Image filtering

16-385 Computer Vision Spring 2020, Lecture 2

http://www.cs.cmu.edu/~16385/

Course announcements

- Make sure you are on Piazza (sign up on your own using the link on the course website).
 - I think I signed up most of you this morning.
 - How many of you aren't already on Piazza?
- Make sure to take the start-of-semester survey (link posted on Piazza).
 - We need your responses to schedule office hours for the rest of the semester.
 - 40 responses (about 60%) as of this morning.
- Office hours for this week only:
 - Yannis (Smith Hall Rm 225), Friday, Friday 5-7 pm.
 - Hours decided based on survey responses so far.

Overview of today's lecture

- Types of image transformations.
- Point image processing.
- Linear shift-invariant image filtering.
- Convolution.
- Image gradients.

Slide credits

Most of these slides were adapted directly from:

• Kris Kitani (15-463, Fall 2016).

Inspiration and some examples also came from:

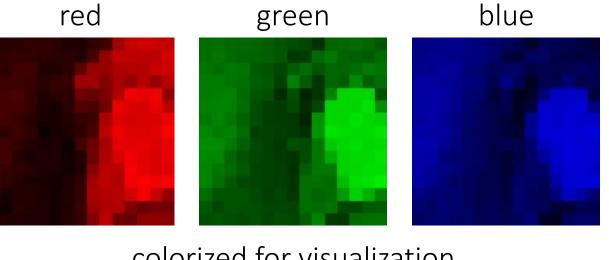
- Fredo Durand (Digital and Computational Photography, MIT).
- Kayvon Fatahalian (15-769, Fall 2016).

Types of image transformations

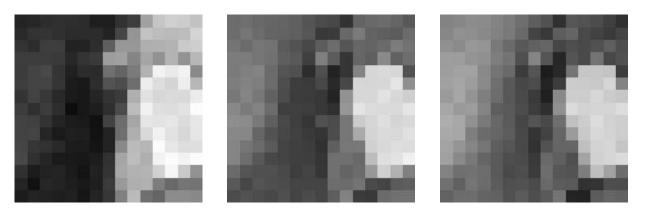
A (color) image is a 3D tensor of numbers.

color image patch

How many bits are the intensity values?



colorized for visualization

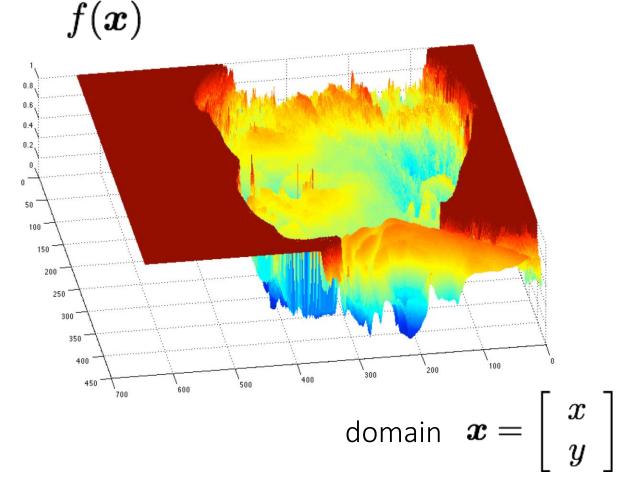


Each channel is a 2D array of numbers.

actual intensity values per channel

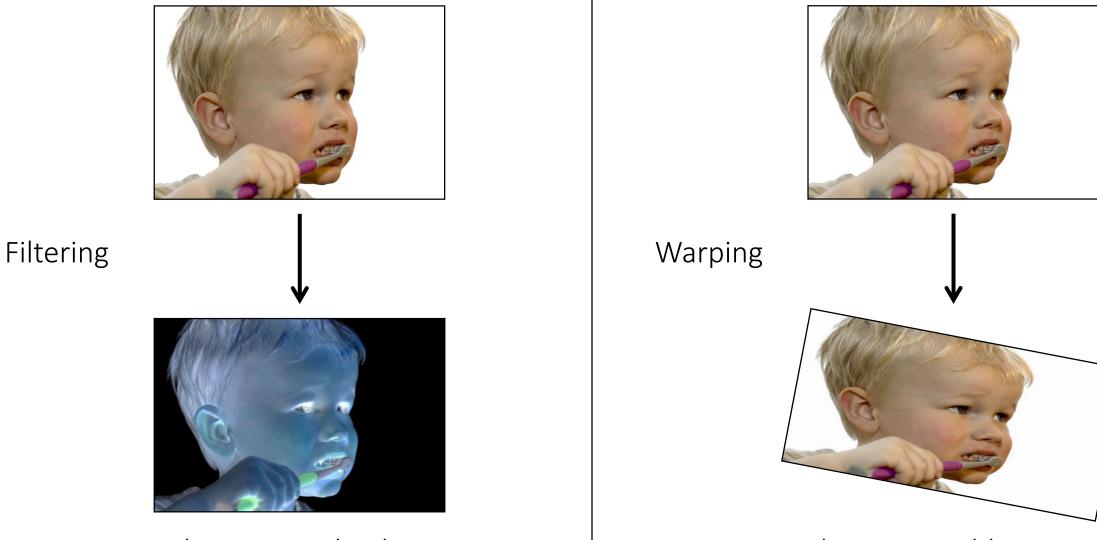
grayscale image

What is the range of the image function f?



A (grayscale) image is a 2D function.

What types of image transformations can we do?



changes pixel values

changes pixel locations

What types of image transformations can we do?

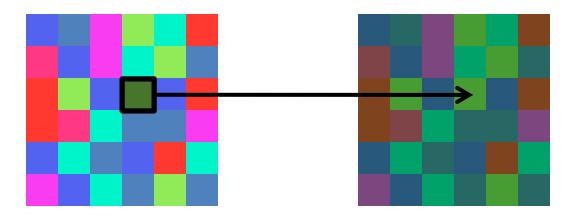
changes range of image function

F

changes *domain* of image function

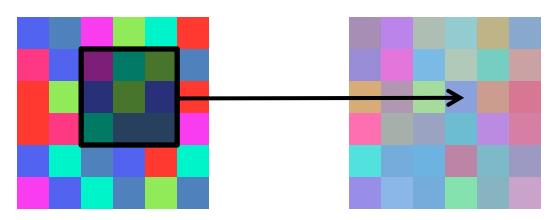
What types of image filtering can we do?

Point Operation



point processing

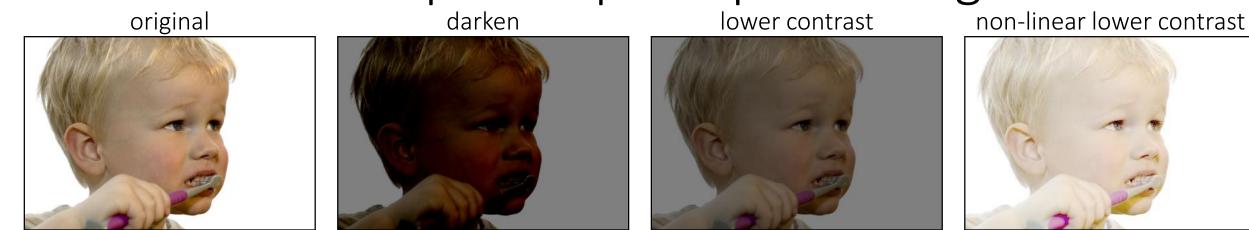
Neighborhood Operation

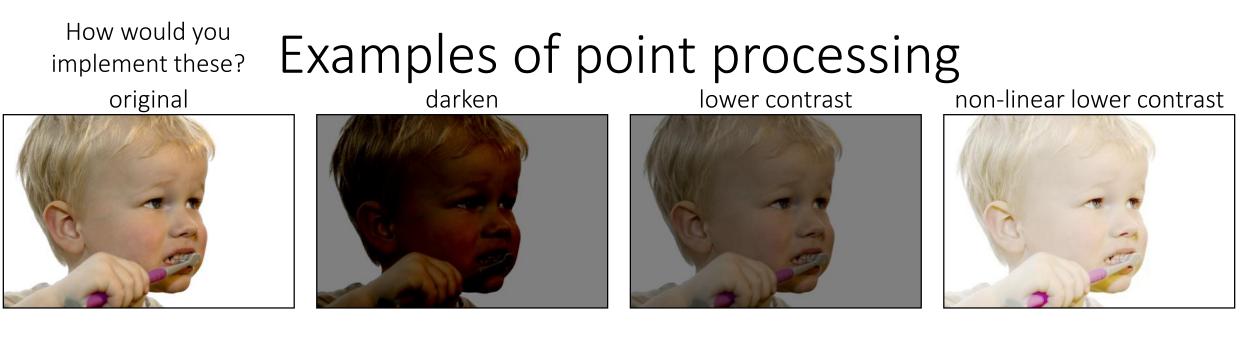


"filtering"

