line that must be to the left and to the right of some critical
point, causing an intersection that no longer has a solution), and
then the implementation cannot draw the outline. For the most part,
this breakdown should be regarded as a feature, not a bug—it’s an
error message in itself. That the instrument is defined as a set of
proportional relations, as opposed to curves that must be set to some
fixed set of points, lends a certain plasticity to the specification that
probably facilitates the satisfaction of these constraints.

A bit more subtle than strictly computational constraints are
design constraints. These don’t come from the mechanics of layout,
but from dimensions that must be satisfied in a final product. For
example, the body stop of a violincello, measured from the top of
the front plate abutting the neck, to the inner nick at the middle of
the ff-hole, is typically 400mm. Few modern instruments diverge
widely from that dimension, while some old instruments do. It’s
not clear to me in what way these kinds of constraints should be
built into the automated design process.

A clear advantage of this automated drafting is that we can
make hypotheses and check them out faster, make mistakes and
recover from them faster, than what might be possible with pencil
and paper. One question I am looking at is Denis’s thesis that
Stradivari marks a turning point where the proportional approach is
no longer fully explanatory, and that use of metric measurement is
necessary. In order to test this assertion, I’ve been trying to reverse
engineer the outline of the 1707 “Countess of Stanlein” Stradivarius
violoncello (see (Reuning 2012)), in order to determine whether it
could have an effectively proportional description. I’ve got a first
cut at this outline done, and I expect to give more details on this in
the full paper.

Abstraction mechanisms give a higher-order representation to
the low-level business of straightedge and compass construction.
We’ve given some examples of this abstraction at the more me-
chanical level, but I would like to be able to raise this abstraction
to a more conceptual level, if we could characterize the kind of
computing with shapes that is inherent in instrument design. The

also a significant intellectual precursor of the development of programming
languages.



Figure 6. Violin by Andrea Amati



Arnault lute gives some hints in this direction, as its outline is a
consequence of quadrature, rotation, proportion, and approxima-
tion. Bluntly put, if a martini is six parts gin to one part vermouth,
what is a Gofriller violoncello? By a familiar analogy: we’re used
to programming language constructions (say, continuation-passing
style) as a basic form, with particular variants (Gödel, Kuroda, Kol-
mogorov, etc.) derivative from double-negation embeddings; why
can’t instrument forms be computational variants on a basic theme?
What’s needed is a kind of grammar of relevant shape and how to
compute with it. The thematic homilies of Kandinsky (Kandinsky
1926) given much greater detail in a recent book by George Stiny
(Stiny 2008), provide some suggestions of how this work could
evolve. In particular, Stiny describes grammars for the evolution of
shapes—“how I stopped counting,” he says, “and started to see.”
Good artists know how to see. In this particular example, can their
insight, and how it changed, be characterized formally?

7. Historical evidence and the a priori
How did luthiers draw outlines? Like many historical and scientific
questions, this one has empirical answers, and a priori answers.
We can look for evidence, as well as analyze from first princi-
ples. In his 2010 book on Stradivari, Stewart Pollens writes that he
“does not appear to have employed a rigid system of geometry and
proportion in designing his violins” and takes a questionable view
of such explanations since (and including) the 1782 manuscript of
Bagatella (Pollens 2010). The solution of Denis is, on the contrary,
heavily a priori, with evidence supplied by the 15th-century Ar-
nault manuscript, but not by historical evidence from 18th-century
luthiers.

To think that each generation of luthiers has simply copied what
came before, perhaps with small modifications, strikes me as the
historical equivalent of a non well-founded induction. There has to
be a base case. Amati is generally regarded as the first mover in the
design of string instruments, as we know them. The solution of De-
nis is from first principles, effectively contemporaneous with Am-
ati, but also in the spirit of ideas of proportion and symmetry that
date from the era of Vitruvius9, and went on to animate the work
of architects, artists, furniture makers, and—as Denis persuasively
argues—instrument makers. Nonetheless, it is natural to seek the
assurance of empirical confirmation as well. (Such a dissent from
Pollens’s critique is expressed by Andrew Dipper, the translator of
an 18th c. luthier’s construction notebook (Dipper 2013), and a cat-
aloguer of items from the Museo Stradivariano in Cremona.)

The situation is analogous to an irreverent remark about the dif-
ference between geology and geophysics: geology is the observa-
tion of physical phenomena that can’t be explained, but geophysics
is the explanation of physical phenomena that can’t be observed.

8. Conclusions and perspective
A natural and obvious criticism of what I’ve described here is this:
it just using a computer to draw pretty pictures. The pictures are
beautiful and of historical and cultural interest, but the programs are
not. In response to this point of view, I think that the way we repre-
sent what we know is important, and a program clarifies meaning,
more than any natural language directions. Moreover, there are in-
evitably levels of such informal description, from detailed (“do this,
then do that”) to high-level (literally, “big picture”), and higher-
order procedures, well-written, can explain both with no loss of
accuracy.

