
16-385 Computer Vision, Spring 2020

Take-home Quiz 8

Due Date: Monday April 6, 2020 23:59

Question 1

As we discussed in class, when using the (k-)nearest-neighbor algorithm for classification,
an important choice we have to make is the distance, or metric, function we will use. Given
the space of d-dimensional vectors Rd, a function D : Rd ×Rd → R is a valid metric for this
space if and only if it satisfies all of the following properties for all x,y, z ∈ Rd:

1. Non-negativity : D (x,y) ≥ 0.

2. Reflexivity : D (x,y) = 0 if and only if x = y.

3. Symmetry : D (x,y) = D (y,x).

4. Triangle inequality : D (x,y) +D (y, z) ≥ D (x, z).

A common class of metrics are defined using the so-called p-norms as:

Dp (x,y) ≡ ‖x− y‖p =

(
d∑

k=1

|xk − yk|p
)1/p

, (1)

for all values of p ≥ 1, and where xk indicates the k-th coordinate of vector x. For p = 2,
this is the regular Euclidean distance, whereas for p = 1 we obtain the so-called Manhattan
distance. Prove that, for all values of p ≥ 1, the function Dp is a valid metric.

Hint: For metrics defined through p-norms, the triangle inequality is equivalent to the
following convexity property: For all x,y ∈ Rd such that ‖x‖p ≤ 1 and ‖y‖p ≤ 1, and for all
0 ≤ α ≤ 1, it holds that ‖ax + (1− a)y‖p ≤ 1. It is easier to prove the convexity property
instead of the triangle inequality, for which you can use the standard form of the triangle
inequality from algebra: |x+ y| ≤ |x|+|y|. You are welcome to attempt to prove the triangle
inequality directly if you want, for which you can look up the Hölder’s inequality.

Question 2

Let us assume that we use the nearest-neighbor (NN) algorith for classification of d-dimensional
vectors into one of labels {1, . . . , L}, together with the Euclidean distance metric and a set
of labeled training data points xn ∈ Rd, n ∈ {1, . . . , N}. The training data points create a
segmentation of the Rd space into N so-called Voronoi cells : For each n ∈ {1, . . . , N}, the
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Voronoi cell Vn ⊂ Rd is the subset of Rd such that any point y ∈ Vn has training point
xn as its nearest neighbor, and thus y is classified as having the same label as xn. We can
“color” each such cell by the label of the training point xn it is associated with. Figure 1
shows two Voronoi segmentation examples, for the cases d = 2, 3 and L = 2. Prove that
all Voronoi cells are convex: this means that, if y and z belong to the same Voronoi cell,
y, z ∈ Vn, then so does any point on the linear segment connecting y and z.

Hint: It will be helpful to consider the case of two dimensions (d = 2) and two training
data points (N = 2). Under these assumptions, the problem should reduce to a simple
Euclidean geometry exercise. Once you have worked out this case, you can generalize to the
case of two dimensions (d = 2) and multiple data points (N ≥ 2). Finally, you can extend
this to the full case of any number of dimensions (d ≥ 2) and multiple data points (N ≥ 2).

Figure 1: Example Voronoi segmentations induced by the nearest-neighbor algorithm, in two
(left) and three (right) dimensions.

Instructions

1. Integrity and collaboration: Students are encouraged to work in groups but each
student must submit their own work. If you work as a group, include the names of
your collaborators in your write up. Plagiarism is strongly prohibited and may lead to
failure of this course.

2. Questions: If you have any questions, please look at Piazza first. Other students may
have encountered the same problem, and it may be solved already. If not, post your
question on the discussion board. Teaching staff will respond as soon as possible.

3. Write-up: Your write-up should be typese in LATEXand should consist of your answers
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to the theory questions. Please note that we DO NOT accept handwritten scans for
your write-up in quizzes.

4. Submission: Your submission for this assignment should be a PDF file, <andrew-id.pdf>,
composed of your write-up. Please do not submit ZIP files.
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