

Unsupervised Object Discovery via Saliency-Guided Multiple Class Learning

Jun-Yan Zhu^{1,2}, Jiajun Wu^{1,2}, Yichen Wei¹, Eric Chang¹, Zhuowen Tu^{1,3}
1 Microsoft Research Asia, 2 Tsinghua University, 3 UCLA

Ambiguity of Unsupervised Object Discovery

- Easy to cluster images in (a), but hard to cluster those in (b)
- intrinsic ambiguity of the complex object appearances and the background clutter

Problems with the Existing MIC and Clustering Methods

- MIC: treat all the images as positive bags without considering the uses of negative bags
- Unsupervised Clustering: strict constraints include large occupation of the foreground objects, clean background, ...
- Cannot perform localization
- Cannot train object classifiers

Weakly Supervised Single Class Learning

	bMCL	[11]	[9]	[37]	[33]
PASCAL 06-all	45	49	34	27	N/A
PASCAL 07-all	31	28	19	14	30

comparison with previous weakly supervised learning methods, measured in CorLoc

object localization results of bMCL with a single object class on the challenging PASCAL VOC 07

Saliency-Guided Notion

Blue rectangle: the desired object window. Yellow rectangle: the most salient window. Red rectangles: the positive bag.
Green rectangles: the negative bag.

Idea: Although the complex background may create some false detections, objects are mostly covered in the top ranked windows.

For each image

- a positive (object) bag consists of the most salient windows, and
- a negative (background) bag consists of the least salient window from a large set of randomly sampled windows

Unsupervised Object Discovery

bMCL SD M³IC BAMIC UnSL

measured in terms of purity

SIVAL dataset

3D object category dataset

Detecting Novel Objects Using Learned Detectors

Bottom-up Multiple Class Learning

- Goal:
- Discriminate the positive (object) instances from negative (background) instances;
- Maximize the differences between different object classes in the positive bags.

Algorithm 1 Bottom-up Multiple Class Learning

Input: Bags $\{x_1, \ldots, x_n\}, \{y_1, \ldots, y_n\}, T, K, H_K^0$.

Output: K discriminative classifiers: h^1, \ldots, h^K . $r \leftarrow 0$.

repeat

 $r \leftarrow r+1.$ for $k=1 \rightarrow K$ do {M Step} Given class variables H_K^{r-1} , group terms

 $\mathcal{L}^k(h_r^k;Y,X,H_K^{r-1})$ by class indices. Train a strong MIL classifier h_r^k to minimize $\mathcal{L}^k(h_r^k;Y,X,H_K^{r-1})$ via MIL-Boost. T is the number of weak classifiers in MIL-Boost.

end for for $i = 1 \rightarrow n$ do {E Step}

Compute $\Pr(y_i=1,k_i=k|x_i;\theta_r)$ using estimated model $\theta_r=\{h_r^1,\ldots,h_r^K\}$. Sample k_i via $\Pr(k_i=k|y_i=1,x_i;\theta_r)\sim \Pr(y_i=1,k_i=k|x_i;\theta_r)$. end for until $H_K^r=H_K^{r-1}$

Internet Images

	Internet	bMCL	SD	M^3IC	BAMIC	UnSL
Ā	Accuracy	96.25	88.75	66.25	75.00	56.25
	Purity	96.25	88.75	66.25	75.00	56.25
	NMI	77.22	49.99	8.12	25.75	11.28

clustering results of images returned by Google and Bing image search, measured in terms of three different metrics

Unsupervised object discovery

Detecting novel objects using learned detectors

Discriminative EM

Goal: optimize the training set log likelihood $\mathcal{L}(\theta; Y, X)$ w.r.t. model parameters in the presence of hidden variable H.

$$\begin{split} \frac{d}{d\theta}\mathcal{L}(\theta;Y,X) &= \mathbb{E}_{H\sim \Pr(H|Y,X;\theta)} \Big[\frac{d}{d\theta}\mathcal{L}(\theta;Y,X,H) \Big] \\ \text{where} & \mathcal{L}(\theta;Y,X,H) = -\log\Pr(Y,H|X;\theta) \end{split}$$

$$\Pr(H|Y,X;\theta) = \frac{\Pr(Y,H|X;\theta)}{\Pr(Y|X;\theta)}$$

Approach: iteratively update an initial estimate θ_0 with successively better estimates $\theta_1, \theta_2, \dots$, until convergence.

E step: Compute $\Pr(H \mid Y, X; \theta)$ via previous estimate r. **M step:** Update θ_{r+1} by minimizing $\mathcal{L}(\theta; Y, X)$.

DiscEM for bMCL

Definition: $H = (H_K, H_I)$ are hidden variables where

- $H_K = \{k_i \mid i = 1, ..., n\}$ are class latent labels.
- $H_I = \{y_{ij} \mid i = 1, ..., n, j = 1, ..., m\}$ are instance labels.

$$\frac{d}{d\theta} \mathcal{L}(\theta; Y, X) = \mathbb{E}_{H_K \sim \Pr(H_K | Y, X, \theta)} \left[\frac{d}{d\theta} \mathcal{L}(\theta; Y, X, H_K) \right]$$
 where $\mathcal{L}(\theta; Y, X, H_K) = \sum_{k=1}^K \mathcal{L}^k(h^k; Y, X, H_K)$

For each $\mathcal{L}^k(h^k; Y, X, H_K)$, hidden instance variables H_I could be further integrated out as

 $\frac{d}{d\theta} \mathcal{L}^{k}(h^{k}; Y, X, H_{K}) =$ $\mathbb{E}_{H_{I} \sim \Pr(H_{I}|Y, H_{K}, X; \theta)} \left[\frac{d}{d\theta} \mathcal{L}^{k}(h^{k}; Y, X, H) \right]$

Conclusions

Bottom-up Multiple Class Learning performs

- object class discovery,
- object localization, and
- object detector training
- in an integrated framework.

Advantages:

- Adopt saliency detection to convert unsupervised learning into multiple instance learning;
- Develop Discriminative EM (DiscEM) to solve bMCL;
- Perform localization, object class discovery and object detector training in an integrated framework;
- Observe significant improvements over the existing methods for multi-class object discovery;
- Show single class localization as a special case in our bMCL framework;
- Demonstrate advantages of bMCL over purely data-driven saliency methods;
- Apply bMCL on internet images to verify its generality.

Co-saliency

	apple	book	candle	note	scrunge
bMCL	0.65	0.75	0.66	0.65	0.68
[12]	0.69	0.74	0.62	0.54	0.61
[4]	0.49	0.71	0.43	0.62	0.52

evaluation of co-saliency in F-measure on SIVAL dataset