
Image filtering

16-385 Computer Vision
Spring 2020, Lecture 2http://www.cs.cmu.edu/~16385/

Course announcements

• Make sure you are on Piazza (sign up on your own using the link on the course website).
- I think I signed up most of you this morning.
- How many of you aren’t already on Piazza?

• Make sure to take the start-of-semester survey (link posted on Piazza).
- We need your responses to schedule office hours for the rest of the semester.
- 40 responses (about 60%) as of this morning.

• Office hours for this week only:
- Yannis (Smith Hall Rm 225), Friday, Friday 5-7 pm.
- Hours decided based on survey responses so far.

Overview of today’s lecture

• Types of image transformations.

• Point image processing.

• Linear shift-invariant image filtering.

• Convolution.

• Image gradients.

Slide credits

Most of these slides were adapted directly from:

• Kris Kitani (15-463, Fall 2016).

Inspiration and some examples also came from:

• Fredo Durand (Digital and Computational Photography, MIT).

• Kayvon Fatahalian (15-769, Fall 2016).

Types of image transformations

What is an image?

What is an image?

A (color) image
is a 3D tensor
of numbers.

What is an image?
red green blue

colorized for visualization

actual intensity values per channel

color image patch

How many bits are
the intensity values?

Each channel
is a 2D array of

numbers.

What is an image?

A (grayscale)
image is a 2D

function.

domain
What is the range of
the image function f?

grayscale image

What types of image transformations can we do?

changes pixel values changes pixel locations

Filtering Warping

What types of image transformations can we do?

changes range of image function changes domain of image function

Filtering Warping

What types of image filtering can we do?

Point Operation

Neighborhood Operation

point processing

“filtering”

Point processing

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Examples of point processing
original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you
implement these?

Many other types of point processing

camera output image after stylistic tonemapping

[Bae et al., SIGGRAPH 2006]

Many other types of point processing

Linear shift-invariant image filtering

Linear shift-invariant image filtering

• Replace each pixel by a linear combination of its neighbors (and possibly itself).

• The combination is determined by the filter’s kernel.

• The same kernel is shifted to all pixel locations so that all pixels use the same linear
combination of their neighbors.

Example: the box filter

• also known as the 2D rect (not rekt) filter

• also known as the square mean filter

1 1 1

1 1 1

1 1 1

• replaces pixel with local average

• has smoothing (blurring) effect

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

kernel

image output

filter image (signal)output

Let’s run the box filter

note that we assume that
the kernel coordinates are

centered

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

shift-invariant:
as the pixel

shifts, so does
the kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

01 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 301 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

10 10 10 10 0 0 0 0

10

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

10 10 10 10 0 0 0 0

10 10 10 10 0 0 0 0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

Let’s run the box filter

kernel

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

0 10 20 30 30 30 20 10

10 10 10 10 0 0 0 0

10 10 10 10 0 0 0 0

1 1 1

1 1 1

1 1 1

image output

filter image (signal)output

… and the result is

kernel

Some more realistic examples

Some more realistic examples

Some more realistic examples

Convolution

Convolution for 1D continuous signals

Definition of filtering as convolution:

filtered signal input signalfilter

notice the flip

Convolution for 1D continuous signals

Definition of filtering as convolution:

filtered signal input signalfilter

Consider the box filter example:

notice the flip

1D continuous
box filter

filtering output is a
blurred version of g

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image input imagefilter

notice the flip

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image input imagefilter

If the filter is non-zero only within , then

notice the flip

The kernel we saw earlier is the 3x3 matrix representation of .

Convolution vs correlation

Definition of discrete 2D convolution: notice the flip

Definition of discrete 2D correlation: notice the lack of a flip

• Most of the time won’t matter, because our kernels will be symmetric.
• Will be important when we discuss frequency-domain filtering (lectures 5-6).

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example:
box filter

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example:
box filter

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter? M2 x N2

• What is the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a “column” and a “row”.

=
1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

*

column

row
example:
box filter

2D convolution with a separable filter is equivalent to two 1D convolutions (with the
“column” and “row” filters).

If the image has M x M pixels and the filter kernel has size N x N:
• What is the cost of convolution with a non-separable filter? M2 x N2

• What is the cost of convolution with a separable filter? 2 x N x M2

A few more filters

do you see
any problems
in this image?

original 3x3 box filter

The Gaussian filter

• named (like many other things) after
Carl Friedrich Gauss

• kernel values sampled from the 2D
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

• named (like many other things) after
Carl Friedrich Gauss

• kernel values sampled from the 2D
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?
• usually at 2-3σ

1 2 1

2 4 2

1 2 1

1
16

kernel

Is this a separable filter?

The Gaussian filter

• named (like many other things) after
Carl Friedrich Gauss

• kernel values sampled from the 2D
Gaussian function:

• weight falls off with distance from center pixel

• theoretically infinite, in practice truncated to
some maximum distance

Any heuristics for selecting where to truncate?
• usually at 2-3σ

1 2 1

2 4 2

1 2 1

1
16

kernel

Is this a separable filter? Yes!