There may be “better” ways of drawing things (for example,
with splines), but that doesn’t interest me here. What matters is the
representation of knowledge that was already known. If research is,

9 See (Gordon Smith 2003), especially Book III.

literally, the re-searching for things that were already found, then
a good justification for it is that in rediscovery, we say it better, or
in ways that are more compelling to us. It is a natural progression
not only in our understanding of this particular subject, but, more
generally, how we represent what we know.
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Appendix: Violin by Andrea Amati
(define Amati

(let ((xq 400)) ;; should be 208mm in the Amati---this is just a screen fit...

; LAYOUT OF THE AREA on which the curves are drawn...
(let ((X (label "X" (point 0 000)))) ; this could be anywhere---just to center it on the output screen

(let ((A (label "A" (xshift X (- (/ xq 2)))))
(Q (label "Q" (yshift X xq))))

(let ((N (label "N" (pointfrom X Q (/ 1 4)))))
(let ((q (label "q" (xshift (intersect (horizontal Q) (vertical A))

(/ (distance X N) 2))))
(vv (xshift A (/ (distance X N) 8)))
(O (label "O" (yshift Q (- (* (distance X N) (/ 5 4))))))
(Z (label "Z" (yshift N (* (distance X N) (/ 2 3)))))
(P (label "P" (yshift X (- (* (distance X N) (/ 8 3)))))))

(let ((p (label "p" (intersect (horizontal P) (vertical vv))))
(M (label "M" (pointfrom X P (/ 1 2))))
(a (label "a" (xshift A (/ (distance X Z) 2)))))

(let ((b (label "b" (xshift Z (- (/ (distance A a) 2))))))
(let ((ee (label "e" (xshift (intersect (vertical b) (horizontal N)) (- (* (xdistance b p) (/ 3 8)))))))

(let ((c (label "c" (xshift (intersect (vertical p) (horizontal X)) (/ (xdistance ee p) 4))))
(d (label "d" (xshift (intersect (vertical p) (horizontal X)) (/ (xdistance ee p) 2))))
(h (label "h" (xshift (intersect (vertical ee) (horizontal Z)) (- (/ (xdistance ee p) 4)))))
(g (label "g" (xshift (intersect (vertical ee) (horizontal Z)) (- (/ (xdistance ee p) 2))))))

(list X A Q N q O Z P p M a b ee c d h g
(horizontal N) (horizontal O) (horizontal Z) (horizontal P) (horizontal X) (horizontal M)
(vertical p) (vertical q) (vertical b) (vertical ee)

; THE LOWER BOUTS...
(let ((ZMcircle (circle Z (distance Z M)))

(ZPcircle (circle Z (distance Z P))))
(let ((m (label "m" (bottom (intersect ZMcircle

(make-line 1 p) ; line w/slope 1 through p
)))))

(let ((mcircle (circle m (distance M P))))
(let ((n (label "n" (xshift m (- (distance X Z) (distance M P))))))

(let ((ncircle (circle n (+ (distance M P) (distance X Z) (- (distance M P)))))
(reverse-lower-left

(lower-circle (reverse-curve (circle n (distance X Z)) (+ (distance X Z) (/ (distance X N) 2)) c))))
(list m n (circle n (distance n (center reverse-lower-left)))

ZPcircle mcircle ncircle reverse-lower-left
(make-curve P c (list ZPcircle mcircle ncircle reverse-lower-left)) ))))))

; THE UPPER BOUTS...
(let ((Ncircle (circle N (distance N Q)))

(o (label "o" (top (intersect
(circle N (distance N O))
(make-line -1 q) ; line w/slope -1 through q
)))))

(let ((ocircle (circle o (distance O Q))))
(let ((reverse-upper-left

(upper-circle (reverse-curve ocircle
(distance N O)
g))))

(list o (circle o (distance o (center reverse-upper-left)))
Ncircle ocircle reverse-upper-left
(make-curve Q g (list Ncircle ocircle reverse-upper-left)) ))))

; THE MIDDLE BOUTS...
(let ((f (label "f" (xshift ee (- (distance X Z)))))

(v (label "v" (xshift ee (- (/ (distance X N) 2)))))
(s (label "s" (xshift ee (- (/ (distance N Z) 2))))))

(let ((ecircle (circle f (distance f ee)))
(vcircle (circle f (distance f v)))
(scircle (circle f (distance f s))))

(let ((reverse-lower-middle
(upper-circle (reverse-curve ecircle (distance f v) d)))

(reverse-upper-middle
(lower-circle (reverse-curve ecircle (distance f s) h))))

(list f v s (circle f (distance f ee)) reverse-upper-middle reverse-lower-middle
(make-curve g c (list reverse-upper-middle (circle f (distance f ee)) reverse-lower-middle)) )))))))))))))))
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