Wrap-up

Course announcements

- Programming assignment 7 is due on <u>Sunday</u>.
 - Any questions about PA 7?
- Take-home quiz 11 is due on <u>Sunday</u>.
 - Any questions about TQ 11?
- You can use all of your remaining late days on either PA7 or TQ11.

Class evaluation*s* – please take them!

- CMU's Faculty Course Evaluations (FCE): https://cmu.smartevals.com/
- 16-385 end-of-semester survey: <u>https://docs.google.com/forms/d/e/1FAIpQLSeO2CcSkCpi7RB0KXUm0su8s9tMMBaRLcxNaB9t0Fk7CVxwNg/viewform</u>
- Please take both, super helpful for developing future offerings of the class.
- Thanks in advance!

Today's lecture

- Structure from motion.
- Class wrap-up.

Course overview

1. Image processing.

<u>Lectures 1 – 7</u>

See also 18-793: Image and Video Processing

2. Geometry-based vision.

<u>Lectures 7 – 12</u>

See also 16-822: Geometry-based Methods in Vision

3. Physics-based vision.

Lectures 13 – 16

See also 16-823: Physics-based Methods in Vision

See also 15-462: Computer Graphics

See also 15-463: Computational Photography

4. Semantic vision.

Lectures 17 – 20

See also 16-824: Vision Learning and Recognition

See also 10-703: Deep Reinforcement Learning

5. Dealing with motion.

Lectures 21 – 24

See also 16-831: Statistical Techniques in Robotics

See also 16-833: Robot Localization and Mapping

Image processing

Image filtering

Image gradients

image pyramids

Boundaries

Fourier filtering

Hough Transform

Image features

Corner detection Multi-scale detection

Haar-like

HOG

SURF

SIFT

2D alignment

Figure 1: Basic set of 2D planar transformations

DLT

RANSAC

Camera and multi-view geometry

x = PX

 \mathbf{P}

X

camera matrix

pose estimation

triangulation

 ${f F}$

fundamental matrix

epipolar geometry

Reconstruction

Stereo

Stereo Rectification

Block matching

Energy minimization

Image formation and physics

Radiometry and image formation

Image processing pipeline

Photometric stereo

Radiometric and color calibration

Object recognition

Bag-of-words

K-means

Nearest Neighbor

Naive Bayes

SVM

Neural networks

Perceptron

Gradient Decent

Convolutional Neural Networks

Optical flow and alignment

$$\begin{bmatrix} I_x(\boldsymbol{p}_1) & I_y(\boldsymbol{p}_1) \\ I_x(\boldsymbol{p}_2) & I_y(\boldsymbol{p}_2) \\ \vdots & \vdots \\ I_x(\boldsymbol{p}_{25}) & I_y(\boldsymbol{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\boldsymbol{p}_1) \\ I_t(\boldsymbol{p}_2) \\ \vdots \\ I_t(\boldsymbol{p}_{25}) \end{bmatrix} \qquad \qquad \min_{\boldsymbol{u}, \boldsymbol{v}} \sum_{ij} \left\{ E_d(i, j) + \lambda E_s(i, j) \right\}$$

Constant Flow

$$\min_{\boldsymbol{u},\,\boldsymbol{v}} \sum_{ij} \left\{ E_d(i,j) + \lambda E_s(i,j) \right\}$$

Horn-Schunck

Lucas-Kanade (Forward additive)

Baker-Matthews (Inverse Compositional)

Tracking in videos

KLT

Mean shift

Things you should know how to do

- 1. Detect lines (circles, shapes) in an image.
- 2. Perform automatic image warping and basic AR.
- 3. Reconstruct 3D scene structure from two images.
- 4. Do photometric stereo and render simple images.
- 5. Recognize objects using a bag-of-words model.
- 6. Recognize objects using deep CNNs.
- 7. Track objects in video.

Questions?

Do you plan on taking any other vision courses?

Which part of the class did you like the most?

Which part of the class did you like the least?

Any topics you wanted to learn more about?

Any topics you wanted to learn less about?

Would the class work better if we did learning first?

Which was your favorite programming assignment?

Which was your least favorite programming assignment?

Would it be better if programming assignments were in Matlab?

Do the take-home quizzes work?

How does course workload compare to other classes?