Point processing

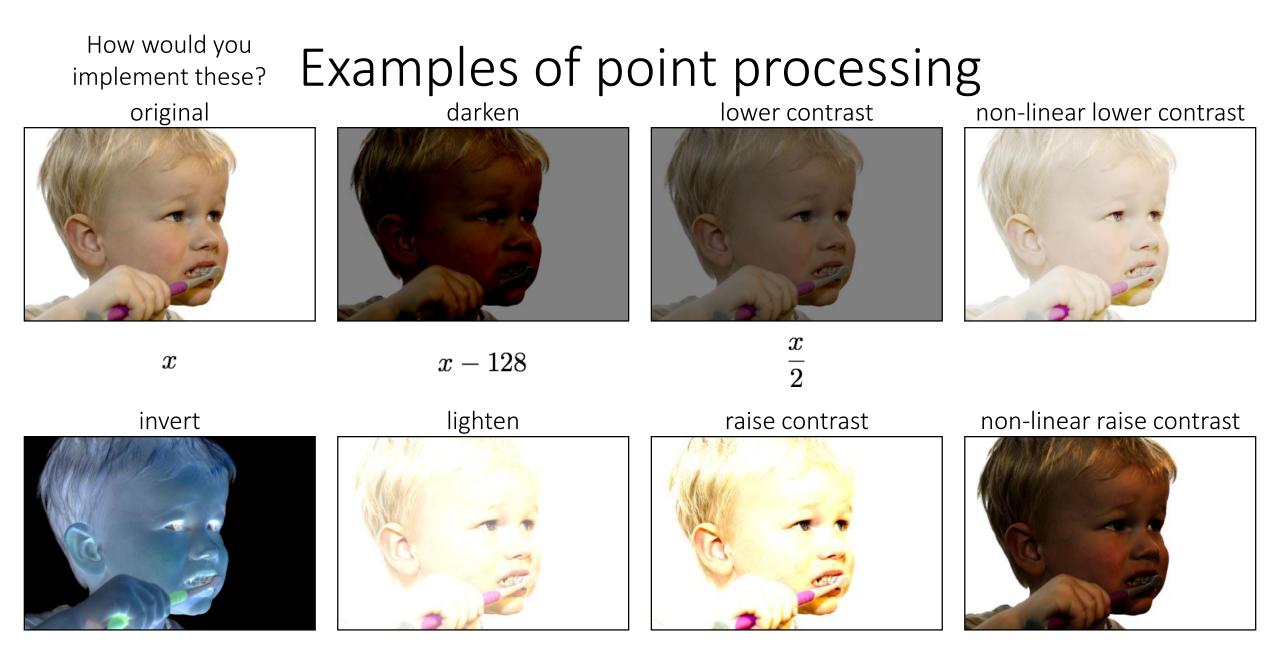
Examples of point processing

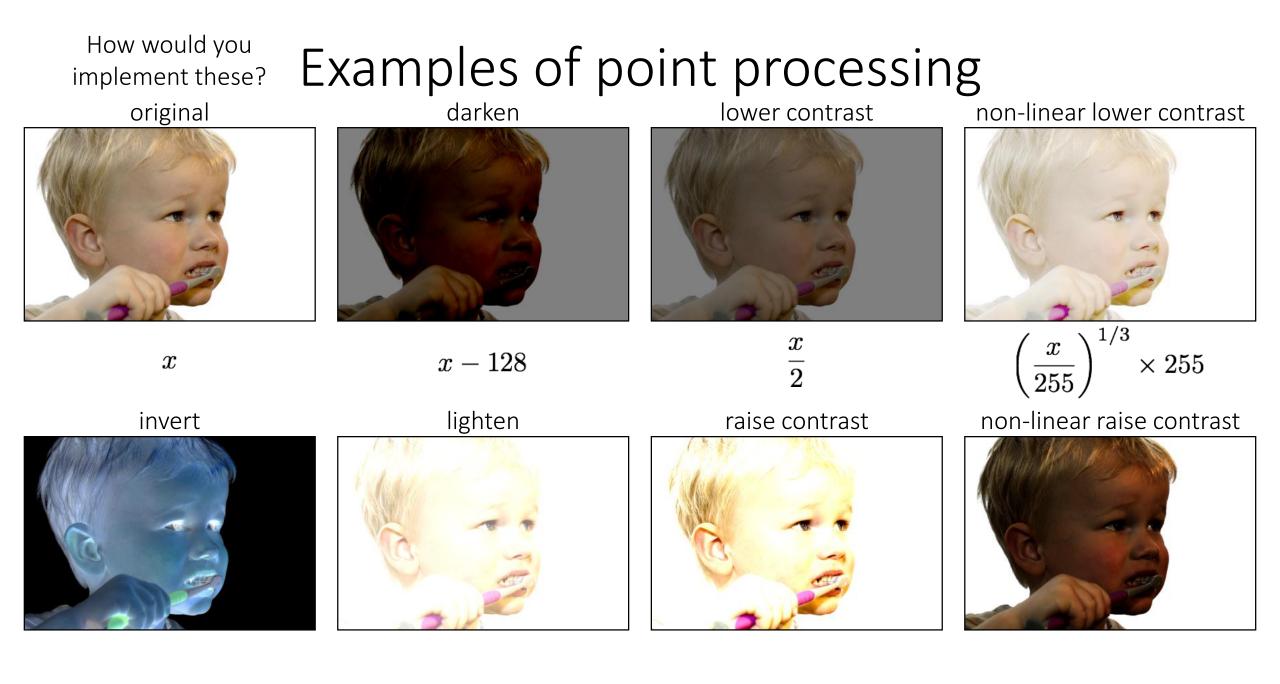


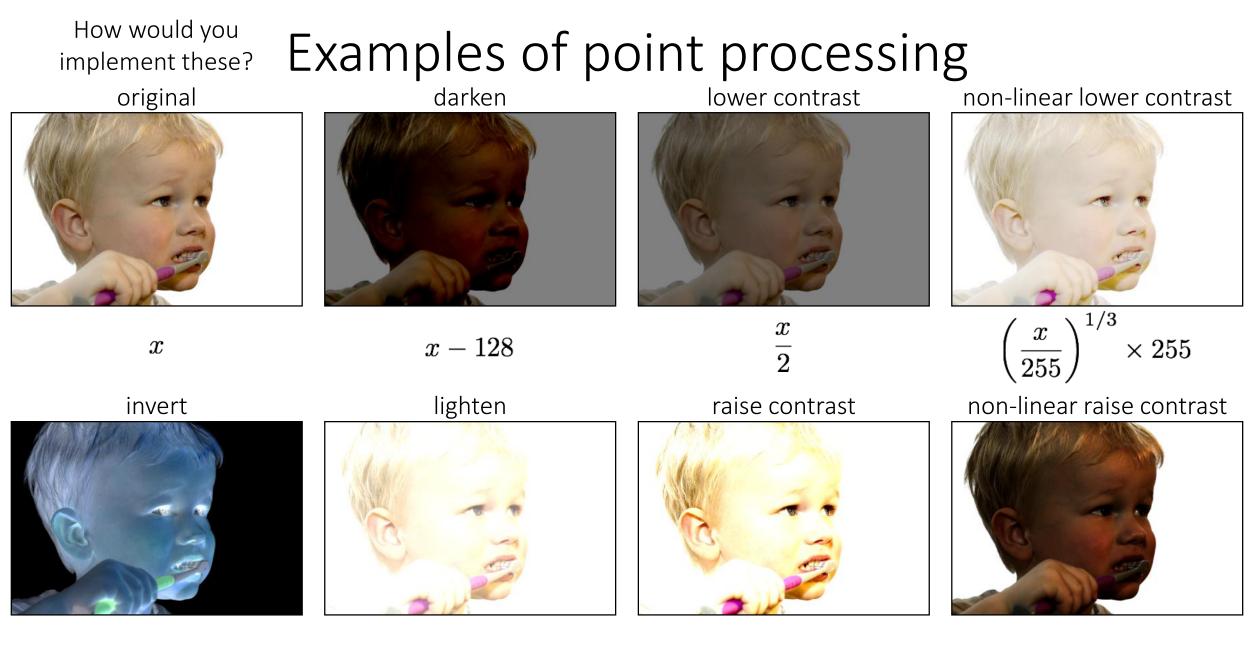


x

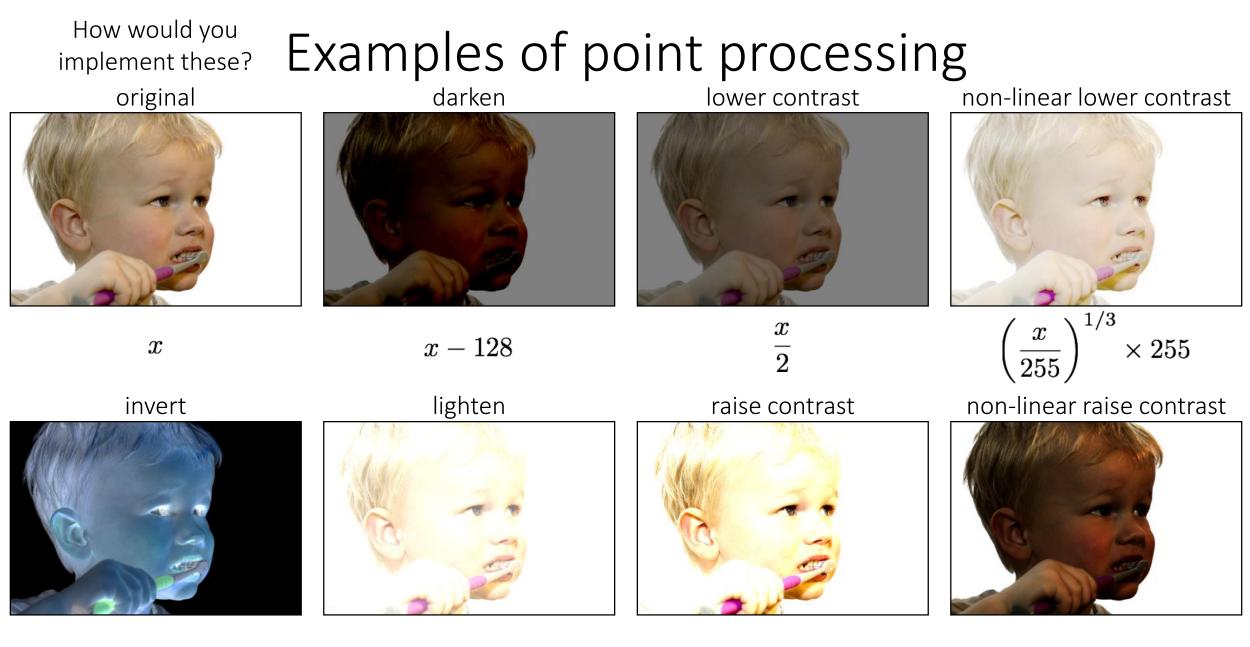
non-linear raise contrast



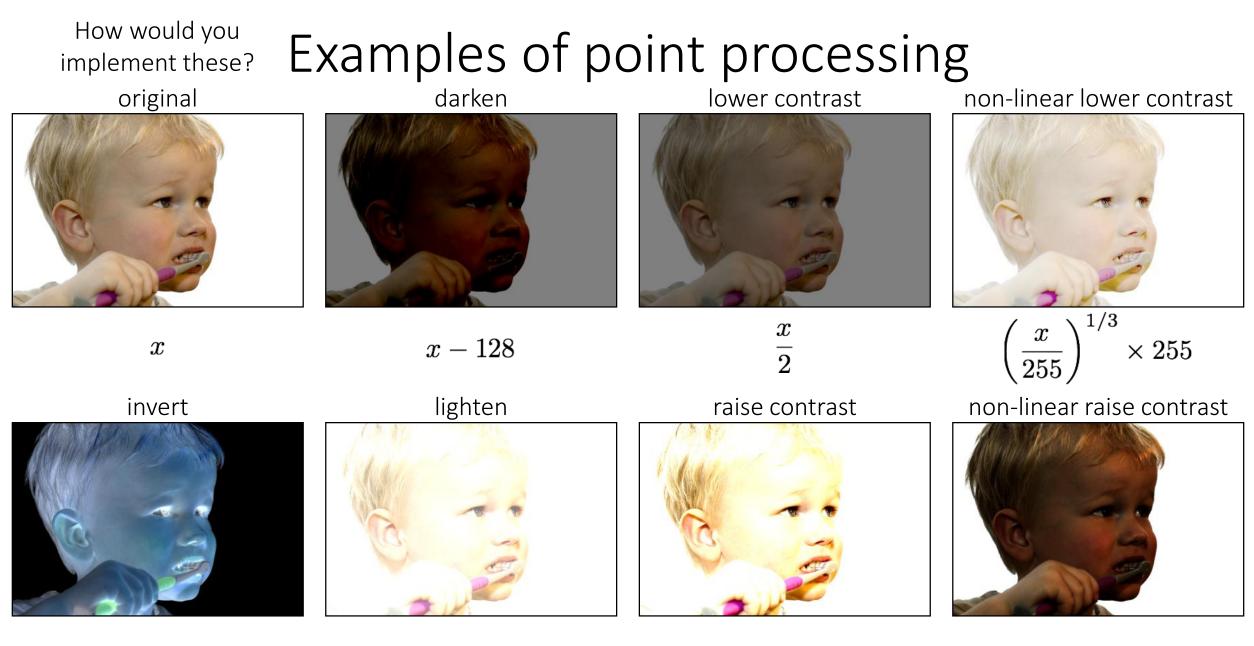




255 - x

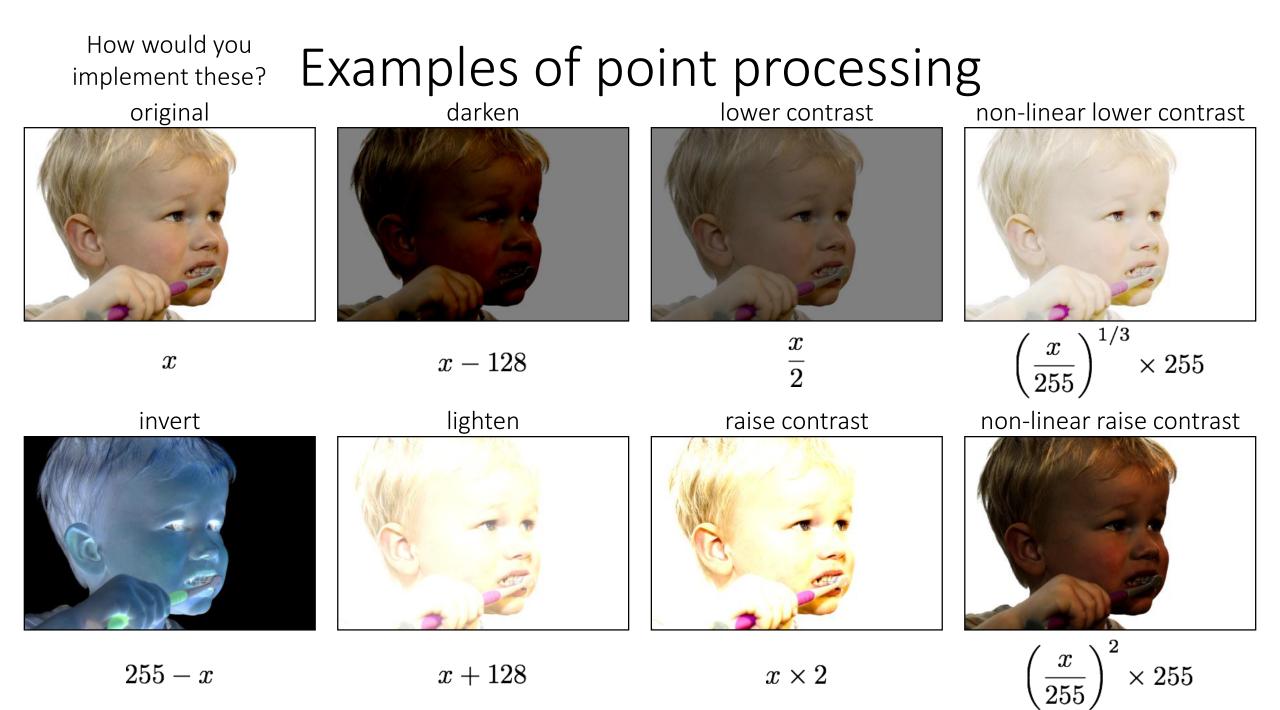


255 - x



255 - x

 $x \times 2$



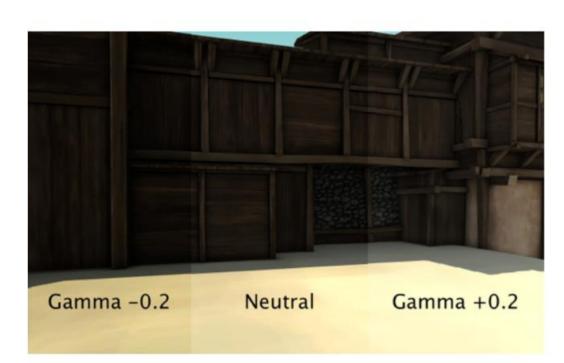
Many other types of point processing

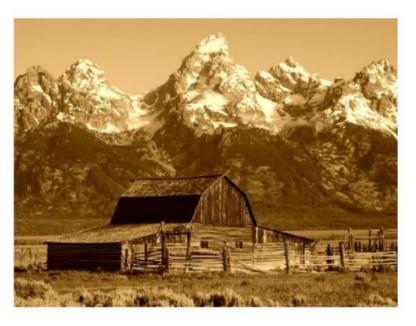
image after stylistic tonemapping

camera output

[Bae et al., SIGGRAPH 2006]

Many other types of point processing





Linear shift-invariant image filtering

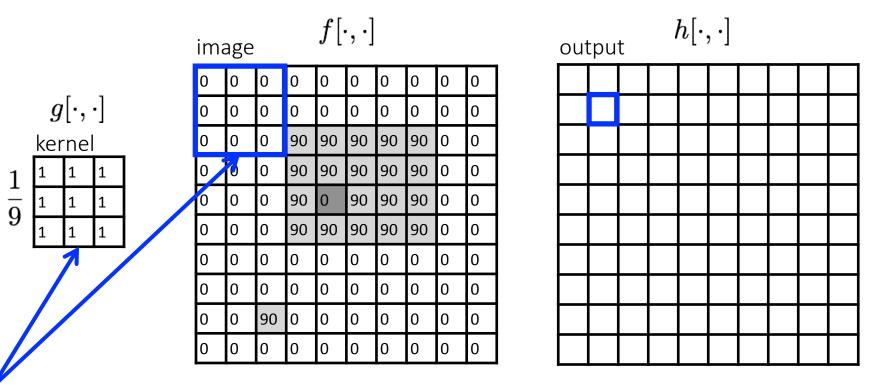
Linear shift-invariant image filtering

- Replace each pixel by a *linear* combination of its neighbors (and possibly itself).
- The combination is determined by the filter's *kernel*.
- The same kernel is *shifted* to all pixel locations so that all pixels use the same linear combination of their neighbors.

Example: the box filter

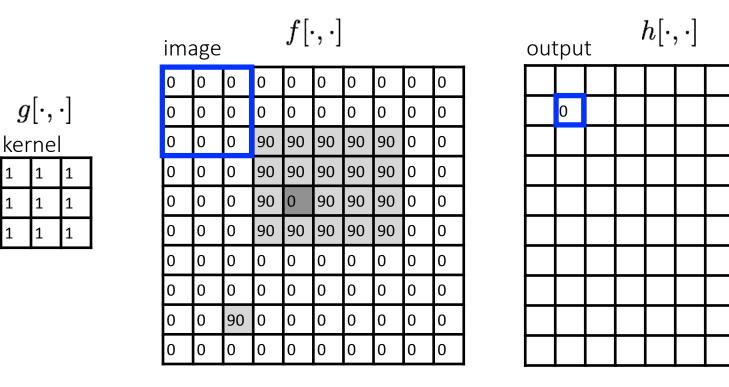