Gaussian filtering example

Gaussian vs box filtering

7x7 Gaussian

7x7 box

original

Which blur do you like better?

How would you create a soft shadow effect?

How would you create a soft shadow effect?

Gaussian blur

overlay

Other filters

0 0 0

0 1 0

0 0 0
?

input filter output

Other filters

0 0 0

0 1 0

0 0 0
?

input filter output

unchanged

Other filters

0 0 0

0 1 0

0 0 0
?

input filter output

unchanged

0 0 0

0 0 1

0 0 0
?

input filter output

Other filters

0 0 0

0 1 0

0 0 0
?

input filter output

unchanged

0 0 0

0 0 1

0 0 0
?

input filter output

shift to left
by one

Other filters

?

input filter output

0 0 0

0 2 0

0 0 0

1 1 1

1 1 1

1 1 1

-

Other filters

?

input filter output

0 0 0

0 2 0

0 0 0

1 1 1

1 1 1

1 1 1

-

• do nothing for flat areas
• stress intensity peaks

sharpening

Sharpening examples

Sharpening examples

Sharpening examples

Sharpening examples

do you see
any problems
in this image?

Do not overdo it with sharpening

original sharpened oversharpened

What is wrong in this image?

Image gradients

What are image edges?

Very sharp
discontinuities

in intensity.

domain

grayscale image

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.

Finite differences

High-school reminder: definition of a derivative using forward difference

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

What convolution kernel
does this correspond to?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

-1 0 1 ?

?

Finite differences

High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

1D derivative filter

The Sobel filter

=
1

2

1

1 0 -1

2 0 -2

1 0 -1

Sobel filter

1 0 -1

*

What filter
is this?

1D derivative
filter

The Sobel filter

=
1

2

1

1 0 -1

2 0 -2

1 0 -1

Sobel filter

1 0 -1

*

Blurring

1D derivative
filter

In a 2D image, does this filter responses along horizontal or vertical lines?

The Sobel filter

=
1

2

1

1 0 -1

2 0 -2

1 0 -1

Sobel filter

1 0 -1

Blurring

1D derivative
filter

Does this filter return large responses on vertical or horizontal lines?

*

The Sobel filter

=
1

2

1

1 0 -1

2 0 -2

1 0 -1

1 0 -1

*

Horizontal Sober filter:

What does the vertical Sobel filter look like?

The Sobel filter

=
1

2

1

1 0 -1

2 0 -2

1 0 -1

1 0 -1

*

Horizontal Sober filter:

Vertical Sobel filter:

=
1

0

-1

1 2 1

0 0 0

-1 -2 -1

1 2 1

*

Sobel filter example

original which Sobel filter? which Sobel filter?

Sobel filter example

original horizontal Sobel filter vertical Sobel filter

Sobel filter example

horizontal Sobel filter

vertical Sobel filter

original

Several derivative filters

Scharr

3 0 -3

10 0 -10

3 0 -3

3 10 3

0 0 0

-3 -10 -3

Sobel

1 0 -1

2 0 -2

1 0 -1

1 2 1

0 0 0

-1 -2 -1

Prewitt

1 0 -1

1 0 -1

1 0 -1

1 1 1

0 0 0

-1 -1 -1

Roberts
0 1

-1 0

1 0

0 -1

• How are the other filters derived and how do they relate to the Sobel filter?
• How would you derive a derivative filter that is larger than 3x3?

Computing image gradients
1. Select your favorite derivative filters.

1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

1 0 -1

Computing image gradients
1. Select your favorite derivative filters.

1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

1 0 -1

2. Convolve with the image to compute derivatives.

Computing image gradients
1. Select your favorite derivative filters.

1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

1 0 -1

2. Convolve with the image to compute derivatives.

3. Form the image gradient, and compute its direction and amplitude.

gradient direction amplitude

Image gradient example

original

gradient
amplitude

vertical
derivative

horizontal
derivative

How does the gradient direction relate to these edges?

How do you find the edge of this signal?

intensity plot

How do you find the edge of this signal?

intensity plot

derivative plot

Using a derivative filter:

What’s the
problem here?

Differentiation is very sensitive to noise

Gaussian

derivative of
blurred

input

blurred

When using derivative filters, it is critical to blur first!

How much
should we blur?

Derivative of Gaussian (DoG) filter

derivative of
Gaussian

output (same
as before)

input

• How many operations
did we save?

• Any other advantages
beyond efficiency?

Derivative theorem of convolution:

Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

?

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference

Laplace filter

Basically a second derivative filter.
• We can use finite differences to derive it, as with first derivative filter.

Laplace filter

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

Laplacian of
Gaussian

output

input

?

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

Laplacian of
Gaussian

output

input

“zero crossings” at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

Zero crossings are more accurate at localizing edges (but not very convenient).

Laplacian of Gaussian filtering Derivative of Gaussian filtering

zero-crossing peak

2D Gaussian filters

Gaussian

Derivative of Gaussian

Laplacian of Gaussian

how does this relate to this
lecture’s cover picture?

Basic reading:
• Szeliski textbook, Section 3.2

References