- also known as the 2D rect (not rekt) filter
- also known as the square mean filter

- replaces pixel with local average
- has smoothing (blurring) effect



note that we assume that the kernel coordinates are centered

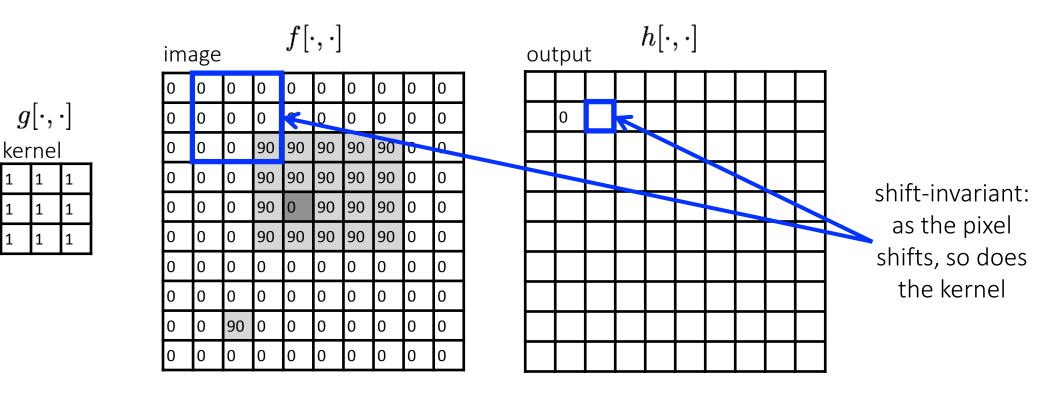
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)



 $\frac{1}{9}$

1

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output image (signal)

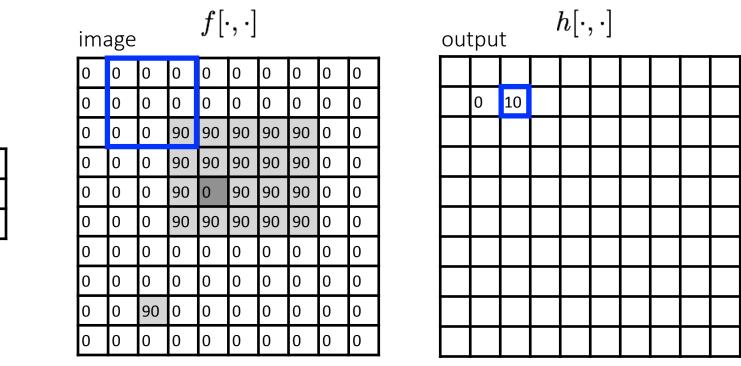


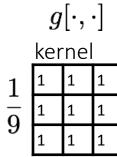
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

 $\frac{1}{9}$

1

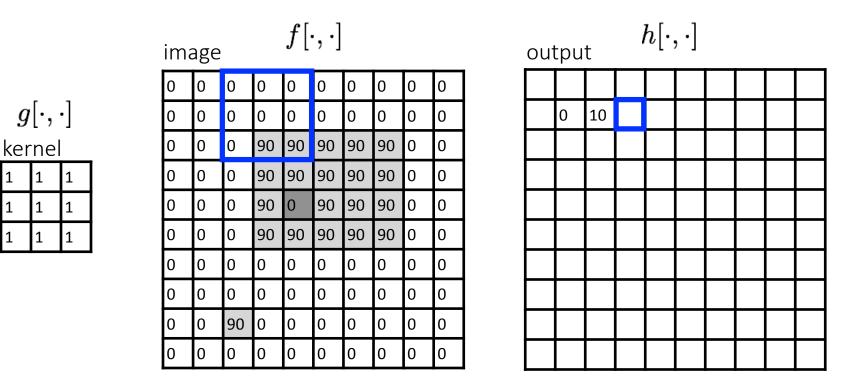
1





$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

output filter image (signal)



l

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+ \inf_{\text{image (signal)}} f[m+k,n+ in in in in in in in in in$$

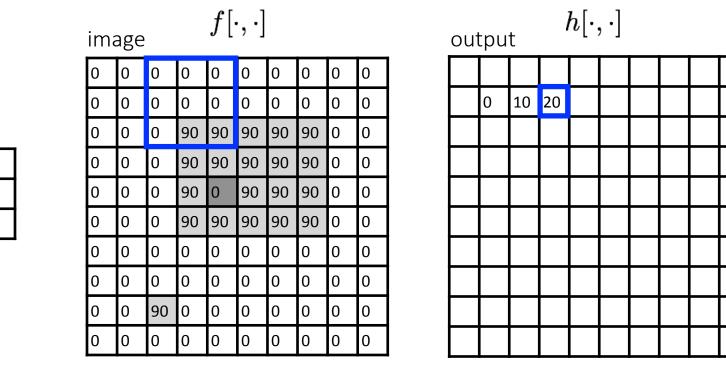
 $\frac{1}{9}$

1

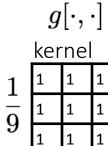
1

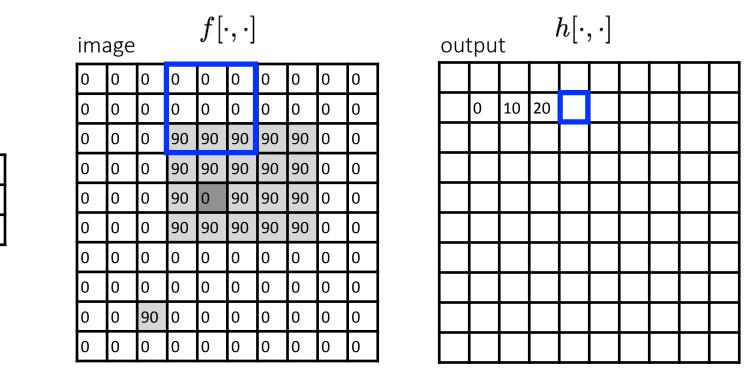
1

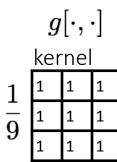
1



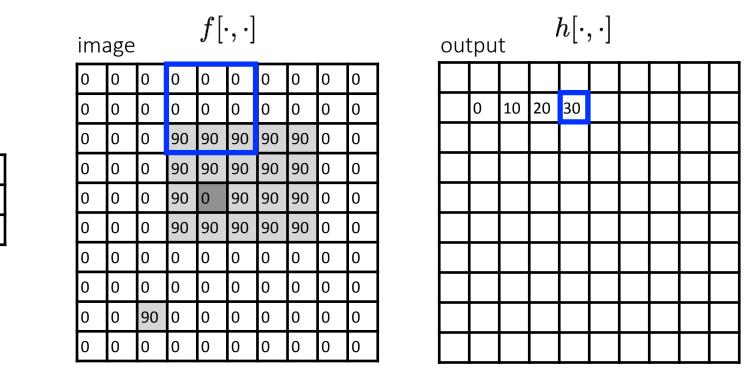
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

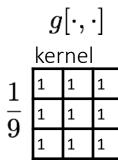






$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output k,l filter image (signal)



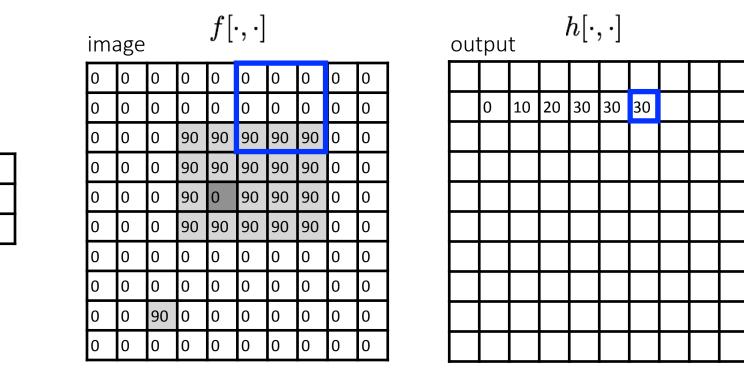


$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output k,l filter image (signal)

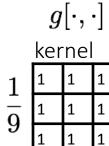


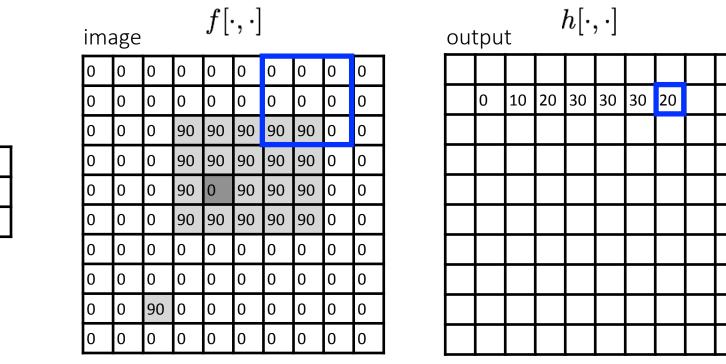
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

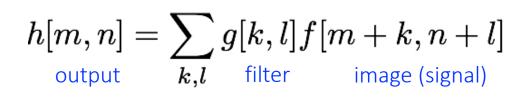
 $\frac{1}{9}$

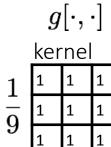


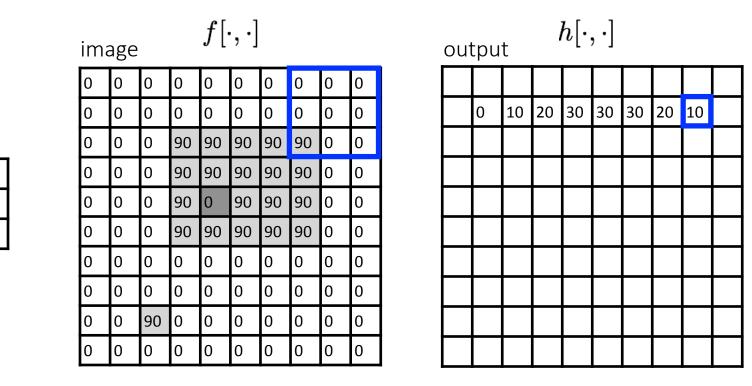
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

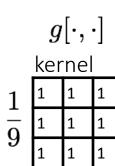




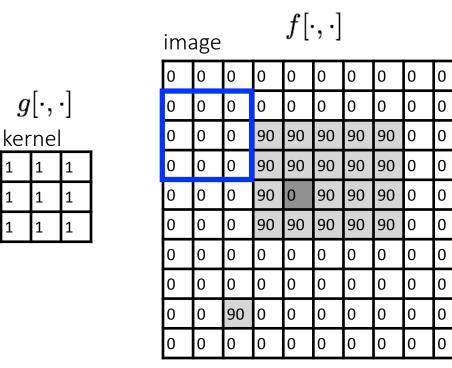




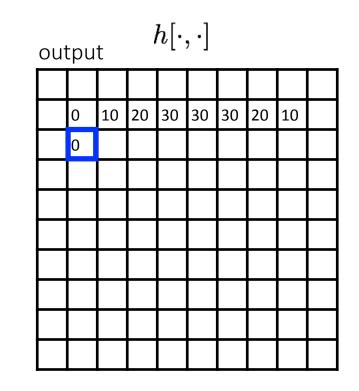




$$h[m,n] = \sum_{m{k},m{l}} g[k,m{l}] f[m+k,n+m{l}]$$
output $k,m{l}$ filter image (signal)

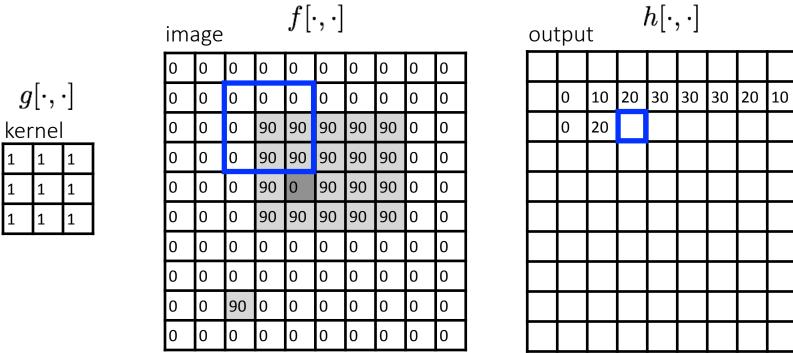


 $\frac{1}{9}$



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

 $h[\cdot,\cdot]$

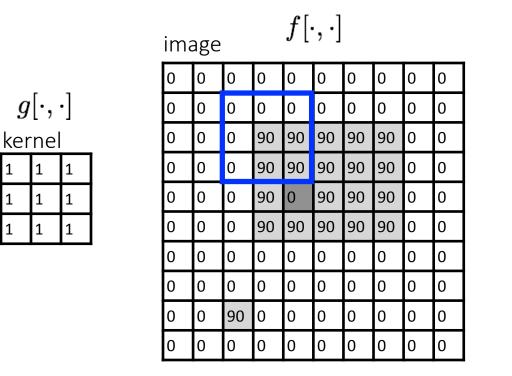


 $\frac{1}{9}$

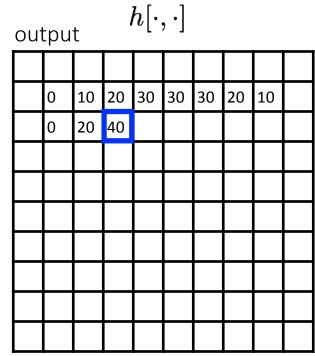
1

1

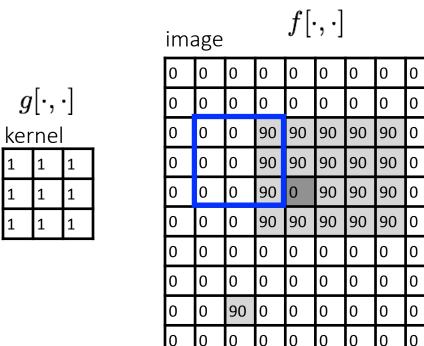
$$\begin{split} \frac{b}{0} & \frac$$



 $\frac{1}{9}$



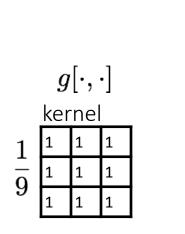
$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)



 $\frac{1}{9}$

ou	output $h[\cdot, \cdot]$												
	0	10	20	30	30	30	20	10					
	0	20	40	60	60	60	40	20					
	0												

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)



ima	$\frac{f[\cdot,\cdot]}{mage}$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

 $h[\cdot,\cdot]$ output

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30							

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

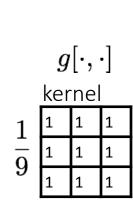
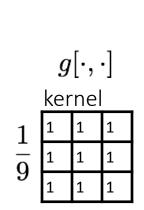


image $f[\cdot, \cdot]$										
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

output $h[\cdot,\cdot]$

	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30	50	80	80	90	60	30			
	0	30	50	80	80	90	60	30			
	0	20	30	50	50	60	40	20			
	0	10	20	30	30	30	20	10			
	10	10	10	10	0	0	0	0			
	10										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)



ima	image $f[\cdot, \cdot]$											
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

output $h[\cdot,\cdot]$

0	10	20	30	30	30	20	10			
0	20	40	60	60	60	40	20			
0	30	50	80	80	90	60	30			
0	30	50	80	80	90	60	30			
0	20	30	50	50	60	40	20			
0	10	20	30	30	30	20	10			
10	10	10	10	0	0	0	0			
10	10	10	10	0	0	0	0			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

... and the result is

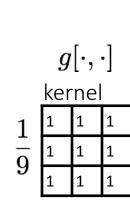


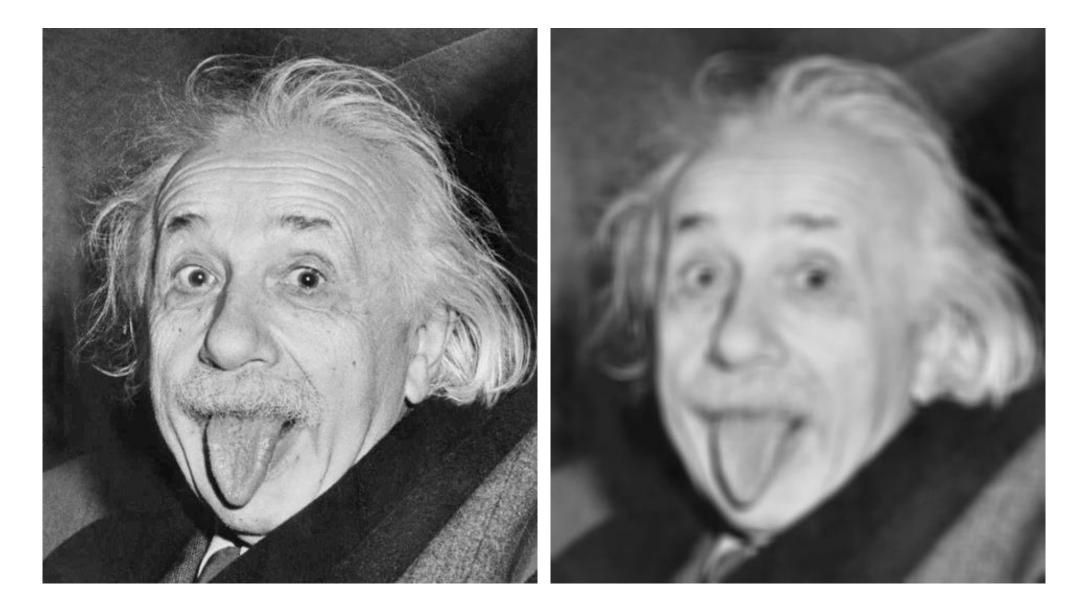
image $f[\cdot, \cdot]$											
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output $h[\cdot, \cdot]$

	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0	30	50	80	80	90	60	30			
	0	30	50	80	80	90	60	30			
	0	20	30	50	50	60	40	20			
	0	10	20	30	30	30	20	10			
	10	10	10	10	0	0	0	0			
	10	10	10	10	0	0	0	0			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
output filter image (signal)

Some more realistic examples

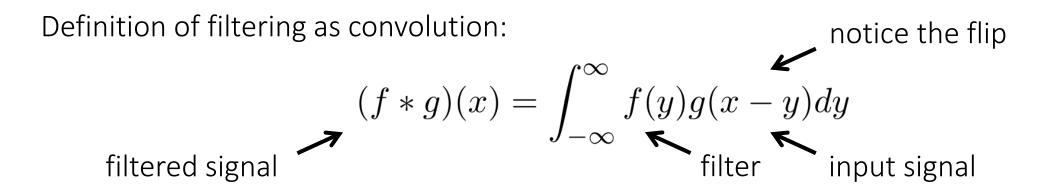


Some more realistic examples

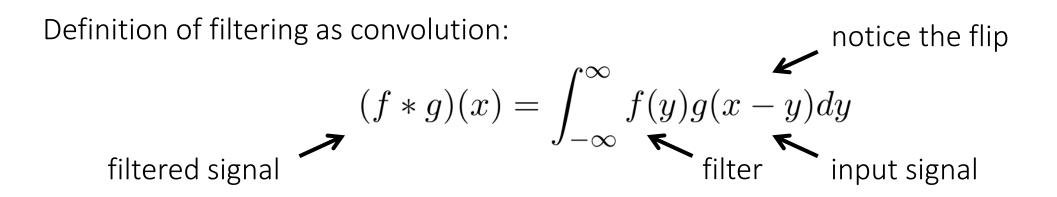
Some more realistic examples

Convolution

Convolution for 1D continuous signals

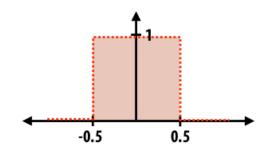


Convolution for 1D continuous signals



Consider the box filter example:

1D continuous
$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

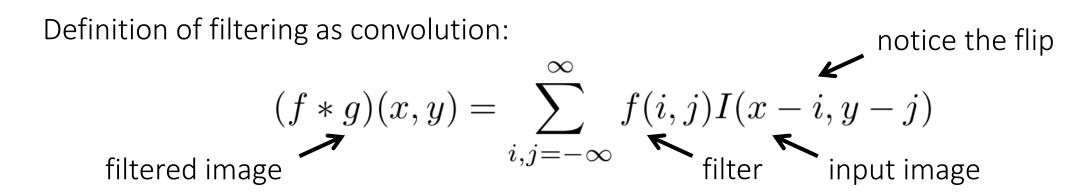


filtering output is a blurred version of g
$$(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy$$

Convolution for 2D discrete signals

Definition of filtering as convolution: notice the flip $(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$ filtered image filtered image

Convolution for 2D discrete signals



If the filter $\,f(i,j)$ is non-zero only within $-1\leq i,j\leq 1$, then

$$(f * g)(x, y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i, y-j)$$

The kernel we saw earlier is the 3x3 matrix representation of f(i,j) .

Convolution vs correlation

Definition of discrete 2D convolution:

$$(f * g)(x, y) = \sum_{i, j = -\infty}^{\infty} f(i, j) I(x - i, y - j)$$
 notice the flip

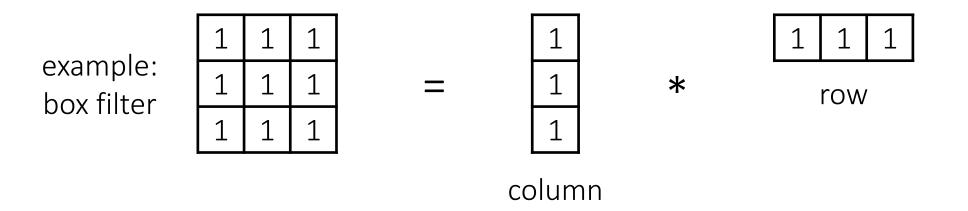
Definition of discrete 2D correlation:

notice the lack of a flip

$$(f * g)(x, y) = \sum_{i, j = -\infty}^{\infty} f(i, j)I(x + i, y + j)$$

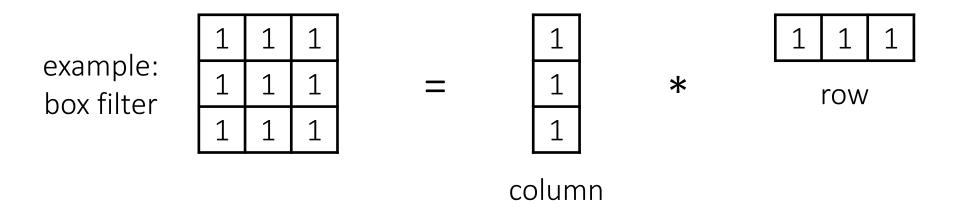
- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering (lectures 5-6).

A 2D filter is separable if it can be written as the product of a "column" and a "row".



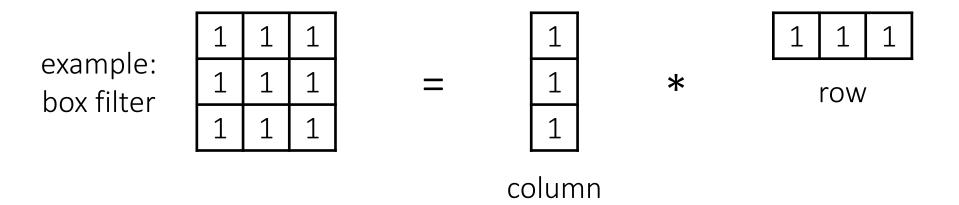
What is the rank of this filter matrix?

A 2D filter is separable if it can be written as the product of a "column" and a "row".



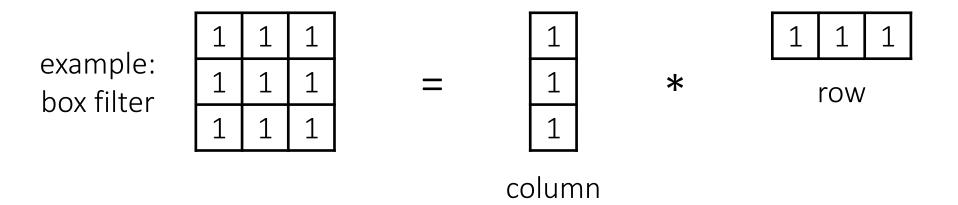
Why is this important?

A 2D filter is separable if it can be written as the product of a "column" and a "row".



2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

A 2D filter is separable if it can be written as the product of a "column" and a "row".

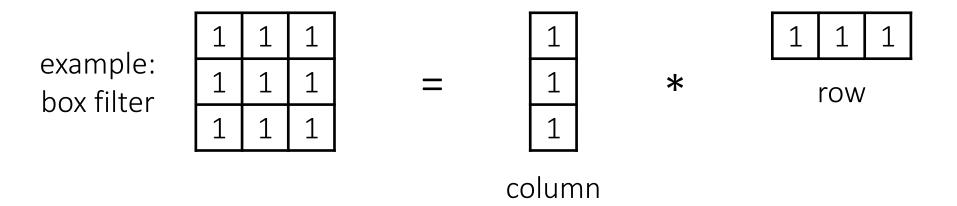


2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

• What is the cost of convolution with a non-separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

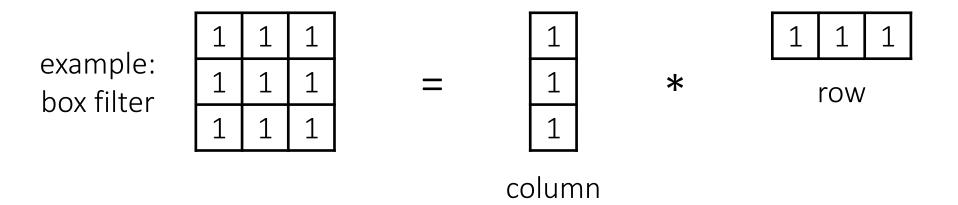


2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter? \longrightarrow M² x N²
- What is the cost of convolution with a separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".



2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter?
- What is the cost of convolution with a separable filter?

 $\longrightarrow M^2 \times N^2$ $\longrightarrow 2 \times N \times M^2$

A few more filters

do you see any problems in this image?

original

3x3 box filter

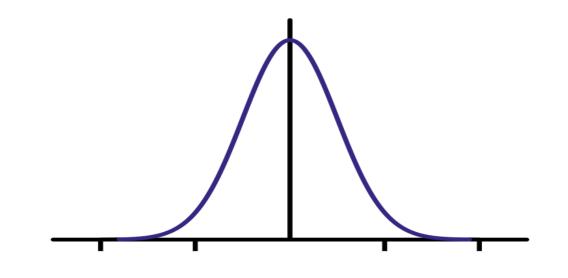
The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

• theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?



The Gaussian filter

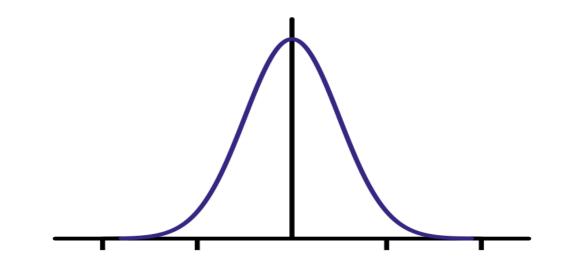
- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

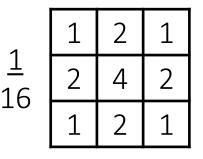
Any heuristics for selecting where to truncate?

usually at 2-3σ



Is this a separable filter?

kernel



The Gaussian filter

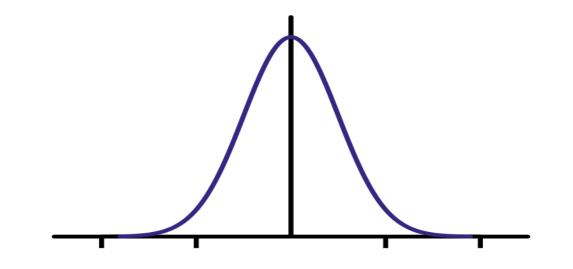
- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

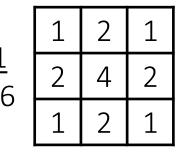
Any heuristics for selecting where to truncate?

usually at 2-3σ



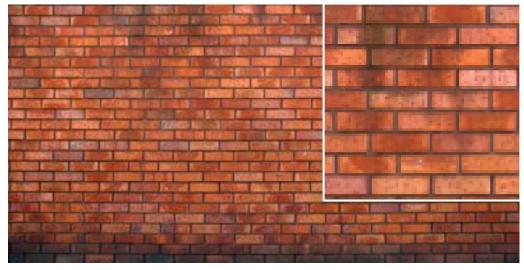
Is this a separable filter? Yes!

kernel



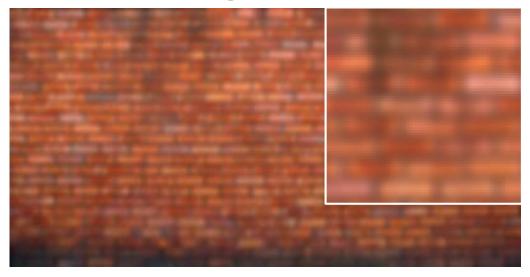
Gaussian filtering example

Gaussian vs box filtering

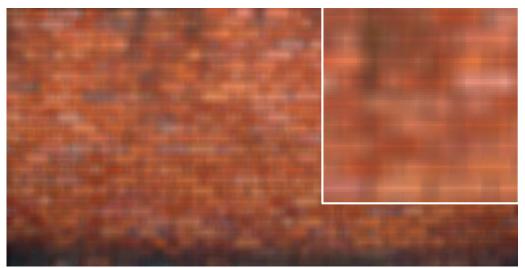


original

Which blur do you like better?



7x7 Gaussian

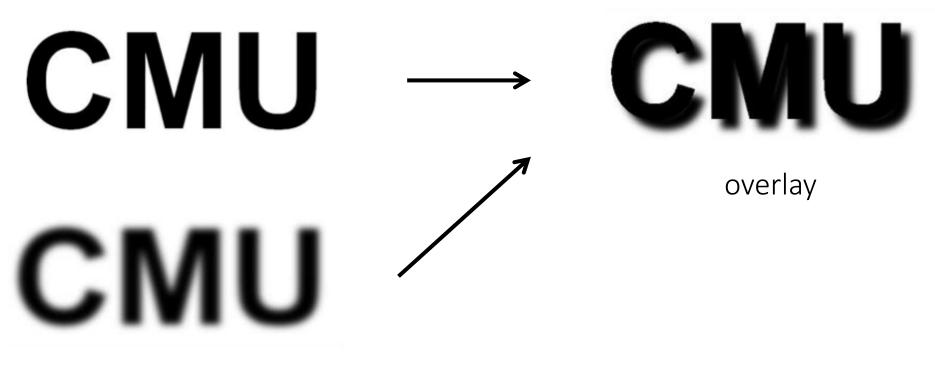


7x7 box

How would you create a soft shadow effect?

$CMU \rightarrow CMU$

How would you create a soft shadow effect?



Gaussian blur

Other filters

 input
 filter
 output

 0
 0
 0

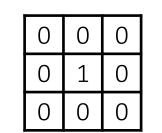
 0
 1
 0

 0
 0
 0

Other filters

input

filter

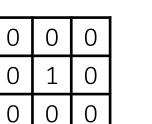


output

unchanged

input

filter



output

unchanged

input

filter

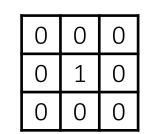
0 0 0 0 0 1 0 0 0

output

?

input

filter

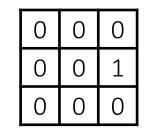


output

unchanged

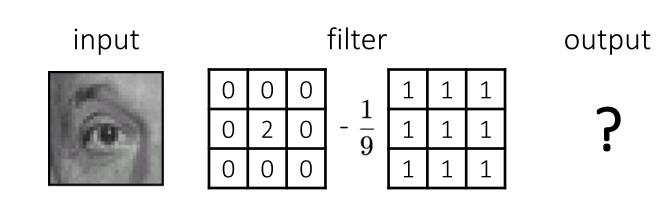
input

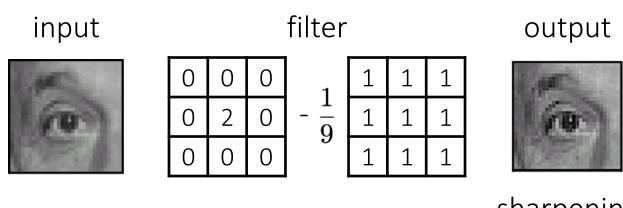
filter



output

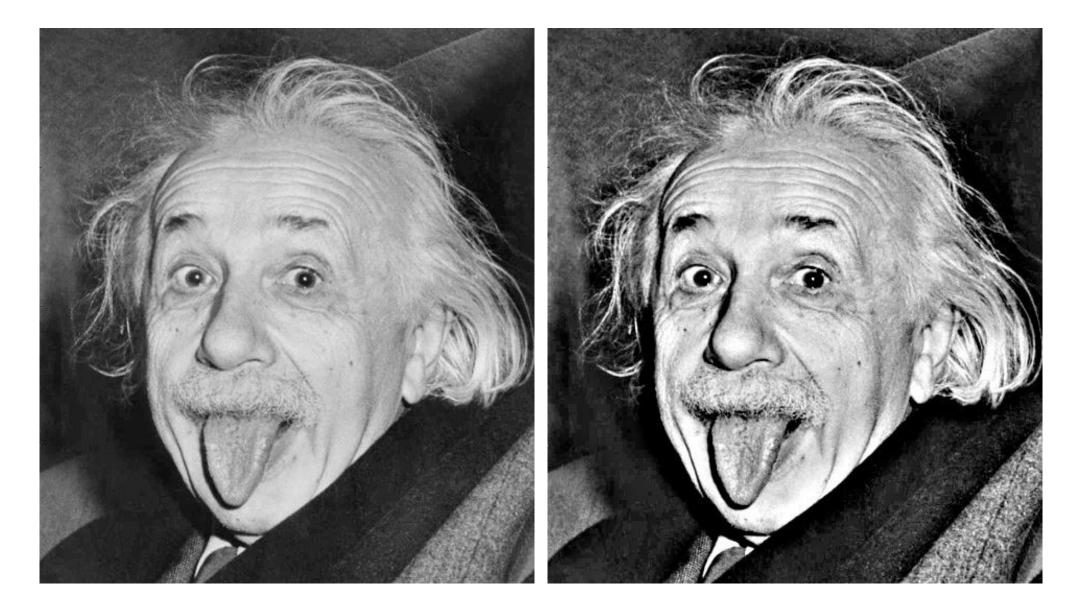
shift to left by one





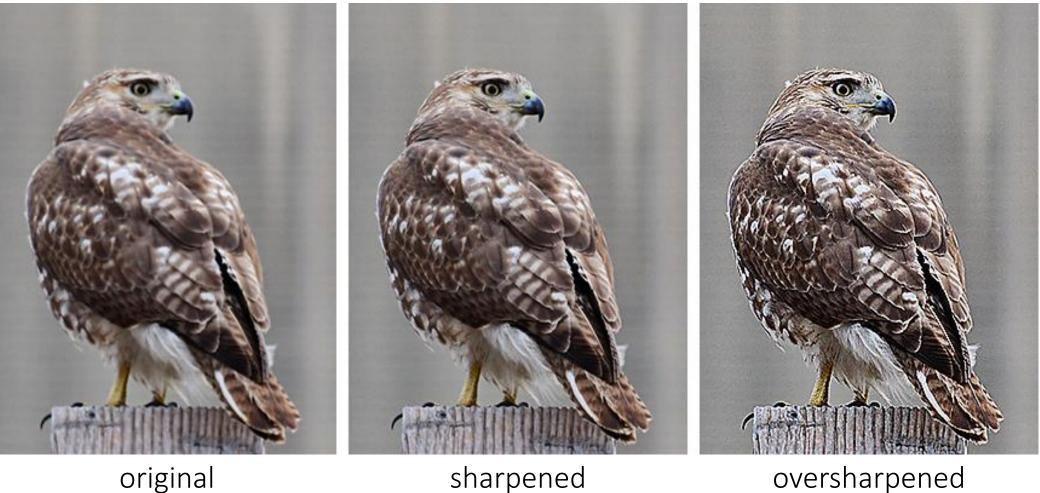
sharpening

- do nothing for flat areas
- stress intensity peaks



do you see any problems in this image?

Do not overdo it with sharpening

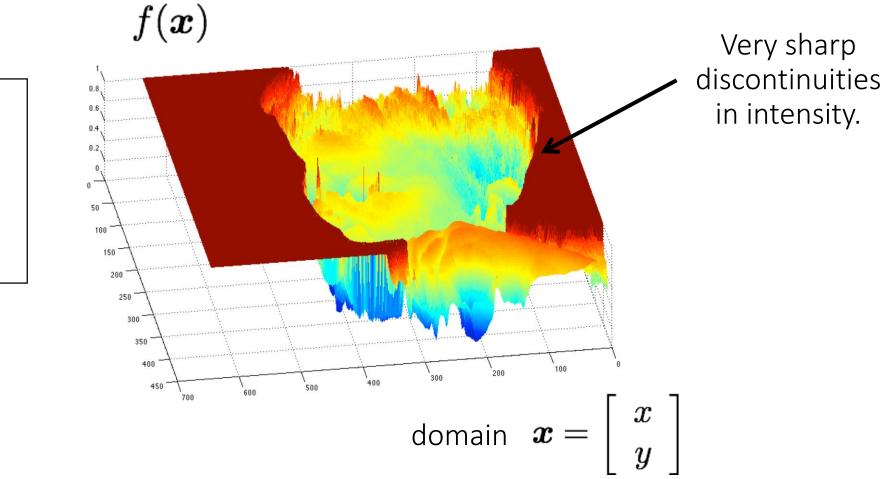


sharpened

oversharpened What is wrong in this image?

Image gradients

What are image edges?



grayscale image

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

 \checkmark You use finite differences.

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

What convolution kernel does this correspond to?

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

$$\begin{array}{c|c} -1 & 0 & 1 \\ \hline 1 & 0 & -1 \end{array}$$

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

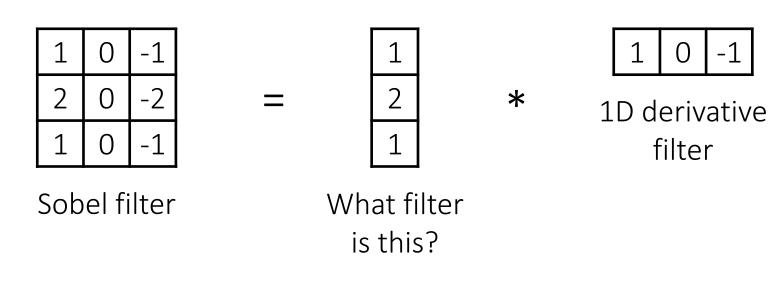
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

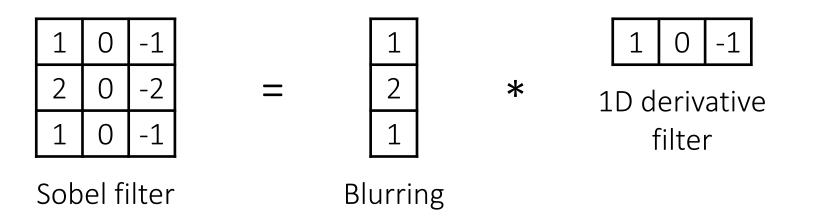
For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$

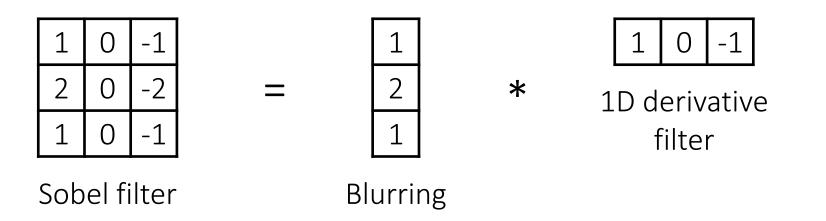
1D derivative filter

1	0	-1
---	---	----



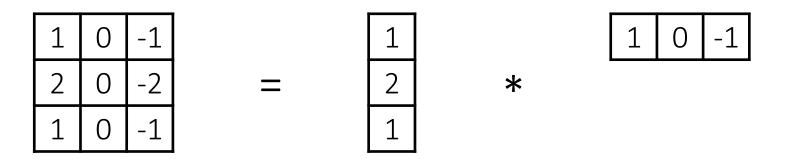


In a 2D image, does this filter responses along horizontal or vertical lines?



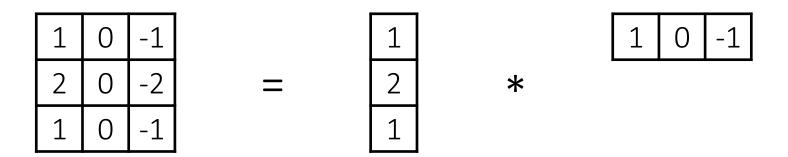
Does this filter return large responses on vertical or horizontal lines?

Horizontal Sober filter:

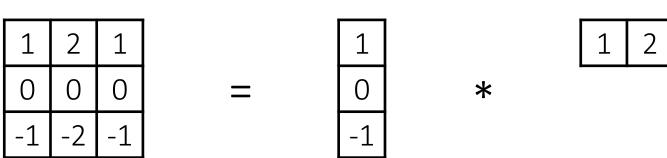


What does the vertical Sobel filter look like?

Horizontal Sober filter:



Vertical Sobel filter:



1

Sobel filter example

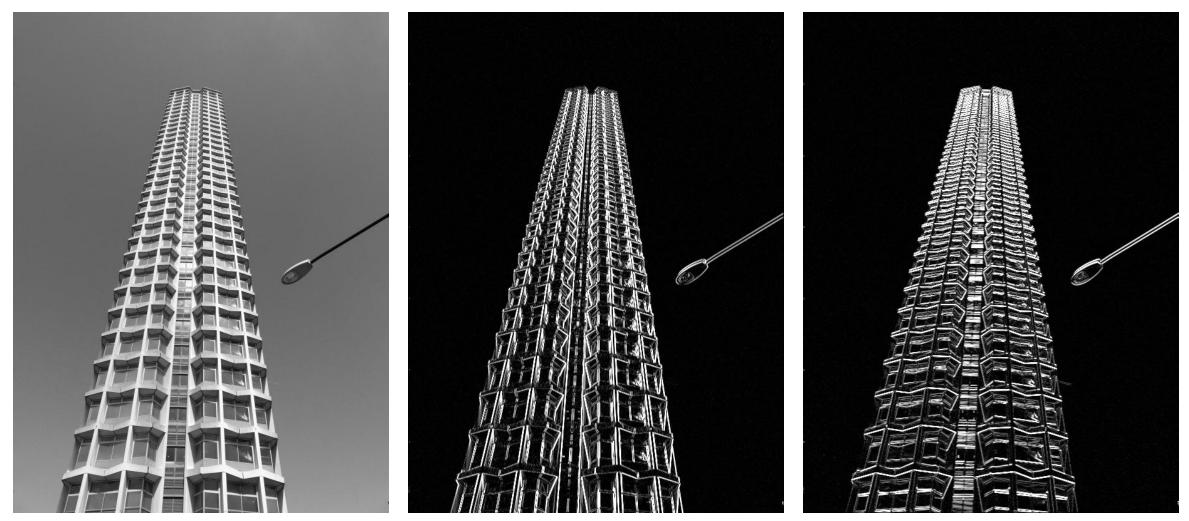


original

which Sobel filter?

which Sobel filter?

Sobel filter example

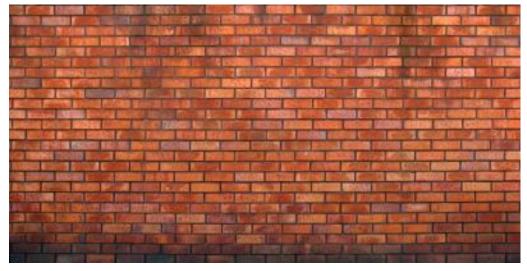


original

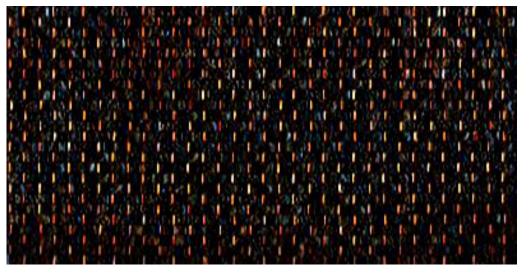
horizontal Sobel filter

vertical Sobel filter

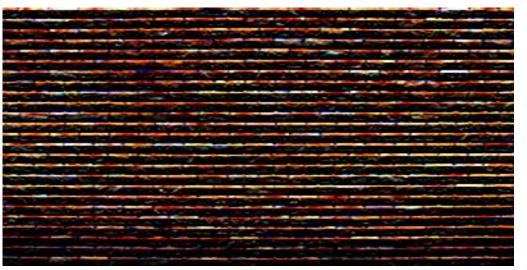
Sobel filter example



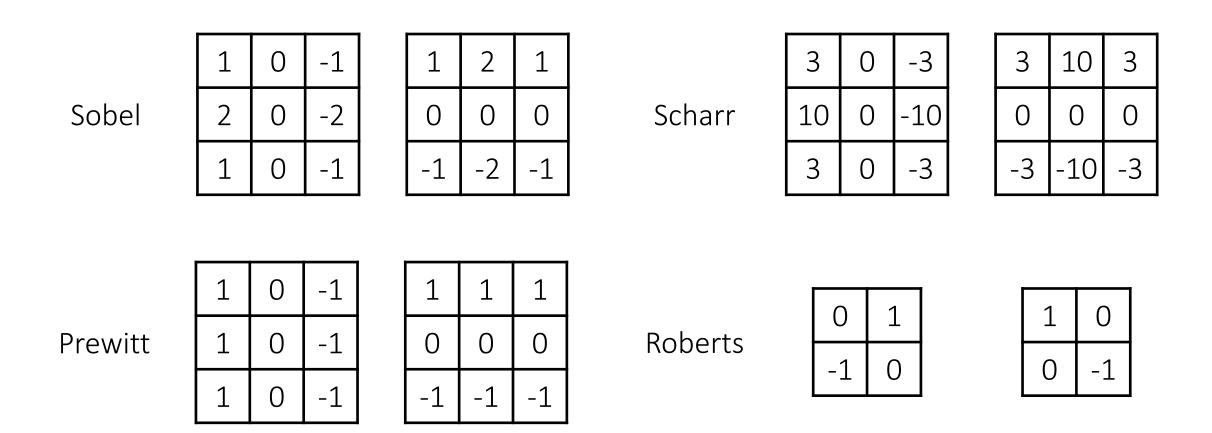
original



horizontal Sobel filter



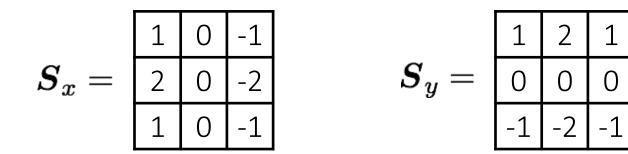
Several derivative filters



- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

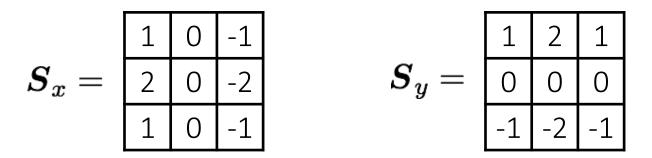
Computing image gradients

1. Select your favorite derivative filters.



Computing image gradients

1. Select your favorite derivative filters.

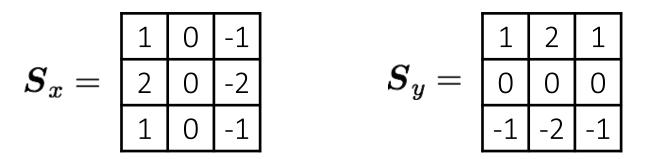


2. Convolve with the image to compute derivatives.

$$\frac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f} \qquad \qquad \frac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \otimes \boldsymbol{f}$$

Computing image gradients

1. Select your favorite derivative filters.



2. Convolve with the image to compute derivatives.

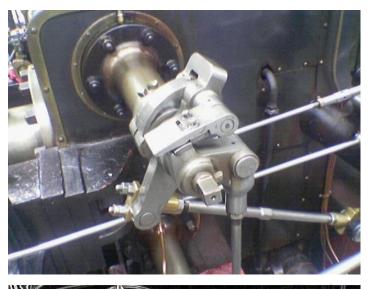
$$\frac{\partial \boldsymbol{f}}{\partial x} = \boldsymbol{S}_x \otimes \boldsymbol{f} \qquad \qquad \frac{\partial \boldsymbol{f}}{\partial y} = \boldsymbol{S}_y \otimes \boldsymbol{f}$$

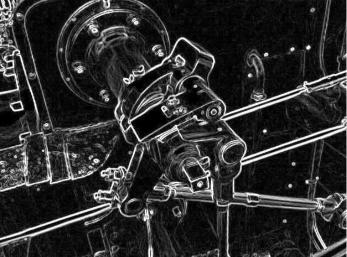
3. Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
gradient direction amplitude

Image gradient example

gradient amplitude

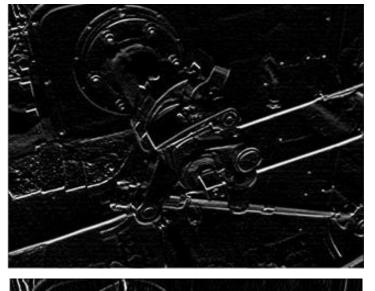




vertical derivative

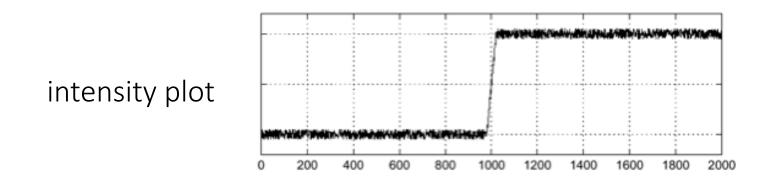
horizontal

derivative

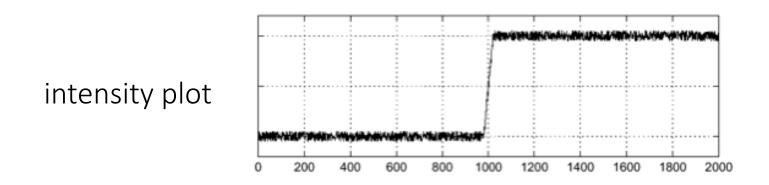


How does the gradient direction relate to these edges?

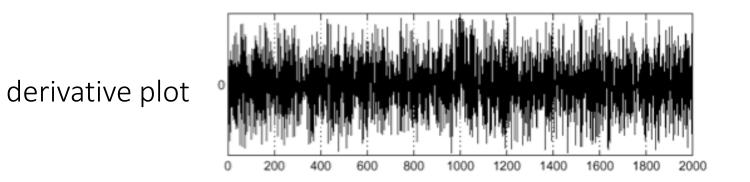
How do you find the edge of this signal?



How do you find the edge of this signal?



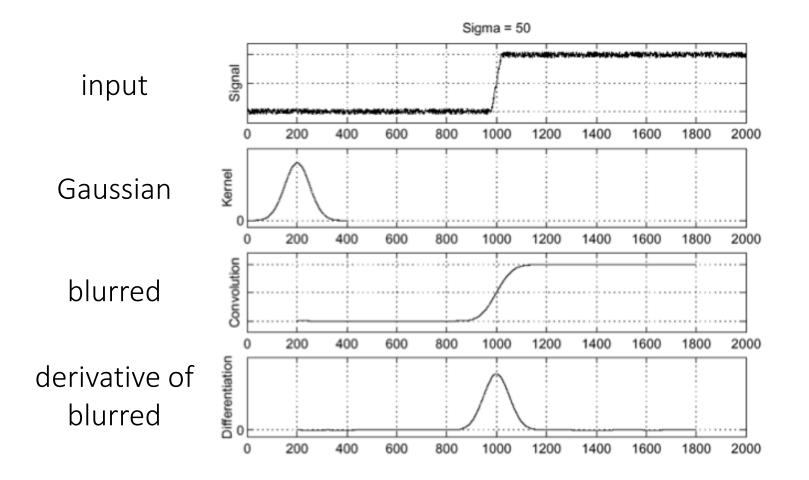
Using a derivative filter:

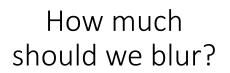


What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

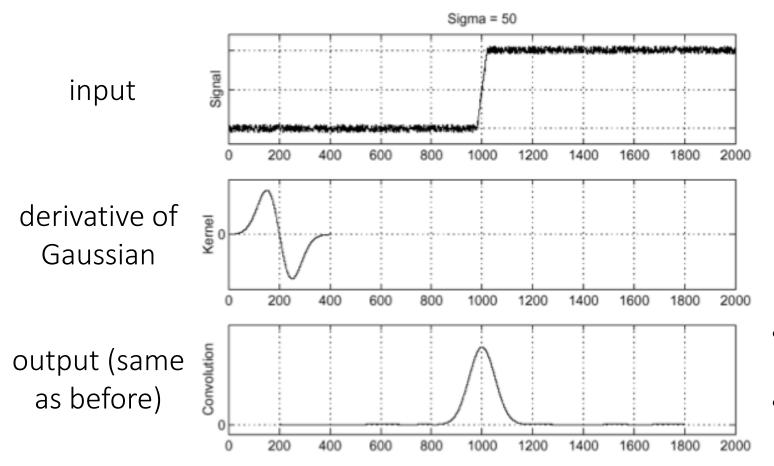




Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$



- How many operations did we save?
- Any other advantages beyond efficiency?

Laplace filter

Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow Laplace filter$?

Laplace filter

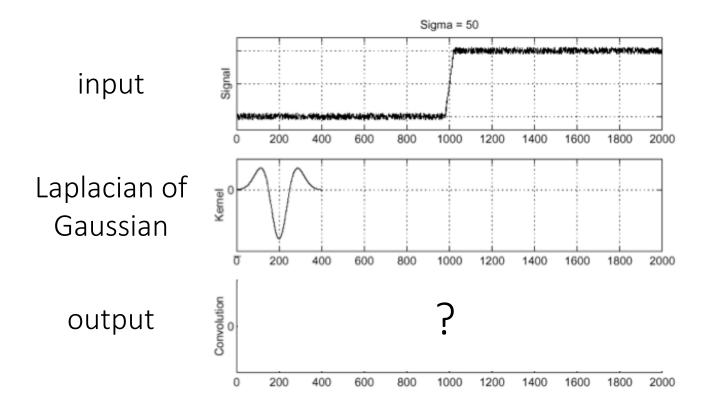
Basically a second derivative filter.

• We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h} \longrightarrow 1D$$
 derivative filter
 $1 \quad 0 \quad -1$
second-order
finite difference $f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow 1D$ derivative filter
 $1 \quad 0 \quad -1$

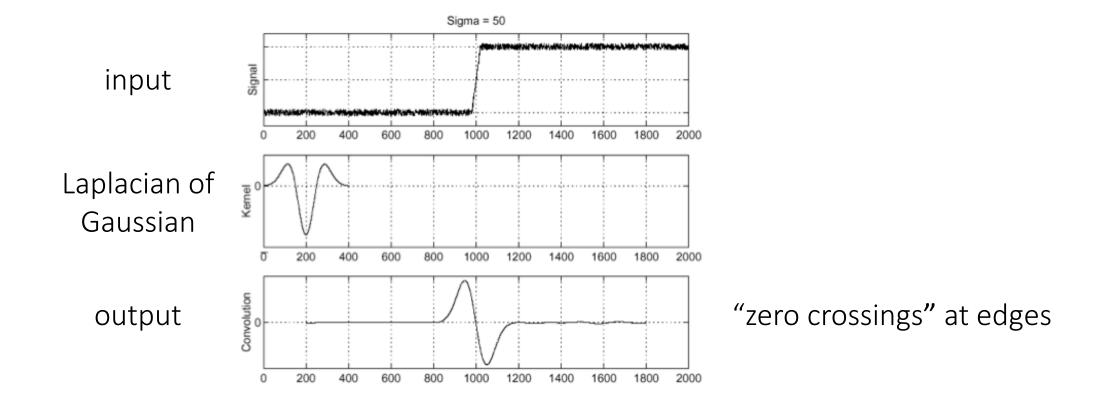
Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering



Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

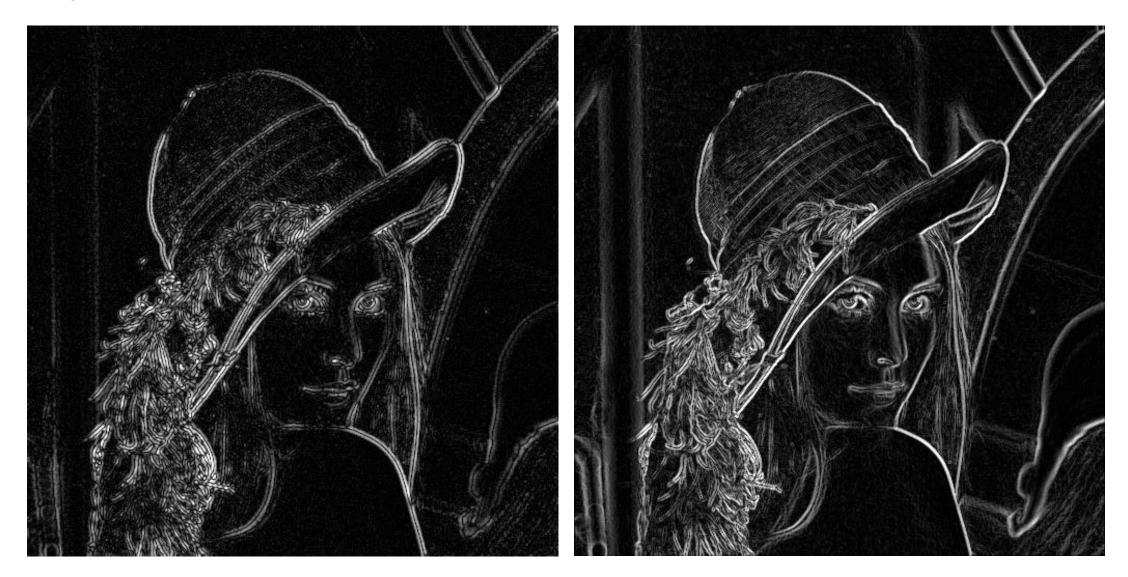


Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

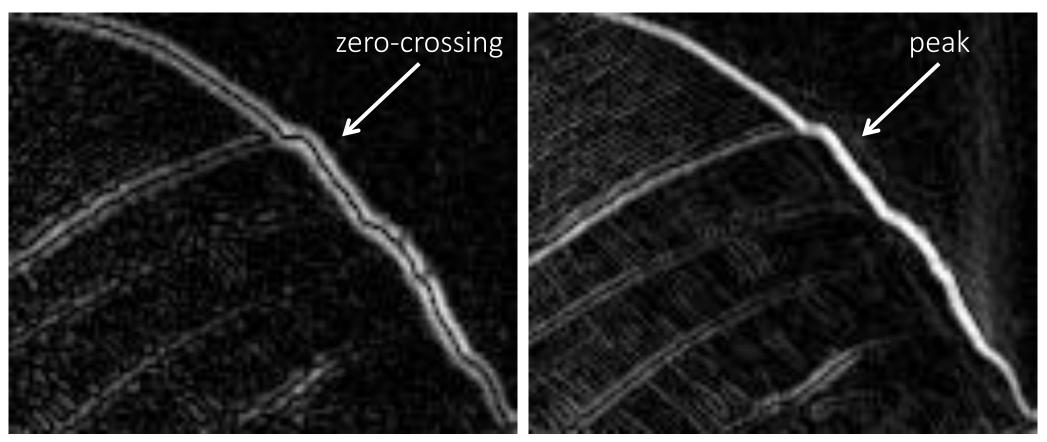
Laplacian of Gaussian vs Derivative of Gaussian



Laplacian of Gaussian filtering

Derivative of Gaussian filtering

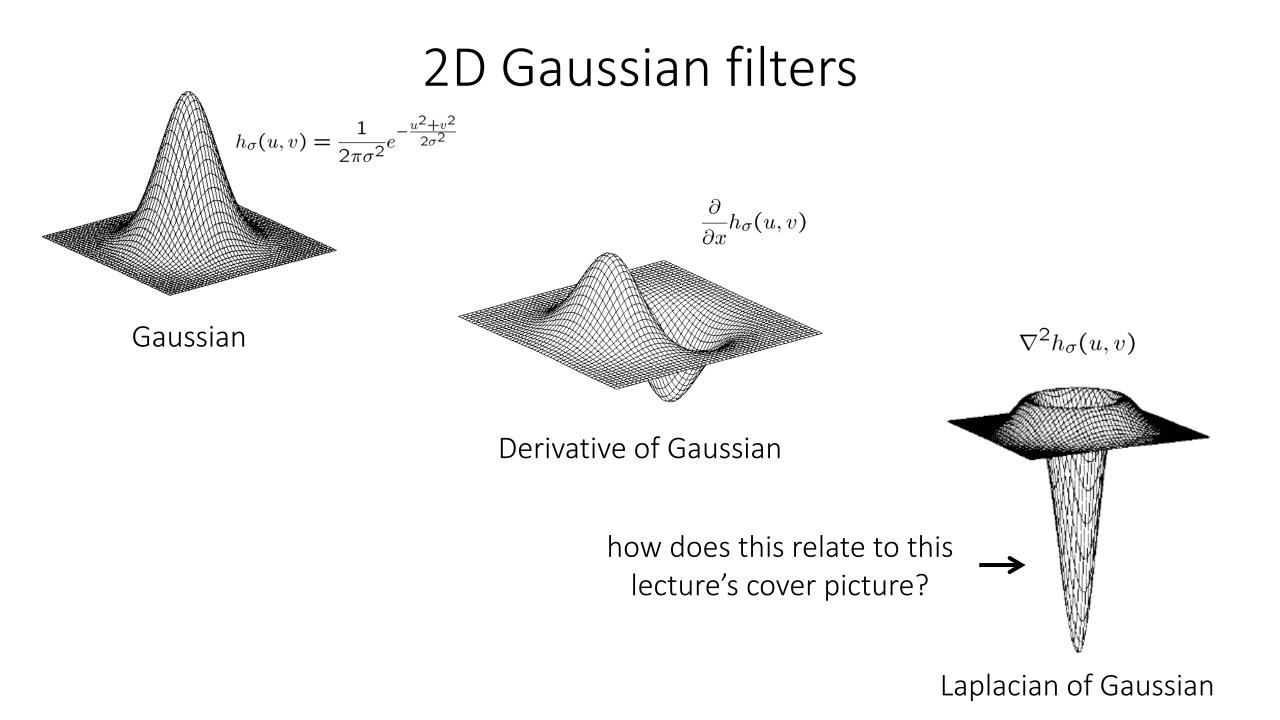
Laplacian of Gaussian vs Derivative of Gaussian



Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Zero crossings are more accurate at localizing edges (but not very convenient).



References

Basic reading:

• Szeliski textbook, Section 3.